(DURIP-95) Instrumentation for the Development of Time-Domain Optical Storage Processing and Routing Technologies

Professor Thomas W. Mossberg

Department of Physics
University of Oregon
Eugene, OR 97403

AFOSR-TR-97

F49620-95-1-0493

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

The present grant was an instrumentation grant. Its purpose to provide funds to acquire instrumentation supportive of research work in the areas of time-domain optical storage, processing, and routing technologies. The complete catalog of instrumentation items requested or currently available equivalents have been ordered, received, and incorporated into ongoing research supported under AFOSR grants F49620-95-1-0465 and F49620-96-1-0259.

19971002 017

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED
Final Technical Report
Instrumentation for the Development of Time-Domain Optical Storage, Processing, and Routing Technologies
1 September 1995 through 31 December 1996
F49620-95-1-0493

Project Title: Instrumentation for the Development of Time-Domain Optical Storage, Processing, and Routing Technologies

Principal Investigator: Thomas W. Mossberg
Professor of Physics
University of Oregon
Eugene, Oregon 97403
Phone: 541-346-4779
Fax: 541-346-4791
email: twmoss@oregon.uoregon.edu

Institution: University of Oregon
5215 University of Oregon
Riverfront Research Park
1600 Millrace Drive, Suite 106
Eugene, OR 97403-5215

Grant Number: F49620-95-1-0493

Reporting Period: September 1, 1995 - December 31, 1996
Report

Objectives:

Unchanged from original proposal

Time-domain Frequency-selective Optical Data Storage and Processing techniques are relatively new and therefore largely unknown to many workers in the fields of optical communications, computing, and storage. Nevertheless, these techniques have unique capabilities that may facilitate the development of entirely new classes of ultra-high-speed optical communication, routing, storage, and processing devices that provide performance substantially beyond the current state-of-the-art. For example, memories involving time-domain frequency-selective techniques promise multi-GHz bandwidth and near atomic level storage densities far beyond storage densities available using current optical or magnetic technologies. Areal storage densities more than an order of magnitude larger than the current optical state-of-the-art have recently been demonstrated in preliminary Time-Domain optical memory studies. Generally speaking, experimental studies of Time-Domain Frequency-Selective Storage and Processing techniques has been seriously constrained by available facilities. To clearly demonstrate the capabilities of Time-Domain techniques, one needs lasers of precisely controlled amplitude, frequency, and phase. The external-cavity diode lasers, phase modulator, lock-in amplifier, wavemeter, and Fabry-Perot interferometer requested here provide laser, laser stabilization, and laser diagnostic capability. To demonstrate the high bandwidth potential of this new class of processes, high-speed laser beam amplitude/phase modulation and high-speed detection capabilities are required. The integrated-optical modulators, waveform generator, transient recorder, and detectors provide these. Finally, to find materials exhibiting favorable coherence lifetimes, spectroscopic measurement equipment is required and is provided by the spectrometer requested. Funding of this equipment proposal will open the door to truly impressive demonstrations of the capabilities offered by Time-Domain Frequency-Selective Memory and Processing schemes and thereby provide the stimulus necessary to spur development of this new field.

Status of Effort:

The present grant was an instrumentation grant. Its stated purpose was to provide funds to acquire instrumentation supportive of research work in the areas of time-domain optical storage, processing, and routing technologies. The complete catalog of instrumentation items requested or currently available equivalents have been ordered, received, and incorporated into ongoing research supported under AFOSR grants F49620-95-1-0465 and F49620-96-1-0259. Since the grant period provided only enough time to acquire and incorporate equipment into new and existing projects supported under the grants just specified, new detailed technical results are not yet available. They will be
reported in the regularly scheduled technical reports for grants F49620-95-1-0465 and F49620-96-1-0259.

Accomplishments/New Findings:

As indicated in the preceding paragraph, the funding period for this instrumentation grant was only long enough to acquire the specified items. Technical results derived from ongoing use of the instrumentation will be conveyed through the standard technical reports specified for AFOSR research grants F49620-95-1-0465 and F49620-96-1-0259.

Personnel Supported by the grant:

Personnel support not allowed under instrumentation grant guidelines

Publications:

Interactions/Transitions:

a. Conference Presentations:

Contributed:
Demonstration of 8 Gbit/in² storage density using swept-carrier frequency-selective optical memory, H. Lin, T. Wang, and T. W. Mossberg, 1995 OSA/ILS Annual meeting,
Sept. 11-16, 1995, Portland, OR.

Invited:

Persistent Spectral Holeburning and Applications, T. W. Mossberg, Rare-Earth Research Conference, Duluth, MN, July 1996.

b. Consultative and advisory functions to other laboratories and agencies: None

c. Transitions: Supported work at the University of Oregon is being performed in
collaboration with researchers at Templex Technology Corporation of Eugene, Oregon. Templex is involved in the commercialization of time-domain frequency-selective memory devices and content-controlled all-optical routers and switches.

New Discoveries:
A new approach to all-optical, content-controlled, optical switching and routing employing frequency-insensitive substrate materials has been proposed.

Honors/Awards:
T. W. Mossberg - appointed Fellow American Physical Society, June 1996

Lifetime:
Fellow Optical Society of America