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Abstract

This report addresses the initial phase of hypersonic boundary-layer transition comprising
excitation of unstable normal modes (receptivity problem) and their downstream evolution
from receptivity regions to the instability growth onset (instability pre-history problem). It is
shown that this phase is more complicated than in subsonic and moderate supersonic cases
due to the following features of the disturbance field: (1) the first and second modes are
synchronized with acoustic waves near the body nose region; (2) further downstream the
first mode is synchronized with entropy/vorticity waves; (3) near the instability growth onset
the first mode is synchronized with the second mode. Disturbance behavior in the
synchronism regions (2) and (3) are studied using the multiple-mode method, which
accounts for interaction between modes of discrete and continuous spectrum due to
nonparallel effects of the mean flow. It is shown that vorticity/entropy waves are partially
swallowed by the boundary layer and effectively generate the first mode due to Synchronism
(2). This mechanism can compete with the leading edge receptivity to the freestream
acoustic waves in cases of “quiet” freestream conditions and conical body configurations.
Spectrum topology and interaction between the first and second modes due to Synchronism
(3) is studied using asymptotic and numerical analyses. Branch points of the discrete
spectrum were identified. It is shown that near the branch points normal modes have singular
behavior. The inter-mode exchange rule coupling input and output characteristics of the first
and second modes crossing the branch point vicinity was established. Combination of the
receptivity estimates related to Synchronism (2) and the inter-mode exchange rule related to
Synchronism (3) allows the evaluation of instability initial amplitudes required for the PSE
calculations of the transition onset point. That makes feasible an amplitude method coupling
receptivity and stability problems. Results of analyses are compared with experimental
observations in the AEDC Tunnel B on sharp cones at the freestream Mach number M = 8.
Possible ways of experimental investigation of hypersonic receptivity and instability pre-

history are discussed.
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Nomenclature

Latin symbols

-

A

B

c
F=wv,/U}
G,

L

M

P

Q9

pP

R=\UX" /v,
R, =JUL IV
T

t

u,v

u, v

x=x /L
y=y'16
Greek symbols
(04
S=4LV.,/U;
5

eigenvector of direct problem
eigenvector of conjugate problem
amplitude coefficient or phase speed
frequency parameter

stability equation matrix

reference streamwise length
Mach number
mean-flow pressure

mass flux disturbance amplitude

pressure disturbance

Reynolds number based on the boundary-layer scale /v,x" /U,

*

Reynolds number based on the boundary-layer scale {/L'v, /U,

mean-flow temperature
time
mean-flow streamwise and vertical velocity

disturbance of x - and y-velocity component

streamwise coordinate

coordinate normal to the wall surface

x -component of the wavenumber vector
boundary-layer scale

boundary-layer displacement thickness




Subscripts
ad

asterisk
b

cr

e

i

in

Superscripts

bar

asterisk

Abbreviations

PSE
Im
Re

small parameter

boundary-layer coordinate
viscosity

kinematic viscosity
temperature disturbance
Prandtl number

angular frequency

disturbance vector

adiabatic wall

synchronism between entropy/vorticity waves and the first mode
branch point

critical

upper boundary layer edge or entropy wave

imaginary part

initial

real part

vorticity wave

wall

complex conjugate value

dimensional value

parabolized stability equations
imaginary part
real part
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1. Introduction

Laminar-turbulent transition in a hypersonic boundary layer causes the significant increase in
heat transfer and skin friction. Since the aerodynamic coefficients of hypersonic vehicles are
sensitive to these changes, the ability to predict the transition location and simulate the
transition zone is important in the design and optimization of aerospace vehicles [1]. The
stability, control, and structural design are also affected due to the increased thermal and
aerodynamic loading. Recent technology does not provide accurate prediction of transition
due to the complexity of this phenomenon. Uncertainty in transition location leads to
diminished vehicle performance, primarily because of the additional weight of the thermal
protection [2]. These factors stimulate further theoretical and experimental studies of

hypersonic transition [3].

For flight and quiet wind tunnel conditions, freestream disturbances and perturbations
generated by hypersonic body surfaces are normally small in a frequency band related to the
boundary-layer transition process. In this case, the initial phase of transition comprises
excitation of unstable normal modes (receptivity problem), their downstream amplification
(stability problem) and non-linear mechanisms, which trigger transition at critical amplitudes

of the boundary-layer disturbances (transition onset problem) [4], [5].

Linear stability theory allows the identification of unstable modes and prediction of their
downstream growth [3], [6], [7]. Stability theory is well developed for subsonic and
moderate supersonic boundary layers [8]. Its results are consistent with many experiments
[9]-[11]. Good progress has been recently made in receptivity at subsonic speeds [12]-[18].
Combination of the receptivity theory with stability analysis based on the parabolized
stability equations (PSE) [19], [20] makes feasible an amplitude method [21] coupling the
external disturbance characteristics with the transition onset locus. Much progress toward

the subsonic and moderate supersonic transition prediction is partially due to the fact that




the boundary-layer disturbance spectrum is relatively simple in these cases. /.e. unstable
normal modes of discrete spectrum has no branch points, turning points and other
singularities. For example, transition on subsonic/supersonic cones, flat plates, axisymmetric
bodies at zero angle of attack and airfoils is due to excitation and downstream amplification
of the Tollmien-Schlichting waves, which belong to the first normal mode according to
Mack’s classification [22]. Other modes are stable and their eigenvalues are essentially
different from the first mode. In this case, interaction between Tollmien-Schlichting waves

and other normal modes can be neglected in the instability growth prediction. Such a single-

mode approach is currently used in the e" -method [7] and the PSE analysis [20].

In contrast to moderate supersonic flows, the initial phase of hypersonic transition (at Mach

numbers larger than 4) reveals the following new features:

(1) Besides the first mode, the second and higher modes coexist in the boundary layer. They
belong to the family of trapped acoustic normal waves. Once the second mode sets in, it
becomes the dominant instability since its growth rate tends to exceed that of the first mode.
For insulated surfaces, this occurs for Mach numbers M > 4. For cooled surfaces, the
second mode can dominate at even lower Mach number. The existence of the second mode
instability was established by the experiments of Kendall [23], Demetriades [24], and Stetson
et al. [25], [26]. The Mach 8 stability and transition experiments [25] (see also [26]) for the
boundary layer on a sharp cone indicated that the unstable high-frequency second mode
plays a major role in the conical boundary-layer transition. These data are consistent with the
second mode stability calculations [27]-[29]. The linear stability theory is in a qualitative
agreement with the conical boundary layer experiments. However quantitative discrepancy
still exists. Stetson and Kimmel [26] noted that “for the linearized stability calculations, there
is concern about the effects of the large second mode disturbances and the early presence of
the nonlinear disturbances. For the experimental data there is concern about the effects of

the uncontrolled freestream environment and the limitations of the hot-wire anemometry
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data.” In addition, this discrepancy may relate to the disturbance spectrum singularities near

the branch points discussed in Section 4.

(ii) The second mode instability is associated with synchronization between the first and
second modes [30], [31]. Near the synchronism point, the eigenvalue spectrum splits into
two branches. In the vicinity of branch points, the eigenmode decomposition is not valid and
should be replaced by a local solution. Asymptotic analysis of this solution reveals a strong
exchange between modes due to nonparallel effect [32]. This finding leads to the conclusion
that, instead of a single-mode stability analysis recently used in the transition prediction
technology, a multiple-mode analysis is required to account for interaction between normal

modes, particularly between the first and second modes.

(i) Stability and transition experiments on a planar boundary layer [33] showed that the low
frequency disturbances are growing despite the fact that the linear stability numerical results
indicated the first mode disturbances should be stable [29]. Stetson et al. [33] reported:
“There was no evidence of any second mode harmonics in the planar boundary layer. The
major disturbances are the low frequency disturbances which are growing in a frequency
band expected to be stable.” These results are consistent with the flat plate results of Kendall
[23] obtained at Mach numbers 3., 4.5, and 5.6. Kendall reported that “fluctuations of all
frequencies were observed to grow monotonically larger in the region of a boundary layer
extending from the flat plate leading edge to the predicted location of instability; 7.e. in a
region where no growth was expected”. Mack [34] developed a forcing theory, which was
successfully applied to Kendall’s Mach 4.5 planar data. However Mack noted “the major
difficulty in the use of the forcing theory is that forced disturbances are distinct from free
disturbances, and the process by which the former becomes the latter is unknown”. This
coupling between freestream (external) sound and norma! modes of planar supersonic
boundary layer has been theoretically studied in [32], [35]. It was found that the first and
second modes are synchronized with acoustic waves near the leading edge of a flat plate, i.e.

frequency and wavenumber of the normal mode coincide with those of an external acoustic
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wave. That causes a strong excitation of the normal modes by freestream noise through the

mechanism, which is qualitatively different from the subsonic case studied in [13], [18].

(iii) For low supersonic Mach numbers, the dominant boundary-layer disturbances have
relatively low frequency. The wind tunnel freestream has intensive acoustic disturbances at
the corresponding frequency band and provides large initial amplitudes for normal modes at
the instability growth onset associated with the lower neutral branch. The major source of
these disturbances is due to radiation of acoustic waves by the turbulent boundary layer on
the wind tunnel nozzle walls. That causes transition Reynolds numbers in conventional
supersonic wind tunnels to be significantly lower than ones in flight conditions. Hypersonic
transition wind tunnel testing presents a different situation [26]. If the dominant boundary-
layer disturbances belong to the second mode, they have relatively high frequency. Since
most of acoustic energy is concentrated in the low frequency band, the noise intensity
rapidly decreases with increasing frequency until the signal is lost in the instrumentation
noise. Therefore, the “noisy” hypersonic wind tunnel can be “quiet” for the second mode
frequency band. In this situation, freestream turbulence (vortical disturbances) and entropy
spottiness (temperature disturbances) may play important role in hypersonic boundary-layer
receptivity. Mechanism of the boundary-layer mode excitation by vorticity/entropy waves is

discussed in Section 5.

(iv) Transition process is described by the initial boundary value problem, which requires
distributions of the normal mode amplitudes at the instability growth onset. These initial data
are determined from receptivity analyses comprising the identification of external
disturbances, the determination of the most sensitive regions, and prediction of the normal
mode propagation from these regions to the instability growth onset. All these steps relate to
the disturbance field in the region located upstream from the lower neutral branch.
However, previous studies have been focused on stability analysis related to the downstream

region only. In this report, we show that the disturbance pre-history of hypersonic boundary
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layer is more complicated than in the moderate supersonic case due to the presence of the

disturbance spectrum singularities.

(v) Recent experimental studies [36] relevant to the non-linear phase of supersonic flat-plate
transition showed that boundary-layer disturbances of discrete spectrum are able to generate
intensive acoustic waves of continuous spectrum. Release of the boundary-layer disturbance
energy to the external flow can affect the transition onset process. This mechanism seems to
be stronger at higher Mach numbers. Since the PSE analysis does not account for the
continuous spectrum disturbances, these effects cannot be predicted using the PSE code.
Similar comment can be made regarding receptivity problem coupling external disturbance
of continuous spectrum with the boundary-layer modes of discrete spectrum. To capture
these mechanisms, the PSE method should be modified or combined with alternative

methods.

These examples show that the extension of subsonic and low supersonic stability concepts
and transition prediction methodology to hypersonic speeds is not a trivial problem.
Hypersonic boundary layer receptivity, instability and non-linear mechanisms reveal new
features which should be studied independently. A multiple-mode method rather than a
single-mode approach can help to explain mentioned above singular features of hypersonic
transition. This method can be able to evaluate receptivity of hypersonic boundary layers and
provide initial data for the PSE calculations. That will help to realize the amplitude method

for the hypersonic transition prediction.

This report addresses the initial phase of the hypersonic boundary-layer transition
comprising excitation of unstable normal modes (receptivity problem) and their downstream
evolution from receptivity regions to the instability growth onset (instability pre-history
problem). In Section 2, we formulate basic formalism of the multiple-mode method
following to previous studies relevant to subsonic and moderate supersonic speeds [12],

[37], [38]. In Section 3, we analyze the spectrum topology for hypersonic boundary layer
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including the continuous spectrum. Then we consider normal mode characteristics of the
hypersonic boundary layer on a sharp cone and identify singular regions relevant to
synchronism between normal modes and external acoustic waves, synchronism between the
first mode and external vorticity/entropy waves, and synchronism between the first and
second modes. In Section 4, we study coupling between the first and second mode in
correspondent synchronism region and establish the inter-mode exchange rule. In Section 5,
we consider synchronism between the boundary-layer modes and the entropy/vorticity
waves and estimate receptivity to the freestream turbulence and entropy spottiness. In
Section 6, we summarize results, formulate possible scenarios for the initial phase of
hypersonic transition in conical and planar boundary layers, and discuss their consistency

with experimental evidences.

2. Basic formalism

In this section, we describe the basic formalism of the multiple-mode method, which
provides coupling between external disturbances and boundary-layer normal modes
(receptivity problem) as well as coupling between different normal modes (inter-mode
exchange problem). In the framework of linear stability theory, receptivity and inter-mode
exchange mechanisms are due to non-parallel effects of basic flow. The multiple-mode

analysis is based on the following formalism developed in [12], [37]-[39].

We consider a two-dimensional boundary layer mean flow with the velocity components
U, V)Y=U" V"YU’ , pressure P=P"/(pU”") and temperature T=T"/T". Due to

downstream growth of the boundary layer thickness, the mean flow profiles are functions of

the longitudinal coordinate x=x" /L', i.e.

U=U(xy), V=e"(xy), P=P(x), TV= T(x,) 2.1
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where y =y"/& is coordinate normal to the wall surface , §=+/v.L /U, is boundary

layer scale, and L’ is typical streamwise distance from the body nose to the flow region to

be analyzed. In many cases, this distance is associated with the lower neutral branch locus.

Unsteady disturbance field is represented as a vector

o8

b Dy (2.2)

%
@)7 2 >

S RS

P(x,9,1) = (4, %, v, p, 6, %

where ¢ =¢"U. /& istime; u and v are streamwise and vertical velocity components; p is
pressure and 6 is temperature. For harmonic disturbances of a given angular frequency

®=w"6/U. and small amplitude 7, the disturbance vector is expressed in the form
¥ = A(x,y)exp(—iowt) (2.3)

The disturbance amplitude A is a solution of linearized Navier-Stokes equations, which can

be written in the matrix-operator form

H,A+eH,Z =0 (2.4)
where the operator H, is expressed as
o . d 7
+

HO =’§Log ng_Hl—gH:‘

Elements of the 9x9 matrices L, L,, H,, H, and H, are functions on mean flow

characteristics. Their explicit form is given in [12] and [38]. Elements of the matrix H, are
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g -~

proportional to terms = & V and éV— Small parameter ¢ =1/ R, characterizes non-

parallel effects, where the Reynolds mumber is R, =U.L"/v, . If the disturbance
amplitude is identified in a certain cross-section x =x, and disturbances satisfy no-slip

conditions on the wall, then the boundary conditions are

A(xy,¥) = 4,(») (2.52)
A (x,0) = 4,(x,0) = 4,(x,0)=0 (2.5b)
| A(x,y)|< 0, y > (2.5¢)

Solution of Eq. (2.4) with the boundary conditions (2.5) can be represented as an expansion

in an eigenvector system of the locally homogeneous problem

ﬁ(Lo @] +LI@=15(1,21'+g1L12ﬁ (2.6a)
Y\ @ & Z2

A,(x,0)= A4,(x,0) = 4,(x,0)= 0 (2.6b)

| A(x,y)|< 00, y = o (2.6¢c)

The biorthogonal eigenvector system {}ia (x,y), fi’a (x,y)} 1is defined as a family of
solutions for the following problems [38], [39]:

Direct problem:

A A - .
ﬁ(Lo é’—“J + 1, A, =H A, +iaH,A, (2.7a)
I\ " & &
A1 (%,0) = A5 (%,0) = 4,5(x,0) = 0 (2.7b)
|4, (x,y) <0, y = 0 - @79

Adjoint problem:

16




é(L;‘, é’B"] - L B, _ HB, -iaH, B, (2.8a)

I\ ¥ &
B, (x,0) = B,,(x,0) = B,,(x,0)=0 (2.8b)
B, (x,y) <o, y > (2.8¢)

Here asterisk denotes a conjugate matrix and upper bar denotes complex conjugate values.

Eigenfunction Xa (x,y) characterizes an amplitude distribution of the elementary wave

4,(x,y)exple, (x)—ior], p,(x)=ie" [a(x)dx 2.9)

*o

The eigenvectors satisfy the following orthogonality conditions

(H,A4,.B,)=A,, (2.10)
where the scalar product is defined as
— - < —_— - — — 9 —
— 1 -5 —
(4,B)= Jim ! e (4,B)dy, (4,B)= ZH AB,, k>0 (2.11)

Here A, is Kronecker symbol, if one of the eigenvalues a, S belongs to the discrete
spectrum; A, = S(a — f) is delta-function, if both eigenvalues belong to the continuous

spectrum.

Solution of the problem (2.4), (2.5) is represented as the eigenmode decomposition

17




A=Y c,(x)4,(x,y)explo, (x)] (2.12)

where Z denotes summation over discrete spectrum and integration over continuous

[#4

spectrum. Substituting (2.12) into Eq. (2.4), multiplying by E’ﬁ and accounting for the

orthogonality condition (2.10), we obtain the ordinary differential equation system for the
amplitude coefficients c_(x)

o S W s explo; 9. 2.13)

c, =<H220,§a> at x=1x,

where matrix elements are determined as
A, S
W, =-\H,—Z.B, )-(H,4,.B,) (2.14)

For an arbitrary normalization of the eigenfunctions Za, 1§a , these matrix elements are

a5

a’k
W, = =
H, A4,

expressed as

(2.15)

—.

af —

Diagonal elements ¥, relate to a single mode evolution in the non-parallel boundary layer.

Non-parallel stability analyses [12], [41] and the PSE method [19], [20] address this case.

18




Non-diagonal elements W,, are responsible for exchange between modes with eigenvalues
a and f. If one of these modes belongs to the continuous spectrum, then the elements W

provide coupling between external disturbances and the boundary-layer modes (receptivity
problem). If both modes belong to the discrete spectrum, these elements are responsible for
the exchange between normal modes (the inter-mode exchange problem). If the mean flow is

parallel, then all matrix elements ,, = 0, and no coupling between modes.

In the framework of this formalism, the receptivity analysis and the inter-mode exchange

analysis comprises the following steps:

e Identify the biorthogonal eigenvector system {Za (x,9), B,(x,y)} including discrete and
continuous spectrums of a(x,®).

 Specify initial conditions at x = x,.

* Simplify the equation system (2.13) neglecting eigenmodes, which are not important for
particular problem (cutoff procedure).

* Calculate eigenvalues, eigenfunctions and matrix elements (2.14).

* Solve the cutoff equation system for the amplitude coefficients ¢, (x).

3. Disturbance spectrum

Analysis
The local homogeneous problem (2.7) can be reduced to the well known linear stability
problem [12], [38], [39]

z,

@ =G,Z, (3.1a)
2y =2 =2,=0,y=0 (3.1b)
|z, |<o0, y =0 (3.1c)
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where Z, =(4,,, Ay, Auzs Auss Ayss Ayg)”, and G, is 6x 6 matrix depending on basic

flow characteristics, frequency @, eigenvalue o, and Reynolds number R = U x"/v_ .

- Its non-zero elements are given in [41]. System (3.1) has six independent solutions

4> G,>-.-, G with the following asymptotic forms

- -

G,>G%"" aty >, j=1,.,6 (3.2)
where A ; are solutions of the characteristic equation
det|G, - AE| =0 as y —> oo (3.3)

Eq. (3.3) can be written in the explicit form

b, - y N, - 22 Xby; — A)- b,,b,,1=0, 3.4)
b, = G:Ia by, = G:ZG:‘; +G:3G34 +G36Gg4’
by = GPG +GEGY +GHGY,
by, =Go64> by, = Ggs

Eq. (3.4) has the following solutions

b,+b,, _1
’121 = bn > ’122,3 = “227&"'_2‘\/(1’22 _b33 )2 _4b23b32 (3-5)

Specifying branches as Re(41,, 1,, 1,) <0, we can express the asymptotic forms (3.2) as

= ~(0) , 4 = ~(0) ,+2 s —(0) _+14
G2 > q,¢7, Q30 > G30¢ 7, O g qs(,s)e Yaty—>w (3.6)
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If Re(4,)#0 for all j=12,3, then solution of the problem (3.1) is the linear

decomposition of three vectors
Z, =C4, +Cyq; + Cif; (3.7)
where constants C,, C, and C; are determined from the wall boundary condition (3.1b)

Ciq,, +Cq,, +Ciqy5 =0 (3.8)
(g5 +Ciq5, +Ciq,5, =0
Cqs5, +Cyq53, +Ciq5,=0

Equation system (3.8) has non-trivial solutions, if its determinant is zero; i.e.

91 93 9
detlg;, 4¢3 q55)=0 (3.9)
ds1 9s3  9ss

The dispersion relationship (3.9) gives a discrete spectrum «, (w,x) related to the boundary

layer normal modes.

If one of the eigenvalues 4 ; has zero real part,Re(1;) =0, then solution of the problem

(3.1) is a linear decomposition of four vectors and describes waves of continuous spectrum.
Analysis [39] shows that supersonic boundary layer has seven branches of continuous
spectrum: three branches correspond to waves propagating upstream, two branches
correspond to acoustic waves propagating downstream and two branches correspond to
vorticity and entropy waves propagating downstream. The continuous spectrum branches

and discrete eigenvalues are schematically shown in Fig. 1. Further analysis addresses the
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continuous spectrum waves propagating downstream only. Their eigenvalues belong to the

upper half of complex « -plane.

If 22 =-k and k>0 is real parameter, then the wavenumber a,(w,k) corresponds to

vorticity waves of the amplitude

z, =Cq,+Cq, +C3q; +Cigs (3.11)
which has the asymptotic form
Z, =C,g0e® +C,G" ™ +C,G{"e™” +C,G%e* at y > o (3.12)

For large Reynolds numbers R=.U.x"/v: =R,x, the vorticity wavenumber is

approximated as

B+’

a,=w+i +0O(R™) (3.13)

If 22 =-k* and k >0, then the wavenumber «,(@,k) corresponds to entropy waves of

the amplitude
z,=Cq,+Cq, +C,q, +Cq; (3.14)
which has the asymptotic form

-

7, =C,G"e* +C,G"e® +C,§"e™ +C,G"e*” at y > (3.15)
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The entropy wavenumber is approximated as

2 2

© +OR™) (3.16)

a,=w+i
where o is Prandtl number. According to Egs. (3.13) and (3.16) vorticity and entropy
waves propagate downstream with the phase speed ¢, =w/a, =1+O(R™?), and slowly

dissipate due to viscosity.

2

Equation, A3 =—k* at k >0, gives three branches. Two of them correspond to acoustic
q 3 gv

waves of the wavenumber o ,(w,k) propagating downstream in a supersonic flow. Their

amplitude
Z,=Cq,+C,q, +Cg; +C,g, (3.17)
has the asymptotic form
z,=C,g"e™ +C,§0e*” +C,§"e™ +C,GV™ at y - (3.18)

For the Mach number M, >1 and k << R, acoustic waves are almost neutral. Their

wavenumbers belong to the regions

Mo Mo
R <——+0O(R™"); R >—=
o(c,) S TOR™); Rela,) > 222

e e

+O(R™) (3.19)

As k increases, their decrement Im(cr,) grows. When the parameter % is of the order of

the Reynolds number R, acoustic waves transform into pressure waves, which rapidly

dissipate downstream (see Fig. 1).
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Numerical results

Two-dimensional boundary-layer profiles were calculated using self-similar solutions of the
boundary-layer equations in the local similarity approximation [42]. The conical mean flow
characteristics were obtained using the Mangler transformation according to which the flat-

plate boundary-layer thickness &, is larger than the conical boundary-layer thickness &, by

V3. hall calculations, it is assumed that the fluid is a perfect gas with a constant specific

heats ratio y =14 and Prandtl number o = 0.72. The viscosity temperature dependency is

approximated by Sutherland’s law

(T)= (1+S) T3/2
(T+Y5)

where §=110/7, for air temperature measured in degrees Kelvin, u=u"/u’ is
nondimensional viscosity. Mean flow calculations were performed for the conditions related

to the AEDC Tunnel B stability experiments on a 7 degree half angle sharp cone at zero
angle of attack [25]. Comparison between theoretical and experimental distributions & ,(x)

are shown in Fig. 2 for the local Mach number M, = 638, local temperature 7, = 7026 K;
the cone surface temperature is 7, = 7, (the insulated wall condition). It is seen that the

local self-similar solution well correlates experimental data. Consequently, the viscous-
inviscid interaction and the non-uniform distribution of the surface temperature near the

cone tip can be neglected in this case.

Integration of the stability equations (3.1) is performed using the numerical procedure
similar to that developed by Mack [21]. The analytic external solutions (3.7) provide the

initial conditions for the linearly-independent solutions at the upper boundary 7 = 77, , where

n=y/ Jx is self-similar boundary-layer variable. The system (3.1) is integrated from the
upper boundary 7, to the wall surface 7 =0 using the fourth-order Runge-Kutta method
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and the orthogonalization procedure. The eigenvalue search is performed by the Newton

iteration method. Calculations are conducted for the planar boundary layer. These results
have been adjusted by /3 for the comparison with the conical boundary-layer stability data
[25]. That is, the eigenvalues o and the Reynolds number R have been increased by V3.

Eigenmode characteristics and boundaries of continues spectrum are shown in Figures 3a

and 3b for the local Mach number M, = 638, local temperature 7, =70.26 K, the cone

surface temperature 7, =7,,, and frequency parameter F =10". These parameters

correspond to stability measurements [25] performed in the AEDC Tunnel B on a 7 degree
half angle sharp cone at zero angle of attack. The first and second mode eigenvalues tend to
the lower and upper boundaries of acoustic spectrum respectively, when the Reynolds
number is R <800 (Region 1 in Fig. 3a). Asymptotic analysis [32] and numerical
calculations conducted in a wide range of Mach numbers and wall temperatures showed that
this upstream asymptotic behavior is typical for hypersonic boundary layers and can be used
for classification of normal modes. We will call the normal mode with the phase speed
¢, >1+1/ M, at x — 0 as the first mode, and the normal mode with the phase speed
¢, >1-1/ M, at x - 0 as the second mode. Note that this classification is different from
the Mack’s classification. To avoid misunderstanding we will call the first/second mode of
Mack’s classification as the Mack’s first/second mode.

Analysis [32] showed that synchronization of the first and second mode waves with acoustic

waves of the phase speed ¢, =1£1/ M, can cause a strong excitation of instability near the

nose region. In conventional wind tunnels, sound is generated by vortices propagating
downstream in the turbulent boundary layer on the nozzle and test section walls. Since

acoustic waves from these moving sources have the phase speed ¢ <1-1/ M, , they do not

satisfy the synchronism conditions. However, their interaction with the nose tip induces a

local source, which generates “dangerous” disturbances of the phase speed ¢ =11/ M, , as

schematically shown in Fig. 4. For a planar configuration (flat plate or hollow cylinder), this
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local source has cylindrical shape. For the conical flow, it is concentrated near the cone tip.
Since the point source on the cone tip is weaker than the line source on a plate leading edge
and downstream attenuation of acoustic waves from the point source is stronger than that
from a line source, receptivity of a planar configuration to acoustic disturbances should be
higher than that of a conical configuration. These arguments are consistent with

experimental observations [33].

Near the point R =~ 1515 (Region 2 in Fig. 3a) the first mode is synchronized with vorticity
and entropy waves of the phase speed ¢, = 1. In this region, the freestream vorticity and
entropy disturbances may effectively generate the first mode and conversely the first mode
may induce the vorticity and entropy disturbances. These mechanisms are discussed in
Section 5. The first mode mass flux distribution Q,(y,R) is shown in Fig. 5. Near the
synchronism point, R~ 1515, oscillating “tail” indicates that the first mode penetrates
outside the boundary layer. This feature can be exploited to identify the synchronism region

2 by measuring correlation between hot-wire signals inside and outside the boundary layer.

In the vicinity of the point R~ 1750 (Region 3 in Fig. 3a), phase speeds of the first and
second modes are very close to each other. As will be shown in Section 4, the discrete
spectrum has two branch points in this region. Near the branch points a strong exchange
between the boundary-layer modes can be caused by the mean flow nonparallel effect.
Mechanism of this exchange will be discussed in Section 4. The synchronism is associated

with local maximum of the first-mode mass flux distribution shown in Fig. 5.

The spectrum topology may be different from that shown in Figures 3a and 3b. As an
example, Figures 6a and 6b illustrate the eigenvalue behavior for the local Mach number

M, =55, wall temperature ratio 7,/7,=01 and disturbance frequency F =107*.

Downstream the branch point, R,, = 3600 (Region 3), the first mode gets unstable whereas
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the second mode gets more stable. In Section 4, we study the spectrum behavior near the

branch points and discuss cases corresponding to jumps from one topology to another.

4. Coupling between the first and second modes

Analysis

Figures 3a and 6a show that phase speeds of the first and second modes are very close to
each other in the synchronism region 3. The disturbance spectrum topology in this region
has been studied by Guschin and Fedorov [30], [31]. It was found that a qualitative local

behavior of eigenvalues is described by the following simple dispersion relation

(a-aw)a-a,0)=a, 4.1)

where a=a-a, and ® =w-w, = F(R-R,) is local eigenvalue and angular frequency
respectively; a,, a, and a, are constants. The eigenvalues @, ,(R) of a given frequency F

are schematically shown in Fig. 7 for the case of a,<0, a,>a,>0. Solution of Eq. (4.1) has

two branches

_ a, +a,
a,, = 5

FR ?Ji(al -a,)’F’R? +a, (4.2)
The branch points are defined as

_ 2\\a,|

Ry, = $m (4.3)

They are located on the real axis of complex R -plane. If the branch points are bypassed
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from the upper side as shown in Fig. 7, then the first mode is stable, Im(«,) > 0, and the
second mode is unstable, Im(a, ) < 0, in the region R,, <R < R,,. This spectrum topology
is consistent with the numerical result illustrated by Figures 3a and 3b. As will be shown
below, the branch point R, is slightly shifted below the real axis of the complex R -plane

due to viscous effects. As the Reynolds number increases along the real axis, this branch
point is bypassed from the upper side similar to the case shown in Fig. 7. Figures 6a and 6b
illustrate another case when the branch point R, is shifted to the upper half of the complex

R -plane and bypassed from the lower side. The first-mode wave gets unstable downstream

from the branch point R, , whereas the second mode gets stable.

Now we consider disturbance behavior near the branch point x,, =(R,,/ R,)*. Eigenvalues

a,=a, + AV X +... 4.4)

where X = x —x,, is local variable. Using the basic formalism of Section 3, we can describe

the coupling between the first and second mode in the two-mode approximation. Ie.

of the first and second modes can be approximated as
; solution of Eq. (2.4) is approximated as

A=c,(x)4,(x,y)explp, ()] + ¢, (x) 4, (x, ) explo, (x)] (4.5)

1, =ie™ [, (x)dx (4.6)

*p1

where the eigenfunctions ZLZ are solutions of the homogeneous problem

(H, +iaH,)4, =0 (4.7a)
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A (x,0) = A;3(x,0) = A,5(x,0)= 0 (4.7b)

|4, ) => 0,y >w; j=1,2 (4.7¢)
The amplitude coefficients c,, are solutions of the ordinary differential equation system

dc

El = oWy, o, W, exp(p, —9,) (4.8a)
dc,
E = cszzz +01VV21 exp((ol - ¢2) (4.8b)

where the matrix elements are defined as

=L2;k=1,2 (4.8¢)

In the vicinity of the branch point, X =0, the operators H,, H, and eigenfunctions 21,2

are expanded in the following series

H,=H, +XH,+.. (4.9)
H,=H, +XH, +.. (4.9b)
A, =49 +(a, -a)A%+..; j=1,2 (4.9¢)

Substituting (4.4) and (4.9) into Eqgs. (4.7) we obtain the following problems

(Hy, +iaono)Z(0) =0 (4.10a)

AL (x,0) = AL (x,0) = AL (x,0)=0 (4.10b)
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|49 (x,y) >0,y > (4.10¢)

(Hy +iaoH20);i(l) = "inof_‘i(O) (4.11a)

AP (x,0) = 4P (x,0) = AP (x,0)= 0 (4.11b)
|AP(x,y) >0, y > oo (4.11c)

(Hy it Hy)A® = ~N2Hy AV — (H,, +ic Hyy )A® (4.12a)
AP (x,0) = 4P (x,0) = 4P (x,0)= 0 (4.12b)

|A? (x,y) >0, y > (4.12¢)

A non-trivial solution of the problems (4.11) and (4.12) exists, when the right-hand side of

Egs. (4.11a) and (4.12a) is orthogonal to the adjoint problem solution B ; i.e.

(HyA®,B®)=0 (4.13)

iN(Hy, AP, BO)+((H,, +ia H, )4, B”)=0 (4.14)

Eq. (4.13) can be used for the branch point search. In turn, the constant A can be
determined from Eq. (4.14).

Similar expansions can be made for the adjoint problem solution B. Substituting them into

Eq. (4.8c) we obtain the following form of the matrix elements

(-] k=1

Wy="r— 3 J=12; k=12 (4.15)
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In the inner region with the variable £ = ¢ X = O(1), the equation system (4.8) is written

as

dc 1[ 4.

agl = ZE__CI +c, exp(—gl/\ﬂfm)} (4.16a)
r

c_lci = _1_ c exp(ijA/lfyz) -c, (4 16b)

FEPYI €

Since this system does not depend on the mean flow profiles, its solution can be used to
model the inter-mode exchange for broad class of shear layers with the eigenvalue behavior
similar to that given by Eq. (4.4). Equations (4.16) can be reduced to the Airy equation

using the following transformation

S(8) = ¢,()exp(A(E) + ¢, (§) exp(-A(S)) (4.17a)

A(&) = %iA§3’2 (4.17b)
Substituting (4.17) into (4.16) we obtain

a’f .
= +A*E=0 (4.18)

Similar equation has been derived by Fedorov and Khokhlov [32] using an alternative

asymptotic analysis of Eq. (2.4).

Asymptotic behavior of the Airy equation solution at |&— oo depends on the orientation of

Stokes lines /;, j=1,2,3, which are defined by the equation Re[A(&)] = 0 in the complex

¢&-plane. We consider the Stokes lines topology schematically shown in Fig. 8. This
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topology corresponds to the case, when the first and second modes are almost neutral in the
upstream region ¢ <0. Downstream from the branch point one of these modes gets

essentially unstable and another gets stable. Numerical examples of such spectrum splitting

are shown in Figures 3a, 3b and 6a, 6b.
Following to the analysis of Fedoruk [43] we introduce the canonical domains
D;:l, €D, 1, €D,

J2 Tk#j

and specify branches of the function A(&) so that Im(A) >0 at & €/, e D,. Then the real
part Re(A) is positive to the right of the Stokes line /;, and it is negative to the left of the

Stokes line /,. Solution of the Airy equation (4.18) has the asymptotic form
f = 8,6 a; exp(A)+b; exp(-A)], |8 (4.19)
where & € D, ; constants S satisfy the following conditions
|S,1=1, and arg(S,£™*) =0 at; el; j=1,2,3

Constants a; and b, are coupled by the relations [43]

_aj+1 . 0 Ija; .
= exp(—iz / 6) . at j=1,2 (4.20a)
| 55n 1ijb
K (~i /6)0 e 4.20b
= -1 .
5, | TP ] 8, (4.200)
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Eqgs. (4.20) determine the exchange between the first and second modes as the longitudinal
coordinate x passes through the interaction region |x —x,,|= O(¢*”) and intersects one of

the Stokes lines. Since the transition matrix has a universal form, Eq. (4.20) establishes the
inter-mode exchange rule for various weakly nonparallel mean flows, which have similar

topology of the discrete spectrum. This rule can be expressed in more generic form as

A RN AL I B oy
{ o }exp(—zﬁ)-{ H bl ] (4.21)
Aunstdzle 6 1 J Aunstd)le .

where (4,4, Apgar.) and (AL, Al ..) are amblitudes of stable and unstable mode
upstream and downstream from the interaction region respectively. For the eigenvalues
shown in Figures 3a and 3b, the amplitudes A4_,,, A, correspond to the first mode, and
the amplitudes A4, , Apga. correspond to the second mode. For the case shown in
Figures 6a and 6b, the amplitudes A4_,,, A, cormespond to the second mode, and the
amplitudes A, ... > Apaas correspond to the first mode. The inter-mode exchange diagram
shown in Fig. 9 indicates that the stable-mode wave excites the unstable-mode wave of the

same amplitude, | A4, ....|~|A.,.|. In turn, the unstable mode excites the stable mode and

propagates downstream with the same initial amplitude. In both cases, the unstable mode

occurs in the downstream region.

In the first order approximation, the inter-mode exchange does not depend on the small
parameter ¢, which characterizes nonparallel effects. As & tends to zero, the interaction
region is expanded as £7”, whereas the local disturbance amplitude grows as £™°. Both
trends compensate each other so that coupling between the input and output amplitudes

does not change.
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Numerical results

Reynolds number R. For self-similar approximation of the mean boundary-layer flow, this
extension is trivial, because the mean flow profiles do not depend on the Reynolds number

and the stability matrix G, from Eq. (3.1a) depends on the Reynolds number in parametrical

explicit form only. In this case the eigenvalue problem (3.1) can be solved for complex
values of R using the same numerical procedures as in cases of real R. The branch-point

Reynolds number R,, is calculated from Eq. (4.13), which can be written as

Numerical analysis of the dispersion relation (3.9) is extended to the complex values of the
(H,4,,B,)=0at j=12 and R=R, (4.22)

Eq. (4.22) is solved using the Newton iteration technique. Distributions Re[R,,(F)] and
Im[R,,(F)] are shown in Figures 10a and 10b for the case: local Mach number M, =638,
wall temperature ratio 7, /7,, = 1. It is seen that the branch point is located in the lower

half of the complex R-plane near the real axis. Since the branch point is bypassed from the
upper side, the spectrum splitting is similar to the case shown in Fig. 3a and 3b.

Figures 11 and 12 show that the real part of the branch point, Re(R,,), is close to the low

branch of the second-mode neutral curve predicted by Simen and Dallmann [28].
Discrepancy between experimental data and stability calculations [28] observed near the

lower neutral branch may be due to singular behavior of the disturbance field in the

interaction region, R-R,, =O(R;]), corresponding to the slow variable range
|x — x,,|= O(&*"). According to the asymptotic formula (4.19), the disturbance amplitude

has a local maximum proportional to &¢™° (see also the eigenfunction in Fig. 5). This local
increase of the disturbance amplitude can be misinterpreted as the downstream growth of the
boundary-layer instability. Relatively small increments calculated from experimental

measurements near the lower neutral branch may relate to this effect.
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Figures 13a and 13b show the branch-point Reynolds number R, as a function of local

Mach number M, at various wall temperature ratios 7, /7, for the disturbance frequency

parameter F =107, For the cooled wall case, T, /T, .2 = 0.1, the imaginary part Im(R,,)
changes sign at M,, #59. In the region, M, > M,,, the branch point belongs to the lower

half of the complex R-plane. As the Reynolds number increases along the real axis, the
branch point R;, is bypassed from the upper side as schematically shown in Fig. 7. e. the

second mode is stable and the first mode is unstable in the downstream region R > Re(R,,).
This topology corresponds to the case shown in Fig. 14a and 14b for A, =595 and
T,/T,=01. In the region M, <M,,, the branch point belongs to the upper half of the
complex R-plane, and it is bypassed from lower side. The second mode is unstable and the
first mode is stable in the downstream region R > Re(R,,). This topology corresponds to
the case shown in Figures 6a and 6b for A/, =55 and 7, /T, = 0.1. Comparing these cases
we conclude that small change of the Mach number near the intersection point M., leads to

the jump from one spectrum topology to another. However, the inter-mode exchange rule
(4.21) shows that the unstable mode amplitude is approximately the same in both cases; i.e.
the initial amplitude of instability is weakly sensitive to this jump.

If the real axis passes through the local region |x —x,,|= O(£*?), ie. |Im(x,,)= O(s*")
and [Im(R, )= O(s¢™"), then the normal mode decomposition has singular behavior in the
vicinity of the branch point R,,. According to Eq. (4.19) the normal wave amplitude tends

to infinity as R — R,,. Moreover, the group velocity of normal waves

Vg=Re(a—w) 1 __ 1 (4.23)
oa/ Re(da/dw) Fda,/!éR

rapidly decreases to minus infinity and then jumps to plus infinity as the Reynolds number

crosses the branch point from upstream to downstream region. These singularities can cause
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significant difficulties in the PSE integration near the branch points of discrete spectrum.
Standard stability calculations using the e”* or COSAL code can also be affected, because

these codes determine the instability trajectory from the group velocity analysis.

5. Receptivity to vorticity/entropy waves

Problem formulation
In Region 2 indicated in Fig. 3a (see also Fig. 6a), the first-mode eigenvalue «, intersects
branches of vorticity/entropy waves with the phase speed c, = 1. The intersection region is

shown on an enlarged scale in Figures 15a and 15b for the local Mach number M/, = 6.8,

wall temperature ratio 7, / T,, =1 and disturbance frequency F =107". Figure 16 shows

the spectrum topology in the complex ¢ -plane. Since the entropy-wave branch coincides
with the vorticity-wave branch as the Reynolds number R — o, both branches can be

represented in the complex o -plane as one branch cut. The first-mode eigenvalue «, enters
into the left side of the vorticity/entropy branch cut at the Reynolds number R= R, —0 and
departs from its right side at the Reynolds number R=R, +0, where R, =1515 is
synchronism point. The eigenvalue imaginary part has the jump A(«,)~ 0.34-107, whereas
its real part is smooth, i.e. @, (R, -0)=a, (R. +0). Eigenfunctions of the x -component
velocity, #(n) = Re[z,(7)], are shown in Fig. 17 for various Reynolds numbers in the
vicinity of synchronism point R,. These functions are normalized by the condition
max|#(n))=1. It is seen that velocity oscillations penetrate into external flow as the
Reynolds number tends to the synchronism point R, (see also Fig. 5). The eigenfunction at
R=R,—0 (Line 3 in Fig. 18) is essentially different from the eigenfunction at R=R, +0
(Line 4 in Fig. 18). This is due to the fact, that asymptotic behavior of the first vector from

-

(3.6), G, > G "™ at y—>ow, is very sensitive to the eigenvalue jump because

AA, = \iRAa = O(1). Consequently, the first mode should be treated as two different
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modes: one mode corresponds to the region R < R, and another to the region R > R,.

We assume that nonparalle] effects can cause significant interaction between the first mode
and vorticity/entropy waves in the synchronism region 2 (see Figures 3a and 6a). Neglecting

other modes of discrete and continuous spectrum we represent solution (2.12) in the form

A =c,(x)4,(x,y)exp(p,) +'[cv(x,k)}1'v (x,y: k) exp(p, )dk +
+Tce(x:k)32(x,y;k)e><p(¢e)dk (5.1a)

¢1(x)=is'ljal(x)dx, @v(x)=ig“1jav(x,k)dx, (pe(x)zig'ljiae(x,k)cbc (5.1b)

X *o *o

[13 2

where subscripts “v” and “e” denote vorticity and entropy waves respectively. The

equation system (2.13) is written as

de I
—L =W+ [, (6 R, (5. k) explp, (x,6) - 9, ()k +
0

+[ e, (. k), (x, k) explo, (x,k) - ¢, (x)Fk (5.22)

) s bl (5, 0) - 0, + [ (e KW, e K ) el (. 7) — , R +

+Tce(x,k W (e ke, k) explo, (x, k) = ¢, (x, k)dk’ (5.2b)

ﬁ——dc:;k) =W, exply, (x,k) — p,(x)] +Tce(x,k’)Wee (x,k,k")explo,(x, k") — @, (x,k)dk’ +
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+ch(x,k')%(x,k>k explo, (x,£') - ¢, (x, )bk’ (52¢)

Accounting for the spectrum topology shown in Figures 15 and 16, we can formulate the

following unit problems for the equation system (5.2):

(i) In the cross-section, x =Xx,, located upstream from the synchronism point, x=x,,

disturbance spectrum contains only the first-mode wave of a unit amplitude; i.e.
c,(x,)=1, ¢,(x,,k)=0 and c,(x,,k)=0 for any k£ €[0,) (5.3)

The first-mode wave comes into the synchronism region and excites vorticity/entropy waves

propagating downstream. Find the amplitude distributions ¢, (x,k) and c,(x,k), as well as

the first-mode wave amplitude c,(x) in the downstream region x > x, .

(i) In a cross-section, x = x,, located upstream the synchronism point, x = x,, disturbance
spectrum contains only one vorticity wave of the wavenumber «, = ¢ (k,), where £,

satisfies the synchronism condition «,(x,,%,)=a,(x, +0);i.e.
c(x,)=0, ¢, (x,,k)=6(k-k,), and c,(x,,k)=0 for any k£ €[0,0) (5.4)

The vorticity wave comes into the synchronism region and excites the first-mode wave. Find

the first-mode wave amplitude in the downstream region x > x, .

(ii)) In a cross-section, x =Xx,, located upstream from the synchronism point, x=x,,
disturbance spectrum contains only one entropy wave of the wavenumber «, = ,(%,),

where k, satisfies the synchronism condition «,(x,,%,) = a,(x, +0); ie.
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c,(x,)=0, c,(x,,k)=0(k—k,), and c,(x,,k) =0 for any k£ €[0,0) (5.5)

The entropy wave comes into the synchronism region and excites the first-mode wave. Find

the first-mode wave amplitude in the downstream region x > x,.

Rough estimates

Due to the presence of continuous spectrum it is difficult to solve Eqs. (5.2) even for
relatively simple boundary conditions (5.3)-(5.5) of the unit problems (i), (i1) and (ii1). We
guess these problems can be simplified using asymptotic analysis of the matrix elements
W, (x,k,k"y, W (x,kk'), W (x,k,k') and W, (x,k,k') as well as integrals over the
continuous spectrum branches in the vicinity of synchronism point. This could be a subject
for future research. However, rough estimates of coupling between the first mode and
vorticity/entropy waves can be made in the following way. We introduce a virtual upper

boundary, y =y, , located in the inviscid flow region between the upper boundary-layer

edge and the shock. On this boundary, we impose the homogeneous boundary conditions

Zal=za3=za5=o> y=ys (56)

Now the problem (3.1a), (3.1b) and (5.6) has the non-trivial solution

z, = Cq, +C,q, + C,3q; + Cyq, + CsGs + Csq (5.7
if the determinant specified by boundary conditions is zero, i.e.

41.(0)  g,(0) g0 g0 ¢q,50) q,(0)
9:(0)  45,(0)  g33(0) g3, (0)  ¢;5(0)  g55(0)
45(0)  g5,(0) q5;(0) g5(0) g5(0) g5(0)
7, ()s) qu(ys) q9:(Vs) 9..(y,) qls(ys) q6(y,)
7:(V) 92() 9:(0) 9. 4:5(0)  g5(y,)
95:(¥,) 92(0,) 9500) 954(¥s) 955(0,)  qs6(¥,)

det =0 (5.8)

39




The dispersion relation (5.8) leads to splitting of the continuous spectrum branches (see Fig.

1) into the discrete subsets. As the upper boundary tends to infinity, y, — oo, these subsets

thicken back into correspondent branches of continuous spectrum.

Numerical analysis of the problem (3.1a), (3.1b) and (5.6) shows that the discrete mode with

the eigenvalue ¢, , which belongs to the vorticity/entropy wave subset and satisfy the
synchronism condition, &, (R,) = a,(R, +0) as y, — o, transforms into the first mode in
the region R > R, . In a similar way, the first mode with the eigenvalue o, coming from the
upstream region, R < R,, transforms into the mode with eigenvalue «,, which belongs to
the vorticity/entropy wave subset and satisfies the synchronism condition
a,(R)—> a,(R —0) as y, = . These transformations are shown in Figures 18a and 18b
for the upper boundary locus y, = 45", where & is boundary layer displacement thickness.
The region between the upper boundary layer edge y =y, , and the virtual boundary
y=y,, contains about 12 wavelengths of the vorticity/entropy oscillations in the y-

direction, i.e.

27
-y =12
Ys =Y. Z

(5.9)

*

where the parameter %, correspond to the synchronism condition. Consequently, this case is
a good approximation of the limit y, — co. In the upstream region R < R, = 1515, the
imaginary part of the normal mode eigenvalue «,, (solid line in Fig. 18b) is very close to the

imaginary part of the vorticity/entropy wave eigenvalues (dashed line), which satisfy the

synchronism conditions

a,(Rk,.)=a, (R +0), a,(R,k.)=a, (R, +0) (5.10)
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These findings lead to the following conclusions:

¢ In the rough (of the order of magnitude) approximation, the first mode coming from the

upstream region, R < R,, transforms into vorticity and entropy waves with the

wavenumber satisfying the synchronism condition
a,(R,k,)=a,(R, -0), a, (R, k.)=a (R -0) (5.11)

These vorticity/entropy waves propagate downstream and slowly dissipate due to
viscosity. Since this mechanism is not directly coupled with excitation of unstable normal

modes, it plays a minor role in transition process.

e In the rough approximation, the vorticity/entropy waves coming from the upstream

region, R < R,, and satisfying the synchronism condition (5.10), transform into the first
mode propagating downstream, R > R,. If the vorticity/entropy eigenfunctions A4, (x,y)

and Ze(x, y) are normalized similar to the first mode eigenfunction Zl(x, y), say the
disturbance pressure amplitude on the wall 4 ,(x,0) = 4,,(x,0) = 4,,(x,0) =1, then the
vorticity wave of the amplitude c, (R, —0) generates the first mode wave of the

amplitude
e, (R, +0)|~{c, (R, - 0) (5.12)

In a similar way, the entropy wave of the amplitude c, (R, —0) generates the first mode
wave of the amplitude

le,(R. +0)[=[c, (R, - 0)) (5.13)
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Further downstream (see Region 3 in Figures 2 and 5) the first mode is synchronized with
the second mode. As it was shown in Section 4, the first mode wave excites the second

mode wave of the amplitude
|c, (R,; +0)|=lc, (R, —O)) (5.14)

where R, is the branch point located in Region 3. Since the first mode attenuation is
relatively weak in a distance between points R, and R,;, we can estimate the first-mode

wave amplitude as
le,(Ry; — 0)|=|c, (R, +0)| (5.15)

Finally, using Egs. (5.6), (5.7), (5.11) and (5.12) we estimate the initial amplitude of the

normal mode waves as
e, (R,, +0)|=|c, (R, +0) =, (R, = 0) or [¢,(R,, +0)|~|c, (R, +0) ~c, (R —-0) (5.16)

where ¢, and ¢, are amplitudes of the vorticity and entropy wave satisfying the synchronism

condition (5.4) in Region 2. As shown in Section 4, one of these normal waves gets

essentially unstable downstream from the branch point R,,. This is the Mack’s second-mode
instability. Its initial amplitude at the branch point R,; can be roughly estimated using the

relations (5.16). These estimates show that the vorticity (entropy) waves of a frequency @

and the wavemumber «, («,), which satisfy the synchronism condition (5.5), are

“swallowed” by the boundary layer in the synchronism Region 2 and generates the unstable
normal waves of the same frequency. Sketch of this swallowing mechanism is shown in Fig.

19. The unstable-wave initial amplitude of some physical value, O, ., , measured at the

branch point R = Re(R,,(®)), is approximately equal to the amplitude of said vorticity
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(entropy) wave, O, (Q,), measured near the synchronism point R,(®)—0. In wind tunnel
experiments, vorticity (entropy) wave amplitude near the synchronism point R,, O, (Q,),

can be measured using a hot-wire anemometry with streamwise and vertical probe

separation [42] or hot films placed on the wall near the synchronism point R,. Coupling

between vorticity/entropy waves and the Mack’s second mode can be verified by correlation

measurements.

It is generally believed that for the case of hypersonic wind tunnels, the major source of
freestream disturbances is from the radiation of sound generated by the turbulent boundary
layer on the wind tunnel nozzle walls. However, most of the acoustic energy is concentrated
at low frequencies, and sound amplitudes decreases with increasing frequency. For thin
boundary layers at high unit Reynolds numbers, the second-mode waves may have
frequencies, which are larger than the frequencies where the freestream sound is lost in the
electronic noise. Therefore, a conventional hypersonic wind tunnel may be “quiet” for the
second mode disturbances [26]. In this case, the freestream entropy and vorticity
disturbances may play a major role in the boundary-layer transition. Similar situation may
occur in flight conditions due to the presence of atmospheric turbulence and the absence of
freestream acoustic disturbances. The transition onset point can be correlated with the
freestream vorticity and entropy disturbances using the PSE method [19] with the initial

amplitude distribution of the Mack’s second mode being estimated as

Quntatie (Fy1 (@) = O, (R, (@) - 0) and/or Q5. (R;1 (@) = O, (R, (@) - 0) (5.17)

Here O, and Q, are amplitudes of the vorticity and entropy wave satisfying the
synchronism condition (5.10) in Region 2.

Foregoing analysis addresses the entropy/vorticity waves, which are strictly satisfy the
synchronism conditions, and does not account for neighboring waves. Additional exchange

between normal modes and the vorticity/entropy waves, which are slightly de-tuned from the
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synchronism , may affect the initial amplitude of unstable normal waves. However, rough
estimates (5.17) can be useful for the transition omset prediction due to the following

reasons. According to the amplitude method [21], the transition onset point x, is

determined from the equation

—Ta,.dx = m[jf'j (5.18)

*in n

where —q, is spatial growth rate, x,, is locus of the instability growth onset, A, is initial
amplitude, and A, is critical amplitude related to the beginning of nonlinear processes.
Since the transition point depends weakly (as a logarithm) on the initial amplitude value,
even rough estimates of A, can provide sufficient accuracy for the transition onset
prediction. Such estimates can be economically made using the coupling (5.17) and

integrated into stability codes.

6. Summary discussion and future effort

Transition process is an initial boundary value problem, which requires distributions of the
normal mode amplitudes at the instability growth onset. These initial data are determined
from receptivity analysis comprising the identification of external disturbances, the
determination of the most sensitive regions, and prediction of the normal mode propagation
from these regions to the instability growth onset (instability pre-history). Foregoing analysis
shows that all these elements are different from those typical for subsonic and moderate
supersonic speeds. Low supersonic stability concepts cannot be just extended to hypersonic
cases. The multiple-mode method rather than a single-mode approach is required to evaluate
receptivity and instability pre-history of hypersonic boundary layers. These phases of the

transition process are more complicated than in moderate supersonic cases due to the



presence of the disturbance spectrum singularities. As shown in Figures 3a and 6a, these

singularities are located in:

e the nose region 1, where the first and second waves are synchronized with external

acoustic waves of the phase speed ¢, =1+1/ M, and ¢, =1-1/ M, respectively.

e the synchronism region 2, where the first mode is synchronized with the external
entropy/vorticity waves of the phase velocity ¢, =1. In this region, the first mode

penetrates outside the boundary layer. Its oscillating “tail” (see Fig. 5) could be identified
by measuring correlations between hot-wire signals inside and outside the boundary
layer.

o the synchronism region 3, where the first and second modes are synchronized near the
branch point of discrete spectrum. In this region, the boundary-layer disturbance field

has abnormal behavior, which could be detected using the hot-wire measurements.

In the nose region 1, acoustic waves can effectively excite the first and second modes [32],
[35]. This receptivity mechanism is qualitatively different from the subsonic case reviewed
by Choudhari [18]. In conventional hypersonic wind tunnels, freestream acoustic waves are
generated by sources propagating in the turbulent boundary layer on nozzle walls. These
waves have the phase speed ¢ <1-1/M,, and do not satisfy the synchronism condition.
However, their interaction with the nose tip induces a local source, which generates
“dangerous” disturbances of the phase speed ¢ =1+1/M,, as schematically shown in Fig.
4. For a planar configuration (flat plate or hollow cylinder), this acoustic source is
concentrated at the leading edge. For the conical flow, it is concentrated near the cone tip.
Since the point source is weaker than the line source and downstream attenuation of
acoustic energy from the point source is stronger than that from the line source, receptivity
of a planar configuration to acoustic disturbances should be higher than that of a conical
configuration. These arguments are consistent with experimental observations [33]. The

freestream acoustic scattered by sharp leasing edges can be used to create a source
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providing disturbances of the frequency and amplitude under control. Schemes of such a
disturbance generator are shown in Figures 20a and 20b. When an external acoustic source
(A) is placed below the model axis (see Fig. 20a), then it induces an acoustic source of the
same frequency at the leading edge. Acoustic disturbances from the leading edge source
penetrate into the boundary layer, whereas the other portion of disturbances is blocked by
the body and do not affect the boundary layer. As contrasted to natural transition
experiments, this scheme allows direct measurements of the hypersonic leading edge
receptivity and downstream evolution of the boundary-layer disturbances. If the external
acoustic source (B) is placed above the model as shown in Fig. 20b, then the boundary layer
is radiated by acoustic waves from both Source (B) and the leading edge source. Comparing
these two cases we could estimate the leading edge receptivity versus the distributed

receptivity.

In the synchronism region 2, vorticity and entropy waves are partially swallowed by the
boundary layer and effectively generate the first mode as schematically shown in Fig. 19.
This receptivity mechanism can compete with the leading edge receptivity to freestream

acoustic disturbances in cases when;

e acoustic disturbances are small compared to freestream turbulence and temperature
spottiness in the frequency band of the boundary-layer instability. Low level of
freestream noise is typical for flight conditions. Moreover, Stetson and Kimmel [26]
noted that for the wind tunnel experiments at high Reynolds numbers, the boundary-
layer instability may have frequencies, which are larger than frequencies where the
freestream noise is lost in the electronic noise. Therefore, even conventional hypersonic
wind tunnels may be “quiet” in the instability frequency band.

o the leading edge shape corresponds to relatively weak interaction between external
acoustic field and the boundary layer. The sharp cone is a good example of this case. In
contrast to the conical flow, a planar configuration (flat plate or hollow cylinder) can

create a strong local source at the leading edge due to external acoustic scattering. Since
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the point source on the cone tip is weaker than the line source on a plate leading edge
and downstream attenuation of the acoustic energy from the point source is stronger
than that from the line source, receptivity of a planar configuration to acoustic
disturbances should be higher than that of a conical configuration. These arguments are

consistent with experimental observations [33].

Analysis of Section 5 provides rough estimates for coupling between the external
vorticity/entropy disturbances and the initial amplitude of hypersonic boundary-layer
instability. These results can be used as initial data for the PSE analysis downstream from the
synchronism region 2. Since the transition point depends weakly (as a logarithm) on the
initial amplitude of the boundary-layer instability, even rough estimates of the receptivity
mechanism can provide sufficient accuracy for the transition onset prediction. Such
estimates can be economically made using the coupling relation (5.17) and integrated into
stability codes such as the PSE code. That makes feasible an amplitude method for the
transition prediction coupling receptivity and stability problems.

In the synchronism region 3, characteristics of the first mode are very close to those of the
second mode. The discrete spectrum has the branch point R,, located in the complex R-
plane near the real axis. Near the branch point the discrete spectrum splits into two branches,
as schematically shown in Fig. 7. Instability of the Mack’s second mode is associated with
this splitting. In the vicinity of the branch point, the normal mode decomposition is not valid
and should be replaced by local solution, which provides coupling between input and output
amplitudes. In the first order approximation, the inter-mode exchange rule (4.21) does not
depend on the mean flow profiles and can be applied for broad class of shear layers with

similar topology of the discrete spectrum.

Calculations of the branch point R;, as a function of the disturbance frequency, local Mach

number and wall temperature ratio show that the branch point can intersect the real axis (see
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Fig. 13b). That leads to different topology of the discrete spectrum splitting. If the branch
point is in the upper half of the complex R-plane, it is bypassed from lower side as the
Reynolds number increases along the real axis. Downstream from the branch point, the first
mode gets essentially unstable and the second mode gets more stable. This case is shown in
Figures 6a and 6b and corresponds to the cooled wall cases of relatively low Mach numbers,
M, < 6. If the branch point is in the lower half plane, it is bypassed from the upper side.
Downstream from the branch point, the second mode gets unstable and the first mode gets
more stable. This case is shown in Figures 3a and 3b. Infinitesimal variation of the basic

parameter (say the Mach number M, ) near the value at which the branch point crosses the
real axis causes jump from one topology to another. Moreover, near the branch point the
normal wave amplitude tends to infinity and the group velocity has non-monotonic behavior.
These features along with the spectrum singularity in the synchronism region 2 can cause
Malik

significant difficulties in the PSE integration as well as stability calculations using the e
or COSAL codes.

Summarizing we can formulate the following possible scenario of the transition initial phase:

External entropy/vorticity disturbances generate the first mode in the synchronism region
2. This mode excites the second mode near the branch point R, of the synchronism region
3. Receptivity and the inter-mode exchange mechanisms relevant to these regions provide
initial amplitude for the Mack’s second mode just near the instability growth onset. Further
downstream, the Mack’s second mode amplifies up to the critical amplitude corresponding

the transition onset.

This scenario is more probable for the conical configurations and “quiet” freestream

conditions. It is consistent with the following experimental observations:

e Transition on a sharp cone is less sensitive to the cone tip conditions (wall temperature

jump, small bluntness) than transition on a flat plate.
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Hypersonic cone transition data [25] do not fit to the correlation of Pate and Scheuler
based on assumption that external acoustic waves trip the boundary layer (see [44]).

Since the Mack’s second-mode waves are excited just near the instability onset, they
start to grow with the initial amplitude to be relatively slow function of the disturbance
frequency. These waves become “tuned” to the boundary layer thickness and tend to the
optimal tuning near the envelope curve. That is consistent with experimental data

reported in [26].

This study is only the first step in understanding of hypersonic boundary-layer receptivity

and instability pre-history. However, it provides good starting conditions to attack the

following challenging problems:

Foregoing analysis should be extended to the three-dimensional disturbance case. Wave
packets rather than plane waves need to be addressed. That will help to evaluate
receptivity to 3-D freestream disturbances and downstream propagation of unstable
wave packets typical for a hypersonic wind tunnel transition.

Receptivity to vorticity/entropy waves needs to be studied in detail. Rough estimates of
receptivity mechanism should be refined from systematic analysis of the unit problems
formulated in Section 5.

The flat-plate leading edge receptivity model [32], [35] should be extended to the
conical configurations and the blunt leading edge cases.

Investigation of these problems will help to explain hypersonic stability and transition

experiments and develop reliable transition prediction methods required for hypersonic

vehicle design.
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Fig. 3b Disturbance spectrum for the conical boundary layer at F=10"; M
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Fig. 11 Location of the branch point R,, compared to experimental data of Stetson et al.
[25] and linear stability calculations of Simen and Dallmann [28]; M, =68,
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Fig. 20a Scheme of experiment with the acoustic source under control; external source
(A) 1s below the model.
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Fig. 20b Scheme of experiment with the acoustic source under control; external source
(B) is above the model.
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