4 9620

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information 1 estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the dala nceded, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this coll

inctuding for reducing this burden to

te fori

Services, Direct
4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503

ion Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

3. REPORT TYPE AND DATES COVERED
Announcement.

9/94 - 4/95

4. TITLE AND SUBTITLE
Mapping the Method Muddle: Guidance in Using Methods for Used
Interface Design

5. FUNDING NUMSEZRS

PE: 0601102A
PR: B74F
TA: 1901

6. AUTHOR(S)
Judith S. Olson (University of Michigan) and Thomas P. Moran (Xerox
PARC)

WU: C19 upa
Contract No.'903-89-K-0025

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Michigan

Division of Research and Development
475 East Jefferson, Room 1318

Ann Arbor, MI 48109 - 1248

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U. S. Army Research Institute

ATTN: PERI-BR

5001 Eisenhower Avenue

Alexandria, VA 22333-5600

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

Announcement 96-20

11. SUPPLEMENTARY NOTES

COR: Dr. Michael Drillings In C. Lewis, Tim McKay, P. Polson, & M. Rudisill (EDS.)
Human-computer interface design: Success cases, emerging methods, and

real world contexts New—Yorks:

£ o o
TITTrCrrTIitetit

Morgan—Kay
T22. DISTRIBUTION/AVAILABILITY STATEMERT 2
Approved for Public Release; Distribution is Unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 woras): ' This overview shows that there is considerable progress in providing ways to design useful,
usable, and learnable user interfaces. Many new methods have been developed since the 1983 NRC report, and recent
studies have compared the cost/benefit of various methods. We have provided a framework for seeing the roles of different
methods, but more work is needed on a detailed cost/benefit of the methods. Not only do the methods med to be assessed
for their usefulness, but new methods need to be developed that are more complete and usable.

FDTIC QU.

14, SUBJECT TERMS

interface designs utility = prototype envisioning semantic nets

- user task

15. NUMBER OF PAGES

16. PRICE CODE

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT
Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-88)
Prescribed by ANSI Std 239-18 298-102

Method Muddle 4/19/95

Mapping the Method Muddle:
Guidance in Using Methods
for User Interface Design

Judith S. Olson
University of Michigan
and
Thomas P. Moran
Xerox PARC

September, 1994

A great deal of progress has been made in developing methods that designers
can incorporate in appropriate places in the design process with the goal of
producing interfaces that are easier to use and easier to learn. This book
represents another step in this line, reporting on emerging methods for
designers. However, we have not yet succeeded in making user-interface
methods an established part of software design practice. Many designers
claim they do not have enough time for usability. Even when designers want
to design for usability, they find that the literature on design methods is a
muddle, making it difficult to figure out if there are methods that are
appropriate for their situations. They need to know what they can do, and

when. The purpose of this paper is to provide that guidance.
In 1983, there was a similar effort. The National Research Council's (NRC)

Committee on Human Factors published the proceedings of a workshop

entitled, "Methods for Designing Software to Fit Human Needs and

19970821 104

Method Muddle 4/19/95

Capabilities" (Anderson and Olson. 1985). Table 1 lists the methods

included in that report. !

Table 1
Methods for User Interface Design listed in
the National Research Council's 1983 Report.

Questionnaires and interviews, diaries, natural observation of task
performance, activity analysis, logging and metering for understanding
the old situation;

task analysis for understanding the requirements for the new task;

design guidelines, user reactions, and theory based judgments to assess
the initial design, with support from toolkits to guide designers to select
from some well established design pieces, such as dialog boxes
preconfigured and menu bars into which to put command names;

formal analyses of interfaces using structured walkthroughs,
decomposition analysis, object/action analysis, metaphor analysis,
mental model assessment, GOMS/keystroke analysis, and grammar
analysts;

building a prototype through facading, Wizard of Oz, or rapid
prototyping;

using these prototypes in usability tests;

and, running the proposed final design in friendly field tests (similar to
beta test sites for the system code).

Although the major methods used today are the same as those in the NRC

report (Nielsen, 1993), there are some new additions. The collection of papers

110f the participants in this book, many were also participants in the NRC Committee on
Human Factors' workshop in 1983. Stu Card. Jack Carroll, Judy Olson, and John
Whiteside were at both. Others in the 1983 workshop included: Nancy Anderson,
Elizabeth Bailey, Alphonse Chapanis, Rex Hartson, David Lenorovitz, Marilyn Mantei, Dick
Pew, Phyllis Reisner, Janet Walker, and Bob Williges.

o

Method Muddle 4/19/95

in this book updates that list to include not only more methods, but also to
illustrate their successful use in real design projects. Yet designers still need
some help sorting through the methods in order to choose those applicable to
the design situation at hand. This help is needed even more so now because

the set of methods has grown, some are quite sophisticated, and they differ in

" applicability to the stage of design and to the kind of task being designed for.

To help orient designers, we begin by a characterization of the design process
as consisting of several activities. Methods are then described in abstract
form (there are too many to detail here) and associated within the
appropriate activity. We then lay out a way for the designer to choose the
methods appfopriate to key features of the task and users in their design
situation: the speed of performance expected of the user, the amount of
information content in the task domain, and whether the focus is on rapid
learning or expert performance. It is not expected that a designer will choose
to use only one of these methods, but rather select a set of coordinated
methods. We illustrate the use of the methods with scenarios of two
contrasting design situations. We end with a discussion about the methods
and recommendations for further development of design methods that carry

with them the appropriate cost/benefit to the designers.

What is a Method?
We use the term "method" as meaning how to go about designing something. A
method implies a systematic, repeatable way to design. There are macro- and
micro-methods. A macro-method is a methodology that organizes the whole
design process. Software engineering methodologies. like Jackson System

Diagramming and Object Oriented Methods, tend to be macro. Large

Method Muddle 4/19/95

companies usually advocate or even require formalized design methodologies
to manage large-scale design projects. Micro-methods are methods that only
address subproblems of design. An extended design process would employ
several micro-methods, which would be used in combination as needed. In

this paper, we discuss only micro-methods.

A complete method would include:
+ a statement of the problem that this method addresses,
+ a device (a tool, technique, model, and or representation),
* a procedure for using the device, and

* aresult.

For example, a method called "Cognitive Walkthrough" (Lewis, Polson,
Wharton, and Rieman, 1990; Rieman, Davies, Hair, Esemplare, Polson, and
Lewis, 1991) is complete. It addresses the problem of designing a system to
be easy to use when the user first walks up to it. It has a set of forms for the
designer to fill out (the device is a representation) that describe the user's
steps in performing a task, and a procedure for "walking through" the steps,
asking questions about how easily the user will discover how to do the next
step. The result is a list of aspects of the user interface that are likely to give
the user trouble, which guides the designer to areas of the interface that

should be altered.

There are very few complete methods for user interface design. Usually, there
is a technique or model or representation, but no explicit procedure for using
it. Sometimes the problem addressed is vague, and sometimes the result is

implicit. Often these missing aspects can be supplied by the designer in the

Method Muddle 4/19/95

context of a particular design situation. Therefore, we will simply refer to

"methods" in this paper, even if incomplete.

What Can Be Done to Improve Design

The key to good systems is the commitment of time and expertise to the user-
oriented aspects of the design. The designers have to know more than
computer science and technology; they need training and experience in making

systems useful, usable and acceptable. Methods help guide this effort.

A system has utility when it meets users' needs and solves problems that
users have. To accomplish this goal, we need to understand the user's
practices and work setting, including both what their goals are and how they
go about accomplishing those goals. The new system must provide
appropriate functionality to meet the needs in the context of the work setting
(i.e., fitting the organizational culture, the established communication

patterns, and the incentive structure, among other things).

The functionality must be offered through a usable interface. The system
must be understandable and learnable, relative to the skills of the users and
the resources available for learning. The system must have the right
performance characteristics: Users must be able to do the tasks fast enough

and accurately enough to meet their needs.

Finally, the system must be subjectively acceptable to the users. They must
perceive benefit from it and perhaps even enjoy using it. Such acceptance

comes from both a well-designed system and a design process that

Method Muddle 4/19/95

successfully targets the right market and involves users in the design and

deployment of the system.

Design methods can help achieve better design. System design is an art
which mixes creativity and discipline. Most of the methods listed here help
with the discipline, not with the creativity. Of course, regular methods that
help with brainstorming ideas and structuring and evaluating them apply to
the design process (e.g., Adams, 1979). But, the design methods reviewed in
this chapter are more specific and engineering-like. They:

+ focus attention on users' needs and capabilities,

* provide tools to represent and build designs,

+ encourage thorough thinking by systematizing design activities and

bringing theory and knowledge to bear where it can be useful, and

* foster testing and measurement.

Focus attention on users needs and capabilities. The key feature of good
design methods is that they focus on the user. One way to do this is to include
users themselves in the design process. When new designs are proposed,
users should be involved in testing them. Since users cannot always
articulate what they know about a procedure or its goal, it is sometimes
important to observe users in their current practice. Even better, users should
participate in the creation of the new system, defining requirements,
constructing prototypes, etc. Almost all methods discussed in this chapter

can be enhanced by having users themselves involved.

Probably the most important step in designing good systems is getting the

functionality right. Itis most important to clearly understand the needs early

Method Muddle 4/19/95

in the process. Design methods can help investigate the users' task domain
and current work practices. One can distill important user scenarios, making
clear what the critical criteria are. Most methods rely on having a set of tasks
or scenarios. Choosing the right ones is important. It is useful to have a mix
of core tasks (those most central or frequent), critical tasks (tasks which
illustrate the new capabilities), and benchmark tasks (tasks that can be used

to compare the new system with other systems).

Provide tools to represent and build designs. Design methods provide
useful representations for design. Good representations are important for
many reasons. Representations help us see a proposed design in a particular
way and come to an understanding of it from that view. Concrete
representations help with communication between members of the design
team and between designers, users, and others stakeholders. Some
representations, called models, allow calculations of properties of the design,
such as the amount of new things to learn or the time the user would be

expected to execute a task.

Prototyping is important, in that it provides an understanding of many issues
at an early stage, when something can still be done to deal with them. Some
design methods provide tools that make it easier to build prototypes and even

final implementations.

Encourage thorough thinking and analysis. Often the greatest value of
a representation comes in the effort to create it, which requires careful
thinking through of particular issues. Reflecting is an integral part of design.

Design methods can aid reflection both by providing representations that

Method Muddle 4/19/95

"talk back" (Schon. 1983) and by disciplining the designer to be concrete and
complete. Methods such as checklists and walkthroughs promote good
reflection and thorough analysis of aspects of the design which might cause

users difficulty.

Foster testing and measurement. We must never assume that designs will
work as planned. They need to be tried and tested. Some design methods
provide ways to test and measure prototypes and implementations. Methods
codify other designers' experience by prescribing particular tests and
measures that have been shown to be informative for discovering difficulties

and pointing to areas that need redesign.
The Activities That Designers Engage In

System design is a complex process which varies from situation to situation.
For example, designing a generic new product for which there is only a
description of a market is quite different than designing a custom system for
a specific user in a specific setting. The process must accommodate both
these large-scale differences and the specifics of the tasks and settings within
them. Nevertheless, there are many recurring activities in design, for which
the methods reviewed in this chapter are intended to provide support. We

here consider seven common activities:

Define the Problem. As we have stressed, the most important thing is to
get the problem right. Design theorists (Simon, 1981) have described
design as an open problem in that the problem is not given from the start,

but is clarified as the solution is being formulated. Part of defining the

Method Muddle : 4/19/95

problem is to understand the task domain and current work practices of
the user community. From this, the designer must figure out what the
needs are that can be met with a new system. Defining the problem is not

just an analytic endeavor; it opens up possibilities.

Generate a Design. Once there is some sense of the problem and at least
a general notion of the kind of system needed, a more detailed design can
be created. Generating a design is very much a creative and constructive
activity, involving the building of concrete representations showing what

the system would be like.

Reflect on the Design. Once any part of the design is represented, it has
to be assessed. This is done by reflecting on it--living with it in the
imagination, analyzing it, challenging it, and so forth. This leads to new

ideas. Thus, generating and reflecting are tightly coupled activities.

Build a Prototype. A prototype is a concrete representation for which
some aspects "work." It could be a physical mockup, a set of pictures, or
running software that can portray the design in a way comprehensible by

someone other than designers.

Test the Prototype. The point of a prototype is to "try it out" informally
or to test it more systematically with potential users. The goal here is to
discover fatal flaws, new issues, and aspects of the design that seem to

work especially well.

Method Muddle 4/19/95

Implement the Design. Building the real system involves a commitment
to a lot of decisions, since the flexibility to alter the design rapidly
becomes less practical. Following software engineering principles can help
not only with efficient implementation, but also with modularity that will

preserve some flexibility.

Deploy the System. As soon as the system implementation reaches a
usable stage (well before it is complete), it can begin to be deployed in
different ways. There are several strategies for trying it out in limited
ways, both to learn if it will serve the intended needs and to get the user
community prepared for its installation. One must also be conscious of the
fact that once deployed, the task changes; this leads to the need to

evaluate iteratively, and inform the next generation of products.

It cannot be stressed enough that these activities are not stages in the design
process. The course of design involves continual jumping back and forth
between the activities. There is iteration in which feedback from activities

later in the list inform those earlier.

Although these activities are common in design, they do not define a complete
design and development process. They are presented here to provide an

organizational framework for the multitude of design methods reviewed here.

The Methods

The collection of methods for user-interface design have clear relevance for

different stages in the design cycle. Some methods help the analyst at the

10

Method Muddle 4/19/95

beginning of the project to understand the task and the setting in which the
new system will reside. Other methods help generate the working design.
Still others are intended for analysis of the proposed design, to help in
suggesting improvements in learnability and usability. Methods in the
listing below are clustered and ordered according to the seven activities

described above.

Each section below begins with a summary table which lists the methods,
several descriptors that should guide the designer in deciding whether it is
useful, and references that describe its use in a design setting or show how to
do it. The two descriptors we offer at this stage are estimates of how long it
takes to do this method (called "effort"), and how much training is required in
order to make the prescribed assessments. The training is assumed to
consist of a short-course or tutorial (for example, from the conference called
Computer Human Interaction, CHI) plus some exercises and apprenticeship.
The person being trained is either a designer or human-factors person,
typically someone with a bachelors degree. The estimate of effort is a rough
guess of how long the analysis or method would take the person so trained.
Both of these estimates come from the authors' experience in both using these
methods as well as teaching these methods and observing their use in a
variety of settings. 2 Although many contextual factors, such as background of
the analyst and complexity of the application, affect the time estimates, these

estimates, at a minimum, show relative values for effort and training.

2 Published reports (e.g., Nielsen. 1992; Karat, Campbell, & Fiegel, 1992) include ot.her
numbers as estimates of the time to perform some of these analyses, they are reporting
actual times for specific, small design situations. The numbers here are intended to be more
wide ranging, applying to more real-world design situations.

11

Method Muddle

Define the Problem

4/19/95

Method Effort Training | References

Naturalistic Observation (diaries, Hill, Long, Smith,

videotape, etc.) 2 days 3 months |and Whitefield,
1993

Interviews (incl. focus groups, decision | 1 day 1 month Ruddman and

tree analysis, semantic nets) Engelbeck, this
volume;
Nielsen, Mack,
Bergendorff, and
Grischkowsky,
1986

Scenarios or use cases (including 1 day 1 month Jacobson, 1992;

envisioning) Carroll, in
preparation for
1995

Task Analysis (including operator 2 days 3 months |[Johanssen,

function model) Hannum and
Tessmer (1989)

A variety of methods center on detailing the tasks for which the system will

be built. In some of the methods, the analyst either watches the users do

their work, such as naturalistic observation and analysis of work

practice. Data on these activities can be collected by being videotaping

workers or by workers keeping diaries. In all these methods, the analyst is

interested in understanding the practicalities of how the work actually gets

done in the current system, the details of the task requirements, the order in

which the users do subtasks, what material/information they need, how they

communicate with each other, how much time each subtask takes, and the

physical, social and organization setting in which this work takes place.

12

Method Muddle 4/19/95

Another set of ways of gathering requisite information involve asking users
directly about their needs. Focus groups or one-on-one interviews are
included in this set of methods. When the task to be supported is entirely
new, potential users are encouraged to imagine the new setting and
capabilities and are asked what they would do with it and how it would be

used, a method called envisioning.

Several new innovative methods are introduced in this volume. Interviews
can elicit from the task performer the particular mental steps they go
through, which can be represented in a decision tree. Ruddman and
Engelbeck, this volume, for example, attempt to reconstruct the sequential
cognitive processing that users perform in solving complex problems, such as
configuring telephone service for home users in the face of a myriad of

offerings and billing arrangements.

For those tasks that have a nomenclature that is complex and foreign to the
analyst, semantic nets can represent the organization of objects and the
terms used in the task domain. This technique (used by Ruddman and
Engelbeck, this volume; see also Gillan and Breedin, 1990) complements the
decision tree analysis, above, in that it uncovers complex data structures in
the user's vernacular, whereas the decision tree analysis represents the
processes that operate on that data. Knowledge engineering methods could
potentially be applied to uncover the kinds of strategic activities and
knowledge structures people use in domains that are unfamiliar to the

designer, as suggested in Olson and Biolsi (1991).

13

Method Muddle 4/19/95

Narrative descriptions of complete tasks are often called scenarios or use
cases (McDaniel, Olson, and Olson, 1994).3 While gathering these, there is
also opportunity to elicit and discuss the problems users have noted with the

current system and their wishes for the future.

Information from these observations can be represented in terms of activity
or task analyses, where sub-tasks are coded and summarized into flow
charts, frequency tables and state-transition diagrams (See for example,
Sasso, Olson and Merten, 1987). These diagrams can then be used to suggest
new ways of accomplishing the same goal. When measures of performance
like time or quality are collected as well, these can be used to compare the old

system with the new.

The operator function model (Mitchell, this volume) is a specific method for
displaying a detailed task analysis. It makes explicit what information the
operator/user needs at each moment in the task and the sequence of sub-
tasks that the operator goes through (and the branches, the different things
that could be done). This then can be used to suggest both what information
must be displayed at each moment, what steps the user should be able to go
through, and what options should be presented to the user in an easy-to-
access command sequence. It is a relatively small step to go from this
detailed specification to an actual prototype. Furthermore, it could well serve
as the input to a rapid prototyping system such as ITS (Gould, Ukelson, and

Boies, this volume).

3Use cases are essential components of the new Object Oriented Methods, now increasing in
favor in the software design community (Jacobson, 1992).

14

Method Muddle

Generate a Design

4/19/95

Method Effort Training | References
Building on Previous Designs 1 day* 1 month Perlman, 1988;
(steal and improve, design guidelines) Tetzlaff &
Schwartz, 1991
Represent Conceptual Model 1 day 2 months | Moran, 1983
Represent Interaction 2 days 2 months [Kieras and
(GTN, Dataflow, etc.) Polson, 1983
Represent Visual Displays 2 days 3 months
Design Space Analysis 3 days 1 month MacLean, et al,
(QOC, Decomposition analysis) 1991

Design is essentially evolutionary. New designs borrow from and improve on

previous designs. Even radically new designs are reactions to existing

designs. This is a practical matter of the "reuse" of designs that already work

and that users are familiar with. Thus, designers do not have to start from

scratch and users do not have to learn yet again.

There are two distinct "modes" of borrowing: global and local. One can start
by adopting the global models of existing systems. Card (this volume) calls
this steal and improve. For example, there are many common concepts
among word processing systems, among data base systems, and among
spreadsheet systems. You would want to think hard about how and why you
would want to be different if you were developing one of these kinds of
systems. You can also adopt localized design components, such as user
interface "widgets," many of which appear in toolkits. When the designer

adopts a toolkit, other design decisions are already made as well. For

4 This may take longer. It requires the analyst to know the previous designs, for example,
from competitive analyses, which normally take at least a week.

o

15

Method Muddle 4/19/95

example, in the Macintosh toolkit, the designer has no choice as to how menus
appear and how selections are made. And, embedded in the toolkit
instructions are guidelines as to how to make some interface features match
other systems of similar type, such as the guide to make Macintosh

applications all have Apple, File, and Edit, as the leftmost three menu items.

Design guidelines exist for some significant portion of the components of a
user interface, which are helpful to this initial design. For example,
guidelines offer prescriptions about how to organize items on a set of menus,
with ordering either by conceptual category (e.g., editing commands) or by
frequency of use (e.g., Smith and Mosier, 1984). Other guidelines suggest the
consistent placement of help and warning messages on the screen, and
general use of Gestalt principles of proximity and dissimilarity to capture and

guide the user's eye gaze to appropriate portions of the display.

While borrowing can often provide a starting place for design, especially in
domains where there are existing systems, the goal of design is to create a
system that addresses the particularities of the problem at hand. Generating
a design involves creating descriptions of the design, and different kinds of

design representations are essential for this activity.

A conceptual model is the set of conceptual entities that the system
represents, that the user needs to understand to effectively use the system. It
is important that the designer be clear about this and explicitly represent the
conceptual model (Newman & Sproull, 1979). For example, understanding
the hierarchical nature of text objects (characters, words. sentences,

paragraphs, sections, chapters, documents) separately from the features of

16

Method Muddle 4/19/95

layout (font, line, page, margin) helps construct appropriate actions and
associated specifications. Moran (1983) proposed a representation of the
relationship between the concepts in the users work domain (uncovered, say,
by interviews or some form of semantic analysis) and the conceptual model
embodied by the system. A useful specific version of this is an object/action
analysis. For example, Moran used this kind of representation to assess the
differences between line-oriented and full-screen editors, showing that the
conceptual model of the former (strings of things to be replaced) required a

translation from the conceptual model of the way we normally think of text.

In Object/Action analysis, the nouns and verbs of the domain and task are
arrayed in a table. For example, in text editing, the table would show objects
such as letters, words, sentences, paragraphs, pages, documents on one
dimension, and actions such as copy and delete on the other. The table shows
the complete matrix of commands that have to be offered. But the analysis
shows additionally features of the domain model--how characters and
sentences are to be treated differently from layout features like lines and
pages These tables encourage completeness of actions on all objects, and
consistency where appropriate. Such an analysis was one of the key design
methods used in the construction of the Xerox STAR system, which resulted in
the use of various "universal command keys", such as delete, copy, etc. (Smith,

Irby, Kimball, Verplank, & Harslem, 1982).

Once the domain is known and the objects and actions specified, it is useful to
represent dynamics of the interaction. State transition diagrams are the
most common form of representation of interaction. They are networks of

states (screens or modes) where all the possible actions that can be taken at

17

Method Muddle 4/19/95

each state are drawn leading to the next states. A simple form of this is the
diagram of connected menu items that some training manuals show as a
summary of the system's functionality. A more sophisticated representation
is the generalized transition network (Kieras and Polson, 1983), which

accommodates the hierarchic nesting of contexts.

The commands and flow of the interaction are depicted in the representations
described above. The visual display is best represented by renderings of the
display on paper or other media. In PICTIVE, analysts give participants
various "pieceparts” of interfaces made out of paper or plastic (e.g., menus,
dialog boxes, scroll bars and windows) to arrange in an interface layout.

When these pictures (full screenshots) are displayed on a board in the order in
which they will appear, they are called a storyboard, similar to those used in
the construction of films. The closer the representation to the final
embodiment of what the user will see, the better the analyses of the
arrangement, its attention getting abilities, and the ease of finding what the

user needs to know at each moment.

Design involves discovering and evaluating many different possible designs--a
"design space"--and also discovering the critical issues or questions that must
be addressed. Often it is useful to keep track of the possibilities so that it is
clear why particular design decisions are made. Formal analyses of these
possibilities come from two methods, Design Space Analysis and
Decomposition Analysis. Both involve systematic processes by which
various issues or questions about the design are raised and recorded, and
then different alternatives, options, or solutions are offered and analyzed with

well agreed-upon criteria. The Design Space Analysis takes many forms;

18

Method Muddle

4/19/95

QOC (for Questions-Options-Criteria) serves as a good example (McLean,

Young, Bellotti. and Moran, 1991). In QOC, the designer(s) systematically

documents the questions to be addressed. Attached to each question are the

various alternative solutions. Appropriate criteria (e.g., consistency, ease of

programming, etc.) are then applied to each alternative, leading to a design

decision. Decomposition Analysis is similar, except less formal and at a

coarser grain (Olson, 1985). Here, the major components of the interface are

the representation of the underlying data structure, the command entry style,

the provision of memory aids, the access to help, etc. Each is examined in

turn, alternatives generated, and then evaluated by any of a variety of means.

In both of these methods, it can be seen that generating a new design and

reflecting on it are tightly intertwined.

Reflect on the design

Method Effort Training | References
Checklists 1 day 1 week Shneiderman,
1992
Walkthroughs 2 days 3 months | Lewis et al, 1990
Mapping analyses (Task action, 2 days 2 weeks Douglas and

metaphor, consistency)

Moran, 1983;
Payne and Green,
1986

Methods analyses (GOMS, KLM,

Card, Moran, and

CPM, CCT) 3 days 1 year Newell, 1983;
Kieras, 1988.
Display analyses 3 days 1 year Lohse, 1991

Once we have some explicit representations of the design, there are a variety

of ways to begin to assess the projected usability as well as the ease of

19

Method Muddle 4/19/95

learning of this design. The methods listed here can also be used to some
extent in generating designs. But these methods are detailed and require a
fairly specific representation of a design to work on. They can be used either
by analysts working alone, with users as part of the design team, or by
analysts watching users trying to use a representation of the interface to

perform some test task.

The quickest way to evaluate a first-cut or set of alternative components of
the design involves answering a set of questions from a checklist
(Shneiderman, 1992; Nielsen, 1993). Checklists and usability heuristics serve
as memory aids to designers reminding them about prescriptions for the ease

of learning and ease of use for each of the major components.

Just as programmers do a code walkthrough to check how the flow of the
communication proceeds in the program and to check for things missing or
conflicting, user interface designers perform a walkthrough of the user
interface (Weinberg and Freidman, 1984). Here, however, the flow is from the
user's perspective, where the user has goals in mind and tries to perform the
actions necessary to accomplish those goals. With a good set of core tasks as
test cases, a number of errors can be detected, especially in the flow of actions
(whether they fit the order in which the user thinks of the actions) and in the

availability of all the subfunctions needed.

Two variants of the walkthrough are the cognitive walkthrough (Lewis,
Polson, Wharton, and Rieman, 1990: Rieman, Davies, Hair, Esemplare,
Polson, and Lewis, 1991) and the claims analysis (Carroll and Rosson, this

volume). Like the walkthrough above, they begin with the analysts generating

20

Method Muddle 4/19/95

a core set of common tasks and the detailed step by step listing of what the
user has to do to accomplish these. The analyses that follow, however, are
much more explicit than in a standard walkthrough. The methods provide
sets of questions the analyst is to ask about the interface. These questions
are designed to highlight those aspects of the interface that are known to be
difficult or error inducing. Claims analysis additionally encourages an
explicit discussion of design tradeoffs, similar in style to the decomposition

analysis, above.

Task-mapping analysis begins with a formal representation of the goal-
action mapping that the user conceives of, and lays along side it the goal-
action mapping that the system requires (Polson & Kieras, 1985). The
analysis of the side-by-side diagrams shows mismatches which can turn into
difficulty for the user to learn or execute. For example, a system that makes
you move a range of text by selecting the range to be moved first, then the
target then the action "move" mismatches the normal English command
sequence that begins with the word "move" and continues by specifying the
target material and the "move-to" location. Although today most
wordprocessors follow the noun-verb format for commands, the novice in
wordprocessing must learn that particular word order, since it is not fitting

the order they have learned from spoken language.5

Similarly, Douglas and Moran (1983) suggest a careful analysis of the
metaphor chosen for learning a new piece of software. They showed that by

lining up the goal-action pairs of a target system (e.g., a text editor) and a

5This analysis, of course, depends on what you take as "natural." English imperatives may
be verb-noun, but manually one first grabs a thing then does something with it, i.e., noun-
verb.

Method Muddle 4/19/95

metaphor system (e.g., a typewriter) there were a number of mismatches,
some of which could significantly impede a new learner's understanding of the
system. Since new learners will construct a metaphor or mental model even
in the absence of instruction (Halasz and Moran, 1983), care should be taken

to choose a helpful one and to teach it early.

Object/action analysis and state transition diagrams, described above,
can have benefit in analyzing designs as well as in generating the first design.
Analysis of the grammar of the command language, such as Moran's
Command Language Grammar (CLG) (1981), Reisner's formal grammar
(1984), and Payne and Green's Task Action Grammar (TAG)(1986), first
represent the rules by which components form to produce a language of
commands. Argument is made that the smaller the number of rules in the
grammar, the easier the system will be to learn. The importance of these
mapping analyses is that they focus the designer on the relationship between
the elements of the system begin designed and the users’ task domain and
previous knowledge, rather than viewing the design in elegant but unnatural

1solation.

Card, Moran, and Newell (1983) generated various ways to assess the
moment-by-moment cognitive/perceptual/motor resources being used when
interacting with a particular device, pioneering the field of cognitive
engineering. The core idea is that for certain kinds of well-learned tasks, one
could model the goals the user had, the methods offered by a system to satisfy
these goals, the choices people made in varying circumstances, and the
operator sequences that followed. From this model, called GOMS, and a

related, more detailed model called the Keystroke Level Model, one can

22

Method Muddle 4/19/95

fairly accurately predict how long a task will take (Olson and Olson, 1991).
John (1988) introduced Critical Path Analysis that, in contrast to the
GOMS model which assumes a sequential flow of cognitive processes (the
recognize, retrieve, act cycle), recognizes that some tasks involve some
cognitive processes that occur in parallel. This is often appropriate when the
task to be modeled is performed repeatedly and rapidly in a high performance

situation (see Atwood, Gray, and John, this volume).

Cognitive Complexity Theory, another important extension of the original
cognitive engineering modeling of Card, Moran, and Newell, represents the
knowledge needed to perform these tasks. Using this theory, Kieras and
Bovair (1986) were able to predict how long a task would take to learn. All of
these detailed analyses highlight the portions of the task that will take longer
than necessary (e.g., too many things to remember or an overloaded working
memory that generates errors), focusing redesign efforts to concentrate on

very particular interaction details.

Several methods have arisen to assist in display analysis. Tullis (1988)
and Mackinlay (1986) developed programs to assess the crowding and thus
readability of various aspects of a display. And, more recently, Lohse (1991)
has constructed a perceptual simulation that will take a display as input and
calculate how long it will take to answer a particular question about the

display or to find certain critical features.

Build a Prototype

Method Effort Training | References

Method Muddle 4/19/95

Prototyping tools 1 month 3 months | Wilson and

Participatory prototyping 1 week 2 months | Muller, 1991

The above methods analyze the plans or requirements of the system. They
are conducted by the analyst, without direct involvement with the users of the
system. To date, no one has found these analyses to be sufficient to find all
the design difficulties (Nielsen, 1992; Karat, Campbell, Fiegel, 1992). All
comparative studies of methods of design of user interfaces have found value
to having users actually attempt to perform a realistic task using some form

of the interface.

Also, although representations of designs produced in the initial generation
are sufficient for the analysis of Reflection, they are not concrete. They can be
understood only through the narrow lenses of the particular analyses. A
concrete working prototype is needed in order to obtain rich empirical and

experiential feedback.

The system used in these evaluations need not be the final system. The
prototype can be presented effectively with paper, storyboards, and other
media. One can produce sequences of screens similar to a movie production
storyboard, or a complex book of printed screens whose sequencing is
controlled by a human analyst. These allow rapid testing for flow of control,
visual clarity, etc. without having to program a system to be fully operational.
A variant of these simple prototypes is embodied in PICTIVE (Muller, 1991).
When the end users put the requisite pieces of the interface together, it is

called participatory prototyping (Poltrock and Grudin, this volume).

24

Rosenberg, 1988

Method Muddle 4/19/95

Although this kind of prototyping might work at this stage. it is more likely

effective as a first cut that can then be further refined through analysis.

Toolkits provide easy, cost effective ways to construct a working interface for
analysis and testing (Perlman, 1988; Hix and Schulman, 1991). ITS (Gould
et al, this volume) discuss various ways to display the dialog design with

various visual options.

Test the Prototype

Method Effort Training | References

Open Testing (Storefront or hallway, |1 week 1 month Gould, et al, 1987

alpha, and damage testing)

Usability Testing 2 weeks 1 year® Gould, 1988

Once the system is mocked up using one of these methods, the users are then
asked to work through a sample realistic task while the analysts collect
various forms of data about users' performance. These can be reactions to
attractiveness or appeal, ease of learning how to use it, or other
characteristics of the user's ease in performing basic tasks. This method is
variously called storefront or hallway testing, best exemplified in the
design process used for the Olympic Messaging System (Gould, Boies, Levy,
Richards, & Schoonard, 1987). In alpha testing, the prototype is given to
associates, who then give feedback to the designers about usability; in
damage testing, users deliberately try to break the system, giving feedback

to the designers about the system's robustness.

6This estimate is for "delux” usability testing. "Discount" testing (Nielsen, 1992) is much
faster to learn.

o
(@]

Method Muddle 4/19/95

More formal analyses involve full-fledged usability tests in which users are
taught the system (which itself provides an early test of the training
materials) and asked to perform a set tasks. Early tests of the system often
involve "critical tasks" which push the system and the user's capabilities so
that they would be sure to see its fragile points. In other situations, when the
goal is to find expected times to learn and perform, more conventional,

common tasks are used, called "benchmark tasks."

A whole variety of measures are possible, including the time to learn, the time
to perform particular tasks, individual keystroke times (for assessment of
match to predictions from the Keystroke Level Model), error types and
frequencies, thinking aloud (for assessment of goals and problem solving
strategies), preference and satisfaction. The data from usability tests are
relatively easy to collect; one can tell fairly quickly whether there are major
design errors. More detailed comparison of moment by moment keystroke
times with those projected from cognitive engineering allow designers to focus
on those aspects that seem to present difficulties to the user. What is not
easy is fixing these difficulties, especially since every design decision involves
tradeoffs; each fix changes some other aspect, the overall change needing re-

testing and/or analysis.

Implement the System

Method Effort Training | References

Toolkits (e.g., Motif, NeXTstep, Apple) | 3 months |6 months | Perlman, 1988

26

Method Muddle

4/19/95

The advantages of building the prototype in a full-scale toolkit center on the

fact that the interface is not only easy to build, has style guidelines built in,

| and is relatively easy to change after usability testing, but toolkits generate

production code, unlike prototypes built in some system like HyperCard.

With toolkits, it is not necessary to rewrite the interface into the language of

implementation.
Deploy the System
Method Effort Training | References
| Internal testing 1 week 1 month
Beta Testing (logging, metering, 2 weeks 1 month Mackay, Malone,

surveys)

Crowston, Rao,
Rosenblitt, and

Card, 1989

Once a system is judged satisfactory, it is typically tested further first in the
local environment, and then to an outside friendly environment, often a site
that would like to be an early adopter of the technology in exchange for feeding
back discovered bugs and mismatches in design. These tests are often called
beta testing. At this point, often data are collected, but of a less fine-grained
sort. Two good sources are catalogued queries that come in on a help line and
answers to questionnaires sent to customers or end users. It is also possible,
in some situations, to log or meter the new system, just as one would do on an
existing system, mentioned above. With keystroke data collected, for
example, one can infer both what common tasks are being done efficiently or

not, and overall use of system features.

Method Muddle 4/19/95

What the Designer needs to Know to Choose a Method
for the Right Time and the Right Task

The organization of the methods in the list above conveys that they apply to
different activities of the development process. They also differ in the amount
of time they require, the amount of detail uncovered and the accuracy of the
conclusions that result. For example, using a checklist on the current or
proposed design takes several hours and produces general recommendations
about usability and learnability. The checklist can help determine which of
two competing software packages might be easier for the end user, but will
not provide enough detail to determine how long the task will take or what
skill or domain knowledge the end user will have to have to behave accurately
and with reasonable speed. In contrast, GOMS analysis and its partners,
CCT and Keystroke Level Model, require a great deal of time, but provide
detail necessary to say what users will have to know to perform the tasks
well, roughly how long it will take to learn, and how long representative tasks

will take to perform.

We also noted that the methods differ in how much the designer needs to
know about human cognition, perception, and motor movement. Task
analyses require very little such knowledge, as do some forms of checklists or
guidelines and the cognitive walkthrough, whereas claims analysis, Cognitive

Complexity Theory and Keystroke Level Model require a great deal.

That 1s, the methods differ in

28

Method Muddle 4/19/95

the amount of time they take for and the concomitant level of detail

and risk associated with the findings, and

the knowledge the analyst is required to have about basic cognitive

processes of users.

Some methods are particularly suited for some kinds of users and tasks and
not for others. This is probably the most difficult thing for the designer to
assess. For example, tasks such as information retrieval, financial planning,
piloting an airplane, and rapid transcription of text are very different in how
sequentially and deliberately the user goes through the steps in the task.
There have been numerous attempts to develop a task taxonomy (See for
example Lenorovitz, Phillips, and Kloster, 1984 for a short review), but in
general the taxonomies are far too detailed for the use we wish to put them to
here. However, the analyst does need some guidance as to which of the

methods suits the particular user's task, the one being designed.

For our purposes, the following seem to be the major dimensions on which a

wide set of users' tasks differ:

1) the task is performed either as a set of sequential stepsor as a.
rapidly overlapping series of sub-tasks;

2) the task either involves high information content, with consequent
complex visual displays to be interpreted, or it involves low
information content, where simple signals are sufficient to alert

the user that the next step is to proceed:

29

Method Muddle 4/19/95

3) the task is intended to be performed either by a layman without

much training or by a skilled practitioner in the task domain.

The first dimension has to do with whether the user's actions are deliberate
and single minded, much like using a spreadsheet. This contrasts with tasks
such as air traffic control, where attention rapidly shifts between input
streams and goals are intertwined. Air traffic control similarly is high in
information content, the second dimension, whereas the task of assigning a
student a workstation in a computer lab is low in information content, much
more like reacting to a simple signal (the request of the student). The third
dimension reflects the assumed knowledge or skill level of the users. A bank
teller machine has to be recognizable by any customer whereas a computer
aided design (CAD) system is specific to a professional domian with its own
shared vocabulary, and can be designed with the assumption that the

designer will be trained in its use.

Most of the methods are applicable to both sequential and overlapping tasks.
The one major exception is the GOMS/CCT family of models and
accompanying analyses. They fit those tasks that are comprised of subsets of
sequentially performed operators (either mental or motor). The Critical Path
Analysis grew from this set of models to explicitly accommodate rapid-fire
tasks that most likely involve cognitive/motor components that overlap in

time. (See Atwood, Gray, and John, this volume).

When tasks are rich in information content, it is important to both determine
the structure of the information as the user understands it, and to display it

in a representation that visually maps well to that understanding. Therefore,

30

Method Muddle 4/19/95

those methods that assess the organization of information objects and
actions, the mental model of the system, and analysis of particulars of the

perceptibility of visual displays are particularly relevant.

Interfaces for tasks that are designed for casual use by the layperson, that do
not assume knowledge in a particular domain, should be assessed in
particular for their learnability and the provision of information on the screen
that suggests to the user what to do next. Several methods, such as the
cognitive walkthrough, storefront analysis, and claims analysis, are

particularly relevant for assessing this aspect of the interface.

If the task will be performed by a large workforce of dedicated users, then the
more detailed methods, like GOMS, grammar analysis and Critical Path
Analysis, will likely provide significant payoff. For example, there is a
significant workforce that reconciles mismatches in customer claimed
deposits and the accounting ledger in a bank "back room." These people work
full days at a rapid pace. It is particularly important in this task that the
information that the user needs to access to solve a problem be placed on the
screen in tandem, and that the key information is readily readable. Careful
analysis of the eye movements, clarity of font, and keystroke or command
sequence is very important to a good design in this task, so that information
1s not lost out of the user's working memory, and that extra scans are not
required to "line up" the aspects of the accounting that mismatch. Good
screen design can shorten each reconciliation task by seconds. Although mere
seconds are saved, when multiplied by the number of tasks accomplished per
day and the number of operators doing such a task, the savings could accrue to

millions of dollars.

31

Method Muddle 4/19/95

Some of the methods. like the GOMS, CCT, Keystroke and grammar analysis
require weeks to do for any medium size task and system. They are very
detailed, cataloging not only the action steps of the potential user, but the
cognitive/perceptual/motor steps as well. They provide, however. a great
amount of detail. They are therefore only appropriate when that kind of
investment in time will reveal important details of the speed of interaction or
complexity that might produce significant errors. They have shown value in
situations where new operator workstations are being designed for high-speed
work (Atwood et al) and for situations where errors are very costly, such as
wrong business decisions caused by the wrong data being retrieved from a

large data base because of its complex user interface (e.g. Smelcer, 1989).

These time-consuming methods often also require detailed knowledge about
cognition. GOMS family of models and methods require the analyst to know
facts about when in a task information might reside in short-term memory
and how far an eye movement will jump on a visual display of certain size.
Even the claims analysis requires intuition about these processes to help
discover what the appropriate and inappropriate claims are that the artifact
embodies. In contrast, methods like checklists and walkthroughs often can
be conducted by people without an intimate knowledge of cognition and
perception, and are therefore at the same time faster to accomplish and less
accurate. User testing often takes several weeks to accomplish (including
building the prototype, watching the users and analyzing the results), but can

be done by careful but not necessarily trained observers.

Summary of Costs and Benefits

32

Method Muddle 4/19/95

To provide guidance to the designer, we have prepared a table that highlights
four characteristics:

The methods are of different types. Some collect data (empirical),
some are analyses of the structure of the task and interface
(analytic), and some construct various representations of the
interface (constructive).

The benefits of the method in terms of what aspect of the interface
that the method is particularly suited to reveal ---the task steps,
the performance or learnability, or the user's acceptance of the
system (called tasks, perform, learn, or accept in the table)

Two aspects of the costs of using the method--the effort to use it
(which often correlates with amount of detail) and the training
needed.

This table provides a rough assessment of these characteristics. It was
constructed and synthesized by the authors guided by input from the
members of the workshop at Boulder. This table is intended to be advisory

about the occasions when the method will or will not be useful.

Examples of Coordinated Use of the Methods

Table 2 provides some guidance to the selection of methods for the particular
design task at hand. But, just as good cookbooks give not only selection
criteria for individual dishes but also suggest combinations of dishes to create
a pleasing meal, we provide here two such "meals." The first illustrates the
use of quick methods for a simple walk-up-and-use system, such as an ATM.

The second illustrates the set of design methods at the other end of the

33

Method Muddle 4/19/95

continuum, where the interface is information rich. and speedy, accurate real-

time performance is critical to the operator's success.

The literature contains several other descriptions of a coordinated sets of
methods. Gould's description of the development of the Olympic Messaging
System (Gould et al, 1987) demonstrates the coordinated use of several
methods for walk-up-and-use interfaces, and the description by Ruddman and
Engelbeck (this volume) about the development of an interface for the
operator's support for configuring new telephone service demonstrates
coordinated methods for an information rich, interactive system involving
customer conversation. McDaniel, et al (1994) describe the use of a
combination of HCI methods, those from Business Process Redesign
(Hammer and Champy, 1993) and those in Object Oriented methodology
(Jacobson, 1992) in the design of a system to help space physicists access
remote sensors and to converse about them across several continents

(McDaniel, Olson, and Olson, 1994).

34

Method Muddle

Table 2. Summary of Costs and Benefits of the Methods

4/19/95

Costs— Costs—
Method Types Benefits Effort Training |
DEFINE THE PROBLEM:
Naturalistic Observation (diaries,
videotape, etc.) empirical tasks 2 days 3 months
Interviews (incl. focus groups,
decision tree analysis, semantic empirical tasks 1 day 1 month
nets)
Scenarios or use cases (including analytic tasks 1 day 1 month
envistoning)
Task Analysis (incl. Operator analytic tasks 2 days 3 months
Function Model)
GENERATE A DESIGN:
Building on Previous Designs constructive | tasks, perform, |1 day 1 month
(steal and improve, design learn, accept
guidelines)
Represent Conceptual Model constructive | learn 1 day 2 months
Represent Interaction (GTN, constructive | perform, learn 2 days 2 months
Dataflow Diagram)
Represent Visual Display constructive | perform, learn 2 days 3 months
Design Space Analysis (QOC, analytic tasks, perform, |3 days 1 month
Decomposition Analysis) learn
REFLECT ON THE DESIGN
Checklists analytic perform, learn 1 day 1 week
Walkthroughs analytic perform, learn 2 days 3 months
Mapping analysis (task-action, analytic perform, learn 2 days 2 weeks
metaphor, consistency)
Methods analysis (GOMS, KLM, analytic perform, learn 3 days 1 year
CPM, CCT)
Display analyses analytic perform, learn 3 days 1 year
BUILD A PROTOTYPE:
Prototyping tools constructive | testable system | 1 month | 3 months
Participatory prototyping empirical tasks. accept 1 week 2 months
TEST THE PROTOTYPE:
Open Testing (Storefront or hallway, | empirical perform, learn, 1 week 1 month
alpha, damage testing) accept
Usability Testing empirical perform, learn, |2 weeks |1 year
accept
IMPLEMENT THE SYSTEM:
Toolkits (e.g., Motif, NeXTstep, constructive | fully testable 3 months | 6 months
Apple) svstem

DEPLOY THE SYSTEM:

Method Muddle 4/19/95
Internal testing empirical perform, learn, |1 week 1 month
accept
Beta Testing (logging, metering, empirical tasks, perform, |2 weeks |1 month
surveys) learn. accept

36

Method Muddle 4/19/95

Coordinated methods for quick evaluation of a walk-up-and-use

system. An ATM is an example of a system which

has simple sequential task flow (which presents information on choices

the user has, each of which leads to new choices),

is relatively low in information content (mainly verbal selections, for

example about withdrawal or deposit and how much)

and is targeted for the layman.

Because the task is performed by untrained users at their own pace, the
emphasis is on the ease with which the user can learn to operate the device.
Obviousness of what action to take next, and error recovery are prime. Also,
since the business objective of this system is not rapid performance of tasks,
but rather widespread use leading to offloading clerical tasks to the customer,
the budget for construction and evaluation are likely small. Fast methods
will do and the designer should not be expected to have a Ph.D. in cognitive

psychology.

To discover the components of the task, simple questionnaires might suffice,
asking the potential customers what kinds of choices they might be interested
in. Often marketing has the basics of this information collected already, and
use of this for the interface objects, actions, and flow will serve well. Since
lots of ATMs exist already, it would also be appropriate to do some
naturalistic observation, where designers observe current users at existing

machines.

37

Method Muddle 4/19/95

The initial design, guided by prescriptions from guidelines and assessed
quickly with checklists, might be printed on paper, and displayed as a
storyboard, for analysis of flow, screen display, etc. without users. Designers
can view the storyboard for aspects of ease of learning, using in particular a
cognitive walkthrough. The flow of the system could be assessed with a
simple generalized transition network, to assure consistency in the use of

error recovery and navigation commands.

For hallway testing, a mock-up of the entire display might be constructed,
with a rapid prototyping system (such as HyperCard) embodying the
design. Designers can observe the test users' difficulties, or get them to think

out loud while they attempt to use the system.

After several short such analyses and redesigns, the system, in its
penultimate form, can be installed at a friendly test site and some basic
system monitoring data collected for analysis of gross usability and

preference characteristics.

Coordinated methods for detailed evaluation of a system for high
performance for dedicated, skilled users. At the other end of the
spectrum is a system that supports back-room workers at a bank who are
reconciling the machine-read check register with what the customer wrote on

the back of a deposit slip. The task

38

Method Muddle 4/19/95

requires the overlapping activation of the user's mental and physical
capabilities (scanning the next set of materials while the previous

tasks' corrections are keyed in)

is relatively high in information content (side-by-side displays of the
deposit slip's handwritten entry and a list of the checks accompanying

the deposit, both machine read and scanned in true copy)

and is targeted for the dedicated skilled user.

Because the task is performed all day every day by skilled users, there is
considerable payoff from having detailed, somewhat time consuming
analyses. The outcome has to be detailed enough to recommend changes to
the interface that may bring about seconds of savings in each task completion.
But, because of the high volume of performance of each task, savings accrue
rapidly. Budget for construction and evaluation of this kind of system can be

quite large, given the anticipated payoff.

To understand the task, which in this case is not particularly obvious to the
system designer, several discovery techniques should be employed. If there is
a previous system in place (check balances are reconciled in some way before
this new system is built), the designers can engage in some natural
observation, plus interview the workers about aspects that are difficult or
annoying. More detailed discovery of the objects/actions of the task domain
and the kinds of thinking that goes on during the execution of the task can

come from semantic net interviews, decision tree interviews, and other

39

Method Muddle 4/19/95

techniques from the area of knowledge engineering. A detailed task analysis
is performed next, showing the order of subtasks, and the kinds of information
that are needed at each moment so the user can perform requisite cognitive
tasks to accomplish the goal. The task analysis may take the form of a
operator function model with details of the knowledge necessary in the

form of a GOMS model or some parts of the Task Action Grammar.

Once the task is fully understood, a series of design and evaluative iterations
follow. The system can be generated and displayed as a Generalized
Transition Network or a working prototype, using one of the more
sophisticated toolkits like ITS. This design is then analyzed in detail for the
cognitive and motor movements required to accomplish the task, using the
Critical Path Analysis (CPA) variant of the GOMS family of models. Since
the system has high information content, detailed analysis of the visual
display is also warranted. Usability tests follow, with particular emphasis
on the fit of the CPA to the actual timing of the task, to hone both the model's
accuracy and to show where the system does not fit the predictions of optimal
performance afforded by the model. The design iterates until the users'

performance meets preset target criteria for skilled performance.

Discussion

The synthesis and table above are intended to be helpful, not to provide a

detailed critique of each method for its usefulness. There are methods, for
example, that have the goal of being useful and usable by designers, but at
present are in a form that makes them difficult to learn or awkward to use.

For example, one of the motivations for providing the Cognitive Walkthrough

40

Method Muddle 4/19/95

was to make knowledge that is gleaned from GOMS and other empirical

investigations accessible in a method usable by designers.

Also, the table format masks the potential synergy between methods, those
useful links that can occur between methods. For example, the Operator
Function Model is a detailed analysis of the object, actions, and flow of control
necessary for task performance. Upon inspection, we discovered that its
outputs are exactly what are needed for input to ITS. Thus, while one method

might be effective only on its own, others may have useful links between them.

It is also the case that the table makes only crude assessments of the kinds of
tasks that it can be applied to and coarse grained estimates of how much
effort it takes and how much training the designer has to have in order to use
the method successfully. Of particular concern is the implication that those
methods that take a short time but give you broad coverage of evaluation are
higher on the cost/benefit curve and therefore more valuable. Some of the
methods, such as GOMS, although they take a long time to specify, have a
large payoff for several different aspects of the design process. For example,
once the task is specified in a GOMS terminology, not only is it possible to
estimate how long a task will take (by using parameters in the Keystroke
Level Model) but you also have the basic information necessary to write
effective documentation (Gong and Elkerton, 1990). The GOMS model forces
the analyst to understand the major tasks and the recommended procedure to

accomplish those tasks, the basic elements of writing good training material.

Also, a listing of methods like that above misses some of the more global

design process principles that successful designers offer. For example, it has

41

Method Muddle 4/19/95

been widely recognized that an effective management procedure for assuring
adequate attention to the user interface is to incorporate metrics of user
acceptability into the same set of metrics that software designers are used to
having to determine if the performance of the software itself is acceptable.
(Good, Whiteside, and Wixon, 1984). There are other principles for effectively
using the methods in the design process. Having the software developers
themselves on the team that runs a usability evaluation is recommended
because they can see for themselves in real time that aspects of a current
design provoke repeated difficulties across users. Summary reports do not
convey the same weight for such conclusions as do real-time experiences. And,
it has long been recommended that users themselves sit on the design team,
to assure adequate input of task vocabulary, completeness of features, and
flow that fits the way the user thinks about the task progression. Many of the
methods listed above could benefit from users being on the design or analysis

team.

This overview shows that there is considerable progress in providing ways to
design useful, usable, and learnable user interfaces. Many new methods have
been developed since the 1983 NRC report, and recent studies have compared
the cost/benefit of various methods (Nielsen, 1992, 1993). We have provided a
framework for seeing the roles of different methods, but more work is needed
on a detailed cost/benefit of the methods. Not only do the methods need to be
assessed for their usefulness, but new methods need to be developed that are

more complete and usable.

Acknowledgment. This work has been supported in part by a grant from
Army Research Institute, contract number MDA 903-89-K-0025.

42

Method Muddle 4/19/95

References

Adams, J. L. (1979) Conceptual Blockbusting: A Guide to Better Ideas. NY: W.

W. Norton and Company.

Anderson, N., and Olson, J. Reitman (Eds.) (1985) Methods for Designing
Software to Fit Human Needs and Capabilities: Proceedings of the
Workshop on Software Human Factors. Washington, D. C.: N ational

Academy Press.

Atwood, M., Gray, W. John, B. Project Ernestine: From basic research to

application and back again, and again, and again...(this volume)

Card, S. (this volume) so far, just listed as "discussant”

Card, S. K., Moran, T. P., and Newell, A. (1983) The Psychology of Human-
Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates,

Inc.

Carroll, J., and Rosson, M. B. (this volume) Getting around the task-artifact

cycle: How to make claims and design by scenario.
Douglas, S. and Moran, T. (1983) Learning text editor semantics by analogy.

CHI'83 Proceedings of the Conference on Human Factors in Computing
Systems. NY: ACM. pp.

43

Method Muddle 4/19/95

Gillan, D. J., and Breedin, S. D. (1990) Designers' models of the human-
computer interface. CHI'90 Proceedings of the Conference on Human

Factors in Computing Systems. NY: ACM. pp.

Gong, R., and Elkerton, J. (1990) Designing minimal documentation using a
GOMS model: A usability evaluation of an engineering approach.
Proceedings of the Conference on Human Factors in Computing Systems.

NY: ACM. 99-106.

Good, M., Whiteside, J. Wixon, D., and Jones, S. (1984) Building a user-
derived interface. Communications of the ACM, 27, 1032-1043.

Gould, J. D., (1988) How to design usable systems. in M. Hellander (Ed.)
Handbook of Human Computer Interaction. Amsterdam: North
Holland, 757-785.

Gould, J. D., Boies, S. J., Levy, S., Richards, J. T., and Schoonard, J. (1987)
The Olympic Messaging System: A test of behavioral principles in
system design. CACM 30, 758-769.

Gould, J., Ukelson, J. P, and Boise, S. (this volume) ITS: An emerging

Methodology for user interface design
Halasz, F. G. and Moran, T. P. (1983) Mental models and problem solving in

using a calculator Proceedings of the Conference on Human Factors in

Computing Systems. NY: ACM, 212-216.

44

Method Muddle 4/19/95

Hammer, M., and Champy, J. (1993) Reengineering the Corporation: A
Manifesto for Business Revolution. New York: HarperCollins

Publishers, Inc.

Hill, B., Long, J., Smith, W., and Whitefield, A. (1993) Planning for multiple
task work - an analysis of a medical reception worksystem.
Proceedings of the Conference on Human Factors in Computing Systems.

NY: ACM, 314-320.

Jacobson, I. (1992) Object-Oriented Software Engineering. Reading, MA:
Addison Wesley Publishing Co.

Jonassen, D. J., Hannum, W. H., and Tessmer, M. (1989) Handbook of Task

Analysis Procedures. New York: Praeger.

John, B. E. (1988) Contributions to engineering models of human-computer
interaction Dissertation, Carnegie Mellon University

Department of Psychology.

Karat, C. M., Campbell, R., and Fiegel, T. (1992) Comparison of empirical
testing and walkthrough methods in user interface evaluation.
Proceedings of the Conference on Human Factors in Computing Systems.

NY: ACM,, 397-404.

Kieras, D. (1988) Towards a practical GOMS model methodology for user

interface design.

45

Method Muddle 4/19/95

Kieras, D. E., and Bovair, S. (1986) The acquisition of procedures from text:
A production-system analysis of transfer of training. Journal of

Memory and Learning, 25, 507-524.

Kieras, D. , and Polson, P. G. (1983) A generalized transition network
representation for interactive systems. Proceedings of the Conference

on Human Factors in Computing Systems. NY: ACM, 103-106.

Lenorovitz, D. R., Phillips, M. D., Ardrey, R. S., and Kloster, G. V. (1984) A
taxonomic approach to characterizing human computer interfaces. In
G. Salvendy (Ed.) Human Computer Interaction. Amsterdam, The
Netherlands: North Holland. 111-116.

Lewis, C., Polson, P., Wharton, C., and Rieman, J. (1990) Testing a
walkthrough methodology for theory-based design of walk-up-an-use
interfaces. Proceedings of the Conference on Human Factors in

Computing Systems. NY: ACM, 235-241.

Lohse, J. (1991) A cognitive model for the perception and understanding of
graphs. Proceedings of the Conference on Human Factors in Computing
Systems. NY: ACM. pp. 137-144.

Mackay, W. E., Malone, T. W., Crowston, K., Rao, R., Rosenblitt, D. and Card,
S. K. (1989) How do experienced users use rules? Proceedings of the
Conference on Human Factors in Computing Systems. NY: ACM, 211-
216.

46

Method Muddle 4/19/95

Mackinlay, J. (1986) Automating the design of graphical presentations of
relational information. ACM Transactions on Graphics, 5 (2, April),

110-141.

MacLean, A., Young, R., Bellotti, V. M., and Moran, T. P. (1991) Questions,
options, and criteria: Elements of a design space analysis. Human

Computer Interaction, 6, 201-250.

McDaniel, S. E., Olson, G. M., and Olson, J. S. (1994) Methods in search of
methodology--Combining HCI and Object Orientation. Human Factors
in Computing Systems: CHI'94 Conference Proceedings. New York:
ACM.

Mitchell, C. (this volume) Cognitive engineering models: A prerequisite to

the design of human-computer interaction in complex dynamic systems

Moran, T. (1983) Getting into a system: External-internal task mapping
analysis. Proceedings of the Conference on Human Factors in Computing

Systems. NY: ACM, 45-49.

Moran, T. (1981) The Command Language Grammar: A representation for |
the user interface of interactive computer systems. International

Journal of Man-Machine Systems. 15, 3-50.

Muller, M. J. (1991) PICTIVE-An exploration in participatory design.
Proceedings of the Conference on Human Factors in Computing Systems.

NY: ACM. pp. 225-231.

47

Method Muddle 4/19/95

Newman, W. M., & Sproull, R. F. Principles of interactive computer graphics
(and ed.). New York: McGraw-Hill, 1979.

Nielsen, J., Mack, R. L., Bergendorff, K. H., Grischkowsky, N. (1989)
Integrated software usage in the professional work environment:
Evidence from questionnaires and interviews. Proceedings of the
Conference on Human Factors in Computing Systems. NY: ACM, 162-
167.

Nielsen, Jakob (1992) Finding usability problems through heuristic
evaluation. Proceedings of the Conference on Human Factors in

Computing Systems. NY: ACM., 373-380.

Nielsen, Jakob (1993) Usability Engineering. Boston, MA: AP Professional.

Olson, J. S. (1985) Expanded design procedures for learnable, usable
interfaces. Proceedings of the Conference on Human Factors in

Computing Systems. NY: ACM. pp. 142-143.
Olson, J. S., and Biolsi, K. J. (1991) Techniques for representing knowledge.
in Ericsson, A. and Smith, J. (Eds) Toward a general theory of expertise.

Cambridge, England: Cambridge University Press.

Olson, J. S., and Olson, G. M. (1991) The growth of cognitive modeling since
GOMS. Human Computer Interaction, 5, 221-266.

48

Method Muddle 4/19/95

Payne, S. J., and Green, T. R. G. (1986) Task-action grammars: A model of
the mental representation of task languages. Human Computer

Interaction, 2, 93-133.

Perlman, G. (1988) Software tools for user interface development. In M.
Hollander (Ed.) Handbook of Human Computer Interaction.
Amsterdam, The Netherlands: North Holland. 819-833.

Polson, P. G., and Kieras, D. E. (1985) A quantitative model of the learning
and performance of text editing knowledge. Human Factors in

Computing Systems, Proceedings of the CHI '85, NY: ACM.

Poltrock, S., and Grudin, J. (this volume) Participant observer studies of

interface design and development.

Reisner, P. (1984) Formal grammar as a tool for analyzing ease of use: Some
fundamental concepts. in J. Thomas, and M. Schneider (Eds.) Human

Factors in Computer Systems. Norwood, NdJ: Ablex.

Rieman, J., Davies, S., Hair, D. C., Esemplare, M., Polson, P. and Lewis, C.
(1991) An automated cognitive walkthrough. Proceedings of the
Conference on Human Factors in Computing Systems. NY: ACM, 427-
428

Ruddman, S. E., and Engelbeck, G. (this volume) Combining four task
analysis approaches for the design of a complex user interface for

telephone service negotiation

49

Method Muddle 4/19/95

Sasso, W., Olson, J. S., and Merten, A (1987) The practice of office analysis:
Objectives, obstacles, and opportunities. Office Knowledge Engineering,

2, 11-24.

Schon , D.A. (1983) The Reflective Practitioner: How Professionals Think in
Action. New York: Basic Books.

Shneiderman, B. (1992) Designing the user interface: Strategies for effective
human-computer interaction. Second edition. Reading, MA: Addison-

Wesley.

Simon, H. A. (1981) Sciences of the Artificial Cambridge, MA: MIT Press.

Smelcer, J. B. (1989) Understanding user errors in database query.

Unpublished doctoral dissertation, University of Michigan, Ann Arbor.

Smith, D. C., Irby, C., Kimball, R., Verplank, B., and Harslem, E. (1982)
Designing the Star user interface. Byte 7(4) 242-282.

Smith, S. L., and Mosier, J. N. (1984) Design guidelines for user-system
interface software. Mitre Corporation Report ESD-TR-84-190.
Bedford, MA: Mitre Corporation.

Tetzlaff, L., and Schwartz. (1991) The use of guidelines in interface design.
Proceedings of the Conference on Human Factors in Computing Systems.

NY: ACM, 329-334.

50

Method Muddle 4/19/95

Tullis, T. S. (1988) Screen design. in M. Hollander (Ed.) Handbook of Human
Computer Interaction. Amsterdam, Netherlands: North Holland. pp
377-411.

Weinberg, G. M., and Freidman, D. P. (1984) Reviews, walkthroughs, and

inspections. IEEE Transactions on Software Engineering SE-10(1).

Wilson, J., and Rosenberg, D. (1988) Rapid prototyping fore user interface
design. in M. Hollander (Ed.) Handbook for Human-Computer
Interaction. Amsterdam: North Holland. 859-876.

