Extended Range Modified Gradient Technique for Profile Inversion

Technische Univ. Delft (Netherlands)
BIBLIOGRAPHIC INFORMATION

Title: Extended Range Modified Gradient Technique for Profile Inversion.

Date: c1992

Authors: R. E. Kleinman, and P. M. van den Berg.

Supplementary Notes: Prepared in cooperation with Delaware Univ., Newark. Dept. of Mathematical Sciences.

NTIS Field/Group Codes: 46, 46C

Price: PC A02/MF A01

Availability: Available from the National Technical Information Service, Springfield, VA. 22161

Number of Pages: 7p

Keywords: *Electromagnetic scattering, *Refractive index, Conjugate gradient method, Sequences(Mathematics), Complex numbers, Iterative methods, Numerical solution, Greens function, Algorithms, *Foreign technology, Successive overrelaxation method, Ill posed problems, Inverse problems.

Abstract: A method for reconstructing the complex index of refraction of a bounded inhomogeneous object from measured scattered field data is presented. Some numerical examples are given, indicating the limits on the contrasts which can be reconstructed.
Report number Et/EM 1992-3

Title : An extended range modified gradient technique for profile inversion

Authors : R.E. Kleinman and P.M. van den Berg

Date : April 1992
Laboratory : Electromagnetic Research
Report number : Et/EM 1992-8
Abstract codes : PA 4320, PA 9130

Faculty : Electrical Engineering
Postal Address : P.O. Box 5031, 2600 GA Delft
 : The Netherlands
Telephone : (31)15786254/(31)15786620
Telex : 38151 butud nl
Telefax : (31)15783622
Electronic-mail : EMLAB@ET.TUDELFT.NL

Copyright ©1992

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior permission of the Laboratory of Electromagnetic Research.
AN EXTENDED RANGE MODIFIED GRADIENT TECHNIQUE FOR PROFILE INVERSION

R.E. KLEINMAN
Center for the Mathematics of Waves
Dept. of Mathematical Sciences
University of Delaware
Newark, DE 19716, U.S.A.

P.M. VAN DEN BERG
Laboratory of Electromagnetic Research
Faculty of Electrical Engineering
Delft University of Technology
Delft, the Netherlands

ABSTRACT. A method for reconstructing the complex index of refraction of a bounded inhomogeneous object from measured scattered field data is presented. Some numerical examples are given indicating the limits on the contrasts which can be reconstructed.

1. INTRODUCTION

Assume that an inhomogeneous obstacle D is irradiated successively by a number of known incident fields u_{i}^{inc}, $i = 1, \ldots, I$. For each excitation, the direct scattering problem may be reformulated as the domain integral equation

\[L(\chi)u_{i}(p) = u_{i}(p) - G_{D}(\chi)u_{i}(p), \quad p \in D, \quad (1) \]

where

\[G_{D}(\chi)u_{i}(p) = \int_{D} G(p,q)\chi(q)u_{i}(q)dq, \quad p \in D. \quad (2) \]

Here, u_{i} is the total field, k is the wavenumber, χ is the complex contrast ($\chi = n^{2} - 1$, where n is the index of refraction), $G(p,q)$ is the free-space Green’s function and p and q are position vectors. G_{D} is an operator mapping $L^{2}(D)$ (square integrable functions in D) into itself. If S is a surface enclosing D then the scattered field on S, u_{i}^{sca}, is given by $G_{S\chi}u_{i}$ where G_{S} is the same operator defined in Eq. (2), except the field point p now lies on S. Hence G_{S} is an operator mapping $L^{2}(D)$ into $L^{2}(S)$. We assume that u_{i}^{sca} is measured on S and denote by $f_{i}(p)$, $p \in S$, the measured data for each excitation i, $i = 1, \ldots, I$. The profile inversion problem is that of finding χ for given f_{i}, or solving the equation

\[G_{S\chi}u_{i}(p) = f_{i}(p), \quad p \in S, \quad (3) \]

for χ subject to the additional condition that u_{i} and χ satisfy Eq. (1) in D. We will seek u_{i} and χ simultaneously to minimise the L^{2} error on D in satisfying Eq. (1) and the L^{2} error on S in satisfying Eq. (3).

2. THE INVERSION ALGORITHM

Here we propose an iterative inversion algorithm which incorporates the ideas of successive over-relaxation as well as the conjugate gradient method. Specifically we propose the iterative construction of sequences \{$u_{i,n}\$} and \{$\chi_{n}\$} as follows:

\[u_{i,0} = u_{i}^{initial}, \quad \chi_{0} = \chi^{initial}, \]

\[u_{i,n} = u_{i,n-1} + \alpha_{n}u_{i,n-1}, \quad \chi_{n} = \chi_{n-1} + \beta_{n}d_{n}, \]

\[r_{i,n} = u_{i}^{inc} - L(\chi_{n})u_{i,n}, \quad \rho_{i,n} = f_{i} - G_{S\chi}u_{i,n}, \quad (4) \]

where α_{n} and β_{n} are in general complex constants which are chosen at each step to minimise

\[F_{n} = w_{D} \sum_{i=1}^{I} ||r_{i,n}||_{D}^{2} + w_{S} \sum_{i=1}^{I} ||\rho_{i,n}||_{S}^{2}, \quad \text{ where } w_{D} = \left(\sum_{i=1}^{I} ||u_{i}^{inc}||_{D}^{2} \right)^{-1}, \quad w_{S} = \left(\sum_{i=1}^{I} ||f_{i}||_{S}^{2} \right)^{-1}. \quad (5) \]
and the subscripts D and S on the norm $\| \cdot \|$ and inner product $\langle \cdot , \cdot \rangle$ in L^2 indicate the domain of integration. The minimization of the quantity F_n of Eq. (5) leads to a nonlinear problem for the coefficients α_n and β_n at each step, which we solve using a conjugate gradient method. The starting value for α_n is obtained by taking $\beta_n = 0$ and minimizing F_n, while the starting value for β_n is found by setting $\alpha_n = 0$ and again minimizing F_n.

3. INITIAL GUESS AND CORRECTION DIRECTIONS

In our previous treatment of this problem [1] we chose $\chi_0 = 0$, while the update direction for the field was directly adapted from the successive over-relaxation method for solving the direct problem with known contrast to be $v_{i,n} = r_{i,n-1}$ and the update direction for the contrast was chosen to be the gradient of the error in the measured data at the previous, $(n-1)$st, step. In the present work we refine these choices considerably.

We obtain the initial guess by finding the constant contrast $\chi_{initial}^{initial}$ and associated fields $u_{i}^{initial}$, which minimize the functional F_n. Specifically, we proceed as follows. Define the normalized change in the field by

$$
\varepsilon_n = \left(\sum_{i=1}^{I} \| u_{i,n} - u_{i,n-1} \|_D^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{I} \| u_{i,n-1} \|_D^2 \right)^{-\frac{1}{2}}.
$$

(6)

We set an arbitrary switching criterion, ε, and run the algorithm of Eq. (4) with $\chi_{initial}^{0} = 0$, $v_{i,0}^{initial} = u_{i}^{inc}$, $d_n = 1$ and $v_{i,n} = r_{i,n-1}$ until $\varepsilon_{n-1} < \varepsilon$, then switch the definition of $v_{i,n}$ to

$$
v_{i,n} = g_{i,n}^{v} + \gamma_n^{v} v_{i,n-1}, \quad \gamma_n^{v} = \left(\sum_{i=1}^{I} (g_{i,n}^{v} g_{i,n}^{v} - g_{i,n-1}^{v} d_n) \right) / \left(\sum_{i=1}^{I} \| g_{i,n-1}^{v} \|_D^2 \right),
$$

(7)

with the gradient

$$
g_{i,n}^{v} = w_D (r_{i,n-1} - \bar{x}_{n-1} \bar{g}_D r_{i,n-1}) + w_S \bar{x}_{n-1} \bar{g}_S r_{i,n-1},
$$

(8)

where the overbar denotes complex conjugate and \bar{g}_S is a map from $L^2(S)$ to $L^2(D)$. The choice of the direction $v_{i,n}$ in Eqs. (7) - (8) is the Polak-Ribiere conjugate gradient direction assuming the contrast does not change. Continue this algorithm until we again achieve $\varepsilon_n < \varepsilon$. The resulting values are taken as $u_{i}^{initial}$ and $\chi_{initial}^{initial}$.

With these initial choices we run the algorithm of Eq. (4) with $v_{i,n}$ as in Eqs. (7) - (8) and d_n is taken in one of the two ways: if $\varepsilon_{n-1} \geq \varepsilon$ then d_n is taken to be the gradient direction

$$
g_{i,n}^{d} = -w_D \sum_{i=1}^{I} \bar{u}_{i,n-1} \bar{g}_D r_{i,n-1} + w_S \sum_{i=1}^{I} \bar{u}_{i,n-1} \bar{g}_S r_{i,n-1},
$$

(9)

whereas if $\varepsilon_{n-1} < \varepsilon$, we use the Polak-Ribiere conjugate gradient direction

$$
d_n = g_n^{d} + \gamma_n^{d} d_{n-1}, \quad \gamma_n^{d} = \left((g_{i,n}^{d} d_n^{d} - g_{i,n-1}^{d} d_{n-1}^2) \right) / \left(\| g_{i,n-1}^{d} \|_D^2 \right).
$$

(10)

Continue the iteration until either F_n meets a preset error criterion or ceases to change.

4. NUMERICAL EXAMPLES

The inversion method is illustrated in a particular case in 2-D scattering by a square cylinder of dimension $d \times d$ with sinusoidal varying profile, $x = \sin(\pi x / \lambda) \sin(\pi y / \lambda)$ for $0 < x, y < 3 \lambda$, so that $kd|\chi_{max}| = 6 \pi$. Results are shown for twenty and thirty equally spaced measurement stations distributed on a circle of radius 3λ containing the cylinder with each station serving successively as the source and all stations serving as receivers, $I = 20, 30$. The cylinder is discretized into 29×29 subsquares. The original profile is illustrated in Fig. 1a. Using $\varepsilon = 0.01$ the reconstructed profile is shown in Figs. 1b and 1c, employing twenty and thirty stations, respectively.
The reconstructions shown in Figs. 1b and 1c are the results after 128 iterations of which 56 were required to obtain the initial guess for 20 stations. For the case of 30 stations only 38 of the 128 iterations were needed to obtain the initial guess. The values of the functional, Eq. (5), which was to be minimized were $F_{128} = 0.013$ for $I = 20$ and $F_{128} = 0.002$ for $I = 30$.

5. CONCLUSIONS

An iterative method for complex profile construction has been described and tested. The method combines the features of successive over-relaxation, gradient and conjugate gradient methods to minimize a functional consisting of normalized errors in satisfying the field equation and the error in matching the measured data. The field equation serves as the regularizer for the ill-posed problem finding a function in D to minimize the error in solving Eq. (3). The nonlinear optimization problem is not linearized, however, the two components of the functional in Eq. (5) are treated somewhat separately. The algorithm was constructed to delay large changes in the contrast until the field was somewhat stable. This was the motivation for the separate treatment of the initial guess as well as the subsequent switching in the algorithm based on the size of ϵ_n. The numerical results presented here as well as additional experiments indicate that the algorithm successfully reconstructs complex contrasts for $kd|\chi_{max}| \leq 6\pi$. To achieve reconstructions for large values of χ_{max}, low frequency measurements will not suffice to give reasonable resolution. Future work is directed toward extending the method to include measurements at more than one frequency to accommodate larger contrasts.

6. REFERENCES

ACKNOWLEDGEMENT. This work was supported under NSF Grant No. DMS-8912593, AFOSR Grant-91-0277, ONR Grant N00014-91-J-1700 and NATO Grant-0230/88 and a Research Grant from Schlumberger-Doll Research, Ridgefield, CT, U.S.A.