1. AGENCY USE ONLY (Leave Blank)  
2. REPORT DATE  
   June 13, 1997  
3. REPORT TYPE AND DATES COVERED  
   Final 19 Jun 91-30 Sept 95

4. TITLE AND SUBTITLE  
   Anisotropy in Epitaxial Films

5. FUNDING NUMBERS  
   DAAL03-91-G-0156

6. AUTHOR(S)  
   C.V. Thompson  
   R.C. O'Handley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
   Massachusetts Institute of Technology - Department of Materials Science & Engineering  
   77 Massachusetts Avenue  
   Cambridge, MA 02139

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
   U.S. Army Research Office  
   P.O. Box 12211  
   Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES  
   The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by the documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT  
   Approved for public release; distribution unlimited

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)  
   Experiments on epitaxial Ni films grown on epitaxial Cu films grown on single crystal (100) Si wafers in a molecular beam epitaxy system modified to make in situ magneto-optic Kerr effect (MOKE) measurements were carried out. Ex situ transmission electron microscopy and wafer curvature measurements were made and it was shown that the onset of misfit accommodation, the decrease in Ni strain with increasing film thickness, and the increase in misfit dislocation density were consistent with existing models for misfit accommodation. In situ MOKE studies and ex situ vibrating sample magnetometry studies of the magnetic consequences of the changing strain with Ni film thickness showed that the magnetic easy axis of the Ni/Cu(001) films was perpendicular to the film plane over the range 1.5 to approximately 6 nm. We have found from these studies that the low-thickness transition from perpendicular to in-plane magnetization with decreasing film thickness (seen also in ultra-thin Fe/Cu and Fe/Ag) is NOT associated with the critical thickness leading to the onset of MD formation, but results instead from a complex interplay of magneto-static and magnetoelastic energies, and of the Neel magnetic surface anisotropy as well as the surface magneto-elastic anisotropy.

14. SUBJECT TERMS  
   Epitaxial films  
   Magnetic anisotropy

15. NUMBER OF PAGES  
   6

16. PRICE CODE  
   UL

17. SECURITY CLASSIFICATION OR REPORT  
   UNCLASSIFIED

18. SECURITY CLASSIFICATION  
   ON THIS PAGE  
   UNCLASSIFIED

19. SECURITY CLASSIFICATION  
   OF ABSTRACT  
   UNCLASSIFIED

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev.2-89)  
Prescribed by ANSI Std. 239-18  
298-102

NSN 7540-01-280-5300
Anisotropy in Epitaxial Films

Final Report

C.V. Thompson
R.C. O'Handley

June 13, 1997

U.S. ARMY RESEARCH OFFICE

Contract No. DAAL03-91-G-0156

Massachusetts Institute of Technology

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
The objective of the program was to use the magneto-optic Kerr effect (MOKE) as an *in-situ* probe for monitoring and characterizing the magnetic anisotropy associated with misfit dislocations (MDs) which form during growth of epitaxial Ni films.

![Graph](image)

**Figure 1:** Strain as indicated by measured misfit dislocation spacings and by substrate curvature for epitaxial Ni films of different thickness, grown on epitaxial Cu films grown epitaxially on (001) single crystal Si wafers using molecular beam epitaxy.

For Ni on Cu(001) thermodynamic theory predicts a critical thickness of $h_c=1.8\text{nm}$ for formation of MDs (2.6% lattice mismatch). Above $h_c$, the MD spacing and residual strain decrease approximately as $h^1$. We carried out experiments on epitaxial Ni films grown on epitaxial Cu films grown on single crystal (100) Si wafers in a Molecular Beam Epitaxy (MBE) system which we modified to make in situ MOKE measurements. We characterized misfit accommodation through extensive *ex situ* transmission electron microscopy (TEM), in which we observed the onset of misfit accommodation through MD formation for Ni films thicker than about 2.5 nm.$^{[1,2]}$ We measured the MD density as a function of Ni film thickness, and made *ex situ* strain measurements as a function of film thickness using TEM Moiré fringe analysis and optical interferometry for substrate curvature measurements$^{[1-4]}$. As expected, we found that the misfit was accommodated by dislocations lying along [110] and [110] of Cu on [100] and [101] of Si directions. However, we also found that while some of the MD's had Burgers vectors lying in slip planes and inclined at $60^\circ$ to the line direction, we found that much of the misfit was accommodated by $90^\circ$ dislocations with Burgers vectors in the (001) plane, the plane of the Ni/Cu interface. Mechanisms for the formation of these dislocations were described, and it was shown that our observations of the onset of misfit accommodation, the decrease in Ni strain with increasing thickness, and the increase in misfit dislocation density with increasing film thickness (Figure 2) were consistent with existing models for misfit accommodation$^{[1-4]}$. 
Figure 2: Longitudinal (left) and polar (right) M-H loops for 35 Å Ni / 3000 Å Cu/Si(100).

We also found that as the strain changed due to film thickening, the shape of the M-H loop (which is determined by magnetic anisotropy) varied in a predictable way because of the strong magnet-elastic coupling in Ni, the strong magnetic energy of the Cu-Ni interface, and the magnetostatic energy (Fig. 3).²,⁵-⁶

MOKE studies of the magnetic consequences of the changing strain showed that the magnetic easy axis of the Ni/Cu(0010) films is perpendicular to the film plane over the range 1.5 to approximately 6 nm. Ni films deposited on CuNi substrates for which the misfit was smaller showed a smaller thickness range for perpendicular magnetization (Fig. 3).⁶

Figure 3: Variation to the perpendicular remanence normalized to the saturation magnetization vs. Ni film thickness in Ni/3000 Å Cu/Si (001) and in Ni/Cu₁₋ₓNiₓ/Si (001) for which the misfit strain is reduced.

In iron films the upper limit to the range of perpendicular magnetization is approximately 0.4 nm. This sharp difference between Fe and Ni films is due largely to the much smaller magnetostatic energy of Ni. Nevertheless, this difference also points to strong effects in the Ni films favoring perpendicular magnetization. We found that the film strain plays and important role in the perpendicular magnetization of Ni.
The important contributions to the anisotropy energy are usually identified\cite{7} as: magnetostatic \( f_{MS} = -2\pi M_s^2 \sin^2 \theta \), magnetoelastic \( f_{ME} = 2B_1 e_o \sin^2 \theta \), and the Néel magnetic surface anisotropy \( f_N = K^S \sin^2 \theta \). Here \( B_1 \) is the ME coupling coefficient and \( K^S \) is the magnetic surface anisotropy of the film. The magnetocrystalline anisotropy energy density of Ni is small compared to the other contributions and is ignored. The total magnetic anisotropy energy density can then be expressed as:

\[
    f_M = K^{eff} \sin^2 \theta, \tag{1}
\]

\[
    K^{eff} = 2B_1 e_o - 2\pi M_S^2 + 2K^s / h. \tag{2}
\]

Here \( M_s \) is the saturation magnetization and \( \theta \) is the angle that the magnetization vector makes with the film normal, \( f_{MS} \) is of order \( 1.5 \times 10^6 \text{ erg/cm}^3 \), \( h \) is the film thickness, and above the critical thickness \( e_o \) goes approximately as \( \eta h_c / h \). The convention here is the \( K^{eff} > 0 \) favors a perpendicular magnetization whereas \( K^{eff} < 0 \) favors in-plane magnetization. The magnetoelastic term requires the film strain as input.

Careful studies of Cu/Ni/Cu/Si(001) sandwiches showed that these terms alone are not enough to fit the measured \( K^{eff} \) data. This can be seen by plotting Eq. 2 as \( (K^{eff} + 2\pi M_s^2)h = 2B_1 \eta h_c + 2K^s \), which is a constant (dashed line, Fig. 4). It must be recognized\cite{7,8} that the Néel model requires a surface ME term, \( B^e(h)/h \), as well as a surface anisotropy term. When this term is included, a much better fit to the anisotropy data is obtained (solid line, Fig. 4).

![Figure 4](image)

Figure 4: \([K^{eff} = 2\pi M_S^2] \cdot h \) versus \( h \) for the data of Jungblut et al [J. Appl. Phys. 75, p.6424, 1994] on Cu/Ni/Cu(001) sandwiches, compared to Equation 2 (the dashed line) and compared to Equation 2 with a magnetoelastic surface anisotropy term, \( B^e(h)/h \)
Our work was the first study of epitaxial Ni/Cu to combine independent measures of strain, misfit dislocation structure, and magnetic properties. We were the first to report and quantitatively account for the thickness dependence of the bulk and surface magnetoelastic terms in epitaxial Ni films[8].

We have found from these studies that the low-thickness transition from perpendicular to in-plane magnetization with decreasing film thickness (seen also in ultra-thin Fe/Cu and Fe/Ag) is NOT associated with the critical thickness for the onset of MD formation. Rather it is a result of the complex interplay of the energies in Equation 2, modified to include surface magneto-elastic anisotropy. Certainly the variation of film strain associated with the MDs contributes to the variation of anisotropy with film thickness. More importantly we have shown that the return to in-plane magnetization in the ultra-thin film limit is due to the negative sign of the magnetoelastic surface energy.

We have also demonstrated in this study that the surface energy of the Cu/Ni interface is strongly positive rather than negative as concluded earlier by Jungblut et al. There is no other explanation for the approximate doubling of the Ni thickness range over which perpendicular magnetization is observed when the number of Cu/Ni interfaces goes from one (in Ni/Cu/Si(001)) to two (in Cu/Ni/Cu/Si(001)).

Finally, these observations have been confirmed and their implications shown clearly with magnetic force microscopy images. This work, conducted with collaborators at the University of B. Gasel, Switzerland after the completion of the ARO program was published in Phys. Rev. Letters[9] and has been the subject of invited talks at the 1995 MMM conference[10], the March 1996 APS Meeting and the October 1996 AVS meeting.

References:


Other publications from this program:


Degrees granted:
