OFFICE OF NAVAL RESEARCH

CONTRACT N00014-97-1-0066
R&T Code 33e 1806
Dr. Richard S. Miller

Technical Report No. 99

COMPUTED HEATS OF FORMATION

by

Peter Politzer, M. Edward Grice and Pat Lane

Department of Chemistry
University of New Orleans
New Orleans, LA 70148

August 13, 1997

Reproduction in whole or in part is permitted for any purpose of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.
Computed heats of formation for 1 - 4.

1: ΔH_f^{298K} (solid) = 157 kcal/mole = 524 cal/g
2: ΔH_f^{298K} (solid) = 46 kcal/mole = 183 cal/g
3: ΔH_f^{298K} (solid) = 59 kcal/mole = 250 cal/g
4: ΔH_f^{298K} (solid) = 143 kcal/mole = 918 cal/g

11a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release
Unlimited distribution.

13. ABSTRACT (Maximum 200 words)
Computed heats of formation for 1 - 4.

energetic compounds; heats of formation
We have used our density functional procedure [1] to compute the heats of formation of the compounds 1 - 4, in response to a request from R. Naylor (Allegheny Ballistics Laboratory). The vibrational energies were determined from the molecular stoichiometries [2]. The density functional calculations give the gas phase heat of formation, which we convert to the liquid and solid state values by subtracting, respectively, the heat of vaporization and the heat of sublimation. These are obtained by means of relationships that we have developed involving the computed electrostatic potential on the molecular surface [3,4].

Results:

1.

\[
\Delta H_f^{298K} \text{(gas)} = 189 \text{ kcal/mole} = 630 \text{ cal/g} \\
\Delta H_f^{298K} \text{(liquid)} = 174 \text{ kcal/mole} = 579 \text{ cal/g} \\
\Delta H_f^{298K} \text{(solid)} = 157 \text{ kcal/mole} = 524 \text{ cal/g}
\]

2.

\[
\Delta H_f^{298K} \text{(gas)} = 76 \text{ kcal/mole} = 304 \text{ cal/g} \\
\Delta H_f^{298K} \text{(liquid)} = 60 \text{ kcal/mole} = 243 \text{ cal/g} \\
\Delta H_f^{298K} \text{(solid)} = 46 \text{ kcal/mole} = 183 \text{ cal/g}
\]

3.

\[
\Delta H_f^{298K} \text{(gas)} = 85 \text{ kcal/mole} = 364 \text{ cal/g} \\
\Delta H_f^{298K} \text{(liquid)} = 71 \text{ kcal/mole} = 303 \text{ cal/g} \\
\Delta H_f^{298K} \text{(solid)} = 59 \text{ kcal/mole} = 250 \text{ cal/g}
\]

4.

\[
\Delta H_f^{298K} \text{(gas)} = 165 \text{ kcal/mole} = 1058 \text{ cal/g} \\
\Delta H_f^{298K} \text{(liquid)} = 152 \text{ kcal/mole} = 974 \text{ cal/g} \\
\Delta H_f^{298K} \text{(solid)} = 143 \text{ kcal/mole} = 918 \text{ cal/g}
\]

For comparison, the experimental gas phase \(\Delta H_f^{298K} \) value for RDX is 206 cal/g [5,6].
References: