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ISSUE:

In recent years, vegetated floodplains and wet-
lands have been regarded as constituents of the
ecosystem where significant transport processes
take place during floods. In this sense, sedimen-
tation has been identified as a major contributor to
nonpoint source pollution. Engineering tools are
thus needed for estimating both the mean flow and
turbulence structure as well as the suspended sedi-
ment transport capacity of vegetated waterways.

RESEARCH OBJECTIVE:

The two-equation turbulence model based on the
k-¢ closure scheme was developed to simulate the
flow and turbulence characteristics of open-chan-
nel flows through nonemergent vegetation. Once
the performance of the model was verified, the
flow structure of vegetated open channels was
numerically simulated. Simulated rigid and flex-
ible plants were used to validate the model. Fi-
nally, dimensional analysis allowed identification
of the dimensionless parameters that govern sus-
pended sediment transport processes in the pres-
ence of vegetation, and thus helped in the design
of numerical experiments to investigate the role of
different flow properties, sediment characteristics,
and vegetation parameters upon the transport
capacity.

SUMMARY:

The two-equation turbulence model was found to
accurately represent the mean flow and turbulence

structure of open channels through simulated
vegetation, thus providing the necessary informa-
tion to estimate suspended sediment transport
processes. A reduction of the averaged stream-
wise momentum transfer toward the bed (i.e.,
shear stress) induced by the vegetation was iden-
tified as the main reason for lower suspended
sediment transport capacities in vegetated water-
ways compared with those observed in nonvege-
tated channels under similar flow conditions.
Simulated profiles of kinematic eddy viscosity
were used to solve the sediment diffusion equa-
tion, yielding distributions of relative sediment
concentration slightly in excess of the ones pre-
dicted by the Rousean formula. A power law was
found to provide a very good collapse of all the
numerically generated data for suspended sedi-
ment transport rates in vegetated channels.

AVAILABILITY OF REPORT:

This report is available on Interlibrary Loan Serv-
ice from the U.S. Army Engineer Waterways Ex-
periment Station (WES) Library, 3909 Halls Ferry
Road, Vicksburg, MS 39180-6199, telephone
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To purchase a copy, call the National Technical
Information Service (NTIS) at (703) 487-4650.
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Chapter 1

1 Introduction

Background

Historically, vegetation in streams and rivers has been considered by
hydraulic engineers as a source of flow resistance, and as such it has usually
been eliminated with the goal of improving water conveyance. This explains
why earlier research interests were focused primarily on the estimation of
resistance laws, mean velocity distributions, and the determination of
approximate rules for the partition of the total action of gravity between friction
drag due to bed roughness and form drag due to plants. In recent years, however,
plants in aquatic environments have reached a different status, and vegetation is
no longer regarded merely as an obstruction to the movement of water, but rather
as a means of providing stabilization of banks and channels and habitat and food
for animals, as well as pleasing landscapes for recreational use (Haslam and
Wolseley 1981). The preservation of vegetation is nowadays considered of great
relevance for the ecology of rivers. In recent years, such unprecedented
environmental concerns have motivated the onset of several studies
concentrating on the characterization of turbulent transport processes in natural
flow conditions. In particular, there has been an increasing need for the
understanding of retention processes in wetlands, by which suspended solids
and/or chemical contaminants (pesticides, heavy metals, etc.) are being deposited
and retained within a natural or artificial waterway. In particular, vegetated
floodplains and wetlands have been regarded lately as constituents of the
ecosystem where significant transport processes take place during floods. In this
sense, sedimentation has been identified as a major source of nonpoint source
pollution impairment in U.S. rivers and lakes, where excessive sedimentation
results in the destruction of fish habitat, decreased recreational use, and loss of
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water storage capacity (U.S. Environmental Protection Agency 1993). In Illinois
for instance, field studies conducted in riverine wetlands have indicated
sediment-trapping efficiencies ranging from 60 to 85 percent (Demissie 1990),
and estimates by the U.S. Department of Agriculture (USDA) indicate that
annual offside costs of sediment derived from cropland erosion alone are of the
order of $2 to $6 billion, with an additional $1 billion arising from loss in
compared productivity (USDA 1987).

All these have prompted the development of engineering tools for the
estimation of contaminant and sediment transport, for the assessment of
environmental impacts, for the evaluation of design alternatives, and for the
management of wetlands. Although some general models based on rather crude
assumptions have been developed, they have benefited very little from advances
in the knowledge of turbulence in the presence of vegetation from other research
areas such as atmospheric sciences. As a result, very few physically based
models exist to help engineers evaluate transport processes and in particular the
sediment retention capabilities of vegetated waterways.

Purpose of Study

The overall objective of the present work is to investigate the effect of
vegetation on the mean flow properties and on the turbulence structure in
open-channel flows and the implications of the resulting flow structure for the
entrainment, transport, and deposition of suspended sediment. The working
hypothesis is that if vegetation-induced roughness increases flow resistance via
momentum diffusion, the same roughness should also reduce the diffusion of
suspended sediment. In particular, it is important to know if the suspended
sediment distribution is significantly different from the Rousean distribution for
equilibrium open-channel suspensions, and if it is, what are the implications for
the advective and diffusive transport of sediment in vegetated channels.

To achieve such objectives, knowledge about turbulence characteristics in the
presence of vegetation coming from atmospheric boundary layers will be
coupled with advances in the numerical simulation of free-surface flows. This
integration will be used to produce a two-equation turbulence closure scheme for
modeling the complex turbulence structure of flows through vegetation and for
estimating related transport processes in plant environments. The numerical
model will then provide quantitative information about the role played by flow
parameters, sediment properties, and vegetation characteristics in the suspended
sediment transport capacity of vegetated free-surface flows, and therefore will
facilitate the assessment of the factors that influence the sediment-trapping
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ability of wetlands, as well as the conditions under which previously deposited

sediment/pollutants might be reentrained into suspension and exported out of a
’ given system.
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2 Literature Review

Mean flow and turbulence characteristics in the presence of vegetation have
received a lot of attention in the last few years, specially for the case of
atmospheric flows over plant canopies. One of the main motivations for such
studies has been the need for understanding related transport processes in natural
environments, such as the transport of pollutants, heat, carbon dioxide, etc.
Regarding free-surface flows in streams, engineering research on vegetated
open-channel flows has traditionally been limited to the estimation of resistance
laws. In general, the investigations may be classified into two groups
corresponding to the study of rigid and flexible vegetation, respectively. An
extensive bibliography on the subject, with more than 350 references, has been
collected by Dawson and Charlton (1988). Brief review of some of the previous

work follows.

Pioneering work on open-channel flow through vegetation was performed by
Ree and Palmer (1949; see also Palmer 1945), who developed a method for
estimating water discharge capacity. They employed the often-used Manning’s
coefficient, concluding that the n-URy, relationship depends on the physical
properties of the grass and is thus independent of channel geometry and flow
conditions. Here U is the mean velocity and Ry, is the hydraulic radius.!

A series of studies has been conducted at the University of Waterloo, Canada,
to determine the flow characteristics of vegetated open channels. In their early
investigation, Kowen, Unny, and Hill (1969) used artificial styrene made
roughness elements glued to the bottom of a laboratory flume to study flow over
simulated, flexible vegetation. Pitot tube technique allowed them to measure

1. For convenience, symbols and unusual abbreviations are listed and defined in the Notation
(Appendix A).
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velocity distributions. These authors found a good fit to their experimental
results with a modified form of the logarithmic law by adjusting the values of the

roughness parameter and the origin intercept. In the case of flexible elements
they found the roughness parameter to be 12 percent larger than the deflected
height of the elements. They suggested, however, the use of a log law using the
undeflected height of the plants, and by comparing it with experimental field
data they concluded that both the origin intercept and the slope were functions of
both vegetation density and plant flexibility. It is interesting to note that almost
all researchers suggest the use of a logarithmic law for the vertical profile of
mean velocities above the plants, hence implicitly assuming the existence of an
equilibrium layer, i.e., with production of turbulence being locally balanced by
dissipation.

Kowen and Unny (1973) conducted a series of experiments simulating
vegetation by using plastic strips of different thicknesses. They proposed the
existence of three basic flow regimes: (a) erect, when the plastic strips are erect
and stationary; (b) waving, when the strips undergo a waving motion; and (c)
prone, when the strips are bent over. Similar regimes were observed by Gourlay
(1970) for Kikuyu grass. Despite these kinematical classifications, the hydraulic
behavior of simulated vegetation showed the existence of only two regimes,
because the frictional coefficient for both erect and waving “plants” indicated
identical values, whereas much lower friction factors (by a factor of five) were
observed for the prone cases. These observations clearly indicate the existence
of a common turbulence structure for flow in vegetated channels for both erect
and waving plants, whereas a different turbulence dynamic probably dictates the
behavior of prone or bent-over vegetation. This latter fact is herein interpreted as
a consequence of the reduced turbulent diffusivity coefficient for momentum at
the top of the plants due to the vertical blockage exerted by the inclined
elements. These investigators also introduced a stiffness parameter, MEI, where
M is the relative density of the plants and EI is the stem flexural rigidity.

Numerical predictions of sediment transport capacities in vegetated
free-surface flows were attempted by Li and Shen (1973) based on a
superposition technique for the wakes generated behind isolated elements, a
procedure originally proposed by Petryk (1969). They assumed local drag
coefficients for open channels of about 1.2, and their results showed mean drag
coefficients close to 1.1 for staggered arrangements independent of plant density,
while the mean drag coefficient for square, parallel patterns showed increasing
values for increasing spacing. They applied this method for the estimation of
bed load, and compared the relative effect on sediment yields by various
combinations of tall vegetation.

Chapter 2 Literature Review 5




Also in line with the use of Manning’s coefficient as a measure of flow
resistance, Petryk and Bosmajian (1975) developed a quantitative procedure for
predicting this coefficient as a function of flow depth and vegetation
characteristics. Their method considered flow depths that were less than or equal
to the maximum plant height, and its most useful application is in predicting the
variation of Manning’s n with depth.

Among the attempts to build models that provide more information about the
flow structure, not only about the overall flow resistance, Reid and Whitaker
(1976) developed a numerical algorithm for wind-driven flow through and above
vegetative obstructions. Accordingly, they divided the water column into two
layers, one within the canopy, and one above it and averaged the governing
equations within each layer. The main drawback of this approach is the need to
specify the interfacial stress at the top of the plants.

In the area of atmospheric boundary layers, Wilson and Shaw (1977),
recognizing some of the limitations of first-level turbulence closure schemes,
developed a higher-order closure model for atmospheric flows above plant
canopies. At the same time these authors were the first to recognize the
necessity of spatial as well as temporal averaging of the governing equations for
the proper one-dimensional representation of the problem.

More recently Kowen and Li (1980) proposed a new methodology for the
design of channels with vegetative linings, thus improving the traditional n-URj,
method. The originality of this new method consists in introducing some
biomechanical concepts and proposing a field methodology for estimating the
flexural stiffness of natural vegetation: a “board drop test” and a vegetation
height method.

Hino (1981) was probably one of the first researchers to address the
importance of vegetation in open channels from an ecohydrodynamic point of
view. He also pointed out the particular mathematical and numerical difficulties
that arise in the case of free-surface flows, which transform the problem into a
nonlinear two-point boundary-value problem with an implicitly posed boundary
condition at the bottom, and presented some numerical results as well as
perturbation solutions using a mixing-length closure scheme.

Raupach and Shaw (1982), based on previous work by Wilson and Shaw
(1977), first proposed a mathematical procedure for obtaining the momentum
and energy equations in multi-connected flows clearly stating the rules for the
commutation of spatial averaging operators and spatial differentiation. Their
work allows for the identification of different momentum and energy dispersive
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terms arising as a consequence of the three-dimensional nature of the flow

structure as well as of the noncommutation of the operators mentioned.

One of the few laboratory works on the sedimentology of erect vegetation in
open channels was conducted by Tollner, Barfield, and Hayes (1982; Tollner
1974), which reported good predictions of sediment transport capacity using
parameters similar to the ones proposed by Graf (1971), but with the channel
width replaced by the element spacing. Their results were, however, obtained in
a relatively short (2.10 m) and narrow (0.13 m) channel, where the achievement
of equilibrium conditions (at least for suspended sediment profiles) becomes
questionable.

The primitive nature of the closure scheme used by Reid and Whitaker (1976)
motivated Burke and Stolzenbach (1983; Burke 1982), who were probably one
of the first to propose the use of a two-equation turbulence closure scheme for
free-surface flows through obstructions. In this kind of closure the eddy
viscosity is assumed proportional to the product of a characteristic length and a
velocity scale, both obtained by solving two transport equations, so that they do
not have to be specified a priori for each problem. The presence of vegetation
was accounted for in the turbulent kinetic energy and dissipation equations by
the introduction of drag-related source terms, but no mathematical derivation
was presented to justify these assumptions. While their model predictions were
generally in good agreement with experimental observations, they recognize the
lack of knowledge about the value of the drag coefficient of the elements in
open-channels but did not explain satisfactorily the overestimation of the
turbulent kinetic energy.

Another simpler yet useful attempt to close the turbulence problem is the one
due to Christensen (1985), who used the mixing length approach to compute
eddy viscosities, and thus developed an explicit formula for the velocity profile
over a flexible roughness layer to be used in heavily vegetated rivers and
channels.

In light of the proposed averaging procedure by Raupach and Shaw (1982),
Raupach et al. (1986) conducted a series of experiments aimed at characterizing
the turbulence structure of atmospheric flows over a vegetated canopy. They
used a laboratory wind tunnel with a model plant canopy made of aluminium
strips, where velocity measurements were taken at several points both above and
within the roughness elements using a special three-dimensional hot-wire
anemometer. They were thus able to estimate the different terms composing the
turbulent kinetic energy balance within the canopy. From their observations, the
importance of the inertial transport term atop of the simulated canopy becomes
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noticeable, which represents a major loss near the top of the canopy but
constitutes the principal gain mechanism lower down.

Saowapon and Kowen (1989) have advanced an analytical model for
predicting vertical velocity profiles in vegetated channels that accounts for the
flexibility of the plants. While the results of both the Christensen (1985) and
Saowapon and Kowen (1989) models look rather encouraging when compared
against laboratory observations, it is clear that the algebraic scheme used to
compute eddy viscosities (i.e. a mixing length approach) provides only limited
information on the effect of roughness elements on the diffusion of momentum
(and eventually sediment).

Kadlec (1990) obtained a power law resistance function for overland flow
over Spartina grass in terms of depth and friction slope. The exponent on the
depth appears to describe both the vertical vegetation stem density and the
bottom elevation distribution and takes a value close to three. This fact seems to
indicate a strong depth-dependent behavior in wetlands, where depth-time
variations are strongly regulated by a condition of small and slowly varying
depths.

The Kanazawa University group (Tsujimoto et al. 19912 and 1991Y;
Tsujimoto 1993; Shimizu and Tsujimoto 1993) has reported several
open-channel turbulence measurements in the presence of vegetation. A series of
experimental as well as numerical studies has been conducted concerning both
rigid and flexible emergent and nonemergent vegetation. Their results for rigid
vegetation show that an almost uniform mean velocity distribution prevails when
the mean flow depth is smaller than the vegetation height, with negligible
turbulent momentum exchange and small turbulent intensities. On the other
hand, shear-dominated flows seem to prevail for nonemergent vegetation, even
below the top of the plants, as a consequence of active momentum exchange
between the faster surface flow and the flow within the simulated vegetation. In
this latter case, a peak in the Reynolds stress distribution is observed at the top of
the roughness elements. The corresponding results for flexible vegetation show
that the mean velocity profile is no longer as uniform as with rigid elements for
emergent vegetation, showing slightly decreasing values as the free surface is
approached. Turbulent intensities are still negligible. On the other hand,
nonemergent results indicate the existence of a deflection point near the top of
the elements, with a corresponding peak in the vertical distribution of turbulent
intensities. Concerning the numerical model, relatively good agreement with the
experimental observations was obtained with a modified version of the standard
high-Reynolds-number k-& model, also with drag-related source terms
accounting for the presence of vegetation. Weighting factors in these source
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terms were fit to reproduce observed distributions of mean velocity and
Reynolds stresses. Although the numerical code is very similar to the one
employed by Burke and Stolzenbach (1983), the weighting factors in both
schemes are radically different, the most striking aspect being the value of 0.07
obtained by Tsujimoto et al. for the drag-related turbulence production term
compared to the value of 1.0 used by Burke and Stolzenbach. It is worth
mentioning that with the value of 0.07, Tsujimoto et al. obtained a very good fit
for the measured turbulence intensities. In a more recent work, however,
Tsujimoto and Shimizu (1994) report good agreements with experimental
observations by using the same weighting factors as Burke and Stolzenbach. It
is therefore not clear at all why very low values of the weighting coefficients
yield good agreement with the observed turbulent kinetic energy profiles,
whereas from a physical point of view the coefficient of the work done by the
flow against form-drag forces should be equal to unity (and thus very close to
1.0 in the numerical model). Note that both approaches give a similar degree of
fit to observed profiles of mean velocities and Reynolds stresses, which should
be attributed to the fact that eddy viscosity is computed as proportional to the
ratio between k and ¢, so that certain combinations of the weighting coefficients
in the drag-related source terms in k and € equations yield similar values of eddy
viscosity.

Finally, conceming field results, Freeman, Hall and Abraham (1994)
performed several field tests to determine Manning’s n values and sediment trap
efficiencies for stands of bulrushes. Their results indicate resistance coefficients
substantially higher than the ones suggested by the U.S. Geological Survey
(Arcement and Schneider 1989). Manning’s n was observed to be in a range
between 0.26 and 0.70, with values increasing linearly with vegetation density.
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3 Theoretical Considerations

As seen in the previous chapter, most attempts to numerically simulate
open-channel flows in the presence of vegetation have used either very
simplified or more complex closure schemes, but with the common basis of
artificially introducing the effect of vegetation by adding body forces. As will be
shown in this chapter, this approach has led to some inconsistencies when
numerical results are compared against experimental observations. To overcome
such difficulties, the governing equations are herein first derived for a
free-surface flow through obstacles, adapting expressions originally developed
for atmospheric flows through plant canopies. Through this derivation, it will be
shown that the presence of vegetation generates dispersive fluxes of momentum
and energy as well as viscous and form-drag forces. Since the latter is usually
parameterized using a drag coefficient, the second part of this chapter deals with
the evaluation of this coefficient in open channels. Once the governing
equations that mathematically define the problem are obtained, the third part of
the chapter introduces the assumptions needed in order to close the turbulence
problem at first level using a two-equation algorithm. Finally, some limitations
of the assumptions introduced are presented, followed by a brief description of
the numerical method employed to solve the resulting system of nonlinear partial

differential equations.

Governing Equations for Flow Through Vegetation

This section deals with open-channel flow in the presence of vegetation.
Therefore the analysis presented is a slight modification of the approach
proposed by Raupach and Shaw (1982) for atmospheric flows through plant

10 Chapter 3 Theoretical Considerations



\
l

canopies. From a mathematical point of view, the flow of water through and
above plants presents new challenges due to the three-dimensionality of the
turbulence, thus representing a highly nonhomogeneous flow field. Since from
an engineering perspective a one-dimensional description of the problem is
commonly desirable, the need for spatially averaging (at least horizontally)
naturally arises in the problem. In an earlier work, Wilson and Shaw (1977)
already noted that the traditional approach of arbitrarily introducing form-drag as
an extra body force in the momentum equation incorrectly describes the effect of
wake turbulence. But it was not until the work of Raupach and Shaw (1982) that
the complete set of equations became available.

Wilson and Shaw (1977) offered two averaging schemes for the conservation
equations. In the first one, hereafter termed Scheme I, the equations describing
the instantaneous flow field are averaged over a plane large enough to eliminate
fluctuations due to both the turbulent scales and the canopy structure. Consider
an open-channel flow through a regular array of vertical, rigid cylinders
simulating vegetation such as depicted in Figure 3.1. Freezing the flow at any
given instant and analyzing the instantaneous velocity field will show the
existence of spatial variations due to the canopy (for example, differences

between uj, u3 and w3, where ui represents the component along the i-axis, x;,

of the instantaneous velocity at location j) as well as spatial variations at similar
locations in the flow due to the intrinsic nature of turbulence (for example,

differences between u], u} and u3). Therefore, if the channel is sufficiently
wide and long, a large enough horizontal area has to be chosen so that averages
of the instantaneous flow field performed over that plane will provide mean
values independent of spatial variations due to the canopy structure and the
turbulence. In the second averaging procedure proposed by Wilson and Shaw
(1977), hereafter called Scheme II, the three-dimensional flow structure is locally
time-averaged first in the usual way to filter fluctuations due to the turbulence,
and then spatially averaged to eliminate variations due to the canopy structure.
Referring to the experiment, at each location there would be a fluctuating
velocity series in the time domain. First a temporal average would thus be
performed at each location to get rid of turbulent fluctuations, and then the
time-mean data would be spatially averaged to filter spatial variations. Itis
readily seen that for regularly arranged plants the extent of the spatial filter in the
first scheme has to be much larger than in the second one.

In the following discussion, angle brackets and overbars will indicate
horizontal and temporal averages, respectively, and double and single primes will
indicate spatial and temporal fluctuations, respectively, from their corresponding
mean values. The formal definition of a horizontal average of a variable y is
(see Figure 3.1):
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Figure 3.1 Schematic of flow through vegetation

<y> =%”w(x,y>aixdy 0
where
A = horizontal area of rectangle shown in Figure 3.1

From a mathematical point of view the spatial averaging operator in a flow
through obstacles satisfies all but one of the commutation properties required for
a turbulence averaging operator (Monin and Yaglom 1971; Schlichting 1979).
This exception concerns the commutation between averaging and differentiation
operations. Raupach and Shaw (1982) clearly show how Green’s theorem may
be used to demonstrate that if ¥ is constant at the fluid-element interface, then
horizontal averaging and spatial differentiation commute (i.e.

< dyp/ox; > = 3 <y > [dx; ), and otherwise they do not commute. In
particular, three cases of interest result: spatial differentiation and horizontal
averaging do not commute for pressure, and neither do Laplacian operators and
horizontal averaging for velocity, but first-order spatial differentiation and
horizontal averaging do commute for velocity and its higher order moments.

Continuity Equation

The instantaneous continuity equation for an incompressible, homogeneous
and steady flow is (tensor notation will be used):

% _ o @

Because of the rules enumerated in the preceding section, both schemes yield
essentially identical results when Equation 2 is considered, i.e.:
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Scheme I Scheme 11

3
9 d —
e < = e b=
5 l u; > 0 axi <u > 0
Momentum Equations
The Navier-Stokes equation for an incompressible, homogeneous flow is
ou; du;  1dp ) 4
—5;—+uj6—xj——§-é;;+gi+vVui ()
where
t = time
P = instantaneous pressure

g; =component in the ith direction of the gravitational acceleration

v = fluid kinematic viscosity

The resulting momentum equation under Scheme I is found by following the
usual way of first replacing u; = < u; > + u; and p =< p > + p'’, and
then averaging spatially using the aforementioned rules, yielding (Raupach and

Shaw 1982):
a<u,->+< >a<ui>+a< by s
U; - e— -— u'' u. =
J . .
iy R (5)
_la<p>__l_ ap” 2 2. 11
¢ 9<3xi>+gi+vv<ui>+v<vui >

Note that since p” is not constant at the fluid-element interface, then
< ap''/ dx; > isnotequalto d < p'’ > /dx; (which by definition is zero).

To obtain the averaged equation under Scheme II, first time-average the
equation in the usual way, then substitute 7; = < &; > + &; and
P =< p > + p'’,and finally a spatial average is performed yielding:

i — i 9 _ ) — o =
T, + <> 5%, + -———axj < w >+ o ’ <u u >
(6
_13<p> _1[& e 2"
0 o, Q<6x,- + g+ v Vi< > +v <V >
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It is easily observed that Equations 5 and 6 are identical, provided that the
averaging plane under Scheme I is large enough to assure that
<u; >=<1u;>and < p >=<p >, with the only exception being in the
form of the Reynolds stress term. Thus the one-dimensional momentum
equation for flow through obstacles accounts not only for a Reynolds stress due

to turbulent momentum transfer, < ui’uj’ >, but also for stresses that arise due

to spatial variations of the mean flow field, < 17;@ > . Hence the total

resulting stress becomes:

oo 1y

<u,-uj>=<17‘.E”>+<u.’u.’> 7

Unfortunately the dispersive fluxes (first term on the right) have so far eluded
direct measurements either in open channels or atmospheric boundary layers, so
that their relative effect upon the total stress, albeit believed to be small, still
remains unknown. From a mathematical/physical point of view it becomes
however clear that the simple addition of drag-related body forces in the
momentum equation is essentially incorrect since the dispersive fluxes are not
included. The problem becomes even more relevant when higher-order moments

of velocity are considered.

Energy (Second-Order Moment) Equations

The usual procedure for obtaining the equations for the mean flow as well as
for the turbulent kinetic energy (e.g., Hinze 1975) will be followed. Thus, the
total kinetic energy under Scheme I yields:

<y >< uy > +l<u,'-'u;'> ®)

< UHUu; > =
2

1
2 1

N

With due regard to the commutative properties mentioned in the previous
section, the equation for the mean kinetic energy is (Raupach and Shaw 1982):

9 9 <ul~><u,—> _ e a<ui>
(§+< u1>axj> > = <y u; >—————axj
<p><u;> 9
—-éa;(<ui><ul”uj”> +—-———-—-—Q 4 ) ©)
f]

2,11 __1_ ap”
+v<u; ><Vuy' > Q<ui><-———-—6xi>

and likewise the budget of turbulent kinetic energy under such scheme gives
(Raupach and Shaw 1982):
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1 "
+Q<ui><8xi>

The right-hand side of each equation contains four terms: (a) a shear-production
term, a source term in Equation 10 but a sink term in the budget of mean flow
energy, which converts mean kinetic energy to large-scale turbulent kinetic
energy; (b) a turbulent transport term with the usual inertial and pressure
components; (¢) a viscous term; and (d) a wake-production term, a source term in
Equation 10 but a sink in Equation 9, representing the rate of work of the mean
flow against the force exerted by the obstacles. The viscous term accounts for
molecular diffusion, molecular transport, and viscous dissipation of turbulent
kinetic energy (Townsend 1976). The fourth term in Equation 10 accounts for
the conversion of both mean and large-scale turbulent kinetic energy toward
smaller scale turbulent kinetic energy in the wakes of the elements, which is
sometimes referred to as “short-circuited cascade” (Raupach and Thom 1981).
This wake-generated turbulent kinetic energy has therefore a scale proportional
to the dimensions of the elements in the canopy, i.e., much smaller than the
typical length scales of shear-generated eddies (Raupach and Thom 1981;
Raupach and Shaw 1982).

Under averaging Scheme II, the decomposition of the total kinetic energy is a
little more complicated, yielding:

%-<: o > = %-<: ;> 4—-% < u'u >
(11)
= %-<: ><m> o+ % <& m > + %-<Ilﬁ'u/ >

where the last two terms on the right-hand side represent different components of
the turbulent kinetic energy under this scheme.

Budgets for each of the last two terms on the right in Equation 11 are readily
obtained (Raupach and Shaw 1982):
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+ . (12)

—_ " BEH
+ v < ui’Vzui’ > - <ui’u~’ —

J 6xj
and
3 e \<T' 7@ > AT >
(at + % axj) 2 < U= ox;

’ I”aﬁl,-,
+ <u,- U; axj>

13)
4 < uj'uu > N <u'u u > . <puy >
0x; 2 2 e
ot 1 p'’
+v < u Vi >+Q<”i><—"ax,.>

The four terms on the right-hand side of Equation 12 have similar meanings
to the ones in Equation 10, except that the wake-production term appears here as
a horizontal average of the product of local deviations of Reynolds stresses and
velocity gradients from their spatial-averaged values. On a smaller scale, this
last term produces turbulent kinetic energy in the same way as does the
shear-production term. More attention has to be given to the five terms on the
right in Equation 13: (a) a production term; (b) the wake-production term of
Equation 12, here a sink term; (c) a turbulent transport term involving the role of
dispersive fluxes of energy; (d) a viscous term; and (e) a wake-production
(source) term, similar to the fourth term in Equation 10.

Careful analysis of the preceding expressions allows for better insight into the
turbulence structure and its generation mechanisms in flows through vegetation.
Basically it can be observed that, irrespective of the averaging scheme, the
budget of turbulent kinetic energy is composed of sources, sinks, and transport
terms. Two characteristic processes act as turbulent kinetic energy generators,
i.e., transferring energy from larger scales (either mean flow or larger eddies)
toward turbulent fluctuations in space or time at smaller scales: (a) the work of
Reynolds and dispersive stresses against mean velocity gradients; and (b) the

-work of mean flow or large eddies against pressure differences due to the

obstacles. Looking at Equation 7 and at the first term on the right of Equation
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10, we can see that the action of mechanism (a) may in turn be subdivided as
<>

ij

which is the same as the first term on the right of Equation 12, and therefore

contributes to the generation of fluctuations in time, and
<>

<w u > ———a—;j—

which is equal to the first term on the right of Equation 13, and thus generates

spatial perturbations of time-averaged values. On the other hand, the work of the

mean flow against pressure differences in space (i.e., mechanism b) is a source

term for the budget of spatial fluctuations of time-averaged velocities, where a

shear-generation-like term appears as a sink, thus transferring energy from space

fluctuations toward small-scale fluctuations in time.

"
<ui U; >

Regarding transport processes, the second term on the right in Equation 12 is
identical to the corresponding term in the turbulent kinetic energy budget of
shear flows without obstacles, with the exception being the appearance of a

rr
1"

dispersive flux of turbulent kinetic energy, < ;" u,” #; >.

In the turbulent kinetic energy budgets there are two viscous-related sink
terms, accounting for the direct conversion of mechanical energy into heat. The
one in Equation 12 is related to the spatial average of the typical viscous

o _ ou; ou,  ouf
dissipation of turbulent kinetic energy, ¢ = v +

axj axj ox;

This relation can be shown as follows (Townsend 1976; Hinze 1975):

,azui' _ 62 (1 -—;—2—) + azui, uj’ _ (14)

vu; v| 5w
Loox? ax2\2™ 0x;0x;
J j

so that at high enough Reynolds numbers the viscous term in Equation 12 is
equivalent to the rate of dissipation of turbulent kinetic energy into heat, hence
determining the viscous cutoff of turbulent fluctuations in time. The other
viscous term, the fourth term in Equation 13, accounts for the direct dissipation
into heat of spatial fluctuations of time-averaged mean velocities.

There are two limiting cases worth being analyzed. The first one is
considered in the work of Raupach and Shaw (1982) and concemns the case when
the length scale of the canopy elements (and of their wakes, or in other words the
scale of the wake-generated turbulence) is much larger than the Kolmogorov
microscale, 7, so that the viscous term in Equation 13 becomes negligible. In
this situation, if all the dispersive fluxes are considered to be of lower order of
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magnitude, then for steady advection-free conditions:

B e AN il (15)
<”i”j axj> ~9<”f><axi

In other words, the work of the mean flow against pressure differences becomes
equal to the wake-production term for the turbulent fluctuations in time.

The other limiting case is when the length scale of the canopy elements (and
of their wakes, i.e. the scale of the wake-generated turbulence) is much smaller
than (or even of the order of) the Kolmogorov microscale. In this situation
almost all the energy arising from the work of the mean flow against pressure
forces is spent in the generation of spatial fluctuations, and is therefore directly
dissipated into heat. In steady advection-free conditions, it follows that:

—v < TV > =L<uy > <§P_> (16)

So that

—/

and hence there is a negligible contribution from the wakes to the spatial average
of the turbulent fluctuations in time. The first of these two situations seems to
be common to atmospheric flows, whereas the second situation is more common
to water flows with relatively low plant concentrations. This is reasonable,
considering that the Kolmogorov microscale is smaller in air than in water. In
addition, the characteristic length scales of canopy elements in atmospheric
flows can be expected to be in general much larger than those found in water

flows.

The discussion in the previous paragraphs clarifies the problem mentioned in
the literature review concerning the different coefficients assigned to the
wake-production terms in different turbulence models. It becomes therefore
obvious that if one is trying to numerically simulate the spatial average of the

local, time-averaged turbulent kinetic energy (or any < u_,rz— > for that matter)
in a flow with elements of the order of the Kolmogorov microscale, then the
wake-related source term in the energy equation would be almost zero. In other
words, in this case the drag-related weighting factors in the turbulent kinetic
energy and in the dissipation equations would be very close to zero. However,
for the numerical computation of the total turbulent kinetic energy (i.e.

(<@ m > +<u u >)/2),these coefficients are expected to be close to
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1.0 and 1.33, respectively (see “Turbulence Modeling by a First-Level
Two-Equation Closure Scheme”).

In the computation of flow through vegetation using a two-equation model, a
question arises about which turbulent kinetic energy will be simulated: the one
governed by Equation 10 or 12? Moreover, since in two-equation models the
transport equation for turbulent kinetic energy provides a velocity scale for
estimating the turbulent eddy viscosity, which one of the two will provide a
better approach for this purpose? The answer to this question will also determine
the type of transport equation used for estimating the viscous dissipation rate of
turbulent kinetic energy. In other words, which will be simulated

v < u/Viu > orv < u; 'V?u;" >? But before these questions are answered,
1.e., before addressing the point on the modeling of the former expressions, some
considerations concerning the parameterization of drag forces will be presented.

Modeling of Form-Drag Forces
in Open-Channel Flows

The previous section discussed how drag-related terms can be introduced in
the conservation equations without arbitrarily introducing body forces. The
present section will deal with the modeling of such forces. As mentioned before,

the term -1—( ap"'/ ax,.) represents the so-called drag force per unit volume. To

0
demonstrate this assertion Figure 3.2 shows a schematic of the pressure field for

an isolated two-dimensional object. By definition the pressure force (per unit
length in z), fy, on the perimeter, s, of the cylinder acting in the x-direction is

(e.g. Pantom 1984):

where
n = vector normal to the perimeter of the object
n, = x-component of vector n

It is readily seen that at a fixed spanwise location, the longitudinal gradient in p”
times Ax is equal to (ny, p + nyg p), where ny, and nyy represent the vector n, in
the upstream and downstream faces of the object, respectively, and Ax the
distance between these two points in the x-direction.

In fluid mechanics, the drag force is usually parameterized as:

/PN _ 1 2 (18)
Q<axi> 2CDa < u >
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Figure 3.2 Schematic of pressure field

where a is the ratio between the sum of the differential frontal areas of the
obstacles divided by the differential volume of fluid (Figure 3.3) and thus has
dimensions of L/, and Cp is the so-called drag coefficient which physically is
proportional to the momentum thickness of the wake behind the object.

Although the determination of Cp is a key factor in the modeling of flow
through obstacles, very few experimental observations exist concerning the
determination of this coefficient in the particular case of open-channel flows.
Realizing this problem, during the completion of the present work a set of
experiments was conducted at the Hydrosystems Laboratory, University of
Illinois at Urbana-Champaign, in order to specify values of Cp for free-surface
flows through simulated vegetation (Dunn 1996). Rigid as well as flexible
cylinders were used in the study. Using a new methodology developed to
evaluate the drag coefficient based on vertical profiles of spatial and temporal
mean velocity and Reynolds stresses, results showed that Cp = 1.13 £ 15
percent, for the range of dimensionless parameters employed in the work.

— 4z D
Ax Ay Az
Az

Figure 8.3 Definition diagram for cylinder density
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Experimental data from this study will be compared herein with results from the

numerical simulations.

Turbulence Modeling by a First-Level,
Two-Equation Closure Scheme

As can be observed from previous expressions, transport equations for
velocity moments of any order involve knowledge of higher order moments, in a
way that produces a mathematical problem with more unknowns than equations.
This is the so-called closure problem in turbulence.

In general three different alternatives are available today for the numerical
computation of turbulent flows:

a. Direct numerical simulation using the full set of Navier-Stokes equations, hence

simulating all eddy sizes (e.g., Kim, Moin and Moser 1987).

b. Explicit simulation of only the large, energy-containing eddies, which have
length scales determined by each particular problem (resolved scales), with the
flux of energy towards the smaller eddies in the spectrum (subgrid scales)
modeled by introducing an effective viscosity, which increases the molecular
viscosity of the fluid (e.g. Piomelli 1994).

c. Use of the Reynolds-averaged form of the Navier-Stokes equations (or similar
equations for higher order moments) plus some assumptions that allow solving
the closure problem of having more unknowns than equations (Rodi 1984).

The closure problem at the first-order level, that is in the turbulence-averaged
form of the Navier-Stokes equations, has been traditionally solved by means of
different numbers of equations having as a common framework an eddy viscosity
model. Thus this approach inevitably breaks down where the concepts
underlying the eddy viscosity hypothesis are in violation of the physical
processes (see section in this Chapter “Limitations of Turbulence Models Based
on Flux-Gradient Approximations). Since the late seventies, models have also
been developed in engineering practice for higher order closures. Second—order
models, for example, are based on the full equations for the Reynolds stress
tensor, and of course third-order moments are being modeled (Wilson and Shaw
1977).

According to the number of transport equations being used for closing the
problem of the Reynolds stresses, the models have been called zero-, one- and
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two-equation models. Since all these models rely on the concept of an eddy
viscosity, and its determination requires the knowledge of one velocity and one
length scale, the problem reduces to the estimation of these two variables in the
turbulence field. The simplest prescription of the Reynolds stress in the level of
zero equation (or algebraic models) is the well known mixing-length model,
obtained by applying the methods of gas kinetic theory to turbulent, macroscopic
motions of fluid continuum (e.g., McComb 1990). Although successfully
applied in many situations, its major drawback is in its lack of universality: i.e.,
the prescription of the mixing-length varies from one type of flow to another.
The next order of difficulty is the one-equation model, which makes use of a
transport equation for the turbulent kinetic energy (assumed proportional to the
square of the characteristic velocity) together with some assumptions to prescribe
the production, diffusion, and dissipation terms. In this case a length scale still
needs to be specified by means of some empirical relation.

The next level of complication is the introduction of a second transport
equation with the help of which the required length scale can be computed. The
basis for these kinds of models seems to have been given some fifty years ago
almost simultaneously by Kolmogorov (1942) and Prandtl (1945). According to
Kolmogorov (Barenblatt 1995) at any point of a turbulent flow the statistical
dimensionless properties of the vortex dissipative structures are similar, and only
their time and length scales are different. Both scales may be estimated by
different sets of two transport equations, either for (k,£), (k,D), (k,w), etc. (ke Lw
representing the turbulent kinetic energy, dissipation rate, length scale and
dissipation per unit turbulent kinetic energy, respectively). The first of the
former set, the k-& model, is probably the most commonly used model in
engineering practice, and has proved to be a reliable tool in a wide variety of
problems in hydraulic and environmental engineering (Rodi 1984).

In the k-& model the Reynolds stresses are estimated using the eddy viscosity
concept as follows:

ox;

1

o  om; 2

where
vy = kinematic eddy viscosity

C, = parameter with standard value of 0.09

o i = Kronecker delta

A similar approach will be followed herein, namely:
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Jd < u;, > ) (20)
j

ox;

I

The question then concerns the turbulent kinetic energy to be modeled (i.e.,
k=<u u > /2 o0rk=<uu > /2).

The answer to this question can be obtained by contracting Equation 20, i.e.,
making i=j, yielding:

o e 0 < u; >
-<T o >—-<uy u > =2v——" -

(21
ox; k

WA

From continuity (Equation 3) the first term on the right vanishes, so that
Equation 21 reduces to:

k=<u_iu_i>+<b—t?7i'—> (22)
2

This finding clarifies which rate of turbulent dissipation has to be modeled.
Since by definition the characteristic velocity scale is considered proportional to
the turbulent kinetic energy defined in Equation 22, then the dissipation rate
defined in Equation 10 has to be used accordingly for defining the associated

length scale, namely ¢ = v < u; Vu; >.

One last consideration is needed in order to model Equation 10. The exact
form of the inertial and pressure transport terms is of no practical use since it
involves unknown correlations of higher order. To obtain a closed set of
equations, assumptions similar to those used in the standard k-€ model are made,
namely that the total (inertial and pressure) diffusive flux of k can be assumed
proportional to its gradient:

< ui”ui”uj” > N < pllujll > B V_T 9 < ui”ui” > /2 (23)

Now the set of partial differential equations that will be numerically modeled
for simulating the turbulence structure of uniform, two-dimensional
open-channel flow through vegetation can be written down as follows:

a. Continuity Equation:
0 <u >
dx

- 0 (24)
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b. x-Momentum Equation:

—r— = 8% +55[(vr+v)(——az—> -k 25)
where
g = gravitational acceleration

S, =bedslope
¢. Turbulent Kinetic Energy Equation:

ok _ 9| M, . 0k - 26
o = az[(ak+”)az]+Pk e+ Cpfy <u > (26)

d. Dissipation Rate Equation:

o€ 0 [ Vr dg
—_— = = (-(-7— + v)——]
ot dz| O¢ 0z @7

and the set of standard constants takes the following values: Cﬂ =0.09, C; =
144, C; =1.92, g = 1.0 and o; = 1.30. The parameters Cg and Gz have to be
modeled and are sometimes considered results of the model calibration
(Tsujimoto, Kitamura and Okada, 1991P). The unsteady terms in the previous
equations are retained only for computational purposes, so that a steady solution
is reached as an asymptotic state (see the section in this Chapter, “Numerical

Algorithm”).

However, comparing Equations 10 and 26, one expects the value of the
coefficient Cg to be equal (or very close) to one. Moreover, it can be shown
(Burke 1982) that for the e-equation to be in balance, the value of the coefficient
G has to be dependent upon the value of Cg. To clarify this, consider a steady,
horizontal flow through vertical, infinite long cylinders, where all derivatives in
the vertical direction vanish. Then, from the k-equation ¢ = ka fr <u >,

and from the e-equation C; Cs fr < u; > = Cyesothat, Cp = C,/Cy Cg.
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In order to solve the system of partial differential equations, appropriate
boundary conditions for each variable have to be specified. This issue is
addressed in the next section.

Boundary Conditions and Constants
for Open-Channel Flow Through Vegetation

One of the biggest limitations of the set of partial differential equations given
in the previous section is that viscous effects have been neglected, and thus the
model is not able to resolve flow regions too close to solid boundaries. In other
words, the model is expected to yield acceptable results only in local,
high-Reynolds-numbers conditions. In the standard version of a
high-Reynolds-number k-€ model, values of velocity, turbulent kinetic energy,
and dissipation are specified at a point near the wall, located in the so-called
equilibrium region, where the flow exhibits such large local rates of energy
production and dissipation that both terms are approximately in local
equilibrium. Basically this assumption yields values for velocity, k and € related
to the existence of a semi-logarithmic mean velocity profile. On the other hand,
the free surface region is sometimes treated as a symmetry plane (i.e., the fluxes
of all variables are zero, which is known as “rigid lid assumption”), but more
accurate results are obtained when turbulence damping effects are considered by
specifying values of the dissipation rate as a function of & and the flow depth H
(Celik and Rodi 1984, 1988). This latter approach is in line with experimental
observations that show ¢ to be proportional to the ratio u,,; 3L, where Uy, is
the root-mean-square value of the streamwise velocity fluctuations and L, is their
macro-length scale (approximately constant and equal to 70 percent of the flow
depth in the free-surface region, Nezu and Nakagawa 1993). This latter approach
will be followed in the present work, so that the boundary conditions to be used
are:

a. At the bed:
2 u3
U, =4 Ln(E M) ko= 2 e, = —* (28)
0 P73 v [ [ P Z()
I
b. At the free surface:
dU _dk _ L 29)

dz  dz

where
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b = model coefficient

% = first grid point away from the wall

E =roughness parameter, approximately equal to 9 for hydraulically
smooth conditions and to 30v/u«/k; for fully-rough beds.

k; = equivalent sandgrain roughness
It is worth mentioning that Equation 29 is only valid under non-emergent
conditions. Garcia (1992) showed how these boundary conditions can be
modified to account for buoyancy effects induced by sediment in suspension.

Concerning the value of the constant C,, different approaches exist in the
literature. Celik and Rodi (1984) reported that values of €, = 0.05 result in
predictions of near-bed values of streamwise velocity and kinetic energy in good
agreement with experimental observations. Rodi (1976) proposed an algebraic
expression for estimating Reynolds stresses, from which a formula for C,, can be
obtained, which shows this value to be a function of the ratio between production
and dissipation of turbulent kinetic energy. In modifying this expression to
account for wake-generated turbulence, a new expression for G will be obtained
in the next section.

Estimation of Reynolds Stress Tensor Components

As mentioned in the preceding section, Rodi (1976) proposed an algebraic
expression for estimating the different components of the Reynolds stress tensor.
His approach is slightly modified in what follows to account for wake-generated
turbulence. Consider the transport equation of &:

DX = Difty + P — & + Pw (30)

where
Dif(k) = the diffusive transport of k

D(.)/Dt = total derivative |

Pw = wake production term

A similar expression can be obtained for each Reynolds stress:

D < uillujll >

Dr = Dif(< uw/''w/’ >) + Py

J
(3D i

8 LA 124 2 2 2
where the third and fourth terms on the right account for pressure-strain effects
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(Rodi 1976; see also Launder, Reece and Rodi 1975). As it can be observed,
Equations 30 and 31 are differential equations due to their left-hand side and the
first term on the right of each expression. Now, mathematically it can be written:

D < u,'”uj” > < uillujll >Dk + kD < ui”uj” > /k (32)

Dt - k Dt Dt

where a similar expression can be obtained for Dif{ <u,~"uj”> ). If the ratio
<u,-”uj”>/k can be assumed approximately constant in the computational domain
(something that is in fairly good agreement with the authors’ own experimental

observations, as it will be shown later), it is therefore possible to write:

P—-f—”%tf‘-f-'-'-i — Dif(< u'u)" >) = -Lf_g[%; - Dif(k)] (33)
and hence from Equation 30 it follows that:
D <w'uw" > Dif(< u/'u) >) = < u''u' > (P -+ Pw) (34)
Dt / k
Combining Equations 31 and 34 yields:
iﬁi,—,klﬁ:-i(l’ —&+ Pw) = P; — CIR%(< u''y! > — 6,~j‘—;‘-k) (35)
or:

M= 1+ (BER ) (37

Equation 36 is an algebraic expression for obtaining the Reynolds stresses, once
F, ¢, P;j, Pw and Pw;; are known.

An important consequence of Equation 36 is that if the value of <u;”u3”"> is
computed, and assumed to be equal to:
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< u > 20 < uy >
—<wiu > = vl = A (38)
then it is easy to show that:
R W
c —21-y 17 —¥P/e) (39)
K T30 72

which clearly shows C, to vary as a function of both ratios P/e and Pw/e.

Regarding the values of the coefficients y and Cjg (see Launder, Reece and
Rodi 1975), the former takes a value of 0.60 for isotropic turbulence, whereas
the latter was originally found to be equal to 1.4 by Rotta (1951). However,
Rotta (1962) later showed that a value about twice as large provided a better fit
to Uberoi’s (1957) data on the decay of highly anisotropic turbulence. Rodi
(1976) suggests the use of y=0.4 and C;r=2.5. Figure 3.4 illustrates the
variation of Cu with the ratio between total production and dissipation, for the
combination y=0.6 and C;g=2.5. It can be observed that for P/e= 1.0, Equation
39 yields a value of C,=0.091, hence in very good agreement with proposed
values for this constant in flow regions under local turbulence equilibrium

conditions.

0-2 i 1 T ¥ l 1 T 1 L
- i
~ —

~ ~

Cﬂ — ~ -~ - “1
0.1 S, \. \. .\_‘. - L —

0'0 1 [} 1} 1 [} 1 1 1

0.0 1.0 2.0

P/e

Figure 3.4 Variation of Cu with the ratio P&
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Limitations of Turbulence Models Based
on Flux-Gradient Approximations

As it can be observed from the expressions given in the preceding section,
most of the assumptions made involve the use of flux gradient models. Over the
years, there has been some criticism concerning the limitations of these models.
In particular, Corrsin (1974) enumerates some of the necessary (but not
sufficient) conditions for these assumptions to represent the actual processes in
terms of homogeneity and stationarity of the mean field being transported and of
the turbulence properties:

a. The transport mechanism length-scale must be much smaller than the
distance over which the curvature of the mean transported field gradient
changes appreciably.

b. The transport mechanism time scale must be much smaller than the time
during which the mean transported field changes appreciably.

c. The transport mechanism length scale must be essentially constant over a
distance for which the mean transported field changes appreciably.

d. The transport mechanism velocity must be appreciably more uniform than
the length scale.

Defining the Lagrangian length scale for momentum transfer, Ly, as the
product of the Eulerian (integral) time scale of the turbulent shear stress, T;, and
the root-mean-square of the bed-normal velocity fluctuations, w,,s, whereas the
latter also is used as a velocity scale, Corrsin (1974) expressed the former
requirements mathematically as:

U, L?
a. 2| 25 (40)
| 7 I o7 <1
XLETE A (41)
. 2
T7 _E_:‘_U_ -1 1 aLs 1 aWrms
c.andd. U | azl ILS P + Woms 32 | <1 (42)

where symbols like U,; represent second derivatives of mean velocities with
respect to the vertical coordinate and time. Evaluating the former expressions
using boundary layer data from Blackwelder and Kovasznay (1972), Corrsin
found that conditions a and b were satisfied, whereas condition ¢ and d were
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violated, namely those recjuiring cross-stream uniformity of the length scale and
root-mean-square velocity fluctuations.

Despite the mentioned violations, gradient flux models have surprisingly
yielded very good agreement with experimental observations for a wide variety
of applications. As it will be shown later, results reported herein confirm this
assertion.

Numerical Algorithm

This section will discuss the algorithm used for the numerical study of steady,
uniform open-channel flow through vegetation. Under these conditions all the
differential equations used can formally be reduced to:

®» _ ol ¥ (43)
o  9x (1" ¥ axj) Sy

where

¥ = any dependent variable

Iy =associated exchange coefficient defined as [y = K of/ (00 o)

Mo = effective dynamic viscosity

0.5 = effective Prandtl/Schmidt number

S,/, = souce or sink term

Thus by assuming spatial variations only in the vertical direction, the numerical
solution of Equation 43 requires the discrete specification of ¥ in the (z,7) space,
and thus integration over the control volume as shown in Figure 3.5. The control
volume method proposed by Patankar and Spalding (1970) will be used with an
equation solver developed by Svensson (1986) called PROBE. A brief
description of the numerical algorithm follows, but the reader interested in more
details is referred to the aforementioned references.

If Equation 43 is integrated in space and time, it then may be written:

Ai+P p
J ,[ %zt dz dt = Az(i) [WB(i) - ‘/’U(i)] .
U

2(i—D)

30 Chapter 3 Theoretical Considerations



N
N-1I1
N-2
i+] Control
; Volume
Az(i
i-1
3
2
i=1 -
t
U 4 B
Figure 3.5 Definition of control volume
«i+y) p B
S(r ¥ ~ W ¥

_ oY Y
= At [(EP&—)H;:* - (F'”a_z)i—%,t']

where t* is some time between U and B, usually set equal to B due to numerical
stability reasons. Now, further decomposition of the terms in brackets in
Equation 45 in finite difference form yields:

Ai+3) p

) oy
J j a—Z(Q, 6_2-) dz dt
U (46)

2i—3)
Yei + 1) — Pg0) _ Yp@ — Ppli — 1)
VD Az + %) V=D Az - %—)

= At

For simplicity Equation 46 can be rewritten as:
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i+ p

3 i
f [ '&(ry, 6—2) dz dt (47)
U

2i—d

~ At T, [pg + 1) — vp0] — T-[9560 — ¥5i - D]}

_ 1 _ 1
where T, = [Az6 +Hand T = ['w(i_%)/Az(z -

P i+D)

The source term may in turn be integrated as:

Z(l +-;') B

J [SwﬁdzzAdD%ﬁAt (48)

wi-H U

Furthermore, it is common to subdivide the source term into two parts, one
containing the variable itself, as:

Sy = SO+ 50 yp (49)

so that Equation 48 becomes:

wi+d p

f f Sy = Az(i) At [SG) + S'® Yl (50)

wi-Hp U

Now, combining Equations 44, 47 and 50 yields:

Az() [ys) — Yu] = At {T.[Ys6 + 1) — Y] — T-[y5® — Y6 — DI}
(D)

+ Az(i) At [S@ + S'G) ¥5)

which may be rearranged as:

AG g6 — 1) + Bo) Yp) + CO wgti + 1) = D@ (52)
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where:

AG = T-
Bo) = — A® — Bo) — 4;—? + Az S'G)
(53)
Co =T,
A -
Do) = — 1y ) —j% — Az6) SG)

It can be observed that Equation 52 is the compact expression for a
tri-diagonal matrix, and thus, once the boundary conditions are prescribed,
Equation 52 can be solved using for example the Thomas algorithm (Patankar
and Spalding 1970).

Regarding the boundary conditions, basically two different cases may be
distinguished: (a) the value of y is prescribed, or (b) the flux of ¥ is given at the
boundary. In case (a) consider only y(1) = ¥, and Y(N) = 9, where ¥,
and Y are the prescribed values of the variable at the lower and upper
boundary, respectively. For case (b) with Yy, 18 and Yy, 1jp TEPIEsenting the

prescribed fluxes at the lower and upper boundary, respectively,

r .,
w(+p (54)
= —2 2) — 1
Yot = 3o 5 (Wp@ — ypm)
r i
yWN-3 (55)
= —— WN-1 — )
Yy, UB Az = b (¥p ¥p™)
so that:
Az(1 + D
Yp) = = Yy 2 + ¥p@ (56)
P (1+3)
Az(N =
YpN) = = Vy us T 2+ YN -1 7D
Py N-9

In the particular case of the k-&¢ model, accounting for sediment transport in
suspension, there will then be a system of four partial differential equations in
the variables U, k, € and C, representing the mean velocity, turbulent kinetic
energy, rate of dissipation, and mean sediment concentration, respectively.
Source terms and boundary conditions will be treated as described in the section
“Turbulence Modeling by a First-Level Two-Equation Closure Scheme”.
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4 Turbulence Structure in
Open-Channel Flows
Without Vegetation

Before the algorithm presented in the previous section for simulating the
turbulence structure and transport processes in vegetated waterways is employed,
the capabilities of the model will be tested for the more often studied case of
open channels without vegetation. This chapter deals with the verification of the
model comparing numerical predictions of the turbulence structure in
open-channel flow, under different roughness conditions, against experimental
observations as well as semi-empirical expressions. Afterwards, the following
chapter presents predictions of sediment transport processes in open channels
without vegetation.

Mean Flow

Mean velocity profiles corresponding to two different roughness conditions,
hydraulically smooth and transitionally rough beds, were simulated numerically
and the results compared with the authors’ experimental observations. The
experiments were conducted under uniform flow conditions at the Hydrosystems
Laboratory, University of Illinois at Urbana-Champaign, in a 19.50-m-long,
0.91-m-wide and 0.61-m-deep tilting flume. Velocity measurements were taken
with a Sontek acoustic Doppler velocimeter at a sampling frequency of 25 Hz.
For the smooth-bed case the slope was set to approximately 0.0006 and the mean
flow depth was 0.24 m, whereas for the transitionally rough case the slope was
about 0.002 with a mean flow depth of 0.24 m. Figure 4.1 compares model
predictions with the observations.
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Figure 4.1 Observed and predicted vertical distributions of mean velocity for
experiments on transitionally: rough and hydraulically smooth bed conditions

Second-order Moments

Dimensionless values of streamwise and vertical standard deviations of
velocity were computed, and results were compared against some of the authors’
measurements in smooth (Lépez 1994) and transitionally rough (Nifio 1995)
beds as well as with experiments by Nezu (1977) for fully rough conditions (the
subscript + indicates normalization using u as scaling velocity). Both the
authors’ observations and Nezu’s velocity measurements were taken using
hot-film anemometry. Results are shown in Figure 4.2 and Figure 4.3.

Energy Budget Terms

The capability of the model to simulate different terms in the energy budget
was also checked by comparing experimental observations of turbulent
production and dissipation rates with numerical results. Figure 4.4a illustrates
the agreement for the dimensionless vertical profile of turbulent production rate
in smooth—bed flows, where data were taken with the acoustic sensor. Figure
4.4b depicts comparisons for turbulence dissipation for smooth (Lépez 1994) and
transitionally rough (Nifio 1995) beds, where the solid line represents a
semiempirical expression proposed by Nezu and Nakagawa (1993).

Eddy Viscosity and Mixing Length
As mentioned in the previous section, the boundary condition specifying ¢ as

a function of k at the free surface allows for the turbulence damping at the
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b. Transitionally rough condition

Figure 4.2 Observed and predicted vertical distribution of dimensionless rms

value of streamwise velocity fluctuations (Continued)
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Figure 4.3 Observed and predicted vertical distribution of rms value of vertical
velocity fluctuations, smooth-bed condition
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Figure 4.4 Observed and predicted vertical distribution of dimensionless
energy budget terms
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air-water interface, i.e., reproducing the typical parabolic profile of kinematic
eddy viscosity observed in experiments. Figure 4.5a and b depict eddy viscosity
and mixing length profiles in dimensionless form for different alternatives in the
specification of the boundary condition, together with experimental observations
in smooth bed conditions conducted with the acoustic sensor and semiempirical
expressions proposed by Nezu and Rodi (1986). |

Turbulent Scales

Dimensionless vertical profiles of macro length scales, Lx, were computed as:

ul 58
L, = Km 8

where X is a function of Reynolds number (Nezu and Nakagawa 1993). Results
are illustrated in Figure 4.6 together with experimental observations by Lépez
(1994) and Niiio (1995).

Likewise dimensionless profiles of Taylor and Kolmogorov micro-length
scales, A and 7, respectively, were estimated as:

A —_ 15V u%ms (59)
€
and
i/4
- ()"

Figure 4.7a and b compare the numerical results for Taylor’s micro-scale with
experimental observations and semiempirical expressions by Nezu and
Nakagawa (1993), whereas Figure 4.8a and b show similar values for the
Kolmogorov micro-scale (therein Re. stands for the flow shear Reynolds

number defined as Re. = u, H/v).

Validity of Flux Gradient Assumptions

Following Corrsin (1974), data collected with the acoustic sensor were used
to check the validity of the underlying assumptions involving the use of flux
gradient models in wall-bounded shear flows. The criteria represented by
Equations 40 and 42 have been evaluated in Figure 4.9. As was also observed
by Corrsin (1974) for the case of turbulent boundary layers, it was found that of
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Figure 4.5 Observed and predicted vertical distribution of dimensionless
kinematic eddy viscosity and mixing length, smooth-bed condition.
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Figure 4.6 Observed and predicted vertical distribution of dimensionless
streamwise macro-length scale, smooth and transitionally rough bed
conditions

all the homogeneity and stationary conditions required for the applicability of
gradient transport models in turbulence, the one requiring cross-stream
uniformity of the length scale and root-mean-square velocity fluctuations, i.e.
Equation 42, is the most seriously violated. However, as reflected by the good
agreement between model predictions and experimental data in Figures 4.1 to
4.8, the violation of such requirement does not seem to significantly affect the
turbulence simulation with the model, at least for the mean flow and relatively
low-order turbulence statistics commonly used in engineering research (i.e.
univariate and joint second-order moments of velocity fluctuations).
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Figure 4.7 Observed and predicted vertical distribution of dimensionless

Taylor's micro-scale
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Figure 4.8 Observed and predicted vertical distribution of dimensionless
Kolmogorov micro-scale
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Figure 4.9 Evaluation of Corrsin’s criteria according to equations 40 and 42
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5 Suspended Sediment
Transport in
Open-Channel Flows
Without Vegetation

The capability of the model for simulating (non-cohesive) suspended
sediment transport in open channels will be tested herein. The equation for the
vertical diffusion of sediment is solved together with the momentum, &- and
e-transport equations, forming thus a system of four nonlinear partial differential
equations. This system of equations becomes eventually coupled if the
influence of the sediment mixture on the flow structure is accounted for by
buoyancy terms in the equations for turbulent kinetic energy and dissipation
rates, or if the density of the two-phase mixture becomes significantly greater
than the density of clear water.

Equation for Vertical Sediment Diffusion

Vertical profiles of suspended sediment concentrations were computed by
solving the equation for the vertical diffusion of sediment, which for uniform
flow conditions reads:

(61)

8=C> - 8(y <T>- <Tw>)

where
< C >, C' = spatial/temporal mean and temporal fluctuating

suspended sediment concentrations, respectively

Wy = terminal fall velocity of sediment particle

w’ = bed-normal temporal velocity fluctuation
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The first term on the right was approximated again using a gradient flux model,

< C w >= —v;/0, 8 < C > [z, thus yielding:
d<C> _ 38|va<C> = 62
at az[ac 5z TWe < C>] (€2

where 0, is the Prandtl-Schmidt number for sediment particles. As it will be
shown later, depending on the assumptions made, this equation can be solved
either coupled or uncoupled with the set of partial differential equations defining
the k-¢ model. For a given sediment particle size the terminal fall velocity was

estimated as:

12
W _ [ﬁ L] (63)
[¢RD, 3 Cps
where
R = submerged specific gravity of sediment
Dy = mean sediment diameter
Cps = drag coefficient of sediment particles

The drag coefficient for the sediment particle was computed with a relation for

spheres:

Cp = % [t +0.152 RY* + 0.0151 R,] (64)

with R, = w, D,/v.

Buoyancy Effects upon Suspended Sediment
Transport Capacity

The effect of suspended sediment (and its vertically variable concentration
profile) upon the transport properties of a stream is evidenced in three different

ways:

a. By affecting the turbulence intensity of the carrier flow due to the energy
spent in keeping the sediment suspended. This effect is commonly
accounted for by adding a buoyancy-related sink term in the turbulent
kinetic energy budget and a source term in the equation for the
dissipation rate (Rodi 1984). Barenblatt (1953, 1979) demonstrated that
(for relatively low concentrations) under similar flow conditions (i.e. the
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' same friction velocity) a water flow carrying sediment in suspension
accelerates under the action of particles in comparison with the clear

i fluid flow. This action is mainly explained by a decrease in turbulent
kinetic energy, which ultimately causes a drag reduction (Barenblatt

’ and Golitsyn 1974). More recently, Garcia (1992) showed how
buoyancy may also be taken into consideration in the boundary

conditions for two-equation models,as:

dau Us

(d_z),, = 7 zPuKaB) )
kn = Uy ¢k(K") (66)

J/Cu

u3
€0 = 55 P:(K.B) .
where

K, = 8RCA,

u*

B = constant with a value close to 5

and, as before, the subindex o stands for the value of the variable at the
first grid point away from the bed, which also has to be located within
the equilibrium layer. It can be shown (Lépez 1997) that the former two
approaches yield identical results, with:

¢u(Kmﬁ) = %W_I;. (68)
Pk, = V1 - K, (69)
$eKonf) = S (1K) (70)
and

% us/wel 7
P=—"% 7

It would be of interest to test if the value of f, as prescribed by équation
71, is indeed constant as suggested by observations of atmospheric
boundary-layer flows.

b. By changing the density of the mixture, g,,:

on = 0u (1 +RC) (72)

with o, representing the density of clear water. Or by changing the
viscosity of the mixture, v,,, where according to Einstein (Graf 1971):

Vm = vy (1 + k. O) (73)
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with v, denoting the viscosity of clear water. Happel and Brenner
(1965) found the Einstein viscosity constant, k., to be k, = 2.5.

¢. By changing the Prandtl-Schmidt number, o, (Launder, Reece and Rodi
1975), in the sediment diffusion equation.

_ 1+e,/(C.  -D)B 74
Oe = Geo 1+0 0, B 79
where
Oco = the Prandtl/Schmidt number under nonstratified
conditions

¢e ¢c', Co =model parameters, that for the case of
temperature-induced stratification are equal to
0.31, 0.16 and 1.60, respectively

B = dimensionless buoyancy parameter defined as — gg k_:%_c
£- 0Z

The influence of each of these factors depends upon the particular problem
under consideration. Several experimental (Vanoni 1946; Einstein and Chien
1955; Coleman 1981) and theoretical (Barenblatt and Golitsyn 1974) works have
shown how the velocity of the flow increases with the mean sediment
concentration. However the interaction of suspended matter and the turbulence
structure of the flow is to date not fully understood. In the present work seven
different combinations of the factors discussed in the preceding paragraph were
numerically analyzed in order to determine the effects on the suspended sediment
transport capacity of the flow and finally decide which model to use in the
presence of vegetation. Combination 1 corresponded to a decoupled solution of
the vertical diffusion equation, therefore neglecting all the factors mentioned.
Combination 2 dealt with the inclusion of the buoyancy-related terms in the
transport equations for k and ¢, but maintaining the standard wall functions and
keeping constant both the density of the mixture and o,. In combination 3,
buoyancy was considered and the density of the mixture was allowed to vary
vertically with the concentration. Combination 4 corresponded to the inclusion
of buoyant terms plus variations in density and g.. In the fifth combination,
density and o, were kept constant while considering both buoyant-related terms
and modified wall functions. Combination 6 is similar to the former except that
density was also allow to vary with concentration. And lastly, the seventh
combination considered both variations in density of the mixture and o, while
also introducing the buoyancy-related terms and the modified wall functions.

Basically two different outputs were considered, vertical profiles of
suspended sediment concentration and total transport capacity, obtained by
vertically integrating the product of mean velocity and local sediment
concentration. Results of vertical concentration profiles were compared against
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the Rousean distribution:

w.\‘
c _ [H=-2 #H-b]*& (75)
C, Z b
where
b =005H
Cp = near-bed sediment concentration

The sediment concentration near the bed was estimated using the expression of
Garcia and Parker (1991):

AZ
Cp = A o (76)
(1 + 5% Z)

with Z, = u,/w, Rep%®and A = 1.30 . 10~7. Equation 76 provides a mean
of estimating the bed sediment concentration under equilibrium conditions at zZH

= 0.05, and was derived using data covering the following ranges of the
variables:

20107 < C, < 6.0 1072
0.70 < uy/w; < 7.50;

240 < H/D; < 2,400;
3.50 < R, < 370.

The computed suspended transport capacity, g5, was compared against
predictions from the formula due to Einstein (1950):

g = 11.57 C, u. b [1l Ln(3(3(—H) + 12] (77

where k. represents a measure of the roughness, and /1 and I, are numerically
evaluated integrals (see also Graf 1971).

It must be said that a particular limitation arises when trying to solve all the
equations as a coupled system. This limitation is based on the fact that the wall
functions have to be evaluated at a grid point, z,, located between 30 and 100
wall units from the bed, whereas the proposed expression for estimating the
near-bed concentration gives the value of G, at z,=0.05H. Therefore, for a
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smooth-bed two-dimensional open channel:

05H |/
30 < 9_5___15__‘?&1_1 < 100 (78)

where S, = bed slope. Equation 78 constitutes an important constraint that
specifies the required range of H for a given slope and water temperature.

Suspended sediment transport capacity was computed for a two-dimensional
open channel with S, = 0.001 and H = 0.07 m for different sediment sizes using
the seven aforementioned combinations. Results are depicted in Figure 5.1 in
dimensionless form together with predictions from the Einstein’s (1950) formula.

In order to appreciate the effects of buoyancy on water discharge, Figure 5.2
illustrates the ratio ¢,/g,, corresponding to the same conditions as Figure 5.1,
where g, is the computed water discharge for each combination and gy, is the
computed water discharge for combination 1, thus without considering any
sediment-turbulence interaction.

These graphs show that, while water discharge increases as much as 56 percent
depending upon the sediment concentration and calculation procedure,
suspended sediment transport capacity is relatively well predicted by neglecting
sediment-turbulence interactions, especially for low concentrations. Based on
these results and the fact that the sediment-laden flows considered herein have
relatively low sediment concentrations, the results shown in the next two
paragraphs were computed neglecting buoyancy effects.

Vertical Profile of Suspended Sediment
Concentration

Figure 5.3 shows computed dimensionless vertical profile of suspended
sediment concentration together with predictions by the Rousean model for three
different sediment sizes, namely 40, 100 and 150 um (Rep = 1.87, 4.02 and
11.38, respectively).

Suspended Sediment Transport Capacity

Figure 5.4 shows results of the variation in suspended sediment transport
capacity, gg;, for a two-dimensional channel (S, = 0.0036 and H = 0.35 m) for
seven different sediment sizes, whereas Figure 5.5 depicts this capacity as a
function of flow depth for given values of S, and D;. Results of the numerical
model are compared in both figures to predictions with the formula by Einstein
(1950).
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Figure 5.1 Suspended sediment transport capacity as function of Rouse
number and different buoyancy effects together with predictions by Einstein’s

(1950) formula
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Figure 5.3 Dimensionless vertical profile of suspended sediment concentration
for different mean diameters
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Figure 5.4 Estimated suspended sediment transport capacity for different
mean diameters
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6 Turbulence Structure in
Vegetated Open-Channel
Flows

In this chapter experimental results for open-channel flows in the presence of
both rigid and flexible simulated vegetation will be used to check the validity of
the assumptions made previously. First, the experimental conditions will be
summarized. Then, computed vertical profiles of mean flow as well as
turbulence characteristics will be compared against experimental results. Lastly,
the impact of using wall functions different from the usual ones in the standard
model will be briefly explored and Corrsin’s criteria for the applicability of
gradient-flux models in the presence of vegetation will be evaluated.

Experiments in Open-Channel Flows
with Simulated Vegetation

As mentioned in Chapter 3, a series of experiments was conducted at the
Hydrosystems Laboratory with the goal of characterizing the drag coefficient in
the particular case of free-surface, turbulent flows and of providing information
for the verification of the k-¢ model. Regarding the second reason, it was |
considered crucial for the authors to conduct their own observations because
most of the data available lacked a detailed description of the experiments; in ‘
particular, no clear specification of the measuring location and the spatial ‘
averaging procedure are given. From the discussions in Chapter 3, the |
importance of the averaging procedure employed to determine one-dimensional |
parameters becomes clear. ]
i

The experiments were conducted under uniform flow conditions in a
19.50-m-long, 0.91-m-wide and 0.61-m-deep tilting flume (Dunn, Lépez and
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Garcia 1996). Velocity measurements were taken with a Sontek acoustic
Doppler velocimeter at a sampling frequency of 25 Hz, at four different
plan-locations with 10 measuring points in each vertical. Cylindrical wooden
dowels and commercial drinking straws were used to simulate rigid and flexible
vegetation, respectively. Table 6.1 provides a summary of the experimental
conditions, where a represents plant density, S, is the averaged bed
(water-surface) slope, Q is the discharge, H represents the normal flow depth, a
is the averaged deflection angle of the simulated plants, Re is the Reynolds
number and Fr is the Froude number.

TABLE 6.1 Experimental Conditions

Exp # a So (0] H a Re Fr
(1/m) (m3/s) | (m) ®)
Exp. 1 1.09 | 0.0036 0.179 10.335 |0.00 | 224,000 | 0.33
Exp. 2 1.09 | 0.0036 0.088 }0.229 ]0.00 1113,000 | 0.29
Exp. 3 1.09 | 0.0036 0.046 |0.164 10.00 | 57,000 { 0.24
Exp. 4 1.09 | 0.0076 0.178 10.276 ]0.00 |191,000 | 0.36
.§ Exp. 5 1.09 | 0.0076 0.098 ]0.203 10.00 [125,000 | 0.37
E‘J §0 Exp. 6 0.27 ] 0.0036 0.178 }0.267 ]0.00 |196,000 | 0.39
m 2 Exp. 7 0.27 | 0.0036 0.095 ]0.183 10.00 1120,000 | 0.42
Exp. 8 246 | 0.0036 0.180 ]0.391 |0.00 |258,000 | 0.29
Exp. 9 246 | 0.0036 0.058 [0.214 10.00 | 69,700 | 0.19
Exp. 10 246 } 0.0161 0.180 ]0.265 |0.00 |1203,000 | 0.40
Exp. 11 0.62 | 0.0036 0.177 }0.311 {0.00 |222,000 | 0.35
Exp. 12 0.62 | 0.0110 0.181 ]0.233 |0.00 [238,000 | 0.58
Exp. 13 1.09 | 0.0036 0.179 10.368 |35.0 |228,000 | 0.28
Exp. 14 1.09 | 0.0101 0.180 ]0.232 |51.0 {257,000 { 0.62
© .§ Exp. 15 1.09 ] 0.0036 0.093 |0.257 |34.0 | 112,000 | 0.23
:S ‘go Exp. 16 0.27 | 0.0036 0.179 }0.230 |65.0 |227,000 | 0.56
L'E 2 Exp. 17 246 | 0.0036 0.078 [0.279 |12.0 | 94,900 | 0.18
| Exp.18 246 | 0.0101 0.179 ]10.284 145.0 [250,000 | 0.45

Mean Flow Characteristics

Model predictions regarding mean (spatial and temporal averaged) velocities
were compared against the experimental observations. The modeled turbulent
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kinetic energy in the two-equation turbulence model corresponded to Equation
10; hence values of Cs = 1.0and Cr = 1.33 were used in the computations.

Figure 6.1 compares numerical simulations and experimental observations for
two of the rigid-vegetation tests in Table 6.1, whereas Figure 6.2 shows
predictions corresponding to the flexible conditions. As will be also observed in
the Reynolds stress computations, the existence of secondary currents seems to
play an important role above the simulated vegetation, both in retarding the flow
and decreasing the turbulent momentum transfer in the vertical. Hence, since
these computations simulate two-dimensional flows, computed mean velocities
above the plant canopy are slightly larger than the measured ones.

Figure 6.3 depicts the vertical mean velocity profile of two experiments (rigid
and flexible conditions) in semilog scale, showing the agreement between both
numerical and experimental results with the logarithmic law. The differences in
slope between the model predictions and the measured profile may be explained
by the different values of the predicted and observed turbulent momentum
transfer close to the top of the simulated canopy (see "Reynolds stresses™ in next
section). Indeed, the vertical slope of the velocity profile in the equilibrium
layer of wall-bounded flows becomes dU/dz = u./» z, which clearly explains
that a larger value of the shear velocity yields larger slopes at the same distance
from the bed. Note also how the numerical model predicts the existence of a
region immediately above the simulated plants, where the velocity is not
logarithmically distributed, in agreement with reported results on velocity
distributions in the roughness sublayer (Lépez 1997).

Second-order Moments

This section shows the capability of the numerical model to simulate the
vertical structure of second-order moments, i.e. Reynolds stresses and
turbulence intensities.

Reynolds stresses

Computed vertical profiles of spatially averaged Reynolds stresses are
depicted in Figure 6.4 and 6.5 for rigid and flexible conditions, respectively,
together with experimental observations, for the same experiments as Figure 6.1.
As mentioned previously, a very good agreement between experimental values
and model predictions is observed for flow within the simulated vegetation,
whereas the measured Reynolds stresses above the simulated canopy were
consistently smaller than the theoretical ones for two-dimensional open-channel
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Figure 6.3 Observed and predicted vertical distribution of mean velocity in
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Figure 6.4 Observed and predicted vertical distribution of Reynolds stresses,

rigid conditions

Chapter 6 Turbulence Structure in Vegetated Open-Channel Flows




0.40 . , .

0.30

(m)

0.20

0.10

0.00
0.0000 0.0050 0.0100

—<uw > (m?s?

0.30 ‘ , :

0.20

(m) - —’l=: L. — gt — — — — o

0.10

0.00 ' . :
0.000 0.003 0.006

—<uw > (m¥s?
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flows. However, this phenomenon is typical for free-surface flows (Nezu and
Nakagawa 1993), the deviation being explained by the action of secondary
currents as well as other components of the Reynolds stress tensor, the
magnitude of this effect being a function of the width-to-depth ratio (aspect
ratio).

Turbulent kinetic energy and turbulence intensities

Computations of experimental values of total turbulent kinetic energy and
turbulence intensities, < u;'’ u;'’ >, are very difficult to obtain, especially due

to the large number of measuring locations needed to obtain representative

values of < u_,.” u_,-” >. It is worth noting again that for i # j (i.e. off-diagonal
components of the total turbulent stress tensor) the contribution of the
wake-related production term is negligible (Raupach et al. 1986). Hence, in
order to compare numerical results with experimental observations of

< u; u; >, the model was run with Cs = 0.0and C, = 0.0. Figures 6.6
and 6.7 depict the results obtained for the streamwise turbulence intensities
together with the experimental data. In order to better visualize the difference
between < u; w; > and < u;’ u;/’ >, Figure 6.8 illustrates the computed
values of the total streamwise intensities obtained when the model was run using
Cqp = 10and C; = 1.33.

In light of these results and the discussion in chapter 3, it becomes clear why
very small weighting coefficients in the drag-related source terms for the k and ¢
equations yield very good predictions of the observed values of turbulence

intensities in water flows.

Energy Budget Terms

To further investigate the performance of the model, different terms in the
turbulent kinetic energy budget were computed, and when possible compared
against the experimental observations.

Spatially averaged time-mean values

As mentioned in the previous section, only accurate measurements of
spatially averaged time-mean values could be obtained from the experiments,
and those are the results that are simulated herein. Figure 6.9 and 6.10 illustrate
vertical profiles of the different terms in the energy budget made dimensionless
using Usyp and h, as scaling velocity and length scales, respectively. Uspy, is the
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Figure 6.6 Observed and predicted vertical distribution of streamwise
turbulence intensity, rigid condition

Chapter 6 Turbulence Structure in Vegetated Open-Channel Flows

65




66

0.40 ,

0.30

(m)

0.20

0.10

0.08 0.12 0.16 0.20

V< ”1_'2> (m/s)

0.00
0.00 0.04
0.30 —
Expl7
0.25 |-

0.20

0.15

0.10

0.05

1 i 1

0.00

0.00 0.05 0.10 0.15 0.20

<uy?> (mfs)

Figure 6.7 Observed and predicted vertical distribution of streamwise

turbulence intensity, flexible condition

Chapter 6 Turbulence Structure in Vegetated Open-Channel Flows




0.30 > k-t -

(m)

0.20

0.10

0.00 . 0.30

a. Rigid vegetation

0.30 T T T T T | T

0.25

0.20

(m)

0.15 +

0.10

0.05

0.00
0.00 0.05 0.10 0.15 0.20

12
<uy'"" > (mjs)
b. Fiexible vegetation
Figure 6.8 Observed and predicted vertical distribution of total streamwise

turbulence intensity

Chapter 6 Turbulence Structure in Vegetated Open-Channel Flows 67




68

2.50 ! , | . , .
Veg9
(Cpo Cp) = (0.0, 0.0)
200 |- -
150 |- .
<
hyp
1.00
1]
[}
[}
]
1]
0.50 ' -
x4
AN
X
)
[
'I
0.00 L !
—6.00 -2.00 2.00 6.00 10.00
D(<u;u >) hp
dt u*hc
3-00 T I l 1 l T
Vegl
4 v 1. Cn Co = 00,00
\
A 1 J
H
[l
H
'
< 200 : -
1]
i H
¥
:
L I .
I
[}
[
A
1.00 T
AP
LI N
‘i< 1
i X |
*\\
-
0.00 L i { 1
-6.00 -2.00 2.00 6.00 10.00
D(<u/u/ >) hy
dt Uspe

Figure 6.9 Observed and predicted vertical distribution of different terms in the
spatially averaged, temporal-mean, turbulent kinetic energy budget for
(Ci,Cre)=(0.0,0.0). Lines represent model predictions and symbols are

observed values.

Chapter 6 Turbulence Structure in Vegetated Open-Channe! Flows




2.5 ] 1 l | | ]
Veg9 (Cpo Cp) = (0.25, 0.33

2.0

15 [ €

‘wl,\,

1.0

0.5

0.0
-6.0 -40 -20 00 20 40 60 80 100

D(<u/ u/ >) hy
dt Uspe

3.0

— L
/ (Cp Cp) = (0.25, 0.33)

20 |-

'$I|"‘
1

1.0

0.0

-6.0 —40 -2.0 00 20 40 6.0 8.0 100
D(<u/u/ >) hp
dt Uspe
Figure 6.10 Observed and predicted vertical distribution of different terms in
the spatially averaged, temporal-mean, turbulent kinetic energy budget for
(Ci,Cro)=(0.25,0.33). Lines represent model predictions and symbols are
observed values.

Chapter 6 Turbulence Structure in Vegetated Open-Channel Flows




70

square root of the Reynolds stress at the top of the simulated canopy and 4,
represents the average plant height.

Budget of total turbulent kinetic energy

Although no experimental observations were available for comparison,
dimensionless vertical profiles of the total turbulent kinetic energy were
computed (i.e., Cp = 1.0and C, = 1.33). Figure 6.11 depicts the results

obtained for the same experiments as in Figure 6.1.

Eddy Viscosity and Mixing Length

Again, only reliable values of spatially averaged time-mean values of eddy
viscosity and mixing length could be obtained from the experimental
measurements. Figures 6.12 to 6.14 compare experimental observations with
numerical results using three different sets of values for the weighting factors of
the drag-related terms, namely (ka, Cfg) = (0.0, 0.0),

(Cq Cp) = (0.8, 1.04),and (Cp, Cp) = (1.00, 1.33).

Turbulent Length Scales

Dimensionless vertical profiles of macro- and micro-length scales were
computed using Equations 58, 59 and 60. Numerical results corresponding to
the conditions of Exp1 are plotted against experimental observations in Figure
6.15.

Momentum Transfer to the Bed

In the evaluation of suspended sediment transport processes in open channels,
the accurate estimation of the momentum transfer to the bed plays a crucial role,
since this value is typically used to evaluate the ability of the flow to entrain
sediment from the bed. Figure 6.16 illustrates the variation of the shear velocity,
defined as the square root of the bed-shear stress per unit density, as a function of
normalized plant density. Note that in this graph the shear velocity has been

standarized using the total streamwise momentum due to gravity, i.e. /g H S,.

Manning’s Resistance Coefficient

In order to evaluate the effect of vegetation upon flow resistance, values of
Manning’s resistance coefficients were computed as:

Chapter 6 Turbulence Structure in Vegetated Open-Channel Flows




3.00 1 I [ T l T
Expl (Cro Cp) = (1.00, 1.33)
200 —
2
hp — -
1.00
0.00 '
—-20.00 —-10.00 0.00 10.00

D(<u/u’>) h

dt

u *he

20.00

Figure 6.11 Observed and predicted vertical distribution of different terms in

the total turbulent kinetic energy budget

Chapter 6 Turbulence Structure in Vegetated Open-Channel Flows

71




—— (Ci Cp) = (0., 0)
—_— = (0.8, 1.04)
---- = (1.0, 1.33)

0.35
0.30

0.25

z 020
(m) 0.15

0.10

0.05

0.00
0.000 0.002 0.004

0.35

0.30
0.25

0.20

(m) 0.15

0.10

0.000 0.002 0.004

Vr (mZ/s)
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. - BC s (79)
dw

where

gy = specific water discharge

Figure 6.17 shows the variation of » with plant density, a, for given values of
water discharge, g,, = 1.12 m3/m/s, channel slope, S, = 0.0036, and plant height,
h, = 0.10 m. Since in engineering practice it is more common to measure density
as number of plants/stems per square meter, 44, Figure 6.18 depicts the variation
of both Manning’s n and flow depth with A5 for D = 6.4 mm (diameter of
cylinders used in authors’ experiments). As can be observed, the resistance
coefficient remains almost constant for low densities and it shows a sharp
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increase after a critical density value has been reached, increasing linearly
afterwards. As mentioned in Chapter 2, this linear increase has also been
observed in the field (Freeman, Hall and Abraham 1994).

Impact of Wall Functions

As mentioned in Chapter 2, the wall functions used as bottom boundary
conditions in the standard k-¢ model implicitly assume the existence of an
equilibrium layer (match or overlap region), where the logarithmic law describes
the vertical distribution of mean velocities. As can be clearly observed from the
budgets of turbulent kinetic energy this does not hold for the one-dimensional
description of flow through vegetation. However, it was observed that the exact
form of the wall functions was of little relevance for the computations, and that
the drag-related source terms were of more critical importance for the flow
structure. As an example, Figure 6.19 shows two different computations
corresponding to Expl, where the wall functions at the bed were modified as

follows:

Us = Cp e Ln(BE") (80)
u?

ko, = Cp —= 81)
I
ul 82

&y = CS.H_Z? (82)

Indeed, specified values of mean velocities and shear stress using these
expressions are so small that the simulated turbulence structure adjusts itself to a
common profile, with results almost insensitive to the exact value of the
boundary conditions at the bed. In view of these results, the standard wall
functions have been used throughout the present work, i.e., C,,; = 1.0,

Ck = 1.0 and Cg = 1.0.

Validity of Gradient-Flux Assumptions
for Flow through Vegetation

Following the same ideas as in Chapter 4, data collected with the acoustic
sensor were used to check the validity of the underlying assumptions involving
the use of flux gradient models in vegetated, free-surface, wall-bounded shear
flows. The criteria represented by Equations 40 and 42 have been evaluated in
Figure 6.20, where results corresponding to flow without vegetation are also
presented for comparison. Again, it may be clearly observed that from all the
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required conditions, the one requiring cross-stream uniformity of the length
scale and root-mean-square velocity fluctuations, i.e., Equation 42, is the most
seriously violated. As evidenced in previous figures, however, the violation of
this requirement does not seem to significantly affect the turbulence simulations
of the model, at least for the statistics commonly used in engineering research.

Final Remarks

The graphs presented above demonstrate the overall ability of the numerical
model to simulate not only the most commonly used flow statistics, like mean
velocity, turbulence intensities and Reynolds stress, but also different terms in
the budget of turbulent kinetic energy as well as mixing properties and
turbulence macro and micro length scales for flow through vegetation. As
mentioned before, observed profiles of temporal mean variables averaged over
space are being best represented using negligible values for the drag-related
weighting coefficients. Differences between numerical results using values of
(Cp Cp) = (0.0, 0.0)and (Cq, Cp) = (1.00, 1.33) are found to be larger
at the top of the simulated plants, and to decrease towards the free surface. If
real, these differences would imply the existence of streamwise turbulence
heterogeneities in flow regions above the plants. More research is however
needed to particularly address the influence of flow and vegetation properties
upon the ratio between turbulent micro-length scales and element wakes, i.e. the
relationship between these properties and the values of the weighting coefficients
in the drag-related terms. Hereafter all the one-dimensional (thus involving the
use of spatial and temporal averaged conservation laws) numerical simulations of
turbulence processes will be performed with values for these coefficients of
(ka, C fs) = (1.00, 1.33), i.e. using Equation 10 for the turbulent kinetic

’

energy balance and therefore k = (< @, & > +<u; u; >)/2.
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7 Suspended Sediment
Transport in Vegetated
Open Channels

In previous chapters two-equation turbulence model predictions have been
verified against experimental observations both in open channels and vegetated
free-surface flows, and the capability of the algorithm for simulating the
turbulence structure has been checked. The last stage of the investigation will be
then to apply the numerical code to estimate the suspended sediment transport
capacity of flows in vegetated waterways. The present section begins with the
introduction of dimensional analysis, which allows for the identification of the
dimensionless parameters that govern the problem. Afterwards, the data set by
Tollner, Barfield and Hayes (1982) will be employed to check the outcome of the
numerical experiments. Further results include comparisons between simulated
vertical distributions of sediment concentration and predicted profiles using the
Rousean distribution, estimations of transport capacity as function of different
dimensionless parameters, and computations of relative transport capacity
between vegetated and nonvegetated open channels under similar hydraulic
conditions, as a function of plant density, sediment diameter, etc.

Dimensional Analysis of Sediment Transport
in Vegetated Open Channels

The investigation of sediment transport processes in vegetated channels
involves the consideration of so many variables characterizing the sediment,
flow and plants properties, that the problem might seem almost intractable.
Dimensional analysis constitutes a valuable tool in these situations. Any
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variable, X, characterizing sediment transport processes in vegetated waterways
may be expressed as a function of the same variables that govern the
phenomenon in open channels without vegetation, plus some new variables that
characterize the plant properties:

X = f[u*7 H’ g’ ﬂ, Q, (QS_Q)a DS, D> a, h]h a]
with a representing a dimensionless parameter defining the flexibility of the

(83)

vegetation. It is worth noting that in the previous expression u, is the bed-shear
velocity associated with the average streamwise momentum transfer to the bed.

If ux, 0 and D; are selected as the basic quantities for performing the standard
dimensional analysis (see for example Yalin 1977), then:

A 2
XA =f(u* s Ll* H RE D D, a,l}; ) (84)

vV g RD,"D,""Dy’
where y is the dimensionless form of the transport property and
R = (o5 — 0)/o. It may be further observed that:

uxDs _ __w. DsJeRDs _  u. o (85)
v V& R D; v V& R D; K
and

g§RD;, gRD;w?
Moreover, it can be shown that for grains of a given shape, the dimensionless
parameter w?/(gRD,) can be represented solely as a function of Rep (Parker 1978;
Dietrich 1982). With all these considerations plus some additional combinations
of dimensionless parameters, Equation 84 may be rewritten as:

A A % h
X = f(Re]Du ’g ,R’g 9H ’H’ ) (87)

Generally, calculations will be based on constant values of R = 1.65 and very
large values of the ratio H/D; and D/Dy; therefore Equation 87 may be further
simmplified into:

A A % h
X = f(Re[h%;9H a,"HB,a> (88)

Experiments by Tollner, Barfield and Hayes (1982)

As mentioned in the introduction, there are not many reliable data sets
available with suspended sediment information for vegetated open channels.
The complexity of the problem led some investigators to study sediment
transport processes in the laboratory by simulating vegetation with different
elements. In this section the predictions of the k-€ model will be compared with
the experimental observations by Tollner, Barfield and Hayes (1982). These
investigators used a relatively narrow and short laboratory flume (0.13-m-wide,
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0.10-m-deep and 2.10-m-long) with 16d finish nails (Tollner, private
communication) simulating rigid vegetation in a staggered pattern. They
simulated sediment using glass beads of five diffferent mean diameters. They
found that their experimental results for suspended sediment transport could be

well described using a modified version of Graf’s parameters, b7 as:

—0.153 :
¥ = 052 (0F) (&)
where:
@sG — Co RS < ul > (90)
JR g D}

and

_ RD; 91)
v= Rs So (
where
C, = the volumetric suspended load concentration
R; =an “equivalent hydraulic radius” defined as:

=2 (92)
R = p~+2m

with b, representing the plant spacing.

It is worth mentioning that Equation 89 does not contain all the
dimensionless parameters specified in Equation 88, in particular the parameters
Ha and H/h, are missing. The absence of the latter is justified because the
authors seemed to have reported only values corresponding to emergent
vegetation. The absence of the parameter Ha may also be justified by the fact
that flow depth and nail spacing varied over a narrow range (the latter in the
range 0.945-1.583 cm).

In order to compare numerical results with experimental observations the four
hydraulic conditions given in Toliner (1974) were selected, where some
turbulence measurements were conducted as well using hot-film anemometry.
Figure 7.1 illustrates the results of the k- model compared to predictions by
Equation 89. As can be observed, experimental results corresponding to the
higher slope are very well predicted by the numerical model, while computed
sediment transport capacity for the smallest slope is higher than the observed
values. The observed disagreement may be attributed to the small dimensions of
the experimental facilities, which may have precluded the establishment of
equilibrium conditions. The shallow flow depths used in the experiments,
ranging from about 1.3 to 5.0 cm, suggest also that the flows might not have had
large enough Reynolds numbers, while the numerical model developed in the
present work applies only to high-Reynolds-number flows.
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Vertical Profiles of Suspended Sediment
Concentration

After the overall performance of the numerical code was checked, vertical
profiles of suspended sediment concentrations were computed. It was found
that, due to the particular shape of the vertical eddy viscosity profile, simulated
relative distributions of suspended sediment concentrations differ only slightly
from the classical profile in open channels (i.e. Rousean distribution). Figure 7.2
and 7.3 illustrate comparisons between simulated dimensionless profiles of
suspended sediment concentration and predictions by the Rousean model for
several sediment sizes, and two different conditions of bed slope and plant
density. It is worth noticing that relative suspended sediment concentrations are
larger than the ones predicted by the Rousean formula. It would seem that the
effect of the vegetation is to promote a more uniform distribution of the
suspended sediment, particularly within the plants.

Suspended Sediment Transport Capacity

Dimensional analysis has shown that the suspended sediment transport
capacity of vegetated channels depends upon several flow, sediment and plant
parameters. This information is herein used to design a set of numerical
experiments aiming at characterizing the particular effects of each of these
parameters on the transport capacity. Such exercise provides also a means of
testing the reliability of the numerical results, since the transport capacity should
remain the same when dimensional variables are changed for identical values of
the dimensionless parameters. Finally, the possibility of collapsing the
information on transport capacity for different conditions is also investigated.

Suspended Sediment Transport Capacity as function of H/h,

In order to investigate the effects of the ratio H/hp upon the suspended
sediment transport capacity, the numerical model was used with constant values
of mean flow depth and plant density (H = 0.35 m and @ = 2.0 m™!) while three
different values of plant height were used, namely Ap = 0.05, 0.10 and 0.25 m in
conjunction with varying sediment sizes and channel slopes. Figure 7.4 depicts
the results obtained. The suspended transport capacity has been scaled using
ux D (see Yalin 1977); however any other scaling may be easily obtained
combining the dimensionless parameters. For example Einstein’s dimensionless

version becomes:

Qss qss Uy
= (93)
[ RD3  #Ds [g RDs
with u./ /g R D;s being the square-root of the Shields’ stress.
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It was observed that, as expected, transport capacity was a function of both
u+/ws and Rgy, for each value of the ratio H/hy, so that:

S8 Us
i, =/ (R %) oo
where the function f will depend on H/h, (and Ha). Using this approach, the
data could then be collapsed onto a single curve for each H/i, ratio. Results are
shown in Figure 7.5. Moreover, since all curves in the previous figure are

parallel, it is easy to make them all collapse into one single curve writing:

¢
ss _ _ b Uus (H 95
o[ % (B) ”

Figure 7.6 illustrates results for the best fit value of ¢ = 0.38.

Suspended Sediment Transport Capacity as function of Ha

Following similar procedures as before, values of mean flow depth and plant
height were kept constant in the numerical study (H = 0.25 m and A, = 0.071 m),
while plant density was allowed to vary, namely a = 0.5, 2.8 and 5.0 mL.

Notice that for a = 2.8 m~!, H/hp = 3.5 and H a = 0.7, which corresponds to one
of the cases studied in the previous section, namely in Figure 7.4 b). Since in
both cases values of these two parameters were equal, although the value of each
dimensional variable was different, similar relations were expected then between
the dimensionless transport capacity and u«/w; for each R,,. Results are
illustrated in Figure 7.7, which shows a good collapse of the computed curves
for both cases. Figures 7.8 depicts estimated values of dimensionless transport
capacity as a function of both u+/w; and Rep for each value of the parameter H a
(H/h, was kept constant and equal to 3.5).

Relative Transport Capacity of Suspended Sediment

The influence of vegetation in reducing the suspended transport capacity of a
channel was studied by computing the ratio gs.yeg/gs-oc aS @ function of plant
density for five different sediment sizes. Both water discharge, g,,, and plant
height were kept constant . Here g;.y, is the computed suspended sediment
transport capacity of the vegetated waterway and g;.,. is the capacity for an
open channel of the same slope without vegetation and same water discharge.
Results are illustrated in Figure 7.9. Note that in keeping ¢, and 4, constant
both H a and H/h, were allow to vary. It is interesting to note that, for very low
densities, the ratio gs.yeg/gs-oc becomes slightly larger than unity for the coarsest
sediment. This apparent contradiction may be explained by the fact that (at low
densities) a small increase in density tends to decrease the momentum transfer
toward the bed only by a small amount while at the same time requiring a small
increase in flow depth due to the increased flow resistance. The combined effect
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tends to keep the shear stress at the bottom nearly constant, and therefore to
entrain as much sediment from the bed as without the plants. Moreover, if it is
remembered that the relative sediment concentration profile shows larger values
in the presence of vegetation, it can easily be explained why suspended transport
capacity may become slightly larger in the presence of plants compared to flow
without vegetation.

Final Remarks

Dimensional analysis helped in identifying the different dimensionless
parameters that govern sediment transport processes in vegetated water channels,
and the numerical model proved to consistently predict suspended sediment
loads under different conditions for the same parameter values. It is worth
mentioning that, albeit at a preliminary level, a different type of two-equation
model has also been developed as an alternative code, namely a k-w type closure
(L6pez and Garcia 1996). Results of both models have been found to provide
similar degree of representation to the experimental observations. Only as an
example, Figure 7.10 shows the dimensionless sediment transport capacity as
computed by the k- model, compared to the best fit of results obtained with the
k-& model.
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8 Summary and Conclusions

From the results shown in the previous sections, the following conclusions
can be drawn:

a. The decrease in suspended sediment transport capacity of channels with
vegetation compared to non-vegetated ones at similar water flow rates (i.e.
the retention capability of the former) is highly dependent on the reduced
ability of flow over a vegetation-covered bed to entrain sediment in
suspension. This fact is in turn associated with the decrease in streamwise
momentum transferred to the channel bed, due to the absorption of
momentum by the plants via drag forces.

b. The above-mentioned fact has two important practical consequences, the

first one being that any simpler model developed to compute the transport

capacity of vegetated channels should be based on a reliable estimate of

the average shear stress taken by the bed, which implies a good

characterization of the form drag coefficient of plants in water channels.

The second one is that laboratory and field studies are needed in order to

develop a sediment entrainment function for flow through vegetation. The

characteristics of the near-bed turbulence in vegetated open-channel flows

are such that wake-generated turbulence might be the main mechanism ‘

responsible for sediment entrainment into suspension, playing a role \

similar to that of turbulent bursts in boundary-layer flows without 4

obstructions. i
1
1
|
|

c. The two-equation model of turbulence developed herein provides a good
representation of the experimental observations of different turbulence
variables, length scales and energy budget terms, hence constituting an

a8 Chapter 8 Summary and Conclusions

—




alternative tool for analyzing the influence of different flow and vegetation
properties on the overall turbulence structure.

d. The numerical model consistently predicts the sediment transport capacity
under different flow, sediment and vegetation conditions for same values
of the governing dimensionless parameters, and proper combination of
these parameters further allows for the collapse of all information onto one
single relation.

e. The Rousean profile of relative sediment concentrations, computed with a
shear velocity derived from the total action of gravity forces (i.e.

us = /g HS,), predicts relative distributions very similar to the ones
obtained with the numerical model. This might be mainly attributed to the
parabolic-type shape of the eddy viscosity profile for both open channels
with and without vegetation.

Jf- Model results show the Manning’s coefficient to remain almost constant
(with values close to non-vegetated conditions) up to a critical plant
density, and to increase linearly afterwards, in agreement with field
studies.

g- In summary, the two-equation numerical code, based on the k-¢ turbulence
closure scheme, constitutes a reliable tool for engineering assessments
both on the turbulence structure and the suspended sediment transport
processes in open channels through vegetation. The challenge for the
future consists in extending the capabilities of the model developed for
“idealized” vegetation to the case of natural plants.

h. Future numerical, laboratory, and field work, will also benefit from the
dimensional analysis carried out in the previous chapter. Also of
particular relevance for future laboratory and field measurements, is the
analysis conducted in Chapter 3, where the need to perform spatial as well
as temporal averaging of flow measurements in order to obtain meaningful
results was clearly demonstrated.
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Appendix A Notation

Time—averaged operator over turbulence

Spatially averaged operator

Fluctuation over time-averaged value

Fluctuation over space-averaged value

Variable made dimensionless using wall units (U and v)
Laplacian operator

Ratio between the sum of the differential frontal

areas of the obstacles divided by the differential

volume of fluid
Dimensionless parameter defining flexibility of vegetation

Distance equal to five percent of the flow depth measured
from the bottom

Plant spacing

Bouyancy parameter B = — gR (k*/&?) ( 8C/dz )
Suspended sediment concentration

Bottom sediment concentration

Model parameter for temperature stratification effects on
Prandtl-Schmidt number

Drag coefficient of plants

Drag coefficient of sediment particles

Eddy-viscosity coefficient in the k-¢ turbulence model
Averaged suspended load concentration

Weighting coefficients for production- and dissipation-related
terms

Pressure-strain coefficient

Coefficient modifying the traditional wall function for ¢

Coefficient modifying the traditional wall function for k
Coefficient modifying the traditional wall function for U
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Weighting coefficients for production- and
dissipation-related drag-terms

Horizontal diameter of the (vertically oriented) plants

Mean sediment diameter

Kronecker delta
Time and vertical spacing on the numerical grid

Roughness parameter approximately equal to 9
for hydraulically smooth conditions and 30v/u+/k;
for fully rough conditions where ks = equivalent
sand roughness

Stem flexural rigidity

Dissipation rate of turbulent kinetic energy
Froude number
Pressure Force per unit length in z on the perimeter s

Drag force per unit volume, i-direction component
Model parameters for temperature stratification effects on
Prandtl-Schmidt number

Modified version of Grass’ parameter

Gravitational acceleration

Gravitational acceleration component in the i-direction.

Pressure-strain coefficient
Plant height

Mean flow depth
Kolmogorov microscale

Measure of roughness in the Einstein’s (1950)
equation for suspended load

Einstein’s viscosity constant

Equivalent sandgrain roughness

Von Karman’s constant (0.40)

One-dimensional wave number in the streamwise direction
Turbulent kinetic energy

Turbulent kinetic energy evaluated at the first grid point
from the bed

Mixing length

Length scale for momentum transfer

Macro-length scale for streamwise velocity fluctuations
Taylor microscale

Plant density in stems per square meter

Relative density of plants
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Appendix A Notation

Total number of grid points in the vertical direction
Manning’s resistance coefficient

Vector normal to the perimeter of the object
Component of n in the x—direction

Vector ny in the upstream and downstream faces of
the object, respectively

Fluid kinematic viscosity.

Kinematic viscosity of sediment—water mixture
Kinematic viscosity of clear water
Kinematic eddy viscosity
Fluid dynamic viscosity
Instantaneous pressure
Shear- and wake-production terms
Modified version of Grass’ parameter

Total water discharge
Specific water discharge

Suspended sediment transport capacity
Suspended sediment transport capacity without vegetation
Suspended sediment transport capacity with vegetation
Flow Reynolds number
Dimensionless particle size defined as
R, = Ds /g R D Jv
Hydraulic radius
Equivalent hydraulic radius
Submerged specific gravity of sediment, defined as
= (es0)/e

Fluid density
Sediment density

Clear water density.
Perimeter of a cylinder
Generalized source term
Bed slope

One-dimensional normalized spectra for streamwise
velocity

Prandtl-Schmidt number
Prandtl-Schmidt number for sediment particles
Prandtl-Schmidt number for non-stratified conditions

Time
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Turbulent transport of turbulent kinetic energy
Time-scale of momentum transfer

Instantaneous streamwise, spanwise and

wall-normal velocities, respectively

Mean streamwise, spanwise and wall-normal
velocities, respectively

Streamwise, spanwise and wall-normal velocity
fluctuations, respectively

Root-mean square values of streamwsie, spanwise and
wall-normal velocity fluctuations, respectively

Value of U at first grid point from the bed

Mean bed shear velocity

Square-root of the Reynolds stress per unit density

at the top of the canopy

Right-handed coordinate system representing
streamwise, spanwise and wall-normal axis, respectively.

Terminal fall velocity of sediment particle 1
Garcia and Parker’s parameter ( Z,, = u,/ws R%S ) [

First grid point away from the bed
Generalized variable characterizing sediment transport
process
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