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Abstract

*BMDs, HDDs, and K*BMDs provide compact representations for functions which map Boolean vectors
into integer values, but not floating point values. In this paper, we propose a new data structure, called
Multiplicative Power Binary Hybrid Diagrams (*PBHDs), to provide a compact representation for functions
that map Boolean vectors into integer or floating point values. The size of the graph to represent the IEEE
floating point encoding is linear with the word size. The complexity of floating point multiplication grows
linearly with the word size. The complexity of floating point addition grows exponentially with the size
of the exponent part, but linearly with the size of the mantissa part. We applied *PBHDs to verify integer
multipliers and floating point multipliers before the rounding stage, based on a hierarchical verification
approach. For integer multipliers, our results are at least 6 times faster than ¥BMD’s. Previous attempts
at verifying floating point multipliers required manual intervention. We verified floating point multipliers
before the rounding stage automatically.
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1 Introduction

Binary Moment Diagrams (BMDs) [3] have proved successful for representing and manipulating
functions mapping Boolean vectors to integer values symbolically. They have been used in the
verification of arithmetic circuits [4]. Clarke, et al. [6] extended BMDs to a form they call Hybrid
Decision Diagrams (HDDs), where a function may be decomposed with respect to each variable
in one of six ways, but without edge weights. Drechsler, et al. [9] extended Multiplicative BMDs
(*BMD:s) to a form called K*BMDs, where a function may be decomposed with respect to each
variable in one of three ways, and with both additive and multiplicative edge weights. None of
these diagrams can represent functions which map Boolean vectors to floating point values, unless
rational numbers are introduced into the representation [2]. But using rational numbers in the
representation requires more space to store the numerator and denominator separately, and more
computation to extract the rational numbers.

Verification of floating point arithmetic circuits with any of these three diagrams requires floating
point circuits to be divided into several sub-circuits, for which specifications can be expressed in
terms of integer functions and their operations {4, 5, 7]. The correctness of the overall circuit must
be proved by users from the specifications of the verified sub-circuits. For instance, the floating
point multiplier was divided into the circuits for the mantissa multiplication, the exponent addition,
and the rounding in {5]. The verification of these three sub-circuits was performed automatically
by word-level SMV [7], but the correctness of the entire multiplier must be proved by users from
the verified specifications of these three sub-circuits. To avoid partitioning floating point arithmetic
circuits for verification, it is necessary to have decision diagrams that represent and manipulate the
floating point functions efficiently.

In this paper, we propose a new representation, called Multiplicative Power Binary Hybrid
Diagrams (*PBHDs), that improves on previous diagrams in representing floating point functions.
*PBHDs can represent functions having Boolean variables as arguments and floating values as
results. This structure is similar to that of HDDs [6], except that they are based on powers-
of-2 edge weights and complement edges for negation. We show that the size of floating point
multiplication grows linearly with the word size. For floating point addition, we show that the
complexity grows exponentially with the exponent size, but linearly with the mantissa size.

Based on a hierarchical verification methodology [3, 4], we have applied *PBHDs to verify
different sizes and types of integer multipliers. Compared with *BMDs, *PBHDs are consistently
six times faster in terms of CPU time and use less memory. We have also applied *PBHDs to verify
different sizes and types of floating point multipliers before the rounding stage, which had never
been verified symbolically and automatically. Our results show that the verification of floating
point multipliers requires minimal effort beyond integer multipliers. Our next step is to look into
the rounding stage and entire floating point multipliers. Earlier results using HDDs [5] show that
the rounding stage itself can be handled.

The outline for the rest of this paper is as follows: Section 2 discusses basic properties and
limitations of BMDs, *BMDs and HDDs. The *PBHD data structure is presented in Section
3. Section 4 shows *PBHDs for several numeric functions including integers and floating point
numbers. Section 5 compares the differences among *PBHD, *BMD, HDD and K*BMD. The
performance results are shown in Section 6. Finally, Section 7 contains the conclusion and possible




future work.

2 Basics and Limitations of BMDs, * BMDs and HDDs

For expressing functions Boolean variables into integer values, BMDs[3] use the moment decom-
position of a function:

f = (1—$)'f5+ ¢ fo
f= + 2 fr (1

where -,+ and — denote multiplication, addition and subtraction, respectively. Term f,. (fz) denotes
the positive (negative) cofactor of f with respect to variable z, i.e., the function resulting when
constant 1 (0) is substituted for z. By rearranging the terms, we obtained the third line of Equation 1.
Here, fs» = fo — fs is called the linear moment of f with respect to x. This terminology arises
by viewing f as being a linear function with respect to its variables, and thus f, is the partial
derivative of f with respect to 2. The negative cofactor fz will be termed the constant moment, i.e.,
it denotes the portion of function f that remains constant with respect to 2. This decomposition is
also called Davio positive in K¥BMDs [9]. Each vertex of a BMD describes a function in terms of
its moment decomposition with respect to the variable labeling the vertex. The two outgoing arcs
denote the constant and linear moments of the function with respect to the variable.

Clarke, et al. [6] extended BMDs to a form they call Hybrid Decision Diagrams (HDDs), where
a function may be decomposed with respect to each variable in one of six decomposition types.
In our experience with HDDs, we found that three of their six decomposition types are useful
in the verification of arithmetic circuits. These three decomposition types are Shannon, Davio
Positive, and Davio Negative. Therefore, Equation 1 is generalized to the following three equations
according the variable’s decomposition type:

{ (1-2) fs+e- fo (Shannon)

f = fe+ 2z fsu (Davio Positive) )

fe+(1—2) fiz  (Davio Negative)

Here, fsz = fz — f. is the partial derivative of f with respect to Z. The BMD representation is
a subset of HDDs. In other word, the HDD graph is the same as the BMD graph, if all of the
variables use Davio positive decomposition.

As an example, Figure 1 show an integer function f with Boolean variables z and y that is
represented by a truth table, BMDs, *BMDs, and HDDs with Shannon decompositions (also called
MTBDD [8]). In our drawing, the variables with Shannon and Davio positive decomposition
types are drawn in shadowed and non-shadowed vertices respectively. Figure 1.b shows the BMD
representation. To construct this graph, we apply Equation 1 to function f recursively. First, with
respect to variable x, we can get fz = 1+ y, represented as the graph of the dashed-edge of vertex
z, and f5, =3 + 3y, represented by the solid branch of vertex «. Observe that f5. can be expressed
by 3 x fz. By extracting the factor 3 from f;., the graph became Figure 1.c. This graph is called
a Multiplicative BMD (*BMD) which extracts the greatest common divisor (GCD) from both
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Figure 1: An integer function with Boolean variables, f = 1+ y + 32 + 3zy, is represented by
(a) Truth table, (b) BMDs, (c) *BMDs, (d) HDDs with Shannon decompositions. The dashed-
edges are 0-branches and the solid-edges are the 1-branches. The variables with Shannon and Davio
Ppositive decomposition types are drawn in shadowed and non-shadowed vertices respectively.

branches. The edge weights combine multiplicatively. The HDD with Shannon decompositions
can be constructed from the truth table. The dashed branch of vertex 2 is constructed from the first
two entries of the table, and the solid branch of vertex 2 is constructed from the last two entries of
the table.

Observe that if variables « and y are viewed as bits forming 2-bit binary number, X=y+42z,
then the function f can be rewritten as f = 2(+22) = 2X  Observe that HDDs with Shannon
decompositions and BMDs grow exponentially for this type of functions. *BMDs can represent
them efficiently, due to the edge weights. However, *BMDs cannot represent the functions as
f =2%-%, where B is a constant, because it can only represent integer functions.

3 The ¥*PBHD Data Structure

In this section, we introduce a new data structure, Multiplicative Power Binary Hybrid Diagrams
(*PBHDs), to represent functions that map Boolean vectors to integer or floating point values. This
structure is similar to that of HDDs, except that they use powers-of-2 edge weights and negation
edges. The powers-of-2 edge weight feature enables us to represent and manipulate functions
mapping Boolean vectors to floating point values. Negation edges can further reduce graph size
by half. As with *PBHDs, we assume that there is a total ordering of the variables such that the
variables are tested according to this ordering along any path from the root to a leaf. Each variable
is associated with its own decomposition type and all nodes of that variable use the corresponding
decomposition.



3.1 Edge Weights

*PBHDs use three of HDD’s six decompositions expressed in Equation 2. Similar to *BMDs, we
adapt the concept of edge weights to *PBHDs. Unlike *BMD’s edge weights, we restrict our edge
weights to be powers of a constant ¢, Thus, Equation 2 is rewritten as:

- ((1—2) fe+2- fo) (Shannon)
(w,f) = { - (fatz- fs) (Davio Positive)
¢ (fot (1—2)- fiz) (Davio Negative)

where (w, f) denotes ¢* x f. In general, the constant ¢ can be any positive integer. Since the base
value of the exponent part of the IEEE floating point format is 2, we will consider only ¢ = 2 for
the remainder of the paper. Observe that w can be negative, i.e. we can represent rational numbers.
The power edge weights enable us to represent functions mapping Boolean variables to floating
point values without using rational numbers in our representation.

wo>wl wl=wl wi<wl

x
X X X
Jo 5 /f\,, i //\0 /i o J;

Figure 2: Normalizing the edge weights.

In addition to HDD’s reduction rules [6], we apply several edge weight manipulating rules to
maintain the canonical form of the resulting graph. Let w0 and w1 denote the weights at branch 0
and 1 respectively, and fo and f; denote the functions represented by branch 0 and 1. To normalize
the edge weights, we chose to extract the minimum of the edge weight w0 and w1. This is a much
simpler computation than the GCD of integer *BMDs or the reciprocal of rational *BMDs [2].
Figure 2 illustrates the manipulation of edge weights to maintain a canonical form. The first step
is to extract the minimum of w0 and w1. Then, the new edge weights are adjusted by subtracting
the minimum from w0 and w1 respectively. A node is created with the index of the variable, the
new edge weights, fo and f;. Base on the relation of w0 and w1, the resulting graph is one of three
graphs in Figure 2. Note that at least one branch has zero weight. In addition, the manipulation
rule of the edge weight is the same for all of the three decomposition types. In other words, the
representation is normalized if and only if the following holds:

o The leaf nodes can only have odd integers or 0.
e At most one branch has non-zero weight.

o The edge weights are greater than or equal to 0, except the top one.




3.2 Negation Edge

Negation edges are commonly used in BDDs [1] and KFDDs [10], but not in *BMDs, HDDs and
K*BMDs. Since our edge weights extract powers-of-2 which are always positive, negation edges
are added to *PBHDs to increase sharing among the diagrams. In *PBHD, the negation edge of
function f represents the negation of f. Note that — f is different from f for Boolean functions.

-— - - -
y s 1 ®

Figure 3: Rules for negation edges

Negation edges allow greater sharing and make negation a constant computation. In our
*PBHD data structure, we use the low order bit the pointers to denote negation, as is done with
the complement edge of BDDs. To maintain a canonical form, we must constrain the use of
negation edges. Unlike KFDDs [10], where Shannon decompositions use a different method from
Davio positive and negative decompositions, *PBHDs use the same method for manipulating the
negation edge for all three decomposition types. The *PBHDs must follow these rules: the zero
edge of every node must be a regular edge, the negation of leaf 0 is still leaf 0, and leaves must
be nonnegative. Figure 3 illustrates the rules for negation edges. These four pair of functions are
functionally equivalent. In our implementation, we always create nodes for the left side of the pait.
In other words, the O-branch is always positive. This guarantees a canonical form.

4 Representation of Numeric Functions

*PBHDs can effectively represent numeric functions that map Boolean vectors into integer or
floating point values. We first show that *PBHDs can represent integer functions with comparable
sizes to *BMDs. Then, we show the *PBHD representation for floating point functions and
operations.

4.1 Representation of Integers

*PBHDs, similar to *BMDs, can provide a concise representation of functions which map Boolean
vectors to integer values. Let & represent a vector of Boolean variables: «,_1, ..., 21, Zo. These
variables can be considered to represent an integer X according to some encoding, e.g., unsigned
binary or two’s complement. Figure 4 illustrates the *PBHD representations of several common
encodings for integers. In our drawing of *PBHDs, we indicate the edge weight and leaf node in
shadowed and non-shadowed square boxes respectively. Unlabeled edges have weight 0 (2°). The
dashed line from a vertex denotes the case where the vertex variable is evaluated to 0, and the solid
line denotes the case where the vertex variable is evaluated to 1. Anunsigned number is encoded as a
sumof weighted bits. The *PBHD representation has a simple linear structure where the leaf values
are formed by the corresponding edge weight and leaf 1 or 0. For representing signed numbers, we
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Unsigned Two’s Complement Sign-Magnitude

Figure 4: *PBHD Representations of Integers. Each variable uses Davio positive decomposition.
All commonly used encodings can be represented with linear complexity.

assume x,,; is the sign bit. The two’s complement encoding has a *PBHD representation similar
to that of unsigned integers, but with bit z,,_; having weight —2"~! represented by the edge weight
n — 1 and the negation edge. Sign-magnitude integers also have *PBHD representations of linear
complexity, but with the constant moment with respect to ,—; scaling the remaining unsigned
number by 1, and the linear moment scaling the number by —2 represented by edge weight 1 and
the negation edge. In evaluating the function for z,,_; = 1, we would add these two moments,
effectively scaling the number by —1. Note that it is more logical to use Shannon decomposition
for the sign bit.

X+Y X*Y

Figure 5: *PBHD Representations of Word-Level Sum and Product. Each variable uses Davio
positive decomposition. The graphs grow linearly with word size.

Figure 5 illustrates the *PBHD representations of several common arithmetic operations on
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integer data. Observe that the sizes of the graphs grow only linearly with the word size n. Integer
addition can be viewed as summing a set of weighted bits, where bits 2; and y; both have weight
2 represented by edge weight i. Integer multiplication can be viewed as summing a set of partial
products of the form ;2'Y. In summary, while representing the integer functions, *PBHDs with
-Davio positive decompositions usually will get the most compact representation among these three
decompositions.

4.2 Representation of Floating Point Numbers

Let us consider the representation of floating point numbers by IEEE standard 754. For example,
the double-precision numbers are stored in 64 bits: 1 bit for the sign (.S,), 11 bits for the exponent
(EX), and 52 bits for the mantissa (X). The exponent is a signed number represented with bias
(D) of 1023. The mantissa represents a number less than 1. Based on the value of the exponent,
the IEEE floating point format can be divided into four cases:

(=1)% x LX x 25X-8 [f0<EX < Alll (normal numbers)
(-1)% x0.X x2""% IfEX=0 (denormal numbcers)
NaN IfEX=Al1&X #0

(=1)% x o0 IfEX=AU1&X =0

Currently, *PBHDs cannot handle infinity and Na/N (not a number) cases in the floating point
representation. Instead, assume they are normal numbers.

() 25% with Davio Positive (b) 2% with Shannon (c) 2"*F \ith Shannon

Figure 6: *PBHD Representations of 25X and 2%~#. The graph grows linearly in the word
size with Shannon, but grows exponentially with Davio Positive.

Figure 6 shows *PBHD representations for 24X and 25X ¥ using different decompositions. To
represent function ¢ (in this case ¢ = 2), *PBHDs express the function as a product of factors of
the form ¢?'** = (¢*')**i, In the graph with Shannon decompositions, a vertex labeled by variable
ca; has outgoing edges with weights 0 and ¢*, both leading to a common vertex denoting the
product of the remaining factors. But in the graph with Davio positive decompositions, there is
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no sharing except for the vertices on the layer just above the leaf nodes. Observe that the size of
*PBHDs with Davio positive decomposition grows exponentially in the word size while the size of
*PBHDs with Shannon grows linearly. Interestingly, *BMDs have a linear growth for this type of
function, while *PBHDs with Davio positive decompositions grow exponentially.

To represent floating point functions symbolically, it is necessary to represent 24X~ efficiently,
where B is a constant. HDDs cannot represent both 254 and 2¥%-# efficiently, since they do
not have edge weights. *BMDs can represent 2% efficiently [3], but not 25X~ which can be
interpreted as 25X divided by 2¥. K*BMDs have the same problem as *BMDs in representing
25X_B, Without using rational numbers, *BMDs, HDDs and K*BMDs cannot represent 25%=5,
However, the edge weights in *PBHDs can represent function 224 ~# efficiently by simply adding
a edge weight — B3 on top of the *PBHDs of 24 as shown in Figure 6.c.

denormal

(a) Sign: (-I)S" (b) 2" with Shannon

(c) Mantissa: 0.X (d) Mantissa: 1.X (e) Floating Point Encoding

Figure 7: Representations of the floating point encodings.




Figure 7 shows the *PBHD representations for each component of the floating point encoding
and the whole representation, where X has 3 bits, X has 4 bits, and the bias B is 3. The sign
S, and ¢% variables use Shannon decomposition, while variables ¥ use Davio positive. Figure 7.a
shows the *PBHD representation for the sign bit (—1)%=. When S; is 0, the value is 1; otherwise,
the value is -1 represented by the negation edge and leaf node 1. Figure 7.b shows the *PBHD
representation for the exponent part 2£X-3_The graph is more complicated than Figure 6.c, because
in the floating point encoding, when EX =0, the value of the exponent is 1 — B instead of —I3.
Observe that each exponent variable, except the top variable cz,, has two nodes: one to represent
the denormal number case and another to represent normal number case. Figure 7.c shows the
representation for the mantissa part 0.X obtained by dividing X by 273, Again, the division by
powers of 2 is just adding the edge weight on top of the original graph. Figure 7.d shows the
representation for the mantissa part 1.X which is the sum of 0.X and 1. The weight (273) of the
least significant bit is extracted to the top and the leading bit 1 is represented by the path with
all variables set to 0. Finally, Figure 7.e shows the *PBHD representation for the floating point
encoding. Observe that negation edges reduce the graph size by half. The polygon in the figure
denotes the representation for denormal numbers. The rest of the graph represents the normal
numbers. Assume the exponent is » bits and the mantissa is m bits. Note that the edge weights are
encoded into the node structure in our implementation, but the top edge weight requires an extra
node. It can be shown that the total number of *PBHD nodes for the floating point encoding is
2(n + m) + 3. Therefore, the size of the graph grows linearly with word size. In our experience, it
is more logical to use Shannon decompositions for the sign and exponent bits, and Davio positive
decompositions for the mantissa bits. For the rest of the paper, we use this decomposition setting
to represent the floating point encoding.

4.3 Floating Point Multiplication and Addition

This section presents floating point multiplication and addition based on *PBHDs. Here, we show
the representations of these operations before rounding. In other words, the resulting *PBHDs
represent the precise results of the floating point operations. For floating point multiplication, the
size of the resulting graph grows linearly with the word size. For floating point addition, the size
of the resulting graph grows exponentially with the size of the exponent part.

Let Fy = (=1)% X v,. X x 25X and Fy = (=1)% x v,. X x 25¥~5, where v, (vy) is 0 if
LEX (EY) =0, otherwise, v, (vy)is 1. X and LY are n bits, and X and Y are m bits. Let the
variable ordering be the sign variables, followed by the exponent variables and then the mantissa
variables. Based on the value of £X, Expanding and rearranging the terms of the multiplication
Iy x I'y yields:

Fx x Py = (~=1)%%% x (v,.X x 25%78) x (v,.Y x 28¥7F)
S, - 21 % (0.X x v,.Y) x 28Y Casc0: EX =0
(L 1\5:8S 28 X0 y L
(1) < 270 { 255 5 (1X x (0.Y) x 25 Casc1: EX #0 &

Figure 8 illustrates the *PBHD representation for floating point multiplication. Observe that
two negation edges reduce the graph size to a quarter of the original size. When ca1 = czo = 0(as
Case 0 in Equation 3), the sub-graph represents the function (0.X x v,.Y) x 2¥¥. When cz; # 0
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or czo # 0 (Case 1), the sub-graph represents the function (1.X x v,.Y) x 2%Y . Observe that
there is no sharing in the exponent parts of these two sub-graphs, but there are some sharings in
the graphs of the mantissa products, The lower part of the resulting graph shows four mantissa
products(from left to right): X x Y, (2 + X) x Y, X x (2*+7Y), (2*+ X) x (2* + Y). The
first and third mantissa products share the common sub-function Y shown by the solid rectangles
in Figure 8. The second and fourth products share the common sub-function 2* + Y shown by the
dashed rectangles in Figure 8. The following theorem shows that the size of the resulting graph
grows linearly with the word size for the floating point multiplication.

Figure 8: Representations of the floating point multiplication.

Theorem 1 Given the ordering as shown in Figure 8, the size of the resulting graph of floating
point multiplication is 6(n + m) + 3, where n and m are the number of bits in the exponent and
mantissa parts.

Proof: From Equation 3 and Figure 8, we know that there are no sharing in the sub-graphs for
EX =0and EX # 0. For £X = 0, the size of the sub-graph except leaf nodes is the sum of the
nodes for the exponent of Iy (2n — 1 nodes), the nodes for the mantissa of I'x (2m nodes), and the
nodes for the mantissa of Iy (m nodes). Similarly, for £X # 0, the size of the sub-graph except
leaf nodes is also 2n + 3m — 1. The size for the exponent part of ['x is 2n — 1. The number of
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nodes for the sign bits and top level edge weight is 3, and the number of leaf nodes is 2. Therefore,
the size of the resulting graph for floating point multiplication is 6(n + m) + 3. [

For floating point addition, the size of the resulting graph grows exponentially with the size
of the exponent part. The following theorem proves that the number of distinct mantissa sums in
*PBHD representation grows exponentially with the size of the exponent part.

Theorem 2 For floating point addition Fx + Iy, the number of distinct mantissa sums is 22 — 10,
where n is the number of bits in the exponent part,

Proof: We first show that the floating point addition can be divided into two cases according to
the sign bits of two operands. When S5, @ S, is equal to 0, the floating point addition must be
performed as “true addition”, shown as Equation 4.

Fx +Fy = (—1)% x (2858 x v, X +v,.Y x 25¥5) 4

When S, @ S, is equal to 1(i.e., they have different sign), the floating point addition must be
performed as “true subtraction”, shown as the following equation.

Fx+Fy = (=1)% x (2858 x v, X —v,.Y x 28Y-#) )

There is common distinct mantissa sum among true addition and true subtraction, since one performs
addition and another performs subtraction.

Let us consider the true addition operation first. Based on the relation of £X and LY, Equation 4
can be rewritten as the following:

Py + Iy = (—I)S’X
28 % {0.X +0.Y) Casc0: X = BY =0
2B % {0.X + 1Y x 2871} Casel:EX = 0&EY > 0
2By (2X-15 1.X 40Y)  Casc2:EX >0&EY =0 ’
2EX-B x (1.X 4 1Y) Case3:EX >0&EY > 0&EX =5y ©®
2EX-B  (1.X + 1Y x 26¥-EX} Casc4: EX > 0&EY > 0 &EX < EY
BY-B y (BEX-EY y 1 X 4 1Y) Casc5:EX > 0&EY >0 &EX > EY

For Case 0, the number of distinct mantissa sums is only 1. For Case 1, the number of distinct

mantissa sums is the same as the number of possible values of 'Y except 0, which is 2" — 1.
Similarly, for Case 2, the number of distinct mantissa sums is also 2" — 2, but 0.X+1.Y has the
same representation as 1.X+0.Y in case 1. For Case 3, the number of distinct mantissa sums is
only 1. For Case 4, the number of distinct mantissa sums is the same as the number of possible
values of LY — EX. Since both X and IY can not be 0, the number of possible values of
EY — EX is 2 — 2. Therefore, the number of distinct mantissa sums is 2" — 2. Similarly, for
Case 5, the number of distinct mantissa sums is also 2" — 2. Therefore the total number of distinct
mantissa sums for the true addition is 2”2 — 5.

Similarly, Equation 5 can be rewritten as the following equation:
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Iy + Iy = (—I)S’X
25 % {0.X - 0.Y) Casc0: EX = EY = 0
2E % (0.X — 1Y x 261} Cascl: EX = 0&EY >0
2By (EX1% 1LX —0Y)  Case2: EX > 0&EY =0 ;
WX (1.X ~ 1Y) Case3: EX > 0&EY > 0&EX = £y (P
EX-B y (1.X — 1Y x 28Y-EX) Cascd: EX > 0&EY > 0 &EX < LY
2EY-H y (2EX-EY % 1 X ~ 1Y) Casc5:EX >0&EY > 0&EX > EY

For Case 5 and 4, the numbers of distinct mantissa sums are the same as those in the corresponding
cases of true addition. For Case 3, the mantissa sum 1.X — 1.Y is the same as 0.X — 0.Y in Case
0. For both Case 1 and 2, the number of distinct mantissa sum is 2" — 1. Therefore, the number
of of distinct mantissa sums for the true subtraction is also 2**2 — 5. Thus, the total number of
distinct mantissa sums is 2"+* — 10. [

H I 4 : ] K : ’
; AC ; ; AN PR Y ; ; S {
06X 0X- 24X 0X 60X 0X- 21X 1X 1X 1X- 4X 21X 06X 1X- 4%1X 0X 0X 0X+ 2%1X 1X 00X+ OX+ 200X 1X+ 1X 1X+ 41X 21X1X  1X+ 491X 1X
DY 21X 0Y 0¥ LY 4*Y 1Y 200Y LY 24 0Y 1Y 0Y 4Y 1Y OY +0Y 2°LY 40  +1Y LY  4%LY +1Y 2°LY +0Y 2°1Y +0Y 1Y +1Y 4%LY +1Y +1Y

Figure 9: Representations of the floating point addition. For simplicity, the graph only shows
sign bits, exponent bits and the possible combinations of mantissa sums.

Figure 9 illustrates the *PBHD representation of floating point addition with two exponent bits
for each floating point operand. Observe that the negation edge reduces the graph size by half.
There is no sharing among the sub-graphs for true addition and true subtraction. In true subtraction,
1.X — 1.Y has the same representation as 0.X —0.Y". Therefore, all 1.X — 1.Y entries are replaced
by 0.X —0.Y. Since the number of distinct mantissa sums grows exponentially with the number of
exponent bits, it can be shown that the total number of nodes grows exponentially with the size of
exponent bits and grows linearly with the size of the mantissa part(See the appendix for the details
of proofs). Floating point subtraction can be performed by the negation and addition operations.
Therefore, it has the same complexity as addition.

In our experience, the sizes of the resulting graphs for multiplication and addition are hardly
sensitive to the variables ordering of the exponent variables. They exhibit a linear growth for
multiplication and exponential growth for addition for almost possible ordering of the exponent
variables. It is more logical to put the variables with Shannon decompositions on the top of the
variables with the other decompositions.
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5 Comparisons with *BMD, HDD and K*BMD

The major difference between *PBHD and the other three diagrams is in their ability to represent
functions that map Boolean variables into floating point values and their use of negation edges.
Table 1 summarizes the differences between them.

Features *PBHD | *BMD | HDD | K*BMD
Additive weight No No No Yes
Multiplicative weight Powersof2 | GCD | No GCD
Number of decompositions 3 1 6 3
Negation edge Yes No No No

Table 1: Differences among four different diagrams.

Compared to *BMDs [3], *PBHDs have three different decomposition types and a different
method to represent and extract edge weights. These features enable *PBHD:s to represent floating
point functions effectively. *BMD’s edge weights are extracted as the greatest common divisor
(GCD) of two children. In order to verify the multiplier with a size larger than 32 bits, *BMDs
have to use multiple precision representation for integers to avoid the machine’s 32-bit limit. This
multiple precision representation and the GCD computation are expensive for *BMDs in terms of
CPU time. Our powers of 2 method not only allows us to represent the floating point functions but
also improves the performance compared with *BMD’s GCD method.

Compared with HDDs having six decompositions [6], *PBHDs have only three of them. In
our experience, these three decompositions are sufficient to represent floating point functions and
verify floating point arithmetic circuits. The other three decomposition types in HDDs may be
useful for other application domains. Another difference is that *PBHDs have negation edges and
edge weights, but HDDs do not. These features not only allow us to represent the fioating point
functions but also reduce the graph size.

*PBHDs have only multiplicative edge weights, but K¥BMDs [9] allow additive and multiplica-
tive weights at the same time. The method of extracting the multiplicative weights is also different
in these two representations. *PBHDs extract the powers-of-2 and choose the minimum of two
children, but K¥BMDs extract the greatest common divisor of two children like *BMDs. The
additive weight in K¥BMDs can be distributed down to the leaf nodes in *PBHD by recursively
distributing to one or two branches depending on the decomposition type of the node. In our
experience, additive weights do not significantly improve the sharing in the circuits we verified.
The sharing of the additive weight may occur in other application domains.
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6 Experimental Results

We have implemented *PBHD with basic BDD functions and applied it to verify arithmetic circuits.
Integer multiplier circuits and *BMD package can be obtained from Yirng-An Chen’s WWW page!.
The circuit structure for four different types of multipliers are manually encoded in a C program
which calls the BDD and *BMD operations. We also integrated our *PBHD package with the C
program. Our measurements are obtained on Sun Sparc 10 with 256 MB memory.

6.1 Integer Multipliers

Circuits CPU Time (Sec.) Memory(MB)
16 64 256 16 64 256
Add-Step | *BMD | 1.40 1538 35438067 077 1.12
*PBHD | 0.20 224 3996 }{0.11 0.18 0.64
Ratio 7.0 6.8 89| 60 43 18
CSA *BMD | 1.61 2691 591.70 | 0.67 0.80 2.09
*PBHD | 0.25 345 50.72(0.14 030 0.88
Ratio 6.4 7.8 1171 48 27 24
Booth *BMD | 2.05 34.09 782.20(0.70 0.86 1.84
*PBHD | 0.21 297 6256(0.14 030 1.26
Ratio 97 115 1251 50 29 15
Bit-Pair | *BMD | 1.21 17.35 378.6410.70 086 234
*PBHD | 0.20 2.17 36.10{0.15 033 1.33
Ratio 6.0 8.0 105] 47 26 18

Table 2: Performance comparison between *BMD and *PBHD for different integer multipli-
ers. Results are shown for three different words. The ratio is obtained by dividing the result of
*BMD by that of *PBHD.

Table 2 shows the performance comparison between *BMD and *PBHD for different integer
multipliers with different word sizes. *BMD results are close to the results published in the
papers [3, 4]. For the CPU time, the complexity of *PBHDs for the muitipliers still grows
Quadratically with the word size. Compared with *BMDs, *PBHDs are at least 6 times faster,
since the edge weight manipulation of *PBHDs only requires integer addition and subtraction,
but *BMDs require a multiple precision representation for integers and perform costly multiple
precision multiplication and division. While increasing the word size, the *PBHD’s speedup is
increasing, because *BMDs requires more time to perform multiple precision multiplication and
division operations. Interestingly, *PBHDs also use less memory than *BMDs, since the edge
weights in *BMDs are explicitly represented by extra nodes, while *PBHDs embed edge weights
into the node structure. The node sizes for both packages are 20 bytes.

'http://www.cs.cmu.edu/~yachen/home.html.
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6.2 Floating Point Multipliers

Circuits | CPU Time (Sec.) Memory(MB)
16 64 256 | 16 64 256
Add-Step | 0.24 229 39.7710.13 0.18 0.65
CSA 029 3.08 53.98]0.14 030 0.88
Booth |0.25 3.85 67.38|0.16 030 1.26
Bit-Pair | 0.21 2.10 38.54{0.15 033 1.33

Table 3: Performance for different floating point multipliers. Results are shown for three
different mantissa word size with fixed exponent size 11.

To perform floating point multiplication operations before the rounding stage, we introduced an
adder to perform the exponent addition and logic to perform the sign operation in the C program.
Table 3 shows CPU times and memory requirements for verifying the floating point multipliers
with fixed exponent size 11. Observe that the complexity of verifying the floating point multiplier
before rounding still grows quadratically. In addition, the computation time is very close to the time
of verifying integer multipliers, since the verification time of an 11-bit adder and the composition
and verification times of a floating point multiplier from integer mantissa multiplier and exponent
adder are negligible. The memory requirement is also similar to that of the integer multiplier.

6.3 Floating Point Addition

No. of Nodes CPU Time (Sec.) | Memory(MB)
Exponent Bits 23 52 23 52 23 52

4 4961 10877 0.23 0.68 0.37 0.74
5 10449 22861 0.67 1.30 0.68 1.06
6 21441 46845 1.13 3.50 1.13 1.99
7

8

9

434419 94829 2.65 6.87 1.90 3.79
87457 190813 717 16.82 3.62 7.46
175505 382797 | 14.98 41.34 715 1475

10 351617 766781 | 3335 103.17| 1426 2947
11 703857 1534765 | 72.84 26235 | 2650 54.89
12 1408353 3070749 | 163.18 573.73 | 54.06 110.86
13 2817361 6142733 | 398.25 1303.84 | 11249 226.00

Table 4: Performance for floating point additions. Results are shown for three different exponent
word size with fixed mantissa size 23 and 52 bits.

Table 4 shows the performance measurements of floating point addition operations with different
exponent bits and fixed mantissa sizes of 23 and 52 bits, respectively. Both the number of nodes
and the required memory double, while adding one extra exponent bit. For the same exponent bit,
the measurements for the 52-bit mantissa are approximately twice the corresponding measurements

15



for the 23-bit mantissa. In other words, the complexity grows linearly with the mantissa’s word
size. Due to the cache behavior, the CPU time is not doubling, while increasing one extra exponent
bit. For the double precision of IEEE standard 754 (the numbers of exponent and mantissa bits
are 11 and 52 respectively), it only requires 54.89MB and 262.35 seconds. These values indicate
the possibility of the verification of an entire floating point adder for IEEE double precision.
For the IEEE extended precision, the floating point addition will require at least 226MB x 8 =
1808MB memory. In order to verify IEEE extended precision addition, it is necessary to avoid the
exponential growth of floating point addition. :

7 Conclusions and Future Works

We have described a new representation, *PBHD, to represent functions that map Boolean variables
into integer or floating point values. We also applied *PBHDs to verify integer and floating point
multipliers. For integer multipliers, the CPU time of *PBHDs grows quadratically and is at least
6 times faster than *BMDs. For the floating point multipliers, the verification time is close to the
verification time of integer multipliers. In addition, we showed that the *PBHD representation for
floating point multiplication grows linearly with the word size. For the floating point addition, we
showed the graph size of the result grows exponentially with the word size of the exponent, but
linearly with the size of the mantissa.

As mentioned in previous sections, we will further pursue handling infinite and Na.V cases in
‘the *PBHD representation. We need to develop some methodologies or introduce some special
symbols to handle these cases. Another piece of future work is to handle the exponential growth
of the floating point addition. Our representation for the floating point addition represents the
precise values of all possible combinations, but in the actual circuit design, there are only about 200
interesting mantissa sums. Based on this knowledge, we will develop the methodology to avoid
the exponential growth of floating point addition.

To verify circuit designs automatically, we would like to integrate *PBHD package into word-
level SMV {[7] and extend the word-level SMV if needed. Another possible approach is to integrate
our *PBHD package into the ACV system [4] and extend the ACV system to handle the floating
point arithmetic circuits.

After integrating our *PBHD package into word-level SMV or ACV, our next step is to look
into the rounding stage and the entire floating-point multipliers and adders. Earlier results using
HDDs [5] show that the rounding stage itself can be handled. Since *PBHD is more powerful than
HDDs, we believe that the rounding stage can be verified using *PBHDs. We also believe that it
is possible to verify floating point multipliers using *PBHDs. To verify the entire floating point
adders, we need to develop some methodologies to avoid the exponential growth.

Appendix: Complexity Proofs of Floating Point Addition

In this section, we prove that the exact graph size of floating point addition under a fixed variable
ordering grows exponentially with the size of the exponent and linearly with the size of the mantissa.
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Assume that the sizes of the exponent and the mantissa are n and m bits, respectively. We assume
that the variable ordering is S, Sy, €20, €Yo, «ves CZn—1; CYn=15s Lm—1s wrs 201 Yim—1s s YO

Lemma 1 The size of the mantissa part of the resulting graph is 2+1(Tm — 1) — 20m — 4, where
n and m are the numbers of bits of the exponent and mantissa parts respectively.

Proof: Theorem 2 showed that the number of distinct mantissa sums is 2"+* — 10. Except the leaf
nodes, each mantissa sum can be represented by 2m nodes, but there is some sharing among the
mantissa graphs. First, let us look at the sharing among the mantissa sums of true addition. For
case 4 in Bquation 6, the graphs to represent function 0.X 4 2¥¥ 1 x 1.Y share the same subgraph
1.Y, which is also in the graph representing function 1.X + 0.Y. Thus, there are 2" — 1 distinct
mantissa sums to share the same graph(1.Y). Again, the graphs to represent 1.X + 1.Y in case 2
and 2 x 1.X 4 0.Y in case 3, share the sub-graph 2+ 0.Y, since 1.X + 1.Y=0.X + (2+0.Y) and
2x 1.X+0Y=2x0.X+(2+0.Y) . Therefore, we have to subtract (2" — 1)m nodes from the
total nodes.

Then, let us look at the true subtraction. First, the graph to represent 0.X — 0.Y shares the
sub-graph 0.Y with 0.X + 0.Y in true addition, because of the negation edge. For Case 4 in
Equation 7, the graphs to represent function 0.X — 2¥¥=1! x 1.Y share the same subgraph 1.Y in
true addition. The graphs to represent 1.X — 0.Y in case 3 and 2 x 1.X — 1.Y in case 0, share the
sub-graph 1 — 0.Y, since 1.X +1.Y=0.X +(1-0.Y)and2x 1.X - 1.Y=2 x 0.X +(1-0.Y).
Therefore, we have to subtract (2" 4+ 1)m nodes from the total nodes. Thus, the number of non-leaf
nodes to represent these distinct mantissa sums is (7 x 2" — 10) x (2m).

The leaf nodes 1 and 0 are referenced by these non-leaf nodes. For true addition, the number of
leaf nodes, except leaf node 1, is 2" — 2, since the leaf nodes of the mantissa sum for £X < LY
can be shared with the mantissa sum for £X > LY. To be specific, the leaf nodes are generated
by the sum of the leading 1s in the form of 14 1 x 25Y=EX or 1 x 25X-£Y 4 1  and there
are only 2" — 2 sums. Similarly, for true subtraction, there are 2" — 4 leaf nodes, but the
leaf nodes 3 (22 — 1) and 0 (2° — 1) already exist. Thus, the total number of leaf nodes is
2 4 (2" — 2) + (2" — 4) = 2"*! — 4, Therefore, the size of the mantissa part of resulting graph is
(7x2"—10) x (2m) + 2"t — 4= 2" (Tm — 1) — 20m — 4. [

Lemma 2 For all n > 2, the number of *PBHD nodes of the exponent part of the resulting graph
is5x 22— 16 xn — 18,

Proof: As mentioned before, the resulting graph can be divided into two parts: true addition and
true subtraction. First, we prove that the number of nodes of the exponent part for true addition is
5 x 21— 8 x n — 9. We prove this claim by the induction on the number of exponent bits n.

Base Case: If n = 2, the number of exponent nodes for true additionis 5 x 22*' —8x 2 -9 =15
as shown in Figure 9.

Induction Step: Assume the claim holds for n = k. To prove that the claim holds for n = k+1,let
E X, and EY; represent the low k bitsof £X and EY. Thus, EX isrepresented as 2* X czy+ £ X
Based on the values of X} and I'Y,, Equation 4 can be rewritten as the following:
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Fx + by = (-1)%=x

21-B y [2((2*=Dxezi) x G 4 2 =Dxew) x H} Case 0: KXy = EY) = 0
21-B y (2(BX—14(F =D xenx) x 1. X + B x 2@ DXV} Case 1: EXp > 0&EYy =0
2By (G x 20D xenr) 4 1y x 2BV —H @ =~ xen)} Case2: EXp = 0&EY; >0 ®)

2EVi~B x ((2BXk—EVi+¥ xem) x 1.X + LY x 22 Xe0)}  Case 3: EXp > 0&EYy > 0 &EXy > EY
2EXx=B x (3 %emk) 1. X x +1.Y x 2EV—EXe 4P Xewi)}  Cused: KXy > 0&EYE > 0 &EXx < Y

where G (II) is 0.X (0.Y) if ez, (eyy) is 0; otherwise, G (II) is 1.X (1.Y). Figure 10.a illustrates
the distinct sub-graphs after expanding variable cy,—q. These sub-graphs are divided into five
types, according to the cases in Equation 8. For Case 0, there is only one distinct sub-graph. For
Case 1, there are 2% — 1 distinct sub-graphs, since the number of possible value of £X is 28 — 1
and each value of EX,, will generate a unique function. Similarly, there are 2% — 1, 2¥ — 2, and
2% — 1 distinct sub-graphs for Case 2, 3, and 4, respectively. Thus, the total number of distinct
sub-graphs is 2612 — 4,

[ X X ) [ X X J [ X X ] o0 e
[\ ‘ x ‘ x 00%000) (00X41.1Y) (*1L1%00Y) (01X0.LY
ea, Case 4 ( ) ( ( )

Case 0 Case 1 Case 2
(b). Case 0
(a)
o
(,1X00%)(0.1X2%-1,1Y) (i+z",;.x,o,o.1r) (i+1,1.%0,LY) (0,0X41Y) (00.X.2%4,1.7) (-1 1X0LY) (0,1.!1‘+I,LY)
(c). Case 1 (d). Case 2

/ 0

GLX0LY) (01%2%,1Y) (+25,1X01Y) (11.X01Y) 01Xi1Y) (061%2%i,1Y) (%4,1X0LY) (0LXiLY)

(e). Case 3 (f). Case4

Figure 10: Distinct sub-graphs after variable cy,_;. (a) Distinct sub-graphs after variable cy;y
are divided into 5 types shown in graphs (b) to (f) which serve as template with a parameter . (b)
Case 0 only has one distinct graph, (€)0<i=EX; —1<2*-2. (d)0<i=LY,—1< 2k -2,
@) 1<i=EFEX,—EY, <2¢-2. (D1 <i=EY,-[X, <2k -2,

~ Figures 10.b shows the sub-graph for Case 0. In the graphs, each tuple (3, P, j, Q) represents
2 x P+ 2 x Q. For example, tuple (0, 0.X,0,0.Y) represents 2° x 0.X + 2° x 0.Y. Figires 10.c
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to Figures 10.f show the graphs with a parameter : for Cases 1, 2, 3 and 4, which serve as the
template of the graphs in the cases. For instance, the graph in Case 1 with : = 1 represents the
function 2 Xk=1+@" -1xemi) 5 1 X 4 JT x 2(@*~1xew) with £X, = 1 in Case 2 of Equation 8.

Since each sub-graph is distinct, the nodes with variable cz, are unique (i.e. no sharing).
Observing from these five types of sub-graphs, the possible sharing among the nodes with variable
cy;. is these cases: the ey, nodes in case 2 share with that in cases 3 and 4, and the nodes in
case 3 share with that in case 4. For the first case, the possible sharing is the right cy, nodes
in Figure 10.e and Figure 10.g. Observe that these two cy, node will be that same in the graph
with i = 7 in case 2 and the graph with i = j + 1 in case 4. Since the possible values of i are
ranged from 0 to 2* — 3, there are 2* — 2 cy,, nodes shared. When : = 2% — 2, the right cy; node
in the graph of case 2 will be shared with the left cy, node in the graph with :=1 in Figure 10.e.
Therefore, all of the right cy, nodes in Case 2 are shared nodes and are 2* — 1 nodes. For the
second case, the possible sharing is the left cy, node in Figure 10.e and the right ey node in
Figure 10.f. Observe that when i; + iz = 2%, the left cy, node in the graph with : = 7; in case 3
is the same as the right ey node in the graph with i = 7, in case 4. Since 2 < i; < 2¥F — 2 and
0 < iy < 2% — 2, there are 2* — 3 nodes shared. Therefore, the total number of exponent nodes are
Sx2H _8xhk—943x (22 —4)— (28 —1)— (28 =3) =5 x 20+ _8x (k+1) -9 =
S5x 2" ~8xn-—9,

Similarly, the number of nodes of the exponent part for true subtraction is 5 x 2"+! —8 xn — 9.
Therefore, the size of the exponent part of the resulting graph is 5 x 2"2 — 16 x n — 18. ]

Theorem 3 For the floating-point addition, the size of the resulting graph is 2"*! x (Tm + 9) —
20m — 16n — 19,

Proof: The size of the resulting graph is the sum of the nodes for the sign, exponent and mantissa
parts. The nodes for the sign part are 3 as shown in Figure 9. Lemma 1 and 2 have shown the sizes
of the mantissa and exponent parts respectively. Therefore, their sum is 27! x (7m + 9) — 20m —
16n —19.
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