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Abstract

This paper (characterizes all the factorizations of a polynomial with coeffi-
cients in the ring Z, where n is a composite number. We give algorithmn to
compute such factorizations along with algebraic classifications.
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1 Introduction

This paper attempts to understand the computational and algebraic differences
between polynomials over a field and polynomials over a ring. Polynomials
over a field are well understood. Many important polynomial time algorithms
in computational algebra have been developed by taking advantage of the un-
derlying field structure. In the case where the polynomials are over a ring,
however, very little seems to be known. In this paper we try to umderstand
the algebraic and computational complexity of polynomials over the ring of
the integers modulo n where n is a composite. In particular, we will attempt
to compute and characterize all factorizations of a univariate polynomial into
irreducibles. Perhaps understanding this polynomial ring will lead to a deeper
understanding of the computational limits of circuits as well as faster algorithms
in computational algebra. In the course of our discussion we will point out the
many differences between working over fields versms over rings to illustrate the
severity of the existing gap.

1.1 Circuit complexity theory

A motivation for this study comes from circuit complexity theory which is
the study of determining the hardness (or relative ease) of a given problem
by analyzing the circuits that represent it. A circuit can be thought of as a
directed acyclic graph where the nodes are called gates. The edges leading into
a node can be thought of as inputs, and the edges leaving a node carry the

output of that gate on its given inputs. For the purposes of this paper, we are
concerned only with boolean circuits, namely each input can take on a value
equal to either 0 or 1. The nodes with zero in-degree should be thought of as
inputs. When the inputs are set to some initial vector, the values will trickle
through the circuit producing 1 or more output values.

Now it is clear how a circuit could be used to decide membership in an
arbitrary set. We say that a circuit decides membership in a set S if for every
candidate encoded in zeros and ones, our circuit outputs a '1' on that input if
and only if the candidate is in S.

In this context, we wish to think of a family of circuits, one for each different
input length. We can also measure the depth of a circuit in the obvioms way.
A family of circuits has constant depth if each circuit in the family has depth
at most k regardless of the length of the input. This model of computation
has lead to many interesting results such as the fact that the parity function
cannot be computed by polynomial size constant depth circuits [FSS84]. We
can make this model even more interesting by allowing gates other than simply

AND, OR, and NOT. In fact, it is known that constant depth circuits which
have MOD, gates cannot compute the MODq function for any q that is not
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a power of p. What is the computational signifigance of having MOD, gates
where n is a composite?

We further restrict our model of computation to polynomials which repre-
sent boolean functions. We say that a polynomial f in n variables represents
the OR function if, when restricted to inputs of O's and l's,

1. f (. 1 ... xn) 6 0 when xi = l for some i < n.

2. f(X1... Xn) = 0 when xi = 0 for all i < n.

We measure the complexity ofpolynomial f by its degree. Recall the degree
of a multivariate polynomial is the maximum over all monomials of the sum
of the powers of the indeterminates in that monomial. It is known that for
polynomials over a field (namely over the integers mod p) the lowest degree
polynomial representing the OR function on N variables has degree fN/Ip- 1)]
[Smo87]. However, the bounds on the degree of a polynomial over a ring (the
integers mod n) are not as precise. The best known lower bound on the degree

of a polynomial representing the OR function mod n is Q(log N) [TB94], and
fairly recently a surprising upper bound of O(N1/r) where r is the number of
distinct primes dividing n was discovered [BBR94]. In [BBR94] we learn that a
low a degree polynomial for OR would imply the existence of small, low-depth
mod n circuits for the AND function.

2 Some Important Tools in Z,,[x]

2.1 The Zn[x] phenomena

Definition 2.1 Let Z denote the ring of integers and Zn Z/nZ the ring of
integers modulo n.

Definition 2.2 Let Zn[x] denote the ring of polynomials with coefficients from

Zn.

We first examine a few instances of weirdness in the ring Z,[x] with a few
examples. The presence of zero divisors in the following rings allows for very
strange constructions. Amazingly, for example, the polynomial x is not neces-
sarily irreducible in Zn [x]! In particular we can write the following factorization:

x - (4x + 3)(3x + 4) mod 6

Here a congruence f - g mod n between polynomials means that f - g has all
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coefficients congruent to 0 mod n. We show later how to prove that this is a
factorization into irreducibles. Also note that

X2 + 9 7-- (x+ 1)(x+7) =- (x+3)(x+5) mod 8

All four factors above are in fact irreducible, and so there is no unique factor-
ization in the composite case. We turn next to the first important tool needed
here: the Chinese Remainder Theorem.

2.2 The Chinese Remainder Theorem

Theorem 2.3 Let R be a commutative ring with identity. Let A1, A2 ... Ak
be ideals in R. Then the map R -4 R/A xf R/A 2 x ... x R/Ak defined by
r ý-* (r+Ai,r+A2,... , r+Ak) is a ring homomorphism with kernel.A1.... .Ak.
If the ideals are pairwise comaximal (i.e., for each i,j E {1, 2,... k} we have
Ai + Aj = R), then the map is surjective, and we may assert

R/(A1 A 2 ... A.) ftR/A 1 x R/A 2 x ... x R/Ak.

(A proof can be found in any abstract algebra book, for example [DFP0].) In
particular we may take R to be Z,4z] and its corresponding comaximal ideals to= ki k2 k
be the ideals Zk [.x] for each prime factor pi dividing n where n = Pt p'2 * * P•"'
This gives us a nicer representation for polynomials in Zn[x]. For a given
f E Zn, [x], we can write f as the following tuple:

f =-(fl,f2,... ,fs)

where f equals f mod p• Operations on these tuples are pointwise, since the
mapping is an isomorphism. FRom this, we see that an irreducible factor g of
f corresponds to the following tuple:

(1 1,1 .... 1,g .... ,1 ,1)

where gi is irreducible mod pi. Clearly no two tuples can multiply together to
result in g since gi is irreducible. Thus, every factorization in R must produdce
products of tuples of the above form. We ignore umits for the time being since
they only trivially modify the above factorizations. This discussion gives us an
immediate corollary:

Corollary 2.4 [vzGH96a] Let f E Z•[x] and n = rll<_i<,pki. The number of
irreducible factors of f E Zz[x] is the sum of the number of irreduicble factors
of fi E Z t, [T].

Pi
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We show given a factorization into these tuples how we can reconstruct a fac-
torization in Zn[x].

Proposition 2.5 Given Z,[x] ' Z i., [x] x ... x Zgk [x] and f I .. fn a factor-

ization of f into irreducibles where each fi has the tuple form above, we can
reconstruct a factorization in Zn[x] in polynomial time.

Proof: Let fi = (gy, g2,.... , g,). Let Coeff(h,i) denote the coefficient of the ith
power in the polynomial h.Let M be the degree of the largest polynomial in fi.
More precisely, we look at all the polynomial entries in the s-tuple for fi and let
M be the degree of the highest degree polynomial entry. Let fi(k) denote the
kth entry in the s-tuple corresponding to fi. The corresponding coefficient of
each power of x in fi's representation in Z,[x] can be reconstructed by looking
at its coefficient in each entry of fi's s-tuple in the following manner.

M

f, = CRT(fij).c'
j=O

where CRT(fi, j) denotes the solution to the following set of equations:

y = Coeff(fi(
1),j) mod pkl

Y= Coeff(f,( 2),yj) mod pý~'

y = Coeff(fW'),j) mod pk

This can be calculated using the Chinese Remainder Theorem. The notation
is complicated but the idea is simple. Given an s-tuple representing a polyno-
mial, we can reconstruct its representation in Z,4[x by applying the Chinese

Remainder Theorem coordinatewise. 0

With this result in hand, we can show that. factoring polynomials in Z,[x] is
quite difficult.

Theorem 2.6 [Sha93] There is a polynomial time reduction from factoring
integers to factoring polynomials in Zn[x]

Proof: Given some n E Z we attempt to factor it by examining the polynomial
f = x over Zn[x]. Let n = (-1)kpki ... p.l. Recall that from the Chinese
Remainder Theorem, f has an equivalent form as the s-tuple (X, X,... , x, x).
Assume that we can factor f into irreducibles so that (up to a unit) we have
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f = ff2f...h

where each fi is irreducible thus having the form

fi = (1, 1'..... 1, X,l,... ,1)

where x is in the ith position. So over Zn, each fl is of the form aix + bi mod
n with ai,bi E Z and so

0 mod pji
lmod4p' for i j

Thus the gc.d(n, bi) = pki for 1 < i < s. So our factorization of z immediately
gives ms a factorization m 1 m2 ... ran. We need only figure out the prime and
exponent for each wi. Assume that rni = p4i. Then ki is bounded by [log mni.
We can take jth roots where j varies from 2 to [log mil. If none of the jth roots
are in Z, we know m is prime. If one of the jth roots is in Z we can repeat the
procedure on the result until a prime is reached and then easily reconstruct the
exponent. Since the size of the exponent is logarithmic in rn this a polynomial
time procedure. Thms, the existence of a polynomial time algorithm to factor
in Z[x] is unlikely. (Compare this with the many randomized polynomial time
algorithms (See [Ber70J) to factor in F[.T] where F is a field to see the contrast
between rings and fields.) N

2.3 Irreducibility criteria in Zpk[X]

The Chinese Remainder Theorem reduces the problem to working over rings of
the form Z1 k[x]. Let r = pk from now on. We would like to determine what
factors of a polynomial are actually irreducible. We establish some criterion
to determine if a polynomial in Z., [x] is irreducible. A nice observation is the
following:

Proposition 2.7 Given an f E ZpA,[x] not equal to 0 mod p we can write f as

f' + pg where p does not divide /'

Proof: Let
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f E~l+ a-)z
i=O

where each ai < p and j(i) < k. FRom this we see

n nz

i=0 i=O

P9 f

Now we can deduc~e the following remark:

Proposition 2.8 Let f E Z ,,[1 not equal to 0 mod p. If f is irreducible in

Zp[x] then f is irreducible in Zp,,[x] for all k > 1.

Proof. Assume f is reducible in Zpx., for some k. Then f =- gh mod pk and usning

the above observation, f =_(g1 +P92) (hl +ph2) mod p, Hence, f =- g.,h, rood p

contradicting irreducibility mod p.

This formula also gives a characterization off all the units in Zn[x].

Proposition 2.9 Let f E Zi..,[x] such that f 0£ 0 mod p. Then f is a. unit, in
Zp• [,ri] if and only if f is of the form ,a + pg where ,a E Zp.-

Proof. Every polynomial f can be written in the form ft +p f2 where we have
ge'd(fi,p) = 1. Assume f is a unit and a~ssumne fj has degree > 1. Since f is a

unit, there exists h = (hi + ph2) such that fh = 1. This implies

fjhl + p((f2hi + flh2) + pf2h2) = 1 + p.-O

But, fj has degree strictly bigger than 0, and both gcd(fi,, p) = I and gcd(hlt, p)=
1. Thlm the monomial of highest degree in f, cannot have cancelled out. So

fjhj could not possibly be the constant polynomial 1. Hence for f to be a unit,
it mlmt be of the above form.

If f = a + pg where a E Zp then f = (I - a- 1(-p)g). The following familiar

identity is helpful:

I =I+ h+ h 2+ ... +
1 7- h



and thus

f 1 + a- (-p)y + (a+'(-p)g) + (a-l(-P)g)k-

Notice that after the k - 1 term, all of the terms have a factor of pk in them
which zero out. Our inverse is thus a well defined element of Zp. [x,]. 0

This also tells us that if f mod p is a unit, then f mod pk is a unit for all k > 1.

2.4 Hensel's Lemma

In order to further our analysis of irreducibility as well as develop a method of
factorization, we introduce the most important mathematical tool of the paper:

Theorem 2.10 [Hensel's Lemma] Let p be a prime, k > 1,and let f, g,h E
Z[x] such that f - gh j 0 modp and gcd(g mod p,h modp) = 1 in Z,[x].
Then there exist polynomials § and h such that f = §h mod pk with g g mod
p, h =- h mod p.

Proof: [BS96] We give an algorithm to construct g' and h' and prove its cor-
rectness.

Step 1. Find A and 11 E Zp[x] such that Ag + ph = 1. (We know sudh Ak and IL
exist since g and h are relatively prime. We can find them easily by using the
Extended Euclidean Algorithm for polynomials.)

Step 2. Iteratively construct polynomials g' and h' according to the following
for loop:

for i = 2 to k do
q := (f - gh)/(p'-') mod p
u:= qp mod g
v:= qA mod h
g g + pi-1u
h h + pl-1v

end
Return(g' g, h' = h)

The proof of correctness is by induction on i. Assume that f = gh mod pi-1
(g and h are also monic). Notice that the (:onstruction of q makes sense since
f-gh - 0 mod p'-1. We need only check that (g+p'-1u)(h+p'-'v) f mod p'.
Hence, we have
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(g +jp-L) (h + ptlv) gh + p- 1 (uh + vy) + p~ 2'uVmod pt

- gh + p-' (oh +)g) rmod pt

but notice

uh+vg uh modg

q/uh mod g

q(1 - Ag) mod g

q mod g

Similarly we (:an see that uh+vg =- q mod h. Since h and g are coprime, by the

Chinese Remainder Theorem we see that uh + ng = q. Hence in our original
equation we have

(g± ÷jp-t )(h +pi-v) gh +pi-lq mod pi

f modp t

Thus 4- = (g + pi'-u) and h- = (h + pi-) are as required.

From Proposition 2.8, if g and h are irreducible then § and h are irreducible.
Now we can show why we only care about monic polynomials.

Corollary 2.11 Let f E Zpi-[] with k > 1. Finding the irreducible factors of
f reduces to the case where f is monic.

Proof: [vzGH96a] We can write f as p"g where gcd(p,g) = 1. Then g 2

eomo modp where e0 is a unit mod p and thls mod pk. Since gcd(eO,m)= 1,
we can use Hensel's Lemma to find a lifting such that g =- em mod pk-v where

e =- e0 mod p and m = rmn mod p where r, is monic. But since we have
factored out p" from f, every factorization of f corresponds to a factorization
of g mod pk-•,. Thus we need only look at the irreducible factors of p' (which
are trivial) and the irreducible factors of m iup to units, but m is monic. Hence,
we need only consider monic polynomials from now on. M

Now it is somewhat clearer as to how to go about finding one factorization
of a polynomial mod n. We first look at. the irreducible factors of f mod
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p and use Hensel's Lemma for each factor and for each prime divisor of n.
Then we reconstruct the factorization mod n using the Chinese Remainder
Theorem. This leaves us with two important questions. First, what happens if
f = gk mod p for some irreducible g (i.e., how do we lift in this case)? Secondly,
how do we compute all the different factorizatious of f?

2.5 A naive approach to factoring

At some point, all known methods for computing all of the factorizations of
a polynomial require solving a system of linear equations. We will illustrate
this by constructing an extremely poor factoring algorithm. Assume we want
to compute all the factorizations of a polynomial f E Z[x] mod pk. Let ms also
assume that we are not interested in factorizations where any given factor has
degree greater than or equal to the given polynomial. One way to do this is
to solve a complicated system of equations (via the method of undetermined
coefficients) with the knowledge that every factorization mod pk corresponds
to a unique factorization mod p. For example:

Example 2.12 Let f E Z[z] where f =_ gh mod p. We wish to compute all the
factorizations off mod p2 . Assume that f factors mod p into linear polynomials
so that g = go + gjx and h = ho -+ hx.

Now notice that all factorizations mod p2 must satisfy the following system of
equations:

f - (g +pG)(h +pH) modp 2

where G and H are some unknown linear polynomials E Zp[x]. Then let G -
Go + Gjx and H = Ho + Hlx. Expanding the above equation gives 1us f
gh +p(Hogo + Hlgox + Hog x + Hjg x 2 + Goh0 + Glhoz + Gohlx + Glhlx 2) +
p2 (... ) mod p2

Since we are working mod p2 the last term drops oat. We only need the
coefficient of the p term to be zero for our factorization to work out properly.
Hence we need

GlhC +Hlgl -Omodp
Gtho + Hlgo + H og0  +Go h l - Omodp

Hogo +G oho  -Omodp

Notice that h0, h,, go, gy are fixed values since we compute the factorization of
f mod p. Hence, we have a system of linear equations which can be solved
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rather easily. This approach begins to break down as we need to factor moduo
larger powers of p as well as if we need to compute factors with larger degrees.
The next section will give us a better approach to this process.

3 The Case of Small Discriminants
The problem of computing all factorizations of a polynomials can be divided
into two radically different cases. The case when the discriminant is small
requires important properties of the p-adic numbers. Abstractly, every factor-
ization mod pk of a polynomial whose discriminant is 'small' corresponds to a
imique factorization over the p-adics. Thus, with a factorization from the p-
adics our problem is greatly simplified as we shall see. We follow development
partially outlined in [vzGH96a].

3.1 The p-adic numbers
Kurt Hensel invented the p-adic numbers in the early twentieth century in order
to solve number theoretic problems. Since then they have been an important
tool in both analysis and algebra for many different problems. We give some
brief introductory material for concreteness concerning the p-adics (see [BS66]
for a complete treatment of this material).

Definition 3.1 Fix some prime p. A p-adic number, denoted {fx}, is a se-
quence of integers satisying

Xn -- xn-1 mod pn.

Two sequences {f xm} and {x',} determine the same p-adic integer if and only if

xn '- X'n mod pn+l.

It is easy to see that each p-adic integer has the following canonical form:

{f.} = {lao,a +a p,a 0 + alp + (22P.... }

where each ai E (0... p - 1}. Let Z(,) denote the ring of p-adic- integers where
the addition and multiplication operations are performed coordinate-wise. It
easy to see that for x, y E Z(,), xy and x + y are p-adic integers and so our ring
is well defined. We will introdce the more conventional notation for a p-adic
integer, namely an infinite sum of the form a = Zi>O p'ai where ai <. p for all i
later in this section. We now aim to show a fairly simple property, namely that
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Z(p)[z] are a lmique factorization domain. Compare this with earlier examples
that show Zpk,[i] is not a UFD. The following theorem can be found in any
book on abstract algebra:

Theorem 3.2 If a ring R is a UFD then R[x] is a UFD

Lemma 3.3 If a p-adic integer {zn,} is a unit then zo 0 0 mod p.

Proof: If {fx, is a unit then there exists a {yj such that {xnyn} = 1 Vn. In
particular zoy0 =_ 1 mod p Hence To must be relatively prime to p. 0

Theorem 3.4 Every p-adic integer, distinct from zero, has a unique represen-
tation in the form a = pbE where E is a unit.

Proof: [BS66] Let a E Z(,). Then if a is a unit, take k = 0. If a is not a unit
then let k be the smallest index for which

Xk U 0 mod pk

From the definition of p-adic numbers, xk+.= Xk-1 =_ 0 mod pk. Let y. =--
for all s > 0. Notice that,

P ky.s -_ P y.- = Xk+., - Xk+.s-1 =_ 0 mod pk+.

and thLs

yV V ys-i1 mod p5

Hence, {fys} determines p-adic unit. Clearly {fX} = pk~ y.

Theorem 3.5 Z(p) is a UFD.

Proof: Consider some a E Z(,). Then from Theorem 3.4, a = pkE for some
imit E. Hence, a = p... p E. But p is trivially irreducible, so this could be the

k times
only factorization up to umits. Hence, Z(1 ) is a UFD. u

FRom Theorem 3.2, Z(p) [x] is a UFD. Now that we have established that Z(p) x]
is a UFD, we need to determine the relationship between factorizations in
Z(,)[x] and factorizations in Zz[x]. (This is done in Section 3.3) To do this
we introduce a non-archimidean metric as well as an alternate way of viewing

p-adic numbers.
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Definition 3.6 A metric 6 is called non-archimidean if and only if

6(x + y) < max(6(x), 6(y))

Definition 3.7 We define the function vp by the following equation

v ( if a 5 0 and pU is the largest power of p dividing a
oo ifa=O

The fimction v, is usually called a valuation. It is easy to see that the function
p-l)P(a) defines a non-archimidean metric on the p-adic integers. Let 6P repre-

sent this p-adic metric.

With this metric in hand, we can form a more convenient representation of a
p-adic integer. For any a = (01, a 2 ,... ) E Z(,) we can write a as the following
slim:

at -- Z fipZ

i>O

where fli = ai -ai- 1 and Po = a•0 . Normally, this series would diverge, but with
our p-adic metric, larger powers of p result in smaller values from the p-adic

metric. Let Sn denote the sum of the first n terms of a. Then 6ip(Sn) = -

Hence our sum converges and our representation for a is well defined.
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3.2 Resultants

Recall that in order to use Hensel's Lemma to lift a factorization of some
polynomial f, we require f to have a factorization into a product of at least
two relatively prime polynomials mod p. We would like to be able to detect
the 'difficult' cases where f is a power of a single irreducible polynomial mod
p. The following material is outlined in [CL092]. For an excellent description
of how resultants, discriminants, and polynomial greatest common divisors are
computed, see [Akr89I.

Lemma 3.8 Let f , g E Z[xI be polynomials of degrees 1 > 0 and m > 0 respec-
tively. Then f and g have a common factor if and only if there are polynomials
A, B E Z[xl such that

1. A and B are not both zero

2. A has degree at most m - 1 and B has degree at most I - 1

3. Af +Bg = 0.

Proof: [CLO921 Assume f and g have a common factor h E Z[xJ. Then

f = hfl and g = hg9 where fl,gi E Z[x]. We see

gif + (-fl)g = g91hfl - fh hg- = 0.

A = gy and B = -fl are as required. Now assume that. polynomials A and B
have the three above properties. By (1), B $ 0. Proceed by contradiction and
assume that f and g have no common factor. Then they are relatively prime
and we can find polynomials A' and B' such that A'f + B'g = 1. Multiplying
by B and keeping in mind the fact that, Bg = -Af we see that

B = (A'f +B'g)B

= ABf +B'Bg

- A'Bf - B'Af

- (A'B - B'A)f

But B is nonzero and from the last equation muLst have degree at least that of
f, namely 1. This contradicts (2). Hence, f and g muLst have a common factor
of positive degree. 0

Now given f and g we would like to see if we can compute such an A and B
to determine if they do indeed have a common factor. This problem reduces to
solving the following system of linear equations. Let
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A = co -1 r + + Crn1

B = doxr-1 + +dt-1

where the coefficients of the polynomials should be thought, of as unknowns.
We want to find a solution such that the equation Af + Bg = 0 holds. To do
this we can also write out f and g

f = aox t + + at, ao 0  0

g =bo.T' + ... + b,,, bo 0 0

substituting appropriately we achieve the following rather large system of linear
equations:

aoxo + bodo = 0 coefficient of xl+m-1

alto + aocl + bdo + bod 1  = 0 coefficient of xl+m-2

atom-1 + bmd-1_ 0 coefficient of xA.

This is an appropriate time to introduce the Sylvester Matrix.

Definition 3.9 Given polynomials f,g as above, the Sylvester matrix off and
g is the coefficient matrix of the above system of equations. We denote this
Sylvester matrix as S(f, g) by the following (1 + m) x (1 + m) matrix

a, bm

a11  bin-i

bm

S(f,g) = ao at : b- C R(l+m)x(l+m)

aq-1  bo

ao b0

the empty spaces are filled by zeros. The Sylvester matrix is the coefficient
matrix of the above system of equations. The resultant of f and g with respect
to x denoted Res(f,g) is the determinant of the Sylvester matrix. Hence,

Res(f,g) = det(S(f,g))

16



An immediate result of the preceding discussion is the following proposition:

Proposition 3.10 Given f,g E Z[x] of positive degree, the resultant Res(f, g) E
Z is an integer polynomial in the coefficients of f and g. Ebrthermore, f and
g have a common factor E Z[x] if and only if Res(f,g) = 0.

Proof: [CL092] The resultant is zero - the coefficient matrix of equations

has zero determinant - the system of equations has a nonzero sohltion. a

Another important consequence of resultants is the following proposition:

Proposition 3.11 Given fg E Z[x] of positive degree, there are, polynomials
A,B E Z[z] such that Af + Bg = Res(f,g).

Proof: We have previously analyzed a case where we were searching for a
solution to the equation Af + Bg = 0. Now we analyze the case where we want
a solution to the equation A'f + B'g = 1. We form the following similar system

of equations:

ao.xo + bodo = 0 coefficient of ,I+m-I

aico + aoci + bid o + bodi = 0 coefficient of xI+m- 2

alcm.1 + bmdl_1 - 1 coefficient of x0.

Cramer's rule can be used to solve this system of equations resulting in the
following solution (the details are worked out in CLO).

A'- A
Res(fg)

B' 1 B
Res(f,g)

Multiplying through by Res(f~g) we see that

Af + By = Res(f,g)

To summarize, given f,g E Z[x] the Res(f,g) $ 0 if and only if f and
g are coprime. We also know that we can find polynomials A and B si(Ii

that Af + Bg = Res(f,g). Porthermore, for any polynomial h E Z[x] with
deg(h)< 1 + m there exist uniquely determined polynomials A and B such
that res(f, g)h = Af + Bg. The uniqueness of A and B comes from the fact
that h has degree less than 1 + m. The degree of h insures that the system of
equations we have to solve is similar to the two others introduced in this section.
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3.3 The correspondence to factoring over the p-adics

Definition 3.12 Let f = aox' + ... + a1 E Z[x]. The discriminant of f is

defined as follows:

disc(f) - (-l)zc--)/2 Res (f, fi)ao

where f' is the derivative of f.

It is well known that f is square-free if and only if its discriminant is non-zero.

Notation 3.13 Let g,h E Z[zI. Then r(g,h) = v,,(res(g,h)) and d(g) =

vp(disc(g)), where disc(g) is the discriminant of g.

Now we can prove the major technical theorem of this section:

Theorem 3.14 [Hensel's Lemma II] Let p E Z prime k E N and f,u,w

E Z[x] be polynomials of degrees n+m, n, and m respectively with the following
properties

1. f =_uw mrod pk and the leading coefficients (lc) of f and uIw are equal

2. the resultant res(u, w) is nonzero

3. k > 2r(u,w)

Then there are polynomials g, h E Z(,) [H such that

f = gh E Z(,)[x], g - u mod pk-r(w), h =_ w mod pk-r(u,7,)

Proof: [vzGH96a] Set p = r(u, w). We will inductively construct polynomials
pi and ¢i E Z[x] such that if

f ab mod pk+i-I

with a, b E Z[z] such that a u mod pk-P and b =_ u mod pk-p then

f = (a + pk-P+i-lV,) (b + pk-p+i-lWo) mod pk+i

Note that if we can do this then we will have proved the claim. If we have for

every i > 0 such a polynomial, then we can sum over all positive i, and we will
have a polynomial with p-adic: coefficients that satisfies the above claims. It is
important to realize that the infinite sum does not result in an element of the

ring of formal power series. This is because Wi and Oi have bounded degrees,
and only the coefficients in our resulting sum can be thought of as an infinite
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slim.

Assume that f -= um mod pki > 1, and a, b E Z[x] are already constructed
such that f =_ ab modpk+i- 1 . Then f = ab + pk+i-ll where I E Z[x] and
deg(l) < n + m since lc(ab) = hc(f). Notice that a =- u mod pk-P and b -
w mod pk-P. Also, k - p > p so a is equivalent to u and b is equivalent to w
modulo a higher power than the largest power of p dividing the resultant of
u and w. Thus r(a, b) can be no larger than r(u, in) (If it were larger, then we

could calculate r(a, b) and mod out by pk-p to find a larger r(u, in)). Since they
are equivalent modulo p'-p r(a, b) Ž r(u, un). Hence r(a, b) = r(u, iv). Now
we can use Proposition 3.11 to find Wi and V¢i E Z[.] of degrees less than m, n

such that

pPI = api + bi

and thms

pPl =- api + tb4j mod pP'1

Then we see

f - (a +pk-p+i-l¢i) (b + pk-p+i-l1i)

f- ab _ pk-p+i-l(api + bV/i) _ p2k-2P+
2
i-2Wjip,

_pk+i-1 - pk-p+i-lpp - P2k-2p+2i-2(Oii

0 mod pk+i

becaulse i > 1 and k > 2 p. We do this for all i > 0 in order to construct the
following polynomials:

g = It +-E Pk-p+i-l )

i> 1

h = un + Zpk-p+i-11i
i>1

Expanding out the above sums reveals that g and h have coefficients which are
inifinite sums that correspond to a p-adic integer. Almost magically, f = gh
over Z(p) [x] since f - gh mod pk for all k. By our above construction, g -
u mod pk-P and h =- in mod pk-p. M
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Theorem 3.15 Condition (c) is true if k > disc(f).

Proof: The proof, found in both [vzGH96a] and [BS66], goes as follows: Let
f = gh with g, h E Z(,)[.x]. Then

disc(f) = disc(gh) = disc(g)disc(f)res(g, h)2

Thus, d(f) d(g) + d(h) + 2r(g, h) Ž 2r(g, h). Since the discriminant and
the resultant are polynomials in the coefficients of f, g, h, the same is true for
factorizations over Z5 k. N

Hence, for any polynomial whose discriminant is smaller compared to the
power of the prime, we know the following: Any factorization of f =_ gh mod

pk corresponds to a unique factorization over the p-adics. This factorization
f = §h E Z(p)[x] is equivalent to gh mod pk-p(g,h). In essence, given any two

factorizations f - gh mod pk and f = g'h' mod pk, gh ý- g'h' mod pk-p(g,h)

We note von zur Gathen formalizes this in the following way:

Proposition 3.16 Let f = Y11<i<1gi over Z(p) with disc(f) # 0, 1 > 1 and

gi E Z(p)[z] monic and irreducible for 1 < i < 1. Let f =_ gh mod pk with g, h E
R[x] monic and k > d(f). Then there exists a partition {1,... , 1} = SUS' such
that g IES 9gi mod pk-P and h -I-j, sgj with p = r(ES gi, HIjEys,ygj). If

g is irreducible over Zpk[x] then there exists 1 < i < I such that g y gi mod
pk-r(gi,fIji6i g9i)

Proof: The proof follows immediately from Theorem 3.14. Given some fac-
torization f = gh mod p , we can lift this to a factorization f = jh,. But
factorization over Z(p)[xl is unique, hence the irreducible factors of f are par-

titioned among f and j and hence their respective projections mod pk-r(g,h).

U

3.4 An improved factorization method

Now we can give a much better algorithm for computing all of the factorizations
of some f mod pk. First we need to calculate one factorization into irreducibles
of f mod pk. Sometimes this can be done by a complicated set of lifting
procedures (See Appendix A) or by Chistov's algorithm [Chi94] for computing

the factorization of a polynomial over a local ring (namely the p-adics in this
case). Chistov's algorithm gives us a factorization in Z(,,) [x], but we can simply
mod all of the factors by p k to retrieve a factorization into irreducibles mod pk.
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In order to determine all factorizations we need to solve some systems of linear
equations. They are considerably simpler, however, becauise of Theorem 3.14.

Given f E Z[x] and a factorization f l<I<_j_ gi mod pk we know for each

irreducible factor u of f over Zx•,[x], u gi mod pk-r(oih) where h = IjH11 9j.
Hence any factorization of f must correspond to a sobition of the equation

found in [vzGH96a].

S (g + pk-r(9,h) (h + pk-r(g,h)p) modpk

_ pk-r(gh)(ý,h + Ogb) _-P2k-2r(gsh)o¢- 0 mod pk

- vh + bgi( 1 0mod pr(s•,h)

S(gi, h) o 0 mod Pr(o h)0.-1 - 1mdp~lh

¢0

where

O<i<m

]<_i<:n

Any solution to the above equation corresponds to a factorization mod pk.
After finding all solutioms, we can set gi = g9+1 and h = h/gi+l, and solve
another system of equations until we have found all possible irreducible factors.
If at each step there are at most N different solutions found then we could
conceivably have N' distinct factorizations into irreducibles. Since choosing any

set of I factors (1 from a possible N at every step) will result in a factorization of
f mod pk. Fortunately, there are polynomial time algorithms to put the above
Sylvester matrix in Smith normal form, giving us a relatively easy method for
solving the system of equations and preserving solutions mod pk.

4 Factoring when the Discriminant is Zero

When k is not bigger than 2p we cannot use the above machinery to help us in

finding factorizations. As long as disc(f) is non-zero (as long as our polynomials
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have at least two coprime factors mod p) we have some way of computing at
least one factorization. If the discriminant of our polynomial f is zero, i.e.,
f _ ge mod p for some irreducible polynomial g, it is not clear how to even
lift this factorization to one mod pk. This section will look at these rather
umfortunate cases outlined in [vzGH96b].

4.1 Lifting conditions

Theorem 4.1 [vzGH96b] Let f w- w modpk = ge modp, g irreducible over

Z5 [x] and e > 2, k > 1 with u,w E Z[x] monic and u - g mod p,w_
e-1 mod p for some I < f. Then the following are equivalent:

1. E Z[x] over Z, divisible by g'.

2. For every cp E Z[x] with deg(W) < deg(u) there exists a polynomial V) E
Z[x. with deg(b) < deg(w) such that f - (1 + pkW)(w +pkO) mod pk+l.

3. There exist polynomials W, 0 E Z[x] with deg(W) < deg(u), and deg(O) <
deg(w) such that f =- (u + pkp)(11 + pko) mod pk+l.

4. There exist polynomials ,o, 4 E z[x] with f =- (IL + pkw) (Iw + pko) mod
pk+1

Proof: (i) = (ii). Let La""= g•a modp with a E Z[x], and (p,V E Z[x] with

deg(W) < deg(u), and 4 - a - ge-21p mod p. Notice

f - (u + pký)(11, + Pk4) = f _ Pk•(V + Oq,)
= f - fU) _ pk (•ge-I + (a -" _ V2l)g,)

= f - uwl -pk g1a

0- (m od pk+1

(ii) >(iii) =ý- (iv). We are left with (iv) • (i). Let W,4 E Z[x] with f
(u + pkp) (w + pko) mod pk+l. Then

f -w 1111
p.

_ og•-1 + V)g1

_ g1 (-ge-il + 4') mod p.
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With this in hand we (can prove show a certain class of polynomials to be
irreducible mod pk for all k > 2.

Definition 4.2 We call f = -o<i<. aixi E Z[x] an Eisenstein polynomial if
if a,,=1 and ai = O mod p for O < i < n and ao $ O mod p2.

Corollary 4.3 Let p E Z be prime and f E Z[x] an Eisenstein polynomial.
Then f is irreducible modpk for all k > 2.

Proof: [vzGH96b] Since f is Eisenstein, f =- m' mod p. In this case, g = x.
Let 1<l<B. Then

f-XIT-I f -. n_ ap

O<i<n

But a0,0 0 mod p thus 0 0 mod p. We fail criterion (i) in Theorem 4.1,

so f cannot be lifted to a factorization in Z.2 Ix]. Thus, f must be irreducible
mod pk for all k since if it were reducible mod pk for some k > 3 we could
simply mod the factors by p2 and find a factorization mod p2 .

4.2 Some examples

We can use the lifting criterion to create an (admittedly slow) algorithm for
computing all the factorizations of a polynomial f that equals g' mod p for
some irreducible g mod p. Say we want to find all factorizations mod pk. We
choose 1 < I < f starting at 1 = 1 and apply see if the factorization mod p can
be lifted to p2 by computing Lv" and applying Theorem 4.1. At the lifting

step for p2 we make an arbitrary choice, namely we choose Wp such that. so has
degree less than u. This could be an unfortunate choice, however, becamse our
choice of Vo may preclude the possibility of lifting mod p'. In [vzGH96b], we
see some interesting examples:

Example 4.4 Let f = x 2 + 27in + 162. Then f = X2 mod 3 and f-"2

0 mod 3.

Assume that we have chosen some (o as above to lift this to a factorization mod
9. Then we have

f - (i + 3 wo)(i + 3(-w)) (i + 3wo)(i + 6w) mod 9

where 0 < o < 2. Then
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f - (x + 3w)(x + 6w) • (p+q2 od3
fU+9(x6 ) w2(W +V 2) mod 3.9

So we can only lift this factorization to one mod 33 if 2((9 + V2) = 0 mod 3.
This happens only when W = 0 or 2. Thus, had we chosen (P = 1, we would not
be able to lift this factorization.

Unfortunately, this procedure can get rather complicated as the next example
will illustrate:

Example 4.5 Let p = 3, f = 510, and I = 10.

After two lifting steps, we obtain the following factorization:

f =- mW mod 81, where

U = X4 + 393.3 + 392-2 + 9cpiX + 99O and 1) = x6 + 7893.,5 + (78902 +

992)X4 + (72W1 + 189293 + 5493)x3 + (729o + 9W2 + 549pjW93)X2 + (549o093 +
54plO92 )X + 54Woy2 + 54W3

and 0 <9i <27 for i E {2,3}, and 0 < 9o < 9 for i E {0, 1}. Then

f-MD 293x9 + 292X + (2V3 + 2yi)27 + (29P + 29o + ±4)X6
81

S+ 92 9tX + (2v' +2 3 23

+(2W9cpj + 9i92)x3 + (p2 + y4)X 2 mod 3

From the above lemma, we can only lift this factorization if g' divides f -
nw/pk mod p. Hence we need the following to be true:

2~109 + w -9 0 rmod 3
IN2+W2 0 mod3.

These equations turn out to be satisfied if and only if 92 = 0 mod 3 and
90 =- 0 mod 3. As the degree of f gets larger, the difficulty of solving these
equations to find all factorizatioms grows quickly. In fact, the biggest obstacle
to computing these factorizations is to determine which parameters will allow
for liftings to higher powers of p. It is not clear how to simultaneously satisfy
the all of the parameters at each step. Hence, the best algorithm known runs
in exponential time, simply trying out all possible values for each parameter.
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5 Further Algebraic Considerations

In this section we attempt to give some further purely algebraic. considerations
of factorizations in Zi#, [x] partially outlined in [McD74]. We will prove reslilts
for a more general ring than Zpx, [x] and show that all results apply to our case.
All rings in this section are commutative and have identity. (a) denotes the
principal ideal generated by a.

5.1 Local rings
Definition 5.1 A local ring is a ring with a unique maximal ideal.

Example 5.2 Z(,), Zp. and Zpi, [x] are all local rings whose unique maximal
ideal in all cases is (p).

Recall that R/m where m is a maximal ideal of R is actually a field. The field
that results from taking R/m where m is our unique maximal ideal is called a

local field. Let k = R/m. Define the natural projection from R[x] to k[x] by
It. In Zp. [x], p takes a polynomial in ZP. [x] and reduces all of its coefficients
moduilo p.

We need the following long string of definitions to continue this development.
Some of the definitions are repeated from previous sections for clarity.

Definition 5.3 Let f and g E R[x] Then

"* f is nilpotent if there is an integer n such that fn _ 0.

"* f is a unit if there is a polynomial h with fh = 1.

"* f is regular is f is not a zero divisor.

"* f is prime if (f) is a proper prime ideal.

"* f is irreducible if f is not a unit and whenever f = gh then g or h is a
Imit.

"* f is primary if (f) is a primary ideal.

"* f and g are associated if (f) = (g).

"• f and g are coprime if R[x] = (f) + (g)

The following proposition gives ls some simple characterizations for the above
definitions:

Proposition 5.4 [McD74] Let f = ao + alx +-... + anxn E R[x].

1. The following are equivalent

25



(a) f is a unit

(b) psf is a unit.
(c) ao is a unit and al ... an are nilpotent

2. The following are equivalent

(a) f is nilpotent

(b) Iuf = 0

(c) ao,... ,an are nilpotent

(d) f is a zero divisor

(e) there is a non-zero a E R with af = 0.

3. The following are equivalent

(a) f is regular
(b) (aO, al, . .. ,an) = R

(c) ai is a unit for some 0 < i < n

(d) pf 0 0

Proof: The proof of parts (a) and (b) follow immediately from Proposition 2.9
in the first section. Part (c) is quite easy as well. If f is regular then it is not a
zero divisor. Hence, we cannot 'factor' out p from one of the coefficients. This
implies that some ai ý (p). Since (p) is our unique maximal ideal, ai must be a
unit. Since some ai is a unit, (ao, al,... , an) = R. Furthermore, since not all
the coefficients are in (p), our projection onto m[ix] must be non-zero. Hence,

lif $40. 0

5.2 Hensel's Lemma generalized

Now we can restate Hensel's Lemma in a more general setting:

Theorem 5.5 [Generalized Hensel's Lemma] Let f E R[x] and

lif = 9ýi... g-n

where ffi,... , gn are pair-wise coprime. Then there exist gl,... , gn E R[x] such
that

1. g-,... ,ggn are pair-wise coprime

2. t~gi = f for 1 < i < n.

Proof: The proof is identical to that of the first Hensel's Lemma. All of the
details are in [McD74]. 0
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5.3 Ideal decomposition

We build towards a nice characterization of all factorizations of a polynomial in
such a ring. In order to do this, we need to apply some theorems from Primary
Ideal Decomposition found in [Hun74]. Before this, we make a few observations.

Lemma 5.6 Let I, J be comaximal ideals of a ring R. I + J = I n J.

Proof: Recall that IJ is the set of all finite sums of the form ij such that i E I
andj E J. IJ C I f J since for a E IJ, a = rij for some r E R, and thus
a = (ri)j and a = (rj)i. Now let a E I fl J. Since I, J are comaximal, there
exist rl,r 2 E R such that r 1i+r 2j = 1. Hence arli+ar2j = a. But a = ci and
a = bj for some c, b E R. Thum bjr i + cir 2j = c • ij(br1 + cr 2) = a. Hence
a E IJ. M

Corollary 5.7 Let 1,, 12,... , In be pair-wise comaximal ideals. Then it follows
that Iu ... In = I, nI2 n .f.. n In.

Definition 5.8 Let I be an ideal of R. The radical of I, denoted Rad I, is the
intersection over all prime ideals P that contain I. If the set of prime ideals
containing I is empty then Rad I is defined to be R.

Definition 5.9 If Q is a primary ideal in a commutative ring R, then the
radical P of Q is called the associated prime ideal of Q. We say that Q is P
primary.

Lemma 5.10 Let R be a local ring. Then if (jig) is a primary ideal then (g)
is a primary ideal.

Proof: Let ab E (g). We assume that. b 0 (g). We need to show that an E (g)
for some n.We know (jig) is a primary ideal by assumption. ILg = g + M where

M is our unique maximal ideal. Since ab E (g), ji(ab) E (11g) •. ab + M =

(a + M)(b + M) E (g + M). But (g + M) is primary. Hence

(a + M)k = (ak + M) e (g + M)

(ak + M) = ug + M

- ak -ug E M.

This implies that ak = ug + m for some m E M and u E R. Now let d be the
nilpotency of m and we see:
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IE I

akd' = (ug~m)d

i=O
- gY+md

- gy

where d is the nilpotency of m and Y is what remains after factoring out a g
from the above sum. Hence akd E (g) so (g) is primary. u

Corollary 5.11 Let R = ZI[x], e E N. Let g be an irreducible non-zero
polynomial mod p and h and arbitrary element of Zpk[x]. Then (g + ph) is a
primary ideal. In particular, (ge + ph) is (g) primary.

Proof: Notice that ge + ph mod p y_ ge mod p which is trivially a primary
polynomial. By the above lemma, g' + ph must be primary. N

We introduce the next two definitions and theorem for the proof of the main
theorem of this section:

Definition 5.12 We say an ideal C of R has a primary decomposition if C

A1 n A2 n ... n An with each Ai a Pi primary ideal of R for some prime ideal
Pi of R. If no Ai contains A 1 n A2 n ... .A and if the ideals P 1 ,... , Pn are

distinct then the primary decomposition is said to be reduced.

Definition 5.13 Let C, Aj, and Pi as above. If Pi 9 Pj for all j 0 i then Pi
is said to be an isolated prime ideal of C.

Theorem 5.14 Let C be an ideal of R with two reduced primary decomposi-
tions

A, AA 2 n...fnAk = C = A AA2 nl... nfA'

where Ai is Pi primary and Aý is P! primary. Then k=s and (after reordering)
Pi = Pj' for i = 1, 2,... , k. Futhermore if Ai and Aý both are Pi primary and
Pi is an isolated prime then Ai = AX.

The original statement. of the theorem and proof can be found in [Hun74]. It
is stated originally for R-modiiles, but we view a ring R as an R-module over
itself and so everything applies naturally.
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5.4 The unique factorization theorem

Now we can prove the much anticipated major theorem of this section.

Theorem 5.15 [McD74] Let f be a regular polynomial in R[z]. Then

1. f = 6 gi .. '. g, where J is a unit and g1 "" gn are regular primary coprime
polynomials.

2. Iff = 6g- ... gn = flhl .. hm where J and /3 are units and {gi} and {hi}
are regular primary coprime polynomials then n = m. and, after reordering
(hi) = (gi), 1 < i < n.

Proof: First we prove (1). Let f be reguflar in R[x]. Then jif is non-zero.
Hence jif = 3j1"" ... where the gi's are irreducible coprime polynomials in
k[.]. In other words, we have projected our polynomial mod p to find its fac-
torization into powers of irreducible c(oprime polynomials. Now, using Hensel's
Lemma, we (:an find a factorization f = 6gl ... gn where /i6 = 3 and ligi = gij'.

Notice that. each gi = g' +ph for some irreducible polynomial g and some poly-
nomial h E R[x]. Thus by Lemma 5.10 (gj)'s and similary (hi)'s are primary.

Now we prove (2). Since we have f = gi ... gn = hi ... hn we have the following

series of equations:

(f) = (g(""gn)=(hi...hn)

But since the (gij)s are pairwise comaximal we have that (91)(92) ... (9g) -

(g9) n (g2) n ... nl (gn) and similarly for the (hi)'s. The umderlying prime ideal

for each (gi) = (ge + ph) is simply (g). Trivially, for g, h distinct irreducible
polynomials mod p, (g) 0 (h). Hence, every underlying prime ideal in our
product is isolated. Thus, we have found two reduced primary decompositions
for f where every Pi is isolated for every Pi primary ideal in the product. By
the Theorem 5.14 after renumbering, the individual ideals must be equal. *

Thus our factorizations are unique up to ideals

6 Conclusions and Questions

6.1 Some conclusions

The discriminant of a polynomial determines whether or not it is hard to calcu-
late all of its factorizations mod pk. In all cases we can use a umique factorization
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modulo p to help find all the factorizations. This information alone is not very
helpful. If the prime power we are factoring over is much larger than the dis-
criminant, we can use the correspondence with the p-adic( integers to form a
relatively simple method to solve a system of equations in polynomial time.

If the discriminant is zero, we have difficulty characterizing the factoriza-
tions of our polynomials, because we cannot easily lift the factorization. This
case results in a complicated systems of diophantine equations.

The Primary Decomposition Theory provides us with a nice characteriza-
tion of the factorizations of a polynomial. Although the factorization of a
polynomial is not unique in Zp, [z], it is unique up to the ideals generated by
the coprime factors. We would like to take advantage of this algebraic situation
and come up with an algorithm that exploits it. Unfortumately, all of the known
ideal membership problems rely upon a Griibner Basis algorithm which runs in
exponential time.

These results could be applied the multivariate (case were it not for our
current inability to lift multivariate factorizations. Applying this in the multi-
variate case could result in new bounds for polynomials representing boolean
functions modlilo n.

6.2 Questions

We would like to use the results to get bounds on the degree of a polynomial
representing a boolean function. This c(oluld be done by examining its factor-
ization over the p-adics. Unfortunately, these polynomials are all multi-variate,
and our results do not directly apply. The problem is that when two mul-
tivariate polynomials f, g are relatively prime, there do not necessarily exist
polynomials f ', g' such that fg'+ gf ' = 1. Thus, Hensel's Lemma breaks down.
An interesting problem is determining whether or not a multivariate factoriza-
tion can be lifted and if so, how? This would provide us with a way to use all
of the machinery developed for the univariate case.

It is also unclear as to how Primary Decomposition Theory can be used,
outside of Gribner Basis algorithms, to provide some insight on factorizations.
Exploiting this natural algebraic structure seems quite possible.

Is there a feasible way of implementing/verifying Chistov's algorithm for
factoring polynomials over Z(,)[xJ in polynomial time? Currently, it seems far
beyond what we can implement.
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8 Appendix
This Appendix contains code for the Mathematica Symbolic Computation Pack-
age. It includes a function, CompFactor, which takes as input a polynomial
in Z[x] and will produce a factorization mod n for a specified composite. If
the polynomial is of the form g' mod p for some prime p dividing n, then the

algorithm will not compute a factorization. This ca.se corresponds to the case
where the discriminant of f is zero and thuLs cannot be lifted without a tedious
exponential time algorithm. Otherwise, the polynomial is factored into coprime
factors using Hensel Lifting and the Chinese Remainder Theorem.

Get ["Numbermheory'NumberTheoryFunctions"'];
Get ["Algebra'PolynomialPowerMod' "];
Get ["Algebra'PolynomialExtendedGCD'")];

ExtraCoeff [aList, i_]: =

If [a ==
(*then*)

(*else*)

Prepend[ExtraCoeff [Rest [a] i], Coefficient [First [First[a]] ],xW]

I

ExtraConCoeff [a-List]:=
If [a =- f,
(*then*)
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(*else*),

PrependEExtraConCoeff [Rest [al]],PolynomialMod [First [First [a]] ,x]]

I

Extral~oduli [a..List]:

If [a ==fl

(*then*)

(*else*)

PrependEExtraModuli [Rest [al]],First [Rest [First [al]]]

I

(*Given the list {{faci,mj},{fac2,m-2}} we can reconstruct the polynomial

with this decomposition *)

ChinesePolyRem[aList ,nj]:

Module [{ModuliList ,pp,ResPoly},
ModuliList =Extraj~oduli [a];

For [pp=O ,pp< (n+1),p*+

If [pp==O,

(* then *)

ResPoly=ChineseRemainderTheorem[ExtraConCoeff [a] ,ModuliList],

(*else *)

ResPoly = (ResPoly +

(Chine seRemaindermheorem [
ExtraCoeff [a~pp] ,ModuliList ) *x-pp)]];

{Re sPa ly}]

(*This takes a polynomial f, its two factors mod p (g and h) as well as p

and the degree to lift to and produces a lifted factorization Based

on Eric Bach's Algorithmic Number Theory book-- see Bibliography*)

HenselLift[f_,g_,h,p.,kJ :=Module[{t,a,b,q,u,v,gg,hh},

t=PolynomialExtendedGCD [g ,h,Modulus->p];

a--t[E[2,t]11]

b~t[[2,2]);

gg=g;
hh=h;

For [i=2,iC(k+i) ,i++,

q=PolynomialMod[(f-gg*b$)*C1/(pi(i-i))) ,p];

u=PolynomialMod[(q*b) ,g];
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vt = PolynomialMod[(q*a),hJ;

gg =PolynomialMod[(gg + (p(-)*),-1

hh PolynomialMod[(hb + (Cp-(i-i))*v)),p-i]J; {gg,hb}]

PolyMultla..,b-]:= (First[a)*First[b])

ProductPoly [a... := Fold [PolyMult ,{i ,1i},a]

(* This takes {{pl,ml},{p2,m2} ... I and produces pi*p2*p3. .*pn *

PolyProd[a-]:

If [a-=={},i,First [First [all *PolyProd [Rest [a]]]

/*This creates a tuple of n I's with the irred polynomial in the kth

position, i.e. {i,i,l,irred,1,i,1} It corresponds to an irreducible factor

in the product ring */

CreateIrreducible [irrerL n_,k_,mmlistj :=Module [{final},

final= {};

For [oo=i, oo<n+i ,oo

If [oo==k,
(*then*)

AppendTo[final,{irred,mmlist [[oo]]}],

(*else*)

AppendTo [final,{1 ,mmlist[[oo]]}]]] ;final]

(*More helper functions *)

(*These put factorizations from the FactorList function into a more

acceptable form. I.e., {{C-2+2,3}} is translated as {(x-2+2)-3,1} *

PowerHelp [f- :={First[f] (First [Rest [fi]),41

MyFactorList [f...,pj :=Map [PowerHelp,FactorList [f ,Modulus->p]];

(*This takes a polynomial f, a list of its irreducible factors mod p
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{{pl,exp},p2,exp2},{pS,exp3} .. I and lifts it to a complete factorization
mod p-k. n corresponds to the number of irred factors *

LiftFactors~f-,a-List,n.,p-,k-j:

Module [{productsof ar,TempPolyList ,LiftedList)-,

TempPolyList a;

If[(aE[2,2]J I= && Lemgthua] =

(* else *)

If [Length [a] ==2, Print ["Failure"],
(* else *)

LiftedList={};

Tempf = f

productsofar=PolyProd [a];
AppemdTo [LiftedList ,{1 ,11];
TempPolyList = Rest [TempPolyList];

Firstfac =TempPolyList[[i,1]];

Secomdfac =PolynomialQuotient [productsofar,Firstfac ,x,Modulus->p];

For [jj=O,jj~n+1,jj++,

(Primt[jj];
If [Length [TempPolyList]1==,

(* them *)

Return [{LiftedList ,p-k}],
(* else *)
With[{FLiftFac -First [HenselLift [Tempf ,Firstfac ,Secondfac,p,k]],
SLiftFac =HenselLift [Tempf ,Firstfac,Secondfac ,p,k] [[2]] 1,

If [Length[TempPolyList] -2, (* only 2 factors to lift *
(* them *)

(AppendTo [LiftedList ,{FLiftFac, 1)-;
AppendTo [LiftedList, {SLiftFac ,il

TempPolyList =Rest [TempPolyList],

(* else *)

(TempPolyList =Rest [TempPolyList];

AppendTo [LiftedList ,{FLiftFac, 11];

Tempf = SLit tFac;

Firstfac =TempPolyList[[1,i]];
Secondfac=

PolynomialQuotient [Secondfac,Firstfac,z,Modulus->p] ;)]]])] ;];]

(*CreateMasterList takes a polynomial f, and a list of factors (fac)
of some modulus. It reduces f by each element of fac and factors it using
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previous procedures. Returned is a list of the following type:

This corresponds to f's factorization nod 5 and nod 7 *

CreateMasterList[f., facList]:

Module [{TenpFL,GoalList ,n,currentp ,currentexp,FacList},

TenpFL = fac;
n = Length [f ac;

GoalList ={};

For [ii=O, iicn, ii++,
currentp = First[First[TenpFL]];

currentexp = First [Rest [First [TenpFL]]];

If [((FactorList[f,Modulus->currentp]) [[2,2]] > 1 &&
Length [FactorListEf ,Modulus->currentp]] == 2) ,Abort [] ,Print[ ["Liftable"]

FacList =MyFactorList[f,currentp];

t = Length[FacList];

If[t==2,
(*then *)

AppendTo [GoalList ,{{{i i} ,{FacList [[2,1)) ,i}} ,currentp-currentexp}],
(*else *)
AppendTo [GoalList ,LiftFactors [f ,FacList ,t ,currentp,currentexp]]);
If [Rest [TenpFL] == {},Return[GoalList) ,TenpFL=Rest [TenpFL]hl;]

(* Final List takes the list created by CreateMasterList and expands

everything by converting it into irreducibles of the formCii1,f,,)

and sending it to the poly chinese renainder theorem. It then reconstructs

the correct factors and spits out our factorization It gets the length

of this tuple fron deg *)

FinalList [Master.List,degj]:

Module [{TMaster,MModuliList ,Finalautput ,Outerloop,Innerloop,Interoutput,

Innerlist},

T~aster = Master;

MModuliList = Map[Last,Master];
FinalOutput={};

Outerloop = Length[Master);
For [iii=i,iii<Outerloop+1, iii++,

Inneroutput{}l;
Innerloop = Length[First[First[TMaster]] - 1];

Innerlist = First [First [TMaster]);
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ForEj j=2,jj<Innerloop-Ii ,jj++,
(AppendTo[lnneroutput,

First [ChinesePolyRem [Createlrreduc ibis

[Innerlist [[jjii ,),Outerloop,iii ,MModuliList] ,deg])];

(* debugging purposes *

Print EM~oduliList];

Print [CreateIrreducible Elnnerlist[I(jj) 4)] ,Outerloop,iii,MModuliList)];

Print ECbinesePolyRen[Createlrreducible

[Innerlist[[Ujj) .1]],Outerloop,jj-i,MModuliList] ,deg]] ;)];

Mhaster = Rest[TMaster]);

AppendTo EFinalOutput ,Inneroutput];]; Flatten [FinalOutput]]

(* This gives the actual factorization. The naster function *

MasterFactor [t.,deg.,nj]:

FinalList [Ore ateMasterListEf ,Factorlnteger En]],deg]

ConpFactor [poly. ,noddj :=

MasterFactor [poly, 2*Exponent [poly ,x] ,nodd]
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