
ESC-TR-97-052

Technical Report
1039

A Forward Error Control Scheme for
GBSäridBÄDD

B.E. Schein
S.L. Bernstein

22 July 1997

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Defense Advanced Research Projects Agency
under Air Force Contract F19628-95-C-0002

Approved for public release; distribution is unlimited.

19970801 037 ÖTIO QUÄLST SfSIUSS® i

This report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology.. This work was
sponsored by the Defense Advanced Research Projects Agency under
Air Force Contract F19628-95-C-0002.

This report may be reproduced to satisfy heeds of U.S. Government agencies.

The ESC Public Affairs Office has reviewed this report, and
it is releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

GaryTjutüngian A
Administrative Contracting Officer
Contracted Support Management

NonH-incoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

A FORWARD ERROR CONTROL SCHEME FOR GBS AND BADD

B.E. SCHEIN
S.L. BERNSTEIN

Group 66

TECHNICAL REPORT 1039

22 JULY 1997

Approved for public release; distribution is unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

This document provides a description of an error control scheme which can enhance the reliability
of file and message transfer in the Battlefield Awareness and Data Dissemination (BADD) and
Global Broadcast Service (GBS) programs.

The proposed scheme is intended to be general enough for adaptation to real network consid-
erations, traffic profile, channel behavior, and computational and memory limitations. As such,
the proposed scheme will need to be modified slightly for actual use, and some of the necessary
modifications will be addressed.

in

TABLE OF CONTENTS

1 OVERVIEW 1

1.1 Channel and Network Description 1

1.2 Current Error Control Scheme 2

1.3 Design Goals for Proposed Scheme 3

2 DESCRIPTION OF THE CODING SCHEME 5

2.1 General Code Description 5

2.2 Encoding Procedure for the 3-D Product Code 8

2.3 Decoding Procedure for the 3-D Product Code 8

2.3.1 Single RS Codeword Correction Technique 9

3 DETERMINISTIC ERASURE AND ERROR PERFORMANCE 13

3.1 Sub-Optimal Decoding Loss 13

3.2 Performance Guarantees 16

3.3 Benchmark Tests 18

4 IMPLEMENTATION ISSUES 19

4.1 A Few Words on Interleaving 19

4.2 Multiplication and Division in a Galois Field 20

4.3 Choosing the Dimension Sizes 20

4.4 File Size versus Code Format 22

4.5 Availability of Data 22

5 SUMMARY 25

LIST OF ILLUSTRATIONS

Figure
No. Page

1 Three-dimensional product code structure 5

2 Parallel codeword structure 6

3 Product code packet ordering 8

4 3x3x3 fragmented cube of erasures 14

5 Undecodable erasure pattern using the sub-optimal decoding method 15

LIST OF TABLES

Table
No. Page

1 Single Burst Plus Random Erasure Protection Guarantees 16

2 Double Burst Plus Random Erasure Protection Guarantees 17

3 Single Burst Plus Random Erasure Guarantees, Given a Single
Random Error 17

4 Double Burst Plus Random Erasure Guarantees, Given a Single
Random Error 18

Vll

1. OVERVIEW

This document provides a description of an error control scheme which can enhance the reliability
of file and message transfer in the Battlefield Awareness and Data Dissemination (BADD) and
Global Broadcast Service (GBS) programs.

The proposed scheme is intended to be general enough for adaptation to real network consid-
erations, traffic profile, channel behavior, and computational and memory limitations. As such,
the proposed scheme will need to be modified slightly for actual use, and some of the necessary
modifications will be addressed.

1.1 Channel and Network Description

BADD (Battlefield Awareness and Data Dissemination) is a DARPA ACTD (Advanced Concept
Technology Demonstration) program which is developing information management techniques for
the selection, integration, and addressing of data needed by the warfighter. BADD will make use
of the GBS (Global Broadcast Service) satellite system which will be able to convey high data rate
streams (approximately 24 Mbps) to small terminals. Low rate reverse links using the "Tactical
Internet" will permit some users to request or "pull" selected information and provide a means for
two-way protocol closure, e.g., ARQ for reliable message reception. However, it can not be assumed
that all users will have access to a return link. Hence strong and efficient forward error control is
essential. This Report will present a particular forward error control scheme designed for message
recovery by end users.

At the physical layer, GBS will employ highly efficient modulation and coding techniques yield-
ing a very low bit error rate (on the order of 10~10) at low signal-to-noise ratio per bit. However,
even at these low error rates there are still several potential situations that can interfere with reliable
message transmission. Some examples of these situations are as follows: First, long messages (e.g.,
images consisting of several gigabytes) take minutes to transmit and would have a non-negligible
probability of containing at least one random error. Second, the line-of-sight from the GBS satel-
lite to a user can be disturbed by discrete events such as a soldier walking in front of the antenna.
Finally, even with an undisturbed RF channel, a steady stream of high rate data being delivered to
a busy end-user computer through numerous hardware and software layers can result in dropped
cells or packets.

In order to mitigate these problems, a powerful forward error correcting and erasure filling
scheme was designed for use with BADD and GBS. The goal was to recover dropped data packets
and correct occasional packet errors while using minimal computation and coding overhead. Since
a single user may not receive a steady stream of data, the scheme was designed to be implemented
on a per-message basis. For practical reasons, the scheme was designed to be implemented at
the application level in software, without the need for additional hardware. Because of this, the
minimization of computational complexity was a primary design constraint.

Since this scheme is implemented on a per-message basis, and since the general error event may
result in the loss of a large amount of data (possibly on the order of a few megabytes), the scheme is
designed for the protection of large files. With the type of error events considered, no per-message
scheme can protect small messages in the absence of a reverse link when low latency and low coding
overhead is desired.

The scheme is based on multidimensional Reed-Solomon product codes with a sub-optimal
but computationally feasible decoding procedure. The encoding and decoding procedure will be
described in detail. A summary analysis of its capabilities and a discussion of the sub-optimality
of the decoding procedure will be presented. A prototype encoding and decoding procedure was
implemented in C, and the results of prototype benchmark testing will be presented.

1.2 Current Error Control Scheme

The current error control scheme used with BADD and GBS is simple but inefficient. The scheme
uses a repetition code, where the number of times a message is repeated is variable. A message
is broken into suitably sized packets, and the entire message is repeated. For decoding, the first
packet which passes its checksum is accepted and all others are discarded.

This error control scheme has several advantages. First, it is simple to analyze and implement.
Second, it requires minimal computation. It uses only a checksum in addition to the standard
network checksums of UDP, IP, and the convergence sub-layer of ATM. Third, it requires virtually
no additional memory since only original data is stored, along with a record of which packets
have been received. Fourth, the probability of failing to receive a message can be made arbitrarily
small using a sufficient number of repetitions. Finally, the application can ignore future message
repetitions once it has accepted a complete set of packets. Thus, if the channel is good for a long
time, such that the entire message is successfully transmitted the first time, there is virtually no
delay before the message is successfully received and decoded.

This error control scheme has several disadvantages, however. First, and most importantly, it
is inefficient. The error control imposes 100% overhead for each repetition (this is in addition to
standard per-packet network overhead). Second, the scheme uses sub-optimal decoding in accepting
the first packet which passes its checksum. Thus, although unlikely, error-filled packets may pass the
checksum and not be rechecked. From a data-integrity point of view, a simple improvement would
be to use a majority-rule system to virtually eliminate the chance of accepting a packet with errors
(which is only an issue if it is the first packet to pass its checksum). This "improvement," however,
comes with a severe delay penalty. Third, a single dropped packet causes a packet decoding latency
at least equal to the transmission time of the entire message. This can be unacceptable, particularly
when dealing with long messages (consider dropping one of the last packets of a message). Fourth,
channel outages (erasure bursts) may drop all copies of short messages unless artificial delay or
padding is introduced.

1.3 Design Goals for Proposed Scheme

The error control scheme is designed to meet the following goals:

1. Small coding overhead — 10 to 15% (plus network overhead).

2. Minimal decoding computation.

3. Reasonable memory requirement.

4. Recover from long channel outages as well as scattered packet losses and occasional errors.

5. Low latency when the channel is behaving well.

6. Decode simultaneously with data arrival to reduce decoding delay.

This scheme is designed to recover missing data due to lost packets, as opposed to recovering data
from noisy signals on a typical physical channel. Packets with byte errors are rarely delivered to
an application, since multiple network checksums (from UDP, IP, and the convergence sub-layer
of ATM in the envisioned network) are used. The two major advantages of dealing with packet
erasures rather than actual errors is that the locations of data erasures are precisely known and,
in the absence of errors, the decoding procedure can determine apriori what corrective steps will
recover the lost data, if at all possible.

2. DESCRIPTION OF THE CODING SCHEME

2.1 General Code Description

In general, a UDP packet will either be received correctly or be entirely erased due to checksum
failure somewhere within the network protocol stack (ATM, IP, or UDP). The network does not
notify the decoder (application) when a packet fails its checksum.

The scheme we propose therefore imposes no correlation (beyond the network checksums)
amongst the bytes of the individual UDP packets. We use a set of identical codes involving a
series of UDP packets. We use a codeword for each data byte position in the UDP packets. This
set of "parallel" codewords is intended to fill in the packet erasures due to checksum failure and
additionally to recover from occasional (very rare) packet errors.

The dimensions and packets are arranged qualitatively as pictured in Figure 1. Each cell
corresponds to a single code symbol, and each code symbol is one byte. The bytes of a UDP packet
are enumerated vertically from top to bottom, along Dimension 0. Code 1 spans Dimension 1, and
similarly Codes 2 and 3 span Dimensions 2 and 3, respectively. Each packet can be identified with
a triplet (D1,D2,D3) corresponding to its logical position in the figure.

CODE 2

^C7DATA
PACKET

CHECK

BYTE

Figure 1. Three-dimensional product code structure.

To see how the parallel set of codewords are arranged, refer to Figure 2. The bytes of UDP
packets are enumerated along Dimension 0 (dO). Each codeword in the set fills in the erasures in a
single byte position along Dimension 0. Ignoring packet errors for the moment, a specific pattern

of packet erasures will result either in successful erasure recovery by every codeword in the parallel
set or failure by every codeword in the parallel set.

Dimension 2
... Dimension 3

Codeword

Codeword

Codeword

Figure 2. Parallel codeword structure.

The specific code we propose for erasure recovery (each Codeword in Figure 2) is a 3-dimensional
product code, using shortened Reed-Solomon codes as the constituent codes. Using a straight-
forward, sub-optimal decoding procedure for the product codes to minimize computation, the
3-dimensional product code yields good burst erasure and random erasure recovery as well as
reasonable random error and erasure recovery. The decoder performance will be addressed in
Section 3.

Recall that an (n, k) block code maps k information symbols into n codeword symbols. A
Reed-Solomon code (RS code) is a block code with minimum distance dmin = n - k + 1. Such
codes are called maximum-distance codes; no block code with the given (n, k) can have a larger
minimum distance. An optimal decoder (minimum distance decoder) for any block code with
minimum distance dm;n can guarantee correction of any pattern of v erasures and t errors provided
v + 2 * t < dmjn, and can additionally correct some patterns of errors and erasures that violate
this inequality. Using reasonable assumptions about the physical network, a minimum distance
decoder is a maximum-likelihood decoder. Alternately, a decoder that decodes up to the minimum
distance of the code will guarantee correction of any pattern of errors and erasures that satisfies
this inequality, but it is free to decode arbitrarily (or give up) if the inequality is not satisfied.

The constituent shortened RS codes we use are subspaces of RS codes corresponding to setting a
number of the A; information symbols, say the first I of them, equal to zero. We use I fewer symbols
per codeword. The shortened RS code is then an (n - I, k -1) maximum-distance block code. The

minimum distance of a shortened RS code is the same as that of the parent RS code. Note that
using a shortened RS code decreases the information rate of the block code since ^4 < -, and n—l n'
thus increases the coding overhead relative to the full-length code.

A decoder guaranteeing correct decoding up to the minimum distance of a shortened RS code
(addressing both errors and erasures) can be implemented entirely with lookup tables and some
basic arithmetic operations, thereby minimizing computation. However, the size of the lookup
tables is practical only for extremely weak RS codes — where the minimum distance is small. We
address this in Section 2.3.1.

For efficient implementation, reasonable arithmetic and syndrome table sizes, and high code
rate, we use RS codes defined over the 256-member Galois Field, denoted GF(28) or GF(256).
The most important factor in deciding the field size is efficient implementation since the error
control scheme must be implemented at the application level — without dedicated hardware for
efficient implementation of symbols with size unequal to 8 bits (or 16). All our shortened RS codes
are based on a single, full-length (255,253) RS code, so the codeword and information symbols
are 8 bits each. The minimum distance of this and its shortened codes is 3. We encode data
bytes systematically (losing no performance), and thus a shortened RS codeword of length LEN
consists of (LEN-2) information symbols, {ifcj-^f,^-3, and tw0 parity-check symbols pc01. The
qualitative location of the information symbols and the parity check symbols is diagrammed in
Figure 1, where only a few information symbols and a single parity check symbol (shaded) per
dimension is pictured for compactness. The computationally simple (shortened) RS decoder used
can guarantee correct decoding of any single error or up to two erasures, which is the most that an
optimal minimum-distance decoder can guarantee.

We build a product code out of weak constituent RS codes to provide a more powerful overall
(block) code with a decoder still relying largely on lookup tables. We use a 3-dimensional product
code with constituent codewords oriented along Dimensions 1, 2, and 3, as qualitatively diagrammed
in Figure 1. The defining quality of a product code is that the symbols oriented along a specific
dimension (1, 2, or 3) form a codeword in that dimension's block code — these dimensional block
codes are called the constituent codes of the product code. We allow the lengths of the shortened
RS codes to vary according to message length or application requirements (limitted memory, delay,
etc.) — all the codewords (rows) oriented along Dl must be the same length, but this length may
be different than those oriented along D2 or D3.

The minimum distance of an n-dimensional product code is the product of the minimum dis-
tances of its constituent codes [1]. The 3-d product code we use has dmjn = 33 = 27. We use
a sub-optimal decoding algorithm (not a minimum-distance decoder for the product code) which,
in the absence of errors, still decodes the 3-d product code up to its minimum distance. The
sub-optimal decoder is discussed in Section 2.3.

2.2 Encoding Procedure for the 3-D Product Code

For concreteness, assume that the lengths of the constituent RS codes along Dimensions 1, 2, and 3
equal LEN1, LEN2, and LEN3, respectively. We use shortened RS codes based on a systematically-
encoded (255,253) code, so every constituent codeword contains 2 parity-check symbols. The pack-
ets representing the last two positions along Dimension 3 (D3), for example, consist entirely of
parity-check symbols for the parallel 3-d product codewords. In fact, every packet with sequence
number (i.e., position along the appropriate dimension) Dlsn > (LEN1 - 3), D2sn > (LEN2 - 3),
or D3sn > (LEN3 — 3) consists entirely of parity-check symbols for codewords oriented along Dl,
D2, or D3, respectively (enumeration in all dimensions begins with 0).

Refer now to Figure 3, where dO is oriented directly into the page (a bird's-eye view of Figure 1).
In the figure, the code dimensions are LEN1 = 5, LEN2 = 6, and LEN3 = 5. The packets consisting
of parity-check symbols are shaded in the figure. The origin is located at the lower left corner.
The packets are numbered according to the order in which they are sent across the channel (no
interleaving is used within the encoded message).

D3 = 0 D3 = 1 D3 = 2 D3 = 3 D3 = 4

c
o

"w
c
©
E
b

■ ■ H III 11 u
3 8 H 18 H i§
2 7 12 17 22 27
1 6 11 16 21 Ü
0 5 10 15 20 !§

34 39 44 :§| ■ gg
33 38 43 48 53 58
32 37 42 47 52 HI
31 36 41 46 51 56
30 35 40 45 ■ 55

64 ■ ■ It 11 H
63 H ü !§ 83 88
62 67 72 77 ■ 87
61 66 71 76 !! it
60 65 70 75 80 H

Dimension 2

Dimension 0

©
Figure 3. Product code packet ordering.

Encoding can be accomplished by logically arranging the original data accordingly and system-
atically encoding the constituent codes in each dimension.

2.3 Decoding Procedure for the 3-D Product Code

The sub-optimal, non-adaptive decoding procedure we suggest is straight-forward. First decode the
shortened RS codewords oriented along Dimension 1. Then decode those oriented along Dimension
2. Finally, decode those oriented along Dimension 3. We do this in parallel along Dimension 0, the
bytes of the UDP packets.

In the absence of errors, this sub-optimal decoding procedure decodes up to the minimum
distance of the product code. We characterize the sub-optimality below. We do not envision this
full sub-optimal decoding procedure to be run on every 4-d data set, since it is unnecessary (and
computationally wasteful) when the channel is behaving well. The most interesting and useful
quality of this error control scheme is its adaptability to channel conditions (packet erasures). The
advantage of primarily filling erasures rather than correcting errors lies in knowing a priori exactly
what decoding steps must be taken to fully recover the data. A simple but effective approach could
be to decode a subset of the 3 dimensions. Depending upon the erasure pattern, it is likely that at
most two or possibly one of the three constituent codes need be decoded - this would reduce the
core decoding computation by | or | if such an adaptive scheme were used. The computational
savings over the full decoding procedure will be determined precisely by how aggressive an adaptive
approach is used and by how conservative an approach is desired when considering the presence of
additional, though rare, packet errors.

2.3.1 Single RS Codeword Correction Technique

Consider the full decoding procedure described above. An efficient computational algorithm for
implementing the procedure, such as the one we chose to implement for preliminary benchmark
testing, may opt to compute all the appropriate syndromes for every shortened RS codeword in
every dimension as the data arrives, filling in all erasures with zeros. This allows a single pass
over the 4-d data set rather than requiring a pass over the 4-d data set for every dimension in
the product code. If a one-pass algorithm is used (as we suggest), corrections (both erasures and
errors) to constituent codewords contribute to the syndromes for constituent codewords that will
be decoded later in the procedure. Thus an efficient method (time and memory) for updating
syndromes corresponding to constituent codewords that will be decoded later is crucial.

Single RS codeword syndromes are computed by multiplying the received word by the parity-
check matrix, filling in all erasures with zeros for the computation. The adjustment of syndromes
in all remaining undecoded dimensions is easy — when we fill in an erasure, we need only multiply
the erasure value by the proper row of the parity check matrix and add the result to the cumulative
syndrome computations. Error corrections are handled similarly by multiplying the error value
(correct symbol minus the error symbol) by the proper row of the parity check matrix and adding.
The core syndrome computation using this method requires 2 multiplications and 2 additions per
data byte per dimension.

We generate a syndrome lookup table with a number of entries equal to (28) holding (28 — l)
valid entries (the remaining entries are 0). The table is generated by multiplying every possible
single error word against the parity-check matrix to yield the syndromes — there are 255 possible
non-zero error values in 255 possible positions. The two syndrome symbols become the keys of the
table, while the entry stores the error value and location. Since the minimum distance of the RS
code is greater than 2, we are guaranteed to generate a unique pair of symbols (the syndrome) for
every single-error word.

Error and erasure correction is implemented differently depending on the number of erasures in
the codeword. When we have 0 or 1 erasure, we use the syndrome lookup table mentioned above.

Consider a codeword without erasures. We are guaranteed by the minimum distance of the RS
code (equal to 3) to be able to correct any single error in the codeword. If there is a single error, the
syndrome symbols will not both be zero. As mentioned above, the syndrome table then necessarily
stores the correct error value. Now if the codeword has multiple errors, we have no bahavioral
guarantee — either the syndrome will correspond to an invalid entry, or it will correspond to a
codeword with distance at least 3 from the original.

As an aside and for completeness, note that the shortened codes have a small advantage over
the full-length codes in the presence of multiple errors. For the shortened codes, erroneously deter-
mining that the syndrome corresponds to a "detected" single error may result in a "detected error
location" outside the bounds of the shortened codeword. For example, consider a received vector
(shortened codeword plus noise) of length LEN j 255 symbols with two errors and no erasures.
Considering how the syndrome table is generated, the computed syndrome may correspond to a
single error location in a full-length RS codeword. Then with probability 255^EN, the "detected
error location" is not a valid location within the shortened codeword. This is a very small advan-
tage considering the incredibly unlikely event of receiving multiple symbol errors in a constituent
codeword.

Now consider a codeword with a single erasure. Without additional errors, we are guaranteed
to find the syndrome in the table because this erasure corresponds to a single error whose value is
the proper (erased) codeword symbol. With a single additional error (i.e., 1 error and 1 erasure),
we are guaranteed not to find the syndromes in the table and thus we will necessarily, knowingly
fail to decode the codeword. This is guaranteed by the minimum distance of the code. If we found
a syndrome table entry whose error location corresponded to the erased location, then filling in
the erased location with the error value would result in a valid shortened codeword with distance
2 from the correct codeword. Thus, with one erasure and one error, the table entry corresponding
to the syndrome will either contain an error location unequal to the known erasure location or will
be an invalid entry (zero).

Finally consider a codeword with two erasures. Assume the two erasure locations are j, k, assume
j < k, and assume there are no additional errors. Assume that the codeword c = [coci ■■•cn] is
sent and that the received vector is r, where the (possibly shortened) code has n symbols. Denote
the n x 2 parity-check matrix by H*, and denote the ith row of H* by hs = [hi>0 hiti\. We can
rewrite c as

C = [coCi • ■ • Cn]

- [c0Ci ■ ■ • Cj-iOCj+i ■ • • Ck-lOCk+1 •■■Cn]

+ [00 ■ ■ • OcjO • ■ • 0]

+ [00 • • ■ 0cfe0 • ■ • 0]

= c' + Cj + ck.

10

Now filling in the erased locations with zeros, we can similarly rewrite the received vector (without
errors) as

r = c'

= C + Cj + C£

= C + Cj+Ck,

where cj = [00 • • • 0 — CjO ■ ■ • 0] = Cj since every element is its own additive inverse (in any GF of
characteristic 2). Denoting the syndrome v = [VQ V{\, we can write

v = rH*

= CjH* + ckH* (1)

= [cjCfc]Hsub, (2)

where (1) follows since cH* = 0 for any codeword.

Now we prove by contraposition that we can find Cj,Ck- If HSUb is not invertible, it has a
non-trivial null-space [1, Ch2]. Then with the syndrome v fixed, there are multiple pairs [a; y]
satisfying (2) for [CJ cjb]. Then we cannot uniquely decode this codeword. But, by assumption,
this codeword has 2 erasures, no errors, and the code has minimum distance 3 -¥<-. Thus Hsub
is invertible. Furthermore, H~u

x
b is unique [1]. We can thus always invert HSUb to solve uniquely

for Cj,Ck- This extends to higher dimensions for more powerful RS codes, though inverting higher-
dimensional matrices requires significantly more computation (e.g., solving for 2 erasures requires
10 multiplications, 2 additions; solving for 3 erasures requires 39 multiplications, 17 additions using
the Laplace expansion and cofactors for inverting the matrix — this may still be acceptable).

Finally, consider a codeword with 2 erasures and one or more additional errors. Using the
method of multiplying v by H~^b, we will never know whether there are additional errors. We will,
in general, replace the erased symbols with incorrect symbols.

11

3. DETERMINISTIC ERASURE AND ERROR PERFORMANCE

We have characterized the deterministic performance of the scheme in a number of ways. Since
we have no reasonable stochastic channel model, we have not attempted any stochastic analysis.
We could use a coarse Gilbert-Elliot type channel model in a stochastic analysis, but this would
be an arbitrary choice. This coarse model would represent a 3-dimensional space (a possible basis
would be the two average state dwell times and the average time in one of the two states), and an
analytical mapping could be approximated only in limited regions of the space. We feel that such
analysis should be attempted after an approximate model is developed for the actual channel.

3.1 Sub-Optimal Decoding Loss

Considering only erasures, we can explicitly characterize erasure patterns that will be undecod-
able under the specific sub-optimal decoding scheme we have chosen and under the full-power
decodability of the product code.

Exploiting the full power of the code, i.e., using an optimal (minimum-distance) decoder, any
undecodable erasure pattern must contain a 3 x 3 x 3 fragmented cube of erasures within the 3 - d
product code. A fragmented cube of erasures can be defined mathematically as follows. For nota-
tional purposes, each logical position in the data set can be identified by a triplet (Dlsn,D2sn,D3sn)
identifying the position along dimensions Dl, D2, and D3, respectively. A fragmented cube of era-
sures consists of exactly 27 erasures whose corresponding set of 27 triplets {(Dlsn,D2sn,D3sn)}
satisfies the following criterion:

• there are exactly 3 unique sequence numbers in the first coordinate, Dlsni, Dlsn2, and Dlsn3,
each appearing exactly 9 times, AND

• there are exactly 3 unique sequence numbers in the second coordinate, D2sni, D2sn2, and
D2sn3, each appearing exactly 9 times, AND

• there are exactly 3 unique sequence numbers in the third coordinate, D3sni, D3sn2, and
D3sn3, each appearing exactly 9 times.

This 3x3x3 fragmented cube of erasures corresponds to a set of 9 erasures in a Dl x D2 plane
repeated in 3 different positions along D3 (not necessarily successive positions). The pattern of 9
erasures must consist of exactly 3 rows and 3 columns (not necessarily successive rows or columns)
each with 3 erasures to form a 3 x 3 array. Refer to Figure 4 for such a 3 x 3 x 3 fragmented cube
of erasures. This is a bird's-eye view of the 4-d data set with Dimension 0 directed into the page.
Each large X represents an erasure.

As explained in Section 2.3.1, any single codeword containing fewer than 3 erasures will be
correctly filled. Thus, after simply iterating the decoding procedure multiple times (running through

13

D3 = 0 D3=1 D3 = 2 D3 = 3 D3 = 4

c
g
c

£
Q

1

K K K K K K K K K § § § §§§§§§
Z E Z Z Z Z X Z X
Dimension 2

Figure 4. 3 x 3 x 3 fragmented cube of erasures.

the full decoding procedure multiple times on the same data set), only constituent codewords with
more than 3 erasures could be left unfilled. Since this is true for every dimension of the code, every
undecodable erasure pattern using the iterated technique must contain a 3 x 3 x 3 cube of erasures.
Furthermore, in the absence of errors, the iterated procedure monotonically decreases the distance
between the received word and the correct codeword (it does not introduce erroneous symbols in
the absence of received symbol errors), and thus any erasure pattern correctable by the iterated
procedure will be correctable by a minimum-distance decoder. Conversely, any 3x3x3 cube of
erasures is undecodable (equidistant from 2 codewords), and thus every erasure pattern containing
such a cube is undecodable for any decoder.

Now consider the sub-optimal decoding procedure described in Section 2.3. Describing the
undecodable erasure patterns is difficult, but the patterns are fully characterizable. We will argue
that any undecodable erasure pattern must contain three sub-patterns of 9 erasures in a Dl x D2
plane, each sub-pattern with a different index in D3. Each sub-pattern of 9 erasures must contain 3
different columns with 3 erasures each, each column with an erasure in at least 1 common D2 row.
Call such a row a cross-pattern row. Then, finally, each of the three sub-patterns with 9 erasures
must have at least 1 commonly erased (D1,D2) pair within their cross-pattern rows (to yield a D3
codeword with 3 erasures).

Refer to Figure 5 for such an undecodable pattern when using the simple sub-optimal decoding
procedure. This is a series of bird's-eye views of the 4-d data set with DO directed into the page.
Each large X represents an erasure. All cross-pattern rows are highlighted. The top sketch depicts
an original, hypothetical erasure pattern on the 4-d data set. The middle sketch depicts the three
sub-patterns of 9 erasures. The bottom sketch shows the undecodable D3 codeword with 3 erasures
that must be left after the first 2 dimensions have been decoded. This is an undecodable erasure
pattern.

Returning to the characterization of erasure patterns, consider any erasure pattern that satisfies
these conditions. Focusing on the Dl x D2 plane, only an erasure pattern containing such a 9-erasure
sub-pattern can be left unfilled after decoding the first two dimensions of the product code. Indeed,

14

D3 = 0 D3=1 D3 = 2 D3 = 3 D3 = 4

C
o
'w
c
0)
E

Dimension 2

„ X s w

§22
£ £

X
X

X X

X X s

Figure 5. Undecodable erasure pattern using the sub-optimal decoding method.

the cross-pattern rows will be left unfilled after decoding the first two dimensions. Focus back on
the full 4-d erasure pattern and work backwards in the decoding procedure. Only patterns with 3
or more remaining erasures along a D3 codeword will be left unfilled after decoding D3. Any triplet
of erasure sub-patterns with a commonly erased (D1,D2) pair in their cross-pattern rows will leave
a D3 codeword at this location with at least 3 remaining erasures, and thus every erasure pattern
containing such a triplet of sub-patterns is undecodable. By a similar argument, any undecodable
erasure pattern must contain such an erasure sub-pattern.

Note that this class of erasure patterns contains the 3x3x3 fragmented cubes (i.e., the erasure
patterns that are undecodable for a minimum-distance decoder), of course, as all 3 rows of each sub-
pattern are cross-pattern rows and the 3 sub-patterns overlap in all 9 (Dlsn,D2sn) pairs (leaving 9
undecodable D3 codewords). „

Such characterization of undecodable erasure patterns for both an optimal and this particular

15

sub-optimal decoding procedure will ease stochastic analysis. Further, this characterization will
make stochastic performance simulation (if desired) simple for an optimal decoding procedure.
Finally, it may help simplify simulation of the sub-optimal decoding procedure, though this could
just as easily be obtained by generating erasure patterns and simply correcting (in the appropriate
order) all codewords with fewer than 3 erasures.

3.2 Performance Guarantees

We summarize several deterministic performance characterizations. For notation, we have defined
the code dimensions ni = LENl,ri2 = LEN2. In the following tables, a single burst of erasures
refers to a single burst across the entire 4-d data set. Similarly, a double burst corresponds to 2
separate bursts (possibly contiguous) across the entire 4-d data set. Furthermore, a random erasure
per cube corresponds to a single random erasure for every Dl x D2 plane.

We took a game-theoretic point-of-view to generate the following performance guarantees.
Specifically, we found the absolute worst orientation of burst erasures, random erasures, and ran-
dom errors such that we can still guarantee perfect data recovery using the sub-optimal decoding
procedure. Allowing the "Maximum Erasure Burst Size" to increase by one will admit an era-
sure/error pattern that will break the decoding procedure (i.e., the decoding procedure will fail to
produce an error- and erasure-free 4-d data set). The code will perform significantly better under
reasonable stochastic variation.

For specific numerical values, we assumed no = 400 (i.e., 400 bytes per packet), n\
and nz = 25.

TABLE 1

Single Burst Plus Random Erasure Protection Guarantees

ri2 = 69,

Max. # Random
Erasures Per Cube
(Dropped Packets)

Max. Erasure
Burst Size
(Packets)

0 ni (2n2) = 9522
(3.0 second outage
at 10 Mbits/sec)

1 nx (2n2 - 1) + 3 = 9456
2 m (2n2 - 1) + 1 = 9454
3 "i (n2 + 3) = 4968
4 ni (n2 + 2) + 3 = 4902
5 ni (n2 + 2) + 1 = 4900
6 m (n2 + 1) = 4830
7 ni (n2) + 3 = 4764
8 m (n2) + 1 = 4762

>9 0

16

TABLE 2

Double Burst Plus Random Erasure Protection Guarantees

Max. # Random
Erasures Per Cube
(Dropped Packets)

Max. Erasure
Burst Size

(Each)
0 m (n2) = 4761

(1.5 second outages
at 10 Mbits/sec)

1 ni (n2 - 1) + 2 = 4694
2 ni (n2 - 1) + 1 = 4693
3 ni (2) = 138
4 m + 4 = 73
5 ni + 2 = 71
6 ni =69
7 2
8 1

>9 0

TABLE 3

Single Burst Plus Random Erasure Guarantees,
Given a Single Random Error

Max. # Random
Erasures Per Cube
(Dropped Packets)

Max. Erasure
Burst Size
(Packets)

0 ni (n2 - 1) + 1 = 4693
1 ni = 69
2 3
3 1

>4 0

17

TABLE 4

Double Burst Plus Random Erasure Guarantees,
Given a Single Random Error

Max. # Random
Erasures Per Cube
(Dropped Packets)

Max. Erasure
Burst Size

(Each)
0 3
1 2
2 1

> 3 0

3.3 Benchmark Tests

An encoder/decoder pair was programmed in C for proof-of-concept and for preliminary benchmark
testing. This code was not optimized (at the programmer's level) for either speed or storage
requirements. Several timing tests were run on the implementation. The following decoding times
were measured across the core decoding procedure only (after loading received data into RAM and
before writing out to file). The times do not account for receiving the data and transferring to
RAM. Further, we saw a significant reduction in decoding time when the decoder was run twice in
succession. We attribute this to caching of the program (not the data).

The data set had the following dimensions: 397 x 69 x 69 x 25 encoded bytes, corresponding
to 397 x 67 x 67 x 23 bytes of real data. A packet size of 400 bytes was chosen, where 3 bytes
are used as packet sequence numbers (hence the dimension size 397 above). The second-run times
are recorded here (real time), as well as the corresponding rate of information data (not codeword
data) processed:

Sun Sparc 10 (unloaded): 144.0 seconds (±1) 2.3 Mbits/sec
Sun Ultra 1 (unloaded): 27.2 seconds (±1) 12.1 Mbits/sec

We ran the decoding tests on perfect data sets (no erasures, no errors). We do not predict a
significant increase in decoding time when faced with a significant quantity of erasures; filling in
erasures once the syndromes have been computed requires little additional computational effort.
In the interest of time, we opted to implement the full decoding procedure described in Section 2.3
regardless of the erasure pattern.

As discussed in Section 2.3, the scheme was designed to allow fast decoding when the channel
is behaving well. For example, decoding only the first dimension will generally correct low-weight,
non-bursty erasure patterns. See Section 2.3 for further discussion. The data rate numbers recorded
above do not reflect an intelligent (adaptive) decoder implementation.

18

4. IMPLEMENTATION ISSUES

4.1 A Few Words on Interleaving

At first glance (and intuitively), it appears that interleaving the data over the channel would
improve the burst erasure protection for our sub-optimal decoding scheme. However, interleaving
within a 4-d data set yields no gain. To focus on the issue, we restrict our attention to a single
burst of erasures without any additional packet erasures or errors.

We decode the data set by first decoding the Dl codewords, then the D2 codewords, and
finally the D3 codewords. A non-interleaved approach transmits the packets in this same order
— we send the packets which comprise the parallel Dl codewords, increment D2sn, send the
packets which comprise the next set of parallel Dl codewords, increment again, and continue (see
Figure 3). Consider encoding the message in the same order but sending the data across the
channel by reordering the dimensions. Specifically, send a packet, increment D3sn by 1, send the
next, increment D3sn by 1 again and continue until we reach the end of the D3 dimension. Then
increment D2sn by 1, reset D3sn, and continue. At the receiver, put the data back into the proper
order (deinterleave) and proceed with the decoding as before. This effectively sends the data across
the channel in the opposite dimensional order as the decoding.

Now consider these two scenarios when faced with a long burst erasure. Roughly speaking, the
non-interleaved scheme leaves the burst erasure recovery solely to the final decoding dimension —
recovery from 2 erasures in the D3 codewords. Since we transmit the packets in a non-interleaved
order, we can recover approximately 2 entire 3-d sets (D0,D1,D2) of data, and the final decoding
loop (dimension D3) does all of the work. This yields an approximate burst erasure protection
of 2 x LEN1 x LEN2 packets. Similarly, the interleaved scheme leaves the burst erasure recovery
solely to the first decoding dimension — recovery from 2 erasures in the Dl codewords. Since we
transmit the packets in the interleaved order, we can recover approximately 2 rows (D2) from each
of the 3-d sets of data, and the first decoding loop (dimension Dl) does all of the work. This yields
an approximate burst erasure protection of 2 x LEN2 x LEN3 packets. If we simply swap the sizes
of the dimensions, keeping the size of the 4-d data set constant, the two schemes are approximately
equivalent in terms of burst erasure protection.

This fact seems surprising, but as mentioned above, we can explain it. We rely on a single
decoding dimension for the main erasure recovery in the case of a long burst erasure. We just change
the workhorse dimension when we interleave in this way. To increase burst erasure protection, we
could opt to interleave several 4-d data sets over the channel. However, there are many important
issues associated with this. Specifically, we would like to interleave 4-d data sets destined for
different receivers so that a single receiver does not need to store multiple data sets concurrently
(this would increase the memory requirement on the receiver). This effectively reduces the data
rate to each receiver while maintaining the same throughput across the channel. Thus, channel
outages of a fixed time duration correspond to reduced data loss per user. Such a scheme requires
control over the messages generated from different sources and destined for different receivers, which

19

is outside the scope of application-level forward error correction. Alternately, to avoid requiring
access to global data, we could opt to interleave 4-d data sets destined for a single receiver and thus
reduce the erasure burst length per data set. Such a scheme is possible when a single source has
multiple messages for a single receiver or, more likely, a single long message that must be segmented
into multiple 4-d data sets (such as a large image file). As mentioned above, however, this would
significantly increase the memory requirement at the receiver.

4.2 Multiplication and Division in a Galois Field

For the encoding and decoding procedure, we need to perform arithmetic operations in a finite
(Galois) field. We use the Galois Field of 256 elements. In this field (and in any GF of characteristic
2) addition may be efficiently implemented by a bitwise XOR of their m-tuple representations.

The primitive polynomial we use to derive field multiplication in GF(256) comes from Peterson
and Weldon [2, App Cj. We use p(x) = x8 + x7 + x6 + x + 1. The 256 field elements are uniquely
represented as the polynomials of degree 7 with binary coefficients (elsewhere called the m-tuple
representation). Field multiplication is then equivalent to polynomial multiplication modulo p{x).

An equivalent representation of field elements is as a power of a primitive element a, where
a is a root of the primitive polynomial p(x). The 255 non-zero polynomials of degree 7 with
binary coefficients are precisely the first 255 powers of a (a0 = 1 to a254) reduced modulo p{x).
Field multiplication using the powers-of-a representation corresponds to modulo-255 addition of the
exponents — al + a? = a^+fi™0*255. jn the interest of time, we first implemented multiplication this
way by using lookup tables to convert between the polynomial representation and the powers-of-a
representation. However, it is clear that using a 2-key lookup table generated during initialization
(whose entry is the multiplication of the 2 keys in m-tuple representation) yields a significant time
improvement, so we added a quick patch in the C code to replace multiplication methods. The
former method may be implemented using two conversion tables (size on the order of the field size
256) and a single mod-255 addition for each field multiplication. The latter method requires a single
table lookup (size on the order of the field size squared). Both methods would generate their tables
during initialization. Using the 2-key lookup table is faster due to the single table lookup, and we
suggest exploiting this method since approximately \ of the core computation is multiplication (for
computing the syndromes). Division is implemented similarly, though used only when correcting
codewords with 2 erasures; it requires another table of equal size to implement as a 2-key lookup
table.

4.3 Choosing the Dimension Sizes

Note that the implementation choice no = 400 is rather arbitrary. This 400-byte UDP packet size
includes 3 bytes for sequence numbers. Also, the fixed per-packet network overhead is approximately
85 bytes (8 byte UDP header including optional checksum, 20 byte IP header, approximate 12

20

bytes for ATM AAL-5 layer [depends on multiplexing MPEG streams], and 5*$] bytes for the
48-byte ATM cell headers). This represents approximately 17.5% network overhead. Note that this
overhead would be incurred by any error control scheme using a 400-byte packet and thus has not
been a focal point in the design or discussion.

There are two other factors to consider in setting the packet size no- First, the length does
not affect the power of the product code in terms of dropped packets, but it clearly affects the
performance in terms of channel time. For the same channel outage time, decreasing no obviously
increases the number of packets dropped. Second, varying no does not greatly affect the per-byte
decoding speed since the product code is implemented in parallel over the packet bytes.

Next consider the product code dimensions. Note that all burst performance guarantees can
be stated in terms of the dimension sizes (see Section 3.2) ni,n2. In general, fixing the product
nin2 = N results in a fixed deterministic burst erasure guarantee. All other things being equal, we
could opt to maximize the net code rate by choosing n\ = n2 = y/N. Using the Lagrange multiplier
method for real-valued ni,n2, denote the Lagrangian by J and the multiplier by A. Then

J =

1-—) (l-—)+X(N-nin2)

S= (i-£)GI)"An2'
dn2 V "1/ \nV Wl"

Setting both partials to zero and equating,

1) (—) = Anin2 nij \n2

V "2/ \nx

Solving simultaneously for positive ni,n2, we find ni = n2 is the only possible solution, which
is clearly a maximum. Note that a maximum is guaranteed to exist since we are maximizing a
continuous function over a compact space. The extension to integral values is intuitive.

Note that, though the burst erasure performance does not depend on n3, the net code rate does.
The net rate of the code, disregarding network overhead, is H = (Tta=l\ fsj~l\ (m=l\ {m=2\

(recall we use 3 bytes for sequence numbers in every packet). We do not want to make n3 too small.
On the other hand, the computer memory requirement is directly proportional to n3.

Finally note that, barring changing the code dimensions on a per-message basis (see below), the
code dimension choices further affect the net code rate when addressing the finite size of messages.

21

Recall that every message necessarily must be padded to fit into an integral number of 4-d data sets.
This effect is impossible to quantify without a reasonable traffic profile (a probabilistic distribution
on message size).

4.4 File Size versus Code Format

There is nothing inherent to the logistics of the scheme requiring a fixed set of code dimensions for
every message. Thus, theoretically, we are free to vary the dimensions of the 4-d data set to fit the
finite message size with minimal padding (and thus reduce additional coding overhead).

There is nothing inherent to the implementation, either, which would prohibit varying the code
dimensions. We could simply pass in the appropriate dimension sizes to the decoder. Note that
our implementation of the decoder must allocate space at compile time (since multi-dimensional
arrays are used and the code is implemented in C) and thus must take the maximum amount of
memory regardless.

There are several effects to consider when addressing dynamically varying code dimensions.
First, we cannot vary the packet size no without affecting the performance of the queue manager.
The queue manager will be designed with a fixed unit of work in mind — e.g., the UDP packet
size. However, this does not mean that queue manager performance will suffer; however, we may
sacrifice predictability. Second, varying no allows the finest-grain 4-d data size adjustment (with
the smallest effect on net code rate per unit change of the four dimensions, as long as we ignore
network overhead). Note that when adjusting the code dimensions, we should consider the per-
packet network overhead rather than just the net code rate TZ as defined above. Third, if we allow
dynamically varying dimensions, we must transmit the dimension parameters along with the data.
Recall that burst erasures may wipe out a large number of packets, so sending this information
in a "setup" packet or in the first few packets is unacceptable — the parameters may have to
be transmitted with every packet, corresponding to additional coding overhead (like the packet
sequence numbers).

The padding overhead reduced by allowing dimension variability is, once again, impossible
to quantify without a probabilistic distribution on the traffic size. Since traffic is completely
uncharacterized at the moment, no attempt at quantification has been made.

4.5 Availability of Data

We have entirely skirted the implementation issue of data availability. We include 3 bytes per
packet denoting the packet position in the 4-d data set, (Dlsn,D2sn,D3sn). This requires 3 bytes
of overhead per packet, but it allows us to assemble the data in order at the receiver. When im-
plementing the preliminary (benchmarking) procedure, we assume that all information has arrived
at the decoder and processing can begin. We start with an entire simulated data set (with missing

22

or dirty packets, as appropriate) and place this "received data" in order in RAM and proceed with
the full decoding procedure outlined above.

On the other hand, this scheme was designed to allow efficient incremental decoding. This
means that all computation based on an arriving packet can proceed when the packet arrives and
that no further data is necessary before the computation on the packet can be completed. In an
actual implementation, we envision an interrupt-driven decoding procedure (a per-packet interrupt
would be excessively slow if data were arriving with any significant regularity, while only a single
interrupt may be necessary if data were arriving at, say, 10 Mbits/sec).

There is an open implementation issue to consider — when should we give up waiting for data
to arrive? Specifically, our implementation assumes we've already given up waiting for any further
packets to arrive (we consider them erased). However, the absence of an expected packet (at a
certain time) may correspond to a channel outage, a network checksum failure, network buffer
overflow, a queue manager decision to service another user, sudden heavy traffic network delays
(on a terrestrial network), etc. The first three result in a dropped packet, while the last two simply
delay its arrival. Consider the latter case, wherein a packet is delayed somewhere in the network.
Deciding to give up on an expected packet may make the difference between a successfully and an
unsuccessfully decoded message (obviously). However, it may also make the difference between low
and high decoding latency (when the decoder could recover the delayed packet by considering it
"erased").

We also realize that packets may arrive out of sequence. Though we believe this should not hap-
pen in the network architecture we currently envision, it may be possible. Consider an application
sending packets over multiple physical links in a terrestrial network. There is no guarantee that
all packets will arrive at the queue manager (or from the satellite link receiver to the application)
in sequence. In the current C code implementation, we effectively assume that all packets arrive
in sequence. Jumping forward in the sequence is no problem in that we can simply assume all
intermediate packets have been erased (and thus we do our best to fill in the intermediate packets).
However, jumping back in the sequence of packet arrivals is impossible in the current implementa-
tion. We process syndromes for Dl (fixing D2sn and D3sn), correct the Dl codeword if possible,
and then overwrite the Dl syndrome table with the next Dl codeword (for D2sn + 1 and D3sn).
Similarly, we process syndromes for D2 (fixing D3sn), correct the D2 codewords if possible, and
then overwrite the D2 syndrome table (for D3sn +1). Though memory efficient, we cannot do this
if we allow packets to arrive out of sequence.

23

5. SUMMARY

We have outlined a high-rate forward error control scheme designed to recover from a variety of
network and channel behaviors which result in a significant loss of data. The scheme is designed
for the protection of large messages destined for a receiver running an application-level message
decoding procedure. The error control scheme has been designed for flexibility according to receiver
computational and memory limitations as well as adaptability to channel behavior.

The packet loss patterns which will cause the proposed sub-optimal decoding procedure to
fail have been fully characterized, and these patterns have been compared to those which would
cause an optimal decoding procedure to fail. The deterministic burst packet loss protection in the
presence of scattered packet erasures and packet errors has been characterized in a number of ways.
A stochastic analysis has not been attempted because no reasonable stochastic channel model is
available for the types of error events considered.

An encoding and decoding procedure was implemented in C for preliminary benchmark testing.
We find that the full core decoding procedure can process incoming data on a Sun Sparc 10 and a
Sun Ultra 1 with a reasonable throughput at the application level.

Several minor implementation issues have been highlighted which still need to be addressed if
this proposed scheme is to be implemented operationally.

25

REFERENCES

[1] Richard E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, Reading,
MA, first edition, 1983.

[2] W. Wesley Peterson and E.J. Weldon Jr. Error-Correcting Codes. MIT Press, Cambridge, MA,
second edition, 1972.

27

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed,
and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget Paperwork Reduction Project
(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
22 July 1997

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE

A Forward Error Control Scheme For GBS and BADD

5. FUNDING NUMBERS

C — F19628-95-C-0002
PR — 602

6. AUTHOR(S)

Brett E. Schein
Steven L. Bernstein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lincoln Laboratory, MIT
244 Wood Street

Lexington, MA 02173-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-1039

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA/ISO
2701 North Fairfax Drive
Arlington, VA 22203-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-97-052

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document provides a description of an error control scheme which can enhance the reliability of
file and message transfer in the Battlefield Awareness and Data Dissemination (BADD) and Global Broadcast
Service (GBS) programs.

The proposed scheme is intended to be general enough for adaptation to real network considerations,
traffic profile, channel behavior, and computational and memory limitations. As such, the proposed scheme
will need to be modified slightly for actual use, and some of the necessary modifications will be addressed.

14. SUBJECT TERMS 15. NUMBER OF PAGES
36

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Same as Report

19. SECURITY CLASSIFICATION
OF ABSTRACT
Same as Report

20. LIMITATION OF
ABSTRACT

Same as Report

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. 239-18
298-102

