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Abstract

ii

A pair of three-dimensional (3D) models for correlation functions and spec-
tra of velocity fluctuations in turbulent boundary layers is presented. First,
the case of homogeneous turbulence is considered. Von Kérmaén’s energy
spectrum is used to develop a complete set of 3D correlation and spectral
equations. Second, it is shown how the homogeneous spectra can be modified
to include the effect of eddy-blocking at the ground. Assuming that the dis-
turbance to the turbulent flow resulting from the blocking is irrotational, an
equation is developed that allows one to write the vertically inhomogeneous,
2D cross spectra as a function of the 2D cross spectra for a homogeneous
flow. Although there are only two adjustable parameters in the inhomoge-
neous model, the variance and a length scale, the model is shown to agree
quite well with a variety of previous results for the atmospheric convective
boundary layer (CBL).
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1.

Introduction

Three-dimensional (3D) spectral and correlation models of turbulence in at-
mospheric boundary layers are required in a variety of applications, such
as electromagnetic and acoustic wave propagation, turbulent transport and
dispersion, response of structures exposed to the wind, and large-eddy sim-
ulation. In particular, the work described in this report is motivated by the
need for good spectral models of large-scale turbulence in acoustical propa-

gation applications.

It is not difficult to develop good 3D spectral and correlation models if
one is interested only in small-scale inertial subrange turbulence (fig. 1).
Owing largely to the work of Kolmogorov (1941), the spectral properties
of the inertial subrange are well understood. The eddies belonging to the
inertial subrange have spatial scales smaller than the instability generating
the turbulence, and larger than the scales at which the turbulent kinetic
energy is dissipated by viscosity. The large eddies generated directly by the
instability belong to the energy-containing subrange, and the very small,
dissipating eddies belong to the dissipation subrange.

For an atmospheric convective boundary layer (CBL), the energy input oc-
curs at scales on the order of z;, the inversion layer height, which is typically
in the range from 0.5 to 2km. Dissipation occurs on scales 7 ~ 1 mm. We see
that there is an extremely broad inertial subrange in atmospheric turbulence,
spanning five to six orders of spatial magnitude. Nonetheless, if turbulent
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scales in either the energy-containing or dissipation subranges play a role in
a given application, or if interactions between the eddies and ground surface
(called blocking effects) are important, inertial subrange spectral modeling
will fail.

In outdoor acoustic propagation, the wavelengths of interest can be as long as
30 m, and heights all the way down to ground level are important. Turbulent
eddies having dimensions on the order of or greater than the wavelength pri-
marily determine the scattered field. Hence classical inertial subrange scaling
cannot be used in many acoustical applications, and models including the
energy-containing subrange and ground blocking effects are required. Turbu-
lent structure in the dissipation subrange is normally unimportant, though.

Despite the importance of having good 3D statistical models for atmospheric
turbulence, previous experimental and modeling efforts have largely focused
on single-point variances and 1D spectra taken in the direction of the mean
wind. This is because such quantities can be determined from stationary
towers. For 1D spectra, Taylor’s frozen turbulence hypothesis is used to
convert a time series recorded at the stationary tower to a spatial series.
(Discussions of 1D spectral measurements and models are found in Kaimal
et al. (1972), (1976), Hgjstrup (1982), and Panofsky and Dutton (1984).)
Although single-point variances and 1D spectral models provide some basis
and constraints on which to build a multidimensional model, they are not
sufficient to fully define one.

In principle, by assuming homogeneity and isotropy, one could actually derive
multidimensional spectra and correlation models solely from 1D turbulence
measurements. The necessary relationships have been known for decades
(Batchelor, 1953). Unfortunately, one cannot apply these relationships di-
rectly: atmospheric turbulence is known to be highly inhomogeneous and
anisotropic, largely because of interactions with the ground.

Despite the inherent difficulties, some notable efforts have been made to de-
velop multidimensional spectral/correlation models suitable for atmospheric
turbulence. Kristensen et al. (1989) developed a general 3D model for tur-
bulent velocity spectra in homogeneous, anisotropic boundary layers. Mann
(1994) considered 3D spectra for turbulence generated by shear instabilities,
allowing vertical inhomogeneities in his model. The work in this report builds
on a spectral theory developed by Hunt and Graham (1978), who considered
the effect of a boundary on turbulence in the absence of mean flow. As a
result, the model here is intended for the atmospheric CBL. By this I mean
that turbulence generation by convective instabilities (heating by the ground
surface and the resulting density contrasts in the overlying air) dominates
generation by shear instabilities (the wind blowing over the ground).

One of the principal benefits of building on Hunt and Graham’s (1978) results
is that the resulting spectral equations give the inhomogeneous, boundary-
blocked spectra in terms of the spectra for homogeneous turbulence. Since
the homogeneous case can be analyzed fully, as mentioned above, a complete
spectral model results.




This report is divided into three main sections. Section 2 covers the case
of homogeneous, isotropic turbulence. I provide some tutorial background
for readers unfamiliar with this subject, and I develop a complete set of
spectral/correlation equations for the homogeneous case. The main purpose
of the section, however, is to derive the spectral results for homogeneous
turbulence needed by the inhomogeneous, blocked model.

The inhomogeneous, blocked model is developed in section 3. I derive a
general equation describing the blocking on 2D cross spectra, by assuming
that the boundary does not modify the vorticity field. All other correlations
and spectra can be determined from the 2D cross spectra by calculation of
Fourier transforms.

Last, in section 4, I compare the inhomogeneous, blocked model to several
experimental and computationally generated data sets, as well as to some
previously developed models. Of course, as was discussed above, it is diffi-
cult to perform multidimensional correlation/spectral measurements in the
atmosphere. However, quantities that are more easily measured, such as vari-
ances, integral length scales, and 1D spectra, are special cases of the full 3D
correlation/spectral model, and I expect the model described here to behave
well for these special, limiting cases. Hence it is quite worthwhile to test the
model with measurements of these simpler quantities.




2.

Correlation/ Spectral Model for Homogeneous,

2.1

Isotropic Turbulence

Preliminaries

Suppose we measure turbulent velocity fluctuations at two points in space.
Let us indicate these two points as x = (z,y,2) and X' = (2/,y,2'). The
coordinate system is oriented so that z is the vertical direction. Orientation
of the horizontal axes is arbitrary, since I am not considering turbulence
production by a mean horizontal wind shear in this report. The correlation
function between the measured velocities is

Rij(x,%) = (ui(x)u;(x)), (2.1)

where the angle brackets indicate ensemble averaging, and u; and u; are
the velocity fluctuations at the two points, oriented along the ith and jth
coordinate axes (where z; is the same as z, 29 = y, and z3 = 2).

By definition, in homogeneous turbulence, the correlation function depends
only on the spatial separation between x and x’. Hence we may write

Rij(r) = (uwi(x)u;(x)), (2.2)

where r = x’ — x.

The spectra are Fourier transforms of the correlation function. The Fourier
transform convention used in this report is

Fw) = % /_ Z F(r) exp(—ixr) dr (2.3)
for the forward transform, and
£r) = /_ °; f(r) exp(irr) dr. (2.4)

for the inverse transform, in which « is the wavenumber. For example, the
1D cross spectrum is

1 > .
©ij(K1372,73) = -é;/ R;j(r1,72,73) exp(—ikiry) dry. (2.5)
-0

By cross spectrum, I mean a spectrum involving two spatially separated
points. The ordinary, single-point, 1D spectrum would be ©;;(x1;0,0). A
cross spectrum can be thought of as a mixed spatial correlation/spectral
function.

It is only a matter of convention that the Fourier transform was taken in the
z;-direction (i.e., with respect to r1) in equation (2.5). Because of isotropy,
we could have used either the z9- or z3-axis instead, and still had a complete
set of 1D cross spectra. For example, consider the 1D cross spectrum with




Fourier transform in the z3-direction ©g2(r 1, 7|j; k). Let us use the customary
right-handed coordinate system, with the z;-axis coming out of the page,
T3 to the right, and z3 upwards. Looking in the direction of the velocity
component (zrs-axis), we see the displacement r; to the right, the displace-
ment 7| to the front, and the Fourier transform axis upwards. By reorienting
ourselves so that we are looking down the z3-axis with the zs-axis to the
right, we find the relationship ©33(x;7 1,7)) = ©22(r 1,73 k). Many other
relationships follow similarly.

Besides the 1D cross spectra, I define 2D cross spectra ¢ij(K1, Ko;T3), and
3D spectra ®;;(k1, k2, K3), as follows:

1 0 . .
¢ij(K1, K2;T3) = m/ R;j(r1,72,73) exp(—ik17) — ikors) drydrs
-0
1 o0
= —/ ©ij(k1;72,73) exp(—ikars) dra, (2.6)
27 J—oo
1 S . . .
(K1, K2, K3) = _875_/ Rij(r1,72,73) exp(—ik171 — iKgTg — iKkgr3) dri dradrs
-0
1 o0 .
= é-/ ¢ij(K1, K23 T3) exp(—iKars) drs. (2.7)
T J-0

The eventual goal in these modeling efforts is to determine Rij, ©5, ¢ij, and
®;;. Of course, because of the Fourier transform interrelationships, only one
of these functions is independent.

There are other useful symmetry relationships. Switching u; and u; in the
definition of the correlation function, and applying homogeneity, we find

Rij(r1,7m2,73) = Rji(—r1,—T2,—T3). (2.8)

Making use of this identity and the fact that R;; is a real function, we find,
from the Fourier transform definitions,

Oij (K1, k2, 73) = Oji(—k1; —r2, —13) = OF;(k1; 12, —73),  (2.9)

bij (K1, k23 73) = ¢ji(—K1, —K2; —73) = @ji(K1, K2; —T3),
(2.10)

and
B (K1, K2, K3) = Bji(—K1, —k2, —K3) = Bj;(K1, K2, K3)-
(2.11)

2.2 Energy and Three-Dimensional Spectra

The starting point in developing correlations and spectra for homogeneous,
isotropic turbulence is the 3D turbulent kinetic energy (TKE) spectral den-
sity E(k), where K = (k1, k2, K3), and & = |&|. (In the turbulence literature,




| TKE usually implicitly refers to the TKE per unit mass. I adhere to that
convention in this report.) E(k) is defined as the TKE per unit wavenumber
magnitude. If one thinks of the TKE in 3D wavenumber space, E(k) is the
energy in a shell of radius . Since the TKE spectral density at a given point
in wavenumber space is ®;;(k)/2 (summation over repeated roman indices
is implied), and the total energy in a shell of radius & is 4mk? times that
amount,

E(k) = 27k%®;(k). (2.12)

The total kinetic energy in the flow is
oo 1 o0 o0 o
E = / E(k)dk = ——/ / / ®,i(k) dk1 dra dks.
0 2 J-00J-00 J-

The success of the correlation/spectral model depends on making a good
choice for E(k). The main criteria are (1) it must agree well with data; and
(2) it must be analytically convenient to manipulate. The following form for
the 3D energy spectrum satisfies both criteria reasonably well within the
energy-containing and inertial subranges (see app A):

(2.13)

_A(v+5/2) oAl

B = =70y (v meyse (214)

where o2 is the variance, k the radial wavenumber, £ the length scale, I’
the gamma function, and v sets the power law dependence in the inertial
subrange (k£ > 1). With appropriate choices for 02, £, and v, equation (2.14)
is equivalent to von Kdrmén’s (1948) model for E(x). In particular, setting
v to 1/3 results in Kolmogorov’s —5/3 power law for the inertial subrange
(k€ > 1). I will not explicitly set v to 1/3 until we obtain final results, since
to do so would sacrifice generality without appreciably simplifying any of
the spectral expressions.

Given the energy spectrum, it is a simple matter to determine the 3D spectra
®;;. One uses the following well-known formula, derived, for example, in
Batchelor (1953):

@ij(li) = -4‘?7}(—:-2— (5,'_9'&2 - K,ilcj) . (2.15)

2.3 Longitudinal Correlations and Spectra

As a next step, we could integrate the 3D spectra ®;; to find the 2D cross
spectra ¢;;. It is somewhat more instructive, however, to first consider 1D
spectra. Given equation (2.14), and the assumption of homogeneous, isotropic
turbulence, it turns out that 1D spectral densities and correlation functions
can be derived directly.

Let us begin with the 1D longitudinal autospectrum. By longitudinal, I mean
that the velocity component is parallel to the direction of the wavenumber

]




axis: i.e., ©11(k,0,0), ©2(0, k,0), or O33(0,0, k). Note that isotropy implies
that these three spectra are the same. Let us define a normalized, longitu-
dinal spectrum as f(k) = ©11(x,0,0)/0?, which can be shown to be related
to the energy spectrum as follows (Batchelor, 1953):

E(k) = 0%33‘% [% %’9] . (2.16)

By integrating equation (2.16), it is straightforward to show that the nor-
- malized, longitudinal spectrum is

;o Tv+1/2) l
f(") = \/771-\(1/) (1 + K2g2)u+1/2'

(2.17)

The longitudinal spectrum is plotted as the solid line in figure 2, for v =1 /3.

We can derive the longitudinal correlation function o2 f(r) by taking the in-
verse Fourier transform of equation (2.17). Using integral (3.771.1) in Grad-
shteyn and Ryzhik’s (1994) tables, and the fact that the autospectrum is an
even function, we find the normalized longitudinal correlation to be

fr) = 57% (%)VKV (%) : (2.18)

where K, is the modified Bessel function of the second kind of order ».

Since modified Bessel functions play an important role throughout the re-
mainder of this report, it is worth taking a moment to discuss a couple of
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Figure 2: One-dimensional autospectral density model for v =1 /3.
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their properties. For small arguments § < 1 and v < 2,
L(v) (§\™ _TA-v) (&), L) (&
w02 (92020 (550 ()

The leftmost of the three terms on the left is always the leading term in
the series; the next most significant term in the series is either the second
or third, depending on the particular value of v. Substituting the first term
into equation (2.18), it is easy to show that f(0) = 1, as it must. For large
arguments £ > 1, Kv becomes a decaying exponential:

Kv(e) ~ \/% exp(—£). (2.20)

Equation (2.18) is plotted as the solid line in figure 3. It must be kept
clear that f(r) is the normalized autocorrelation only when the displace-
ment is in the longitudinal direction. That is, Ri11(r,0,0) = R2(0,7,0) =
R33(0,0,7) = o2f(r). It is not generally true, even for an isotropic vector
field, that Rj1(r,0,0) equals R;11(0,7,0). The normalized transverse correla-
tion function g(r) is addressed in the next subsection.

Transverse Correlations and Spectra

So far, we have examined the autocorrelation and autospectral functions

when the displacement (or the wavenumber component) is parallel to the
direction of the velocity component. In order to study more general types of
correlations, we need to develop an expression for the complementary case,

T T T T T T T
0.8 J
0.6, b
o
< spatial displacement in direction of velocity
o
S 04 4
5
[
5]
Q
5]
3 02 . 1
< 45° between velocity axis and
. displacement vector
N \‘
or Sl orrTE e e
90° between velocity axis and
displacement vector
{transverse correlation)
_0.2 1 1 1 1 1 H L
o] 1 2 3 4 5 6 7 8

Nommalized separation, r/ €

Figure 3: Autocorrelation function model for v = 1/3.




where the displacement is perpendicular to the velocity component. This is
readily accomplished with the theory of isotropic vector fields in multiple
dimensions, such as discussed in Batchelor (1953). For incompressible flow
(Au;/dx; = 0), the transverse correlation g(r) can be computed from the
longitudinal f(r) with the following formula (Batchelor, 1953):

or) = £r) + 52 (221)

In this case, using equation (2.18), we find
1 r\Y[v+2 r
0 = mrm(3) K+ (3) K|
1 r\" 1/r
= gy (1) [ (5) %]

o (5) [+ 0. - 3 (5) K. 2

(The argument of the modified Bessel functions is implicitly r /¢, unless oth-
erwise specified.) In deriving the second and third forms above for g(r), I
made use of the differentiation formula for modified Bessel functions

KL(€) = =3 [Kurs(6) + Kora(6)], (223)
and the recurrence relation
2
Ky41(8) = Kyoa(€) + {Ky(a. (2.24)

Most generally, an isotropic, homogeneous vector field has a correlation ten-
sor of the form (Batchelor, 1953)

Rij(r) = o [T—:}f (r) + (51-3- LI ) g(r)] , (2.25)

72

where 7; is the spatial separation along the ith axis, and =72 +r2+ r3.
Using the final form in equation (2.22) for the transverse correlation, we
obtain the full isotropic correlation tensor:

2

O G2

Equation (2.26) is the complete correlation model for the velocity fluctua-
tions in homogeneous, isotropic turbulence. It is plotted in figure 3 for i = j
and various angles between the displacement vector and the velocity. Note
that the transverse correlation (i = j, with r; = r; = 0) actually becomes
negative for large values of r/£. Although this behavior may seem surprising
initially, it is a physically necessary property of the transverse correlation
(Batchelor, 1953), not just an artifact of using the von Kédrmaén energy spec-
trum.




Finally, consider the normalized transverse spectral density function, which
is the Fourier transform of g(r). In the final form in equation (2.22), there are
two terms, one involving K, and the other K, 1. The Fourier transform of
each term follows from (6.726.4) in Gradshteyn and Ryzhik’s (1994) tables.
After some algebra, we find

.\ _Tw+1/2) ¢ _v+1/2
9(s) = Vrl(v) (1+n2ﬁ2)”+1/2< ' 1+m2€2)' (2.27)

To check equation (2.27), consider the inertial subrange limit x1£ > 1. Then
the term in brackets becomes v + 1 = 4/3. Comparison to equation (2.17)
shows that §(x) = (4/3)f(k) in the inertial subrange, a well-known result
from the theory of isotropic vector fields (Panofsky and Dutton, 1984).

2.5 One-Dimensional Cross Spectra

We now have determined all the 1D autospectra in free space. For exam-
ple, ©11(k,0,0) = O2(0,&,0) = 62f(k), and ©11(0, %,0) = Og9(k,0,0) =
02§(k). The other cases can be found by rotation of the coordinate axes. The
next step is to find the 1D cross spectra, which we determine by transform-
ing the correlation function (2.26). For concreteness, I take the direction of
the Fourier transform to be the z; direction, and indicate the result using
the following notation:

1 [ .
©ij(Kk1;72,73) = -2—7';/w&j(rl,rz,rs)exp(mm)drl-
- (2.28)

Consider first only the longitudinal part of the spectrum, the first term in
equation (2.26). Defining r2 = 73 + 72, we have the integral

R ) ,/rQ + r2 r2 + r?
____1__/ (__l__i) K, (_______Vll cos(k1r1) dry.
0

Fkaira,ms) = oo ] ¢ (2.29)

This integral can be calculated in closed form; it is given as (6.726.4) in
Gradshteyn and Rhyzhik’s (1994) tables. We find

f( ) /¢ ( § )l/+1/2

K1;T9,T3) = - K, £),
DB TST rv=12T (0) \1 + K22 +1/2(8) (2.30)
where &2 = (r3 + r3)(1 + &26%) /2.

The computation becomes somewhat more complicated when we include the
transverse correlation, although results still can be obtained in closed form.
Writing out the correlation function R;; as given by equation (2.26), and




simplifying with the recurrence formula (eq (2.24)), we find

02 r\? 7.2 r -1
Ry (r1,72,73) = 5o 7r7 s (—) [KV - = (—) Ku—1:| :
-1T(») \Z 202 \7 231)

The Fourier transforms of both terms in the square brackets are obtained
readily. The first term integrates in the same manner as the longitudinal
spectrum, whereas the second term has the same form if one replaces v by
v — 1. The result of the integration is

. _ ol § v/ 3
©11(k1;72,73) = A2/ 1720 (v) (1 + n%@) { Kinp2 ()= §Ku_1/2 (6)} . (2.32)

Equation (2.31) is also valid for R, if we set r? =ri+ r3. Calculation
of the spectrum ©gs(k1,72,73), however, is somewhat more difficult than
that of ©11, because now r, depends on the variable of integration in the
Fourier transform, 7. It turns out that we can use the recurrence relation (eq
(2.24)) to put the correlation function in a form that is more conveniently
integrated:

o? m\Y 1/r r2 (r\7}
Roo(r1,72,73) = 5o—irr (“) [(V + 1)K, -5 (—) Kyr1+ 55 (—) Ku—l] :
2-1T(v) \Z AV 202 \ 7 (233

Each of the terms in square brackets now is readily transformed with Grad-
shteyn and Rhyzhik’s equation (6.726.4), with the result

Onz(k1;72,73) = Vm2v=120(v) (1 + nfﬁ) 8

2 1 2@2
[<v+1>z<u+1/2 O~ gz Ko O+ 2HE K @) | @39

Because of isotropy, ©s3(k1,72,73) must also be given by equation (2.34),
except with the indices 2 and 3 interchanged.

The correlation function Rz follows from equation (2.26) and the recurrence
relation (eq 2.24)):

o2 ™\’ rira
R =——"1\= —=K,._1. .
12(T1,72,73) 5T () (é) 7 Kv-1 (2.35)
The Fourier transform with respect to 71 can be determined with the help
of Gradshteyn and Rhyzhik’s equation (6.726.3), the result being

o%roKil ( ¢

v+1/2
O12(k1572,73) = NCTEEND) 1_‘_&%62) K172 (€) -

(2.36)

11
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2.6

The cross spectrum ©;3 is identical to ©;9, except that r5 in the equation
above is replaced by r3.

The correlation function Ra3 is the same as Ri9, except with 73 replacing 7.
Taking the Fourier transform and using Gradshteyn and Rhyzhik’s equation
(6.726.4), one finds

arraors

2 é v—1/2
@23(%1;7’2,7‘3) = \/7?2”_1/21_\(l/)f (1 + K%gg) KV——1/2 (5) .

(2.37)

When dealing with spectra, it is important to keep clear the distinction be-
tween their one- and two-sided versions (Bendat and Piersol, 1986). The
functions ©;; discussed above are two-sided spectra, being defined for both
positive and negative k1. In fact, ©;(—~1,0, 2, 2) = ©;i(£1,0, 2, z). Experi-
mentalists more commonly measure one-sided spectra Fi,,, which are defined
as zero for negative k; and twice O, for positive k3. Note that the variance
is recovered by integration of the two-sided spectral density from k3 = —00
to 400, whereas the variance is recovered from the one-sided version by
integration from 0 to +oc.

Two-Dimensional Cross Spectra

We can find the 2D cross spectra by calculating either forward Fourier trans-
forms of the 1D cross spectra, or inverse transforms of the 3D spectra. It is
somewhat easier to use the latter approach. Solutions to the necessary inte-
grals can be found in Gradshteyn and Rhyzhik (1994), equations (3.771.2)
and (3.771.5). We find

0.2@24-;:4-1
Pl i) = S T+ (239
3 Ch(1 + k362) '
<V + §> Kyq1(Ch) — WKH—? Ch)| >
02”%54@':”
U2fi1 K',2£4<”+2
$12(K1, K2;73) = — h K12 (Ch),
m2VHT(v)(1 + k}e2)r+27" (2.40)
7:0-2’61Z3€]’-:+2
s K23 =- K, )




where ¢, = (r3/€),/1 + 2£2. The remaining spectra follow from horizontal
isotropy: '
pa2(Ka, K1573) = P11(K1, K2;T3),

and
da3(K2, K1373) = P13(K1, K2;T3)-

Frequently we are most interested in the special case of 2D spectra having
no vertical separation. To evaluate this limit, we can use the expansion of
the Bessel function for small £, equation (2.19). Substituting the expansion
into equations (2.38) to (2.41), we find

vo?l? 1 K202
¢11(K17’{2;0)= —+(V+1) 2 3
n(l+ K22+ | 2 1+ K262 (2.42)
v(v+ 1)o?kiet
.0) = -/ _th™ 4
¢33(K17 K23 0) ’/T(]. + K%eg),,_*_g 3 (2 3)
v(v + 1)o%k kot
) = — 2.4
$13(K1, K2;0) = 0. (2.45)

In deriving equations (2.42) to (2.45), use was made of the relationship
I'(v+1) =vl(v).
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3. Inhomogeneous CBL Model

All classes of spectra and correlation functions for homogeneous, isotropic
turbulence were derived in the previous section. In this section, I introduce
the complication of a solid, free slip boundary at z = 0. The main effect is to
block the large eddies, forcing their vertical velocity to zero at the boundary.
This introduces vertical inhomogeneity into the correlations and spectra.

3.1 Modification of Two-Dimensional Cross Spectra Near
a Boundary

Let us decompose the turbulent velocity fluctuations u; into contributions
from the homogeneous flow (H), such as would exist in the absence of the
boundary, and a contribution from blocking at the boundary (B):

wi(z,y,2) = i (z,y,2) + ulP (2,9, 2). (3.1)

Since uz must vanish at the boundary, this solution is subject to the condition

u§(2,y,0) + ui” (z,4,0) = 0. (3.2)

Because I am not considering mean shear, and viscous effects are negligible
for the high Reynolds numbers characteristic of the atmosphere, the bound-
ary does not modify the vorticity field (Hunt and Graham, 1978). Hence, the
boundary contribution to the velocity field can be modeled by irrotational,
inviscid flow theory, and we can define a velocity potential ® such that

WP = ve, (3.3)
where ® satisfies Laplace’s equation:
Ve =0. (3.4)

Taking the 2D Fourier transform of equation (3.4), we have

%\
<—K’f2l + &5) ‘I)(K'l’ K2, Z) =0, (35)

where k2 = 12 + %, and the “hat” indicates the 2D Fourier transform. The
solution to this equation, subject to the condition that the influence of the
boundary becomes negligible as z — o0, is

® = Aexp(—kp2). (3.6)
From the boundary condition (eq (3.2)),

A= (k1, 52,0/ k. (37)
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By Fourier transforming equation (3.3), we can now easily show that

al® (k1, K2, 2) = mi(r1, K2) exp(—kn2)a§ (K1, K2, 0), (3.8)
in which
m; (K1, ke) = (iK1/Kh, iko/Kp, —1). (3.9)
(B)

We have now determined the effect of the boundary by solving for @; * in

terms of ﬁEH)_. In principle, this allows us to determine all the correlations
and spectra. The 2D cross spectra are equal to

¢ij(h',1, Ko, 2, z’) = (ﬁi(ftl, K2, Z)ﬁ;(lfq, K2, Z’)). (3.10)
Since, from equations (3.1) and (3.8),

“ N ~(H
4i(K1, K2, 2) = ugH)(nl, Ko, z) +m; exp(—.‘ehz)7,L§3 )(nl, K2,0),

(3.11)
we have the result
ij(K1, K23 2,2') = ¢g{)(f€1, Ko; 2' — )
+ e mj(k1, k)5 " (K, K2; 2) (3.12)
+ e "*m; (K1, n2)¢g§{)(ﬁ1, Ko;2')
+ e m ey, ko)my (1, 52)855 ) (1, K23 0)-
The second term on the right was simplified by
¢§f’(~1, Ko;—2) = ¢§$)*(ﬁ1, K25 2), (3.13)

which can be proven from the Fourier transform definition.

Equation (3.12) is the basis for the rest of the work in this report. (With
some work, one can show its equivalence to equation (2.50) in Hunt and
Graham (1978); this is demonstrated in app B.) Its main utility is that it
gives the vertically inhomogeneous, boundary-influenced cross spectra ¢;;
entirely in terms of the homogeneous cross spectra ¢§JI-{), which were given in
section 2.6. For example, the autospectrum (i = j, z = z’) for a component

of the horizontal velocity is
H 2ik1 _
b1 (1, ka2, 2) = B4 (K1, 23 0) — 7’1—1-6 "2 35D (1, K23 2)

2
+(2) gl k1, m250). (3.14)

(In deriving this result, use was made of the fact that ¢§f;’) is purely imagi-
nary; see sect. 2.6.) For the vertical velocity autospectrum, we have
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o33(k1, Ko; 2,2) = (1 + e_?""‘z) (;5;(3?)(&1, Ko;0) — 26""‘%%”(&1, K23 2). (3.15)

3.2

Equation (3.15) is the same as equation (2.12a) in Hunt (1984), after one
performs the integration over k2 in Hunt’s equation.

The first term in equation (3.12) is the spectrum that would be observed
if there were no boundary effects. The remaining terms decay exponentially
with increasing height and decreasing horizontal eddy scale.

Modification of One-Dimensional Correlations and
Cross Spectra Near a Boundary

Unlike the homogeneous case, in general it is not possible to find correla-
tion functions or 1D cross spectra from ¢;; analytically. One must compute
the Fourier transform or integration numerically. For example, the 1D cross
spectra in the z-direction are given by

oo
eij(m;O,z,z')=/ ¢ij (K1, K2; 2, 2') dka. (3.16)
-0

We can find the 1D correlation function R;;(r,0,0) by numerically calculat-
ing the inverse Fourier transform of ©;;(k,0,0). This is not difficult with a
fast Fourier transform (FFT).

Some example results are shown in figures 4 and 5. The calculations are for
three cases: z = 2/ = 0.014, z = 2’ = 0.1, and the limiting homogeneous
case (z = 2/ — 00). The most obvious feature of the correlations and spectra
is that the vertical velocity is severely attenuated near the boundary, by a
loss of long-wavelength (low-wavenumber) energy.

Another interesting feature is that R11(r,0;z,2) = Rga(r,0; 2, 2) near the
boundary (and hence also ©11(x;0, z,z) =~ ©29(k;0, 2,2)). Note that this
is not the case away from the boundary. Let us consider the behavior of
the horizontal velocity spectra at small heights in more detail. Making the
approximations z/¢ < 1 and kxz < 1 in equation (2.38), we find

242 22
: %+(u+1)————————1 nh:

vo
é11(k1, K2;0) = s | -
m( +nit (3.17)

1+ k202)v+1

This is the same as equation (2.42), except that the occurrence of k2 in
the second term in the square brackets has been replaced by kp. Since ¢;;
depends only on «p near the ground, so too must @29, by horizontal isotropy.
Hence, when the 2D spectra are integrated, we find ©1; = ©9s.
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3.3

Parameter Selection

Besides v, which is normally set to 1/3, the only two adjustable parameters
in the correlation/spectral model are the variance 0?2 and the length scale
¢. We need to select values for these parameters that are appropriate for a
CBL. Caughey and Palmer (1979) found the variance of all three velocity
components, away from the influence of the ground, to be

o? = 0.35w?2, (3.18)

where w, = (Qgzi/ To)Y/3 is the CBL velocity scale, with Q being the surface
heat flux, g the gravitational acceleration, z; the inversion height, and Ty the
surface temperature.

The length scale £ can be chosen in a variety of ways. I follow Peltier et
al. (1996) by choosing it to match the inertial subrange asymptote. In the
inertial subrange, we must have

F(r) = (a1/2)e?/3x7573, (3.19)

where f (k) is the 1D longitudinal spectrum, e the TKE dissipation rate, and
o is a constant, approximately equal to 0.52 (Kaimal et al. 1972). (The co-
efficient in equation (3.19) is @1 /2, rather than a; as in Kaimal et al. (1972),
because f(k) is a two-sided spectrum, whereas Kaimal et al. dealt with a
one-sided spectrum. This distinction is discussed at the end of sect. 2. 5.)
Taking the high wavenumber limit of equation (2.17) and comparing it with
equation (3.19), we have the requirement

[ 2r(5/6) 1%
= [rama) T 20

For freely convective conditions, € ~ 0.8w3/z; (Caughey and Palmer, 1979).
Hence, equations (3.18) and (3.20) together imply

€ = 0.23z;. (3.21)
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Comparisons With Previous Results

4.1

This section compares the model developed above with field measurements,
large-eddy simulation (LES) data, and other models of CBL structure. Be-
cause ¢i;(K1, K2; 2, 2') is not easily determined directly from field measure-
ments, the comparisons I make are for a variety of limiting cases, chosen to
represent a variety of vertical and horizontal structural characteristics and
a broad range of spectral scales.

Energy Spectra

Peltier et al. (1996) recently developed a model for horizontal spectra in
the atmospheric boundary layer. Their model, which included the surface
blocking effect on large eddies, agreed quite well with measured spectra for
both the horizontal and vertical velocities.

Peltier et al. developed equations for the TKE of the horizontal and vertical
velocities, defined in my notation as '

En(kn; z) = nrp [ d11(K1, K25 2, 2) + pa2(k1, K23 2, 2)] (4.1)
and
Ey(Kp; 2) = Thpdas(Ki, Ko; 2, 2)- (4.2)
Their model for E;, was

clﬁfs%h _ cpmhéf,
[ca + (kn€1)23 (1 + K2€2)4/3°

EP(kp) = (4.3)
where, in the second version, I have simplified the equation using the sub-
stitutions £, = £1/./c2 and ¢, = 182 / cé/ 3 The superscript p indicates the
Peltier et al. model. The vertical TKE spectrum is related to the horizontal
spectrum by a transfer function T'(kp, 2):

Ef(kn) = T(kn, z) B} (k). (4.4)

The transfer function is tailored “to meet the continuity constraint [at the
lower boundary] and to maintain the proper level in the inertial subrange.”
Peltier et al. select the constants and the transfer function such that

0.85kp 22 9

P (2)= w .
E}, (kn; 2) 23 + (hai)2]4/3 x3 (4.5)

and

(kn2)?/2

T(kp;2) = ————.
(3 2) 0.62 + £(knz)?

(4.6)




4.2

The equations for E and E, corresponding to this report’s model follow
from equations (3.14) and (3.15), after the appropriate spectral forms are
substituted from section 2.6. The results are

o2k p v(v+ 1)K30? ok
Erlmiz) = gep [ e (L)
K,hec;:-i-? o
- e”"™* Ky41(Ch) | (4.7)
2T (v)4/1 + K242 Y
and
o236 s
i) = i [ ()
A (48)
2VF(1/) v+42 h N N

The two models are compared in figure 6, for z = 10 m and 2z; = 1000 m.
The differences between the models are quite small, well within the scatter of
the field measurements plotted in Peltier et al. (1996). Both models predict

strong damping of large-scale (small kp2;) vertical velocity structure near
the surface.

Variances

By setting r; = 7o = 0 in equation (2.4), one has

o0 0
7 '
Ri;(0,0,2,2") = / / @ij (K1, K2; 2, 2") K1 dK2. (4.9)
—00 J—00
10°

1072}
%
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Figure 6: Comparison of energy spectral models from Peltier et al. (1996)
and this work. A height of z = 10calculations.
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The height-dependent (co)variances are defined as
0'1'2_7'(2) = R/L](Oa O,Z,Z). (410)

In general, we must perform the 2D integration in equation (4.9) numerically.
Alternatively, we can integrate the energy spectra in one dimension, e.g.,

033(2) =2 /Ooo E,(kp; z) dkp. (4.11)

Model predictions for the variances are plotted in figure 7, and compared to
data from Caughey and Palmer (1979) and an LES of a highly convective
CBL. Caughey and Palmer’s data are a combined set from the Minnesota
and Ashchurch experiments. The LES data were supplied by S. Khanna and
J. Brasseur of the Pennsylvania State University. Their code was based on
Moeng’s (1984), and the computational grid for the run was 5 km on a side
in the horizontal and 2 km in the vertical, with 1283 grid points. The surface
heat flux was 0.24 K-m/s, and the geostrophic wind speed was 1 m/s. The
resulting value for —z;/L (where L is the Monin-Obukhov length) was 730.

Although there is much scatter to the field data, there is generally good
agreement with the model predictions. In particular, the near-surface height
dependence of the vertical velocity variance is predicted extremely well. The
variances for the LES data tend to be higher than either the predictions or
field data, by roughly 25 percent.

Let us analyze the near-surface height dependence of 02%4(z) in detail. When
z < ¢, most of the spectral contribution to ¢%;(z) comes from wavenumbers
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Figure 7: Velocity variances as a function of height.




4.3

such that kz < 1. Hence, in equation (3.15), we can make the approxima-
tion exp(—kpz) = 1, resulting in

Baa(r, Kz 7, 2) = 2058 (1, 52;0) — 2655 (k, ki 2).  (412)
Taking the Fourier transform, and setting r; = 2 = 0, we have
023(2) = 20° — 2R§§{)(0, 0, 2). (4.13)

The function R:(g) (0,0, 2) is an example of a longitudinal autocorrelation
function: the displacement is taken in the same direction as the velocity
component. The longitudinal autocorrelation f(r) = Rgg) (0,0,7)/0? was
given earlier as equation (2.18). Expanding the modified Bessel function for
small arguments, we find

2 y 2v
A== (5) (4.14)

Setting the parameters v, o2, and { as discussed in section 2, we arrive at
2/3
z
02,(2) ~ 1.8w? (z—) . (4.15)
i

This result is identical to Caughey and Palmer’s (1979) equation 3. Since
wie/ws = (2/ 2)1/3 (where wy, is the local free convection velocity scale),
the result agrees with previous findings that the vertical velocity obeys local
free convective scaling near the surface (Wyngaard, Coté, and Izumi, 1971).
In the model in this report, the free convective scaling has appeared as a
natural consequence of the 3D correlation/spectral model.

Vertical Velocity Correlations

In this section, I consider correlations of the vertical velocity at two different
heights, R33(0,0, 2,2’). This function can be evaluated from equation (4.9).
It is convenient to convert the correlation function to a correlation coefficient,
by normalizing by the variance at each height:

R33(0,0,2,2")
o33(2)oss(2')
Hunt et al. (1988) considered models for p33(z,2'). Based on a heuristic
argument involving image eddies, they concluded that

P
pas(z,2') = W (4.17)

for z < 2’ < z;. Hunt et al. found that this simple equation agrees quite well
with experimental data, as shown in figure 8. Also shown on the plot are
predictions from the present report’s model for several values of 2’ /z;. There
is good agreement when 2’ is less than about 0.1z;, but as 2’ is increased,
the models diverge. This is not particularly surprising, since Hunt et al.’s
equation strictly applies only for small z’/z;. Hunt et al.’s experimental data
cover a range of z/z; values from about 0.01 and 0.32. Most of their data
points for small z/z’ correspond to relatively large values for 2'/z;.

p3s(z,2') = (4.16)
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4.4
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Figure 8: Correlation coefficient for vertical velocity, ps3(z,2’): solid line
represents Hunt et al’s (1988) equation. Present model is represented by
dashed lines, for which three values of 2’ are shown.

One-Dimensional Spectra

Longitudinal autospectra ©,4(k1;0, 2, 2’), for each of the three velocity com-
ponents, are plotted in figure 9 and compared to data from the Minnesota
experiment (Kaimal, 1978). The 1D spectra were determined numerically
by integration of 2D spectra. Predictions are shown for two heights, z = 4
and z = 32 m, as Kaimal’s measurements included data taken from vari-
ous heights between these limiting values. The inversion height was taken as
z; = 1000 m for the predictions. (When the predictions are normalized as
in figure 9, they are not very sensitive to the value of z;.) The spectra for
the horizontal velocity components are normalized by the variance, which is
height dependent. The vertical velocity spectrum is normalized by ufqbf/ 3 /K1,
where ¢?/ N 0.75|z/L|*/® for convective conditions (Kaimal, 1978).
Agreement between the measured spectra and the predictions is fairly good.
For the horizontal velocities, there is more high-frequency energy in the
measurements; shear-generated turbulence is the likely cause. The cross-wind
component of the horizontal velocity (©22) has slightly more low-frequency
energy than the predictions. For the vertical velocity, the spectral peak in
the prediction tends to be sharper than the data.
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4.5

Vertical Cross Coherence

The vertical cross coherence for the u; velocity component is defined as

9%1 (K;h Ov Z, Z’)

Coh = '
0 11(“1) @11(K1,0,2az)@11(”1’0’ Zlaz,)

(4.18)

Cross coherences such as equation (4.18) often have been modeled in the
literature by the use of Davenport similarity (Davenport, 1961). Davenport’s
two hypotheses are (1) the coherence depends only on An = fAz/V =
k1Az/27, where Az = z'—z; and (2) the dependence on An is approximately
exponential, Coh(k;) = exp(—aAn), where a is a constant or depends in a
simple manner on height, stability, etc (Soucy, Woodward, and Panofsky,
1982). In this section, I ascertain the extent to which the spectral model
discussed in this report satisfies Davenport similarity, and also compare it
to experimental measurements of the vertical cross coherence.

We compute the coherence Cohj; by integrating the 2D cross spectrum, as
in equation (3.16). Plots are shown in figure 10. For comparison, I also plot
experimental data recorded at White Sands Missile Range, NM (Panofsky
and Dutton, 1984), and the Davenport exponential model, exp(—aAn) with
a = 10. The value a = 10 is thought to be representative of moderately con-
vective conditions (Soucy, Woodward, and Panofsky, 1982). Both the spectral
model and the Davenport model agree fairly well with the data. There is a
trend in the data for greater coherence at large An than is predicted by the
spectral model.
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Figure 10: Vertical coherence of longitudinal velocity, as a function of An =
k1Az /2. Model predictions are shown for three different combinations of z
and 2’.




4.6

Integral Length Scales
The integral length scale in the z; direction is defined as
L L [ Ri(r,0:2,2)d (4.19)
ii1(2) = =5 ii(r1,0; 2, 2) dry, .
z],l( ) U%(z),/(; J\"'1 1

and similarly for Li;2(z). By Fourier transforming equation (2.6) with re-
spect to k2, and then evaluating the result at k1 = 0, r9 = 0, one can show

o
Lij,l(z) = —-———U;zz) / ®ij (0, k25 2, z) dkg. (4.20)
ij -0

Let us take a moment to consider the limiting values for the length scales far
from the ground’s influence (z > £) and close to the ground (z < ¢). In the
former case, we can use the spectra developed for homogeneous, isotropic
turbulence. It can be shown, by integrating equation (2.42), that

£ = [7%':(_:)_1/_22 ¢ = 0.747¢ ~ 0.17z;. (4.21)

Furthermore, since ¢§’2”) (0, k1;0) = ¢§]1{)(H1,0;0) by isotropy, integration
yields

L) = [7112(;7‘1;_142_)@ = 0.373¢ ~ 0.0862;. (4.22)

The quantity Lﬁ{)l is an example of a parallel length scale Ly, in which the

spatial integration is performed in the same direction as the velocity axis. On

the other hand, L.(‘ZIZ-I,)I is a perpendicular length scale L | , since the integration
)

is normal to the velocity axis. ng{l, of course, is also a perpendicular scale.
In homogeneous, isotropic turbulence, L = 2L, (Batchelor, 1953).

At the ground level, on the other hand, it can be shown from equation (3.17)
that

2Vl +1/2) ) _ 4980 ~ 0112

L11,1(0) = L22,1(0) = 3F(V)

(4.23)

It is interesting that near the ground, the parallel and perpendicular length
scales become equal, and are equal to two-thirds times the free-space parallel
scale. The length scale for the vertical velocity vanishes at ground level, as
is evident from equation (3.15).

Model predictions, field data, and LES data for the integral length scales are
compared in figure 11. The LES run was described in section 4.2. The field
data were recorded during the Air Mass Transformation Experiment (AM-
TEX), and analyzed by Lenschow and Stankov (1986). Note that Lenschow
and Stankov found little azimuthal dependence for the horizontal length
scales, and hence combined the data for the two horizontal velocity compo-
nents.
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Figure 11: Integral length scales from AMTEX (Lenschow and Stankov,
1986) (circles), an LES of the CBL (dashed lines), and this report’s model
(solid line). Left: two horizontal velocity components; right: vertical velocity.

On the whole, agreement between the integral length scale predications and
the data is somewhat poorer than for the quantities considered in previous
sections. In particular, the length scales from AMTEX tend to be several
times larger than the model predictions. The LES data generally fall some-
where between. But there is good qualitative agreement, at least, as to the
height dependence of the length scales for the different velocity components.
The length scale for the vertical velocity L33 ; starts out small near the
ground and increases with height. The model and LES both have Loz de-
creasing with height, although the surface value is about twice as large for the
LES. Similarly, both the model and LES have L11,; decreasing with height.
However, in the LES results, L1 ; nearly vanishes at the surface. This could
result from the finite resolution of the LES.




5.

Conclusion

A 3D correlation/spectral model for turbulent velocities in the CBL was
developed in this report and compared with data for a number of limit-
ing cases, such as variances, vertical correlations, 1D spectra, and integral
length scales. In most cases, agreement was quite good. Although previous
researchers have developed simpler formulations than the 3D model, which
also compare favorably with the data and are valid for some of the individual
cases, the 3D model is based on a single, unified approach to CBL statistics.
And most importantly, it can be used in situations where complete informa-
tion on 3D turbulence statistics is required. Future work on the model could
include incorporation of scalar fields (e.g., temperature and water vapor)
and incorporation of ground roughness effects.
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Appendix A. More on TKE Spectrum and Production

As discussed in the introduction to the main body of this report, the scales
of motion in a turbulent flow can be roughly partitioned into three sub-
ranges: energy-containing, inertial, and dissipative. The energy-containing
range consists of spatial scales A (~ 1/x) much larger than £ (and hence
k < 1/€), the inertial subrange of scales smaller than £ but larger than 7
(1/¢ < k < 1/n), and the dissipative subrange of scales smaller than 7
(k > 1/n). The length scale 7 is called the Kolmogorov microscale, and it is
equal to (13/€)1/4, where v is the kinematic viscosity and e the dissipation
rate of turbulent kinetic energy (TKE) (Kolmogorov, 1941).

The TKE model used in this report, equation (2.14), applies only to the
energy-containing and inertial subranges. This is not normally a problem in
acoustics, unless one is interested in ultrasonic frequencies. But in order to
tie up some loose ends and explain how figure 1 was created, I discuss in this
appendix how equation (2.14) can be extended to the dissipative subrange.

The starting point is the following equation, due to Corrsin (1964), which is
valid only for the inertial and dissipative subranges:

E(k) = ae?3k~%3 exp [—%a(nn)4/3] , (A-1)

where « is a constant approximately equal to 1.6. By approximating equation
(A-1) to small k7, equation (2.14) in the body of the report to large k¢,
and equating the results, we have the following constraint for the inertial
subrange:

_ATQ7/6) o,
2 = T/3) /3)02£ 23, (A-2)

Substituting this result into equation (2.14), and combining with (eq A-1),
we find

Ii4 5
E(k) = a(et)?? ¢ 7775 OXP [——ga(nn)‘l/s}. (A-3)

(1 + K2£2)

This equation should work reasonably well throughout the turbulent spec-
trum. It is plotted in figure 1(a) in the body of the report for £ = 10%.

Tennekes and Lumley (1972) show that the flux of TKE through the wavenum-
ber k is

T(k) = a~3/2x32E%/2, (A-4)
Using equation (A-3), we find

(&5)17/2

T(x) = f‘(l + x202)17/4

exp [—%a(nn)‘l/ 3} . (A-5)

Note that in the inertial subrange, T'((x) = €. This is because energy is neither
produced nor destroyed in the inertial subrange; it is merely transferred to
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smaller scales, eventually being dissipated by viscosity. The production of
TKE at a given wavenumber is

dT (k)

P(g) = I

(A-6)

TKE production using equation (A-5) was plotted in figure 1(b). Note that
production is positive in the energy-containing subrange, and negative in
the dissipative subrange, as expected. The total area under the curve sums
to zero, since the net production of TKE must be zero if conditions are
stationary.




Appendix B. Derivation of the Two-Dimensional Cross
Spectral Equation From Hunt and Gra-
ham’s (1978) Result

Hunt and Graham (1978) considered the spectra for free-stream turbulence
above a plane boundary. The turbulence was generated by a flow moving
through a grid, with the boundary moving at the same speed as the mean
flow. Hence, there was no shear generation of turbulence at the boundary,
and the only effect of the boundary was to block the flow. This makes Hunt
and Graham’s spectral model appropriate for the convective boundary layer
(CBL), particularly when the turbulence generated by the mean wind is neg-
ligible in comparison to convectively generated turbulence. The assumptions
that go into the Hunt and Graham model are actually equivalent to those
used in this report (sect. 3); mainly, the blocking flow at the boundary is
assumed to be irrotational. Hence, Hunt and Graham’s final results should
be equivalent to ours. The equivalence is demonstrated in this appendix.

Hunt and Graham’s equation (2.50), for the one-dimensional (1D), longi-
tudinal cross spectra, is the starting point for this proof. Rewriting that
equation so that the coordinate system follows the atmospheric convention
(z vertical), we have

o0 o0
Oulminx) = [ [ Myw,zk)Mim(a' #35)
—_00 J—00
x  explira(y — y)| @4 (1) drs dra. (B-1)

Here @gg) is the “homogeneous” 3D spectrum: the spectrum generated by

the grid that would persist without any blocking from the boundary. The
tensor M;; is given by Hunt and Graham as

ein32+in1x 0 i(nl/ﬁh)e—nhz+imx
M;i(z,z;k) = 0 eiFsztimIT (ko Ky )e ™ RRETIRIE
0 0 (eingz _ e-—nhz)eimx (B—Q)

where k2 = k3 + x3. Equivalently, one can write
Mij(z, z;8) = erT ( 6:7€"3% + m;(k1, m2)6j3e—'°"z) , (B-3)
with
my(K1, k2) = (iK1/Kn,iK2/Kp, —1). (B-4)

The 2D cross spectrum ¢;; follows from ©;; if we omit the Fourier trans-
formation integral involving k2. Doing so, and setting z = ',y =1y, we
find .

00 i
(ﬁij(lil, K25 2, z') = / - Mi*@(o, zZ; K)Mjm(o, Zl; K,)@gz) (R,) dh‘,3. ( )
- B-5
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Substituting with equation (B-3), we find

S . ’
bij(k1,k2;2,2') = / [emu 8 (w)
—00
+ e——in;;z—nhz’mj(nl’ H2)®£f) (Ki)
+ R TR (e KQ)‘I’;(;?I) ()
+ e"‘h(z““"")mf(m,&g)mj(m,@)q’:(g)(”)] dK3. (B-6)

The integrations can be calculated explicitly, with the Fourier transform
relation

S
¢§_7H)(K1a Ko;T3) = / ‘I)EJH) (k) exp(ikgrs) dks. (B-7)
~00

The result of performing these integrations is equation (3.12). Hence, Hunt
and Graham'’s result is indeed equivalent to the result in this report.
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Acronyms

1D, 2D, 3D one-, two-, or three-dimensional

AMTEX
CBL
FFT
LES
TKE

Air Mass Transformation Experiment
convective boundary layer

fast Fourier transform

large-eddy simulation

turbulent kinetic energy
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