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Underlying every general programming model is a shared address space. Ev-
ery process can potentially access any object in this space in one step. While
this allows tremendous ezpressive power, it poses an enormous challenge to
the communications hardware. This conflict between ideal programming mod-
els and real architectures has traditionally been resolved by supporting a less
general model which restricts the possible patterns of access.

The Fluent abstract machine supports a very powerful programming model
In addition to arbitrary access patterns, the instruction repertoire of the Fluent
machine also includes the multiprefiz operation and high-level set operations.

The Fluent machine consists of over one hundred thousand processors inter-
connected by a butterfly network. The efficiency of the Fluent machine derives
from a very simple router, which effectively eliminaies the possibility of con-
gestion. The routing hardware is eztremely simple, inezpensive, and provably
efficient.

1 Introduction

We envisage building a Fluent machine with over one hundred thousand processors.
Except for highly structured computations, such a large computer must necessarily
spend a good deal of time communicating messages between its processors. As long
as the total communication time does not swamp the total computation time, high
performance is guaranteed.

Large parallel computers are also difficult to program. The situation becomes
intolerable if the programmer must explicitly manage communication between pro-
cessors. For this reason it is necessary to have a powerful programming model (ab-
stract machine) which abstracts away concerns not directly relevant to the problem
being solved. For overall performance, the abstract machine must be efficiently
supported on the underlying machine.

Of the programming models proposed thus far, shared memory models have been
the most attractive. The most general shared memory models in the literature, the
concurrent-read concurrent-write parallel random-access machines (CRCW PRAMS)




allow an arbitrary number of processors to read or write a common memory location
in one time step. Complex communications operations, broadcast and multicast for
example, can be implemented in one step. Abstracting complex communications
patterns into unit steps greatly simplifies the tasks of designing algorithms and
writing programs. For this reason, CRCW PRAM models are favored over weaker
abstract machine models for which most, if not all, of the programming effort is
spent synchronizing the movement of data.

How do we implement a shared memory model on a machine with processors
and memories distributed throughout an interconnection network? The solution is
to devise an efficient router which emulates shared memory operations and hides
details of the communications network from the user. This is precisely what recent
machines such as the Thinking Machines Corporation’s Connection Machine 8,9],
the BBN Butterfly [2] and Monarch, the IBM RP3 [13], and the NYU Ultracomputer
[6] aim to achieve.

These machines emulate abstract machines of varying generality and power. The
Connection Machine CM2 has hardware support for concurrent read as well as con-
current write operations with combination. The Connection Machine and the NYU
Ultracomputer/RP3 efficiently support the scan operation [4]. The Ultracomputer
and RP3 also support the fetch-and-add operation, but the switching hardware is
expensive and experiments reveal poor performance because of “hot spots” [11,14].
It thus becomes difficult to argue that the abstract machine operations are per-
formed in unit time. , ,

The Fluent abstract machine subsumes each of the abstract machines mentioned
above. In fact, the multiprefiz primitive of Fluent requires arbitrarily many primitive
operations on the other abstract machines. The Fluent instruction set also includes
basic set operations. With its rich instruction set, the Fluent abstract machine is
readily suited as an intermediate language for compiling very high level languages.

The Fluent abstract machine can be supported efficiently and inexpensively in
hardware. The heart of the Fluent machine is the router which is based on the
recent work of Ranade [16]. In contrast with the Ultracomputer and RP3, the
hardware requirements are minimal. More importantly, we can prove that each
Fluent instruction is implemented quickly. This justifies our thesis that large Fluent
machines will be less expensive, faster and easier to program than existing parallel
machines.

The remainder of this extended abstract is organized as follows. Section 2 de-
scribes the Fluent abstract machine and contrasts it ‘with other models. Section
3 outlines the implementation of the abstract machine on the butterfly network.
Section 4 outlines a design for the routing switch. Section 5 describes the Fluent
machine, presents results of timing simulations, and cost and performance estimates.
Section 6 concludes with some of the important research issues that need further

stpdy, and outlines our ongoing work.




2 The Fluent Abstract Machine

This section describes the primitive instructions of the Fluent abstract machine, and
contrasts the Fluent programming model with other models. In later sections we
show how every instruction is supported efficiently in hardware. As a consequence,
the time-complexity of a Fluent program can be easily estimated as the maximum
number of primitive instructions executed by one processor.

The Fluent abstract machine has N (virtual) processors indexed 1,2,...,N
which are connected to a shared memory holding M variables indexed 1,2,...,M.
The processors of the abstract machine operate synchronously in discrete time cy-
cles. Every primitive instruction is executed in one time cycle; executing an in-
struction at time T (in the T'th time cycle) has the effect of changing the state that
existed at the start of time cycle T'.

The Fluent abstract machine is characterized by two types of primitives —
multiprefiz and set operations. The multiprefix operation is a fully general prefix
operation and subsumes the fetch-and-op primitive on the NYU Ultracomputer {7],
as well as the scan operation on the Connection machine [4]. Set operations are not
supported as primitives on these machines. With its primitive set operations, the
Fluent machine can be programmed at a very high-level of abstraction.

2.1 The Multiprefix Operation

The multiprefix operation has the form M P(A, v, ®) where A is a shared variable,
v is a value, and ® is a binary associative operator. At any time step a processor
can execute a multiprefix operation, with the constraint that if P; and P; execute
MP(A,v;,®;) and M P(A,v;,®;), then ®; = ®;. The semantics of the multlpreﬁx
operator is as follows:

At time T let Py = {p;...ps} be the set of processors refering to vari-
able A, such that p; < p; < .. < pi. Suppose that p; € P4 executes
instruction M P(A,v;,®). Let ao be the value of A at the start of time
T. Then, at the end of time cycle T, processor p; will receive the value
2o ®v; ® -+ - ®v;_; and the value of variable A willbe g @ v; ® -+ - @ v;.

Thus, when a set of processors perform a multiprefix operation on a common
variable, the result is the same as if a single prefix operation were performed with the
processors ordered by their index. For example, suppose that processors numbered
25, 32 and 65 execute the instructions M P(A,4,+), MP(A,7,+) and MP(4,11,+)
respectively at time T, and suppose that variable A initially contains the value 5.
Then, at the end of the T'th cycle, processor 25 will receive 5, processor 32 will
receive 9, processor 65 will receive 16, and the variable A will equal 27.

The fetch-and-® operation [7] also calculates a set of prefixes, but the order of
inputs is undetermined before execution. Multiprefix is a determinate implementa-
tion of the fetch-and-®, and is more powerful. The scan operation [4] is a special
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case of the multiprefix, one in which the set S includes all N processors. Scan
does not allow multiple prefixes over all collections of disjoint subsets, whereas the
multiprefix does.

For convenience we include two more primitives — READ and WRITE. READ(A)
returns the value of A to the requesting processor. WRITE(A4,v,®) is equivalent
to MP(A,v,®) except that no value is returned to the processor executing the
instruction. Both operations are special cases of multiprefix, as has been observed

earlier [7].

2.2 A Fast Radix Sort using Multiprefix

In this section we present a radix sort based on the multiprefix instruction. The
program is considerably simpler than Batcher’s bitonic sort [1] and comparable in
performance when the number of keys is very large.

When each key to be sorted is less than log N bits in size, fetch-and-add can
be used to sort N keys in a constant number of steps. Unfortunately, this idea
cannot be used iteratively to sort longer keys because the fetch-and-add, being
non-deterministic, is not stable [4].

With the multiprefix we can implement a stable iterative radix sort. As we show
below, N keys, each klog N bits long, can be sorted in O(k) Fluent instructions.
When k itself is small, the number of Fluent instructions executed is constant. In
contrast, no other programming model supports such a concise sort even for short
keys.

Theorem 1 N keys, each of size klog N, can be sorted in O(k) steps on the Fluent
abstract machine.

Proof. We first describe a stable scheme for N keys of length log N, one key per
processor. The total number of distinct key values is N. Below we give the program

for each processor. The keys to be sorted are stored in an array KEY [*]. The idea -

is to first count the number of occurrences! of KEY (¢) that lie in processors indexed
less than ¢, then add to that the cumulative sum of the counts for keys less than

KEY[i).

SHORTSORT:
COUNT [*] =0
CUMULATIVE[*] := O
TEMP = 0

MP(COUNT[KEY[*]], 1, +)
CUMULATIVE[*] := MP(TEMP, COUNT[*], +)
return MP(CUMULATIVE[KEY[*]], 1, +)

}This simple histogram computation cannot be done in a constant number of steps on the scan-
model [4].




Because the multiprefix operation is ordered by processor indices, the simple
sort above is stable. We can iterate shortsort to sort larger keys in blocks. The
primitive operation LSBLOC K (w, j) below returns the least significant Jth block
of log N bits of location w, that is, bits (j — 1) log N + 1 through jlog N.

SORT: ,
RANK [*] = 0
KEYPTR[*] := =

FOR j=1 to k DO
KEY[*] := LSBLOCK(KEYPTR[*], j)
RANK[*] := SHORTSORT[KEY[*]]
KEYPTR[RANK[*]] := KEYPTR[*]

ENDDO

(initialize pointer to self)

2.3 Set Operations

Sets are a fundamental data abstraction. Traditionally, sets have not been sup-
ported as primitive objects, but instead have been built on top of lower level struc-
tures such as lists, arrays, trees and tables. The Fluent abstract machine includes

set operations as primitives:

o INSERT (z, S) Insert element z into set S.
DELETE (z, S) Delete element z from set S.
MEMBER? (z, S) Is z an element of the set S?

APPLY (S, f) Apply the function f to the elements of set S. Note that f
may change the values of the elements in S.

REDUCE (S, f) Evaluate f with arguments that are elements of S. Note
that f must be a binary associative operator.

In addition, set union, intersection, difference, prefix, and enumerate are also
supported.

Every Fluent processor can execute a set instruction, so that many sets can be
manipulated simultaneously. For example, several processors may simultaneously
insert elements, possibly into the same set. The result of concurrent set opera-
tions is as if the individual instructions were executed atomically in some arbitrary
unspecified serial order. The implementation however is completely parallel, and
provably efficient. The ability to simultaneously update multiple sets is costly on
existing machines.




3 Implementing Fluent Instructions

This section describes how the Fluent abstract machine is implemented on the
butterfly network. The routing algorithm used is extremely simple and provably
efficient, and forms the basis of the Fluent machine proposed in Section 5.

3.1 The Fluent Network

The nodes of the Fluent machine are interconnected in the butterfly (FFT) pattern.
There are 2" nodes in each of n + 1 levels, for a total of N = (n + 1)2" nodes.
Each node is labelled with a string {(c,r) (0 < ¢ < n, 0 < r < 2") formed by
concatenating the binary representations of the level number ¢ and the index r of
the node within the level. Each node (¢,r) (¢ < n) is connected by forward links to
the nodes (¢ + 1,r) and (¢ + 1,r @ 2°), where @ denotes bitwise exclusive or. Each
node (except for levels 0 and n) thus has four connections: two connections to the
next higher level and two to the previous level.

Each node in the butterfly contains a processor, a memory module and 6 routing
switches. Each switch has 2 inputs and 2 outputs. Every input into a switch enters
a first-in first-out queue, which has the capacity to buffer a small number (2 or 3)
of messages in transit.

3.2 The Address Map

The shared variables of a Fluent program are distributed among the local memories
of the nodes using an appropriately chosen address map. If the Fluent program
does not involve run-time address computation then the physical address of each
shared variable can be embedded within the program of each processor. Otherwise,
we must compute addresses quickly at run time.

We propose to distribute the M shared variables randomly among the proces-
sors, each processor being assigned M /N variables. With a random hash function,
memory bottlenecks are unlikely because the accessed variables will be distributed
throughout the network. Suppose that we have chosen such a hash function ¥ 2.
This function maps a log M bit address to a log N bit node address. A second
function M computes the address (log(M/N) bits) within the memory of node
H(z). The physical address of shared variable z is given by the concatenation

(¥(z), M(z)) -

30ur simulations show that nmple first degree polynomials perform well in practice. A random
O(log N) degree polynomial provably works well [10,16].
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Processor (c,r) Module (¢, ')

- S DN
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n 2n 4n 5n 6n
o switch o memory module o processor

Figure 1: Logical Network

3.3 Message Structure and Path

Suppose that processor (c,r) wishes to access variable z. It generates a REQUEST,
a message of the form (dest, type, data). The destination dest is (¥(z), M(z)) , the
physical address of varible z. The type field denotes the kind of access requested,
e.g. READ, WRITE, or MP. Other possible values include EOS or GHOST, which
are used internally by the communication algorithm as we will see shortly. The
REQUEST is injected into the network. It will reach node ¥(z) and return with the
required data.

The path from node (c,r) to node X(z) = (¢/,r') and back involves 6 phases
through the butterfly. Every other phase is a forward phase, and these are inter-
leaved with backward phases. Figure 1 shows the 6 phases.

In the first phase, the message issued at node (c,r) is directed to node (n,r).
In Phase 2, the message follows the unique (backward) path in the butterfly from
node (n,r) to node (0,r'). This path is determined at each switch by looking at the
appropriate bit of dest. In Phase 3, the message reaches the node (¢, r’), where it
acquires the required data. The next 3 phases simply retrace the path traced thus
far, back to the source processor (¢,r). The access is now complete.

For convenience, we describe the routing mechanism in terms of the logical
network of Figure 1 instead of the butterfly. The correspondence between the two
is clear and each butterfly node does the work of 6 switches in the logical network.

3.4 How to Combine Messages

At the heart of the Fluent machine lies the routing strategy [16]. The key idea is a
simple way of combining instructions that reference a common variable. Consider
the case when several processors READ a common variable. The paths of these
messages form a tree, as in Figure 2. Each message moves along the directed path




Requesting

o Pprocessors

Module holding

B location

— Network Link

- - Message path

Figure 2: Message paths to a common location form a tree

from its source to the destination.

There is, however, no need to send more than one request along any branch of
this tree. Each tree node forwards a request only when it “knows” that no future
incoming request will have the same destination. The key idea here is that each node
forwards requests in ascending order of destination addresses. Each node receives
messages along two incoming edges and places them into the corresponding FIFO
queues. At each step the node compares the destination addresses of the messages
at the heads of the two queues. The message with the smaller destination address is
transmitted forward. If both messages are destined for the same location, they are
combined and only one request is sent out. Finally, if oniy one queue has a message
waiting and the other queue is empty, no message is sent out. (If the message
were sent, the next message along the other edge could conceivably have a smaller
destination, thus violating the sorting requirement).

In our snapshot at time T, node A in Figure 3 selects the message destined for
location 35. Then it waits until the message to location 48 arrives, at which point
it discovers that the messages at the heads of both the queues are to location 48,
and can be combined.

3.4.1 Reply routing

How do we return the data to all requesting processors? The reply message, upon
reading the data, returns backwards along each edge of the tree and reaches every
requesting processor. For the backrouting we only need to store two direction bits
at each node. The bits say whether the request came along the top branch, the
bottom one, or along both. Since messages are kept sorted throughout the six
phases, replies at each node arrive sn the same order as the requsts were sent out.
Therefore, the direction bits can be stored in a 2-bit wide FIFO queue. This simple
idea is more efficient than the associative memories proposed earlier [7].

o
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Figure 3: Combining Messages by Merging Streams

3.4.2 Ghost messages

The simple idea of keeping message streams sorted has one deficiency. Consider
Figure 3 again. At time T, processor B cannot transmit the message it holds for
location 25, because it does not know what will arrive on the top link. However,
when A selects the message to location 35 for transmission, it can send a ghost
message labelled 35 to B. When B receives the ghost message, it knows that future
messages along that edge will be destined for locations greater than 35. Therefore,
at the next time step B can forward the message waiting in the lower queue.

Ghost messages notify nodes of the minimum location to which subsequent mes-
sages can be destined. Ghosts are not used for any other purpose, they “keep the
system fluent.”

3.4.3 Flow control

It is possible that a switch S is ready to transmit a message forward but the input
queue for next switch is full. When this happens, S simply retains the message and
tries in the next clock cycle. Of course, if the message S tried to transmit was a
ghost, it can be dropped without any loss of information.

Many routing algorithms which adopt such a holding policy give poor perfor-
mance because congested buffers back up buffers upstream. For our algorithm the
probability of such degradation is provably miniscule, and the algorithm is always
deadlock-free. I

3.4.4 Termination

Immediately following a request, each processor also issues an end-of-stream EOS message.
The dest field of every end-of-stream message is co. An EOS notifies a switch that
no more requests will follow. The switch can now safely forward the requests on




the other edge, and eventually forward the EOS messages themselves. EOS messages
form a wavefront which guarantees that every instruction will terminate.

3.4.5 Performance

Following Ranade [16], we can show that this routing algorithm is close to optimal.

Theorem 2 Assuming a perfect random address map, the probability that any
memory reference takes more than 15log N steps s less than N~20,

Every routing algorithm must take at least 4log N steps. Observe that the
provable performance is only slightly far from this lower bound, and considerably
faster than previous algorithms for routing on butterflies of reasonable size.

Figure 7 gives timing results from simulations of the routing algorithm. We
experimented with a number of different memory access patterns, e.g. matrix access,
trees of different types, shuffles, random permutations etc. In no case was the time
taken more than 11log N, even with queues of size 2. Increasing queue size did
not appreciablly affect performance. We found that simple hash functions (shared
variable z mapped to physical address az + b mod M) were satisfactory. Section
5.1 describes more simulation experiments.

3.5 Multiprefix instructions

We first describe the implementation for fetch-and-add proposed in [7]. Let s be
an arbitrary switch in phase 1 (or 2). Suppose that the messages at the heads of
the queues are m; = (l,fetch-add,v,) and m; = (I,fetch-add, v;) respectively. As
shown in [7] the switch must forward a message m = (I,fetch-add, v; + v;) in place
of m; and m,. If the reply to m is a value v, then the corresponding switch in phase
6 (or 5) returns v as a reply to m;, and v + v; as a reply to m;. Thus the switch
must remember the value v, received on its top queue for each pair of fetch-and-add
messages that it combines.

Notice that this is equivalent to a serial execution of the message received on the
top input (m;) before the message received on the bottom input (m,). Thus if we
ensure that messages received on the top input always originate in a processor with
a smaller number than those received at the bottom input, we effectively have an
implementation for the multiprefix operation, with addition replaced by the prefix
operator. We show how to do this by numbering the processors appropriately.

Theorem 3 The multiprefiz operation will, with overwhelming probability, terms-
nate sn O(log N) steps.

Proof: We present the required numbering for the processors and switch inputs.
Processor (c,r) is numbered nr + ¢. A switch {¢,r) in phases 1 or 2 receives its

10




Phase 1(2)

(l,fetch-add, vy)

1

(1, fetéh-add, vy) O (I, fetch-add, v; +v3)

SRS O— :
Phase 6(5)
Figure 4: Fetch-and-add

inputs g, #; from switches {c — 1,r,) and (¢ — 1,r,) respectively. If ro < r;, then
we shall label 1, as the top else we label 1; as the top. |

As noted earlier, the only extra requirement over a read instruction is that, in
addition to the two direction bits, each switch must remember a value (partial sum)
for every combination that occurs at that switch. Figure 5 shows a pair of switches
with the required queues.

3.6 Processor synchronization

“It is always 4 o’ clock here,” said the March Hare to Alice.
—Lewts Carroll, Alice in Wonderland

We use EOS messages to implement a distributed global clock. Recall that one
EOS message per instruction passes through each switch. By maintaining a count of
the number of EOS messages that have passed through, each switch keeps its version
of the global time.

Different switches may indeed have different counts or versions of the global
time, but that is perfectly alright. If two instructions access a common location in
the same time step, then the one that arrives first will have to wait for the slower
one to reach an intermediate switch for combination. Because we keep messages
sorted by tag, and we guarantee that only one request for access will be passed
into the memory module which holds the variable, the effect is the same as if all
the processors were operating synchronously. For example, our implementation
guarantees that for the code of figure 6 processor 1 and 2 will respectively read
10 and 20, provided no other processor writes a and b in the meantime. This is
guaranteed in spite of the fact that both processors might issue all 3 instructions
without waiting for any to complete. This is a very strong synchronization condition
requiring special primitives on most other programming models.

11




Phase 1(2)

\

S

7

Partial Sum Queue —> <——— Direction Bits

~ —1

— _ \
Phase 6(5)

Figure 5: Internals of a pair of switches

TIME PROCESSOR 1 PROCESSOR 2
1 A=20 .B=10

2 Read B Read A

3 A=30 B=40

Figure 6: Synchronization Guarantee
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This implementation also allows each processor to stop the global clock if nec-
essary, if it detects an error for example. This is done by withholding the end-of-

stream message.

For lack of space we will not describe how set operations are implemented. The
interested reader is referred to [15].

4 The Routing Switch

In this section we outline a bit-serial design for the routing switch and estimate its
layout requirements. The design extends to wider data paths in a straightforward

manner.
Although Section 3 presented the routing algorithm with the implicit assumption

that messages were transmitted in atomic packets, this is not necessary. In partic-
ular, each message can be transmitted bit-serially in a pipelined manner. This is
analogous to the wormhole router of Dally and Seitz [5]. Message transmission can
be pipelined because:

1. Address comparison can be done bit-serially, provided the addresses are re-
ceived most significant bit first.

2. Message combination can be done bit-serially; for operators like +, the data
must be transmitted least significant bit first. Also see on-line arithmetic [17].

3. When a message leaves a switch, the corresponding GHOST
message (whose dest is identical to the real message) can be generated bit-

serially.

Each message is transmitted with the dest field first (most significant bit lead-
ing), followed by the type field, and finally the data field (least siginficant bit lead-
ing).. A switch begins operating when: (1) each input queue contains at least one
message, and (2) the input queues of the receiving switches are not full.

We now describe the operation of a switch in phase 2. Switches in other phases

can be specified similarly.

1. Transmit dest: The minimum of the destinations of the two messages in the
input queues is transmitted along both outputs. The minimum is discovered
only after the transmission, so till then both destinations must be retained in
the input queues.

2. Transmit type: While transmitting the destination, the switch detects which
output link the request must be routed on. This requires checking one fixed
bit in the destfield. The type of the message with the minimum destination is
transmitted on the that output, while on the other, type GHOST is transmit-
ted.
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3. Transmit data: This is relevant for messages like MP-® or WRITE. In ei-
ther case, the message type indicates how messages must be combined when
necessary. Again, the data fields can be combined and transmitted as they
arrive.

The ability to pipeline messages speeds up message delivery considerably when
there are no queueing delays. The message delivery time reduces from (network
latency) x (message length) to (network latency) + (message length). We expect
the latency of each switch to be about 4 (message enters an input queue, passes
through the ALU, is sent to the output queue, and then transmitted), giving a total
latency of 4 x 6n for the logical network. Assuming 100 bit long messages and 4-bit
wide data paths, the time for a 13 dimensional butterfly is (4 X6 x 13) +100/4 = 337
steps.

We now estimate the area requirements for the routing switches per node. Each
switch consists of message queues, an ALU (for address comparison, message com-
bination, etc.), counters to maintain the message FIFO queues, memory for storing
partial sums, and direction bits for reply routing. In the following we assume that
messages are 100 bits wide, and that partial sums are 64 bits wide.

Switches in phases 2 and 5 have two input queues, while others only have one
input queue. The total number of message queues per node is therefore 8. Sim-
ulations (section 5.1) indicate that for 100,000 node machine each message queue
need hold only 3 messages. The total memory requirement for message queues thus
equals 8 x 3 x 100 = 2400 bits, or roughly 1.2 MA?(at 500\2per bit3).

Simulations also strongly indicate that no switch will ever transmit more than 40
'messages along its outputs. For reply routing we need 2 bit wide direction queues,
and 64 bit wide partial sums. Long partial sum queues are maintained only in phase
2 so that the total memory requirement adds up to 40 x 64 + 6 x 2 x 40 = 3040
bits, or 1.52 M2,

Each queue requires 3 counters, except for the message queues which require
4. Assuming 8 bit wide counters, the total memory is 424 bits. With 3000 AZper
counter bit, total area requirement is 1.28 MA2. v

Assuming 8 bit wide data paths, each ALU requires around 1.2 M2, for a total
of 7.2 MA?per node.

The total area requirement is thus approximately 11.2 MAZ?. Including miscella-
neous overhead, 15 MA%is a conservative estimate for 6 switches per node.

5 The Fluent Machine

This section presents an outline for a Fluent machine which can be constructed
within the next few years with conservative technology. Table 1 summarizes our

3The estimates for the different components are from [12].
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Feature size for VLSI 1 (A =0.5u)
Chip size 100mm* = 400 M\*
Pins per chip s 150
Printed circuit boardsize Smx.5m
Off board connections 512

Table 1: Technology for the Fluent-I

switches 30 MA*

2 32-bit RISC Processors 40 M)
Floating point unit 100 M)*

128 Kbytes memory per processor | 200 MA*

[ Total area requirement per chip | 370 MA* |

Table 2: Chip Specification

assumptions about the technology available. Needless to say, breakthroughs in
packaging technologies will have the largest impact.

The Fluent-I is organized as a 13-dimensional butterfly, with 21* nodes in each
of 14 ranks for a total of 114,688 nodes. These nodes are divided into 256 boards,
each housing a 6—-dimensional butterfly. The network is partitioned into 2 planes of
boards, arranged in the manner suggested by Wise [18]. Each board has 448 nodes,
divided among 224 chips, with 2 nodes per chip. In addition to the 2 processors, each
chip also has routing switches for the two nodes, one floating point unit (multiplier
and adder), and memory. Table 2 summarizes the breakup of chip area, using
estimates as in the previous section.

Data paths between nodes vary in width depending on whether the path is on-
board or across boards. Each board has 128 4-bit wide data paths out (64 nodes
in the last rank of a 6-dimensional butterfly, each with 2 forward links). On-board
paths are 8 bits wide. The butterfly can be partitioned so that each chip requires
16 data paths so that 128 pin connections suffice.

This variation in data path widths was not considered in the previous sections.
The performance of the routing algorithm changes somewhat with narrow channels.
The off-board channels also have to be multiplexed over the 6 phases of the logical
network, while on-board channels are replicated. At worst one would estimate that
the 4-bit wide off-board channels would slow the system by a factor of 12 (the other
channels are 8 bits wide), but our simulations show that this is wildly pessimistic.
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5.1

Processors 114,688

Floating Point Units 57,344
Memory 16 Gbytes
Cycle time 50 ns

Peak Floating Point Rate | 2.3 Tflops

Table 3: Fluent-I Highlights

Simulation Results

We performed timing simulations of the communication network on the Connection

Machine. The objectives were to observe the sensitivity of the routing scheme to

variations in queue size, address maps, and memory reference patterns. A final

objective was to study the effect of using multiplexed, narrower offboard channels.
Our conclusions in brief:

1.

Simple hash functions perform well. We tried various linear congruentfal
maps: variable z placed in location ax + b mod M, where M, the size of the
address space, is a prime, and a and b are constants.

Routing time varies little with access pattern. We tried several patterns: ma-
trix access, binary trees, shuffle permutations, random accesses etc. Random
patterns took slightly longer in all cases.

Concurrent access is faster than exclusive access. The extreme case is when
all processors read the same variable. The number of steps reduces from 154
(see Figure 7) to 85 because there is no buffering delay. This assumes that
messages are no wider than channels (see below for further discussion).

Queue-size 3 is adequate. While queue size 1 degrades performance drasti-
cally, queue sizes 2 or more give similar performance.

Figure 7 plots the routing time when off-board channels are multiplexed, with
narrowness being the ratio of the width of the offboard channels to the on-
board channels. Switches in lower phases are given higher priority in accessing
channels. Each channel first allows phase 0 messages to pass, followed by phase
1 messages, and so on. From the plot we can conclude that the performance
degrades by a factor of 1.7 over the ideal case (no narrow channels and no
multiplexing). The time goes up from 154 steps as in Figure 7 to about 260
steps (extrapolated for 114,688 processors from Figure 7).

16




600

400

Routing Time

200

i 1 I I | ‘f 1

T
4+ Loglcal NetworK

0O Multiplexed, narrowness=1
O Multiplexed, narrowness=2
0 Multiplexed., narrowness=4

-4

--------- - Extrapolatlon

| ] ] 1 | [ 1 !

10
Buttcr?ly slze(number of ronKs)

Figure 7. HAverage routlng time
(50 rondomly chosen access patterns)




5.2 Router performance

Suppose that messages are 100 bits long (64 data bits, 32 address bits, and 4 type
bits). If every channel was 8 bits wide, sending a message across one link would
require 100/8 = 13 steps. From the results of the previous section we can therefore
estimate that, with narrow channels and multiplexing, an arbitrary permutation
can be routed in 260 x 13 = 3380 steps. With a 50 nanosecond clock rate, the time
is about 169 usec.

If all processors access a single variable, then the time is just 337 cycles (section
4), or about 17 usec. »

As an example, suppose that we wish to sort 16-bit numbers, with 32K numbers
in each node. There are roughly 3.5 billion numbers being sorted. On the Fluent
machine, we only need one iteration of the procedure SHORTSORT from Section
2. For each number being sorted, 3 shared memory instructions are executed (the
others are local). However, the instructions can be packed into 50 bit messages.
The total number of steps required is 3 x 32K x 3380/2, or about 169 million for
a total time of 8.5 seconds. If the numbers are 32 bits long, the time is about 17
seconds. Note that this is the time to sort the entire contents of memory.

5.3 Structured Computations

Much work has been done on mapping structured computations onto butterfly net-
works. These computations do not need the generality of shared memory. Better
performance can be achieved by direct nearest neighbor communication rather than
routing. This allows us to utilize the floating point capabilities of the machine more
efficiently.

Table 3 presents performance estimates for two structured problems: FFT and
Matrix multiplication. We considered a 2% point complex FFT, and used the
standard mapping. We obtain a performance of between 1.2 Tflops and 2 Tflops
 depending upon the assumptions made about local memory bandwidth. Batcher’s
bitonic sort (N numbers) on the butterfly takes 2log? N steps. With 32K 16 bit
numbers per node, and each communication step requiring 4 cycles, the total time
is 4 X 2 x 289 x 32K = T5M cycles. At 50 ns clock this gives a time of 3.7 seconds.
While this estimate is lower than that of the shared-memory radix sort, extracting
the extra peformance requires non-trivial and tedious low level fine tuning.

Besides nearest neighbor communication, performance gains can also be achieved
by partitioning structured problems into blocks, and doing block computations lo-
cally within each node. This reduces the number of shared memory instructions.
For matrix multiplication there are no good mappings into the butterfly [3]. In-
stead, we partition a large matrix into block submatrices, each of which is stored
in one node. Instead of mapping blocks randomly to nodes, we use a simple hi-
erarchical approach: decompose the matrix into large blocks, and map these into
randoin boards. Next, decompose the large blocks into smaller blocks and map
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Estimated multiprefix time 169usec
Radix Sort 3.5 - 10° 16 bit numbers 8.5sec
Bitonic Sort 3.5 - 10° 16 bit numbers 3.7sec

Matrix multiplication 0.8 Tflops
FFT 1.2 Tflops

| Table 4: Fluent-I Performance

them randomly into nodes. This allows us to exploit locality at the processor and
board levels, and reduces the communication load on the off-board channels.

6 Conclusions and Extensions

Powerful models of parallel computation need neither be expensive nor slow — this
is what we wish to demonstrate by building a Fluent parallel computer. In this
extended abstract we have presented the Fluent abstract machine which is more
powerful than any other abstract shared memory model, and shown that it can be
implemented inexpensively on the Fluent machine.

We are continuing simulation experiments. By programming different appli-
cations we hope to get more insight into the expressive power of the Fluent pro-
gramming model. We also expect to identify various tradeoffs, and adjust design
parameters accordingly. For example, by providing even wider data paths on board,
at the expense of reducing the number of switches per node (by multiplexing them)
we expect that overall performance can be improved.

In this abstract we have not considered many issues in processor/chip design,
and have mostly presented very conservative estimates for area requirements. We
expect to begin detailed design of the router and communications harware following
our experiences with the simulator. Future work will throw more light on issues such
as SIMD vs. MIMD organization, processor complexity /wordlength, and operating
system issues.
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