.

Bpprov

e

Statistical Selection
Among Problem-Solving Methods

Eugene Fink

January 1997
CMU-CS-97-101

ey g 2epn DS

el 10T s

Dismipuows Uabmned

BRSPS

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

19970715 191

Abstract

The choice of an appropriate problem-solving method, from available methods, is a crucial
skill for human experts in many areas. We describe a technique for automatic selection among

methods, based on a statistical analysis of their past performances.
We formalize the statistical problem involved in selecting an efficient problem-solving

method, derive a solution to this problem, and describe a selection algorithm. The algorithm
not only chooses among available methods, but also decides when to abandon the chosen
method, if it proves to take too much time. We extend our basic statistical technique to
account for problem sizes and for similarity between problems.

We give empirical results of the use of this technique to select among search engines in the
PRODIGY system. We also test the selection technique on artificially generated performance
data, using several different probability distributions. .

-,
. . pred . |
This work was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and Defense Advanced Research Project Agency (DARPA) under grant number F33615-

93-1-1330.

Keywords: Lcarning, problem solving, statistical analysis.

1 Introduction

The choice of an appropriatc problem-solving mcthod is onc of the main themes of Polya’s
famous book Ifow to Solve It [Polya, 1957]. Polya showed that the sclection of an cffective
approach to a problem is a crucial skill for a student of mathecmatics. Psychologists have
accumulated much cvidence that confirms Polya’s pioncering insight: the performance of
human cxperts in many arcas depends on their proficicncy in choosing a method that fits a
problem [Newell and Simon, 1972; Gentner and Stevens, 1983).

The purposc of our rescarch is to automate the sclection of a problem-solving method.
This rescarch is motivated by our work on the PRODIGY problem-solving system, which
includes scveral scarch engines [Veloso and Stone, 1995) and a number of lcarning modules
[Vcloso et al., 1995]. We nced to provide a mechanism for deciding which learning modules
and which scarch cnginc arc appropriatc for a given problem. Morcover, since programs
in the rcal world cannot run forever, we need some mcans to decide when to interrupt an
unsuccessful scarch.

We describe a lcarning algorithm that gathers data on the performance of available
mcthods and uscs these data to sclect a method that fits a given problem. The algorithm
also sclects a time bound for the chosen method; we interrupt the method if it hits the bound
without solving the problem. Our technique is aimed at sclecting a method and time bound
before solving a given problem. We do not provide a mechanism for switching a method or
revising the sclected bound during the scarch for a solution. Developing such a mechanism
is an important opcn problem.

The sclection technique is very gencral and independent of particular problem-solving
cngincs and problem domains; it docs not usc any spccific propertics of PRODIGY. We can
usc our lcarning algorithm in any Al system that offers the choice of multiple problem-solving
cngines or allows the sclection of appropriate valucs of “knob” paramcters. The technique
is cqually cffective for small and large-scale problem domains.

Even though Al problem solving provided the motivation for our work, the resulting
technique is applicable to situations outside of AL We may usc it to sclect between scveral
altcrnative approaches to a task, or to decide on the amount of cffort that we should invest
in achicving a goal bcfore giving up. For cxample, we can apply this technique to find out
which of scveral encyclopedias is most cffective for finding certain types of data. As another
cxample, we may usc it to decide how long onc should wait on the phone, beforc hanging
up, if her or his party docs not answer.

The sclection takes very little computation and its running time is usually ncgligible
comparcd to the problem-solving time. The time of sclecting a scarch enginc in the PRODIGY
system is three orders of magnitude smaller than the time of the subscquent scarch.

We begin by formalizing the statistical problem of cstimating the cxpected performance
of a mothod (Scction 2). We derive a solution to this problem (Scction 3), show how to usc
it in sclecting a method and time bound (Scction 4), and give results of sclecting among
PRODIGY scarch cngincs (Scction 5). We then apply our tcchnique to determine how long
onc should wait before hanging up, when the other party docs not answer the phone.

We describe the usc of an approximate measurc of problem complexity (Scction 6) and
similarity between problems (Scction 7) to improve the accuracy of performance cstimates.

Notc that we do not nced a perfect estimate; we only need accuracy sufficient for sclecting
the right method and a ncar-optimal time bound. Finally, we test the sclection technique on
artificially gencrated performance data, for several different probability distributions (Scc-
tion 8).

2 Motivating example

We give an cxample of a method-sclection task in the PRODIGY system, usc it to formal-
ize the statistical problem of choosing from available mcthods, and discuss the simplifying
assumptions underlying our formal model.

Supposc that we usc PRODIGY to construct plans for transporting packages by vans
between different locations in a city [Veloso, 1994]. We consider the usc of three different
scarch methods. The first of them is based on the control rules designed by Veloso [1994]
and Pérez [1995], which guide PRODIGY’s scarch in the transportation domain. This method
applics the sclected actions to the current state of the simulated transportation world as
carly as possible; we call this mcthod APPLY.

The sccond method uses the same control rules and a special rule that delays the appli-
cation of the sclected actions and forces morc emphasis on the backward scarch [Veloso and
Stonc, 1995]; we call it DELAY. This mcthod is a combination of the SABA scarch algorithm,
implemented by Veloso and Stone, with the domain-specific control rules.

The third method, ALPINE [Knoblock, 1994], is a combination of APPLY with an abstrac-
tion gencrator, which determines relative importance of the clements of a problem domain.
ALPINE first ignorcs the less important clements and gencrates an outline of a solution; it
then refines the solution to take carc of the initially ignored details.

Expcriments have demonstrated that delaying the application improves the efficiency of
problem solving in somc domains, but slows PRODIGY down in othcrs [Stonc ct al., 1994];
abstraction somctimes gives drastic time savings and somctimes worsens the performance
[Knoblock, 1991; Bacchus and Yang, 1992). The most rcliablec way to sclect an cfficient
mcthod for a given problem domain is by cmpirical comparison.

The application of a mcthod to a problem gives onc of three outcomes: it may solve the
problem; it may terminate with failure, after cxhausting the available scarch space without
finding a solution; or we may interrupt it, if it rcachcs somc pre-sct time bound without
termination. (PRODIGY domains arc complctely deterministic and failurcs happen becausc
of imperfect scarch heuristics rather than uncxpected cvents during the cxecution.)

In Table 1, we give the results of solving thirty transportation problems, by cach of the
threc methods. We denote successes by s, failures by f, and hitting the time bound by b.
Notc that our data arc only for illustrating the sclection problem, and not for the purposc
of a general comparison of thesc threc scarch techniques. Their relative performance may
be very different in other domains. Also note that our sclection technique docs not rcly on
specific propertics of PRODIGY scarch cngines. It is cqually applicable to the sclection among
multiple problem-solving mcthods in any Al system.

Even though cach method outperforms the others on at lcast onc transportation problem
(scc Table 1), a glancc at the data rcveals that APPLY’s performance in this domain is
probably the best among the three. We usc statistical analysis to confirm this intuitive

2

&

time {sec) and outcome # of # time (sec) and outcome # of
APPLY | DBLAY | ALPINE | packs APPLY | DBLAY | ALPINE | packs
1 1.6 s 16 s 16 s 1 16 44 s | 684 s 4.6 s 4
2 2.1 s 2.1 s 2.0 s 1 17 6.0 s | 2000 b 6.2 s 6
3 24 s 58 s 44 s 2 18 7.6 52000 b 78 s 8
4 56 s 6.2 s 7.6 s 2 191 11.6 s | 200.0 b 11.0 s | 12
5 3.2 s 134 s 50 s 3 20| 200.0 b { 200.0 b | 200.0 b 16
6| 543 s 138 f| 814 s 3 21 3.2 s 29 s 4.2 s 2
7 4.0 s 31.2 6.3 s 4 22 64 s 3.2 s 7.8 s 4
8 | 200.0 b 31.6 f|200.0 b 4 23 27.0 s 4.4 s 42.2 8 16
9 7.2 81200.0 b 8.8 s 8 24 | 200.0 b 6.0 s | 200.0 b 8
10 | 200.0 b | 200.0 b | 200.0 b 8 25 4.8 3 11.8 f 3.2 8 3
11 2.8 s 28 s 28 s 2 26 | 200.0 b 634 f 6.6 f 6
12 3.8 s 3.8 s 3.0 s 2 27 6.4 s 29.1 f 54 f 4
13 4.4 s 76.8 s 3.2 s 4 28 9.6 s 694 f 78 f 6
14 | 200.0 b | 200.0 b 64 s 4 291 200.0 b | 200.0 b 10.2 f 8
15 2.8 s 2.8 8 28 s 2 30 6.0 s| 19.1 s 54 f 4

Table 1: Performance of APPLY, DELAY, and ALPINE on thirty transportation problems.

conclusion and to cstimate its statistical significancc. We also show how to sclect a time
bound for the choscn problem-solving method.

If we identify scveral distinct problem types in a domain, we may discover that different
types require different problem-solving methods and time bounds. In other words, the ap-
propriate choice of a method may depend on the propertics of a problem. We will analyze
such situations in Scction 7.

To comparc different methods, we need to specify a utility function for cvaluating their
performances. We assume that we have to pay for running time and that we get a cer-
tain recward IR for finding a solution. If thc mcthod solves the problem, the overall gain is
(R — time). If the mcthod fails or hits a timc bound, it is (—time). We nced to cstimate
the expected gain for all candidate methods and time bounds, and to sclect the mothod and
bound that maximizc thc cxpectation, which gives us the following statistical problem.

Problem: Supposc that a mcthod solved n problems, failed on m problems, and was inter-
rupted (upon hitting a time bound) on k problems. The success times were sy, Sg, ..., Sy, the
Jailure times were fi, fa, ...y fim, and the interrupt times were by, by, ..., by Given a rcward IR
for solving a new problem and a time bound B, cstimate the cxpected gain and determine the
standard deviation of the estimate.

We usc the stationarity assumption [Valiant, 1984]; that is, we assumec that thc past prob-
lecms and the new problem arc drawn randomly from the same population, using the same
probability distribution. Wc also assumc that thc method’s performance docs not improve
over time (that is, no lcarning). Notc that the model docs not allow the dynamic adjustment
of thc bound B, bascd on the findings during the scarch for the new problem’s solution.
Weneed a gain cstimate that makes the best usc of the available data, cven if they arc not
sufficient for statistical significance. We cannot ask for morc data, since cxperimentation is

APPLY DELAY ALPINE

0.8 0.8 0.8
a
o
506 0.6 0.6
3
8
- 0.4 0.4 04
f
®
2
8 0.2 0.2 / 0.2 L
(] . ;F
=3
(%]

¥ 0<TFHrH-+ 0=
1 10 100 1 10 100 1 10 100
time bound time bound time bound

Figurc 1: Dependency of the success (o) and failure (4) probabilities on the time bound.

usually much morc cxpensive than solving the new problem. Another important requircment
is the speed of statistical computations, especially since the model docs not account for this
addition to the overall problem-solving time.

3 Statistical foundations

We dctermine the probability of solving the problem within a given time bound, the probabil-
ity of terminating with failure, the cstimate of the cxpected gain, and the standard deviation
of the cstimate.

We assumc, for convenicnce, that the success, failure, and interrupt times arc sorted in
the incrcasing order; that is, 81 < ... < 8y, fi £ .o < fon, and by < ... < by, We first consider
the casc when the time bound B is no larger than the lowest of the past time bounds, B < b;.
We dcnote the number of success times that arc no larger than B by ¢, and the number of
failurcs within B by d; that is, s, < B < s¢q1 and fu < B < fay1.

We cstimatc the probability of success by the fraction of problems that were solved within
time I3, which is 2 similarly, thc probability of tcrminating with failurc is Zﬁf:ﬁ: Tor
cxample, the probability that ALPINE with timc bound 6.0 solves a transportation problem
is % = 0.37, and thc probability that it tcrminates with failurc is % = 0.07.

In Figurc 1, we show the dependency between the time bound (given in the horizontal
axis, on a logarithmic scale) and the cstimated success and failure probabilitics for APPLY,
DELAY, and ALPINE, in thc transportation domain. Wec do not show the failurc-probability
cstimatc for APPLY, because the data for this mcthod contain no failures and, thus, the
cstimatc is zcro. We computed the probabilitics only for the points marked by circles and
pluscs, and connected them by straight scgments.

We cstimate the cxpected gain by averaging the gains that would be obtained in the past,
if we used the reward I? and time bound B. The mcthod would solve ¢ problems, carning
the gains R — s1, R — 83, ..., £ — 8,. It would terminate with failurc d times, resulting in the
negative gains — f1, — fa, ..., — fa. In the remaining n + m + k — ¢ — d cascs, it would hit the
timc bound, cach timc carning —B. The cxpected gain is cqual to the mcan of all these

APLINE

expected gains

time bound time bound time bound

Figurc 2: Dependency of the expected gain on the time bound, for the reward of 10.0 (dash-and-dot
lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the standard deviation of
the expected gain for the 100.0 reward.

n -+ m -+ k gains:

Tim(l—)+ Tiy(—fi)+ (n+m+k—c—d)-(-B)
n+m+k ’

For cxample, if we usc ALPINE to solve transportation problems, with reward 30.0 and timce
bound 6.0, then the expected gain is 6.0.

Since we have computed the mcan gain for a randomly sclected sample of problems,
it may be different from the mcan of the overall population. We cstimate the standard
deviation of the cxpoected gain using the formula for the deviation of a sample mean:

ntm+k
(n+m+k)-(n+m+k-1)’

J SqT.S'um __bum?

where

Sum =i (R—si) + Tia (= f;) + (n+m + k= e~ d) - (-B),
SqrSum = T (R—s:)2 + Sy f2 4+ (n+ m+k—c—d) - B2

This formula is an approximation bascd on the Central Limit Theorem, which statcs that
the distribution of samplc mcans is always closc to normal (sce, for cxample, Mcndenhall’s
textbook [1987]). The accuracy of the approximation improves with sample size; for thirty
or morc samplc problems, it is ncar-perfect. For cxample, if we usc ALPINE with reward 30.0
and time bound 6.0, the standard deviation of the expected gain is 2.9.

In Tigurc 2, we show the dependency of the cxpected gain on the time bound for our
threec methods. We give the dependency for three different valucs of the reward R, 10.0
(dash-and-dot lincs), 30.0 (dashed lincs), and 100.0 (solid lincs). The dotted lincs show the
standard deviation of the gain cstimate for the 100.0 reward: the lower line is “onc deviation
below” the cstimate, and the upper line is “onc deviation above.”

We have so far assumed that B < b;. We now consider the casc when B is larger than
c of the past intorrupt times; that is, b, < B < byy;. We cannot usc by, by, ..., b, dircctly
in the gain cstimate, because these interrupt times arc smaller than B. The usce of the
time bound B would causc the method to run beyond thesc old bounds. The collected data
do not tell us whether the method with the time bound B would have succoeded on the
corrcsponding past problcms.

If we had not intcrrupted the method at by in the past, it would have succeeded or failed
at somc larger time, or hit a larger time bound. We may cstimate the cxpected gain using
the data on the past problem-solving cpisodes in which the method ran beyond b;. We get
this estimatc by averaging the gains for all the larger-time outcomes. We incorporate this
averaging into the computation by removing by from the samplc and distributing its chance
to occur among the larger-time outcomes.

To implement this re-distribution, we assign weights to the outcomes. Initially, the weight
of cvery outcome is 1. After removing by, we distribute its weight among all the larger-than-
by outcomes. If the number of such outcomes is ay, cach of them gets the weight of 1 +-= ’
Notc that by, ..., b, arc all larger than b;, and thus they all get the new weight.

We next remove by from the sample and distribute its weight, which is 1 4+ 2 o) among
the larger-than-b, outcomcq If the number of such outcomcs is ag, then we incrcasc their
weights by (1 + —) ; that is, their weights become (1 +) 1+ :—2) We repeat the
distribution process for thc all interrupt times smaller than B “that i is, for bj, ..., b,.

We illustrate the usc of this re-distribution technique using the d'm on ALPINE’s perfor-
mance. Supposc that we interrupted ALPINE on problem 4 after 4.5 scconds of the cxecution
and on problem 7 after 5.5 scconds, thus obtaining the data shown in Table 2(a), and that
we nced to ostimate the gain for B = 6.0. This bound B is larger than two intcrrupt timos.

We first have to distributc the weight of b;. In this cxample, by is 4.5 and there arc 21
problems with larger times. We remove 4.5 from the sample data and increase the weights
of the larger-time outcomes from 1 to 1 4+ - = 1.048 (scc Table 2b). We next perform the
distribution for by, which is 5.5. Thc table contains 15 problems with larger-than-b, timcs.
We distributc b,’s weight, 1.048, among these 15 problems, thus increasing their weight to
1.048 4 1048 = 1.118 (Table 2c).

We hwc thus distributed the interrupt times by, by, ..., b, and assigned weights to the
successes timos, failurc times, and remaining interrupt times. We denotc the resulting weights
of the success times si, ..., 8. by u1, ..., u, and the weights of the failurc times fi, ..., fa by
v1, ..., vy (rocall that these success and failure times arc smaller than B). All success, failure,
and intorrupt times larger than B have the samc weight, which we denote by w. Note that
the sum of the weights is cqual to the number of problems in the original sample; that is,
Yo vit Sl vit(ntmtk—c—d—c)-w=n+m+k.

We have obtained (n+m+k—c) weighted times. We first usc them to cstimatce the success
and failurc probabilitics. The probability of solving a problem, within the time bound B, is
l‘%ﬁf—‘ similarly, thc probability of terminating with failurc is %ﬁi If we use thc
data in Table 2(c) to determine these probabilitics for ALPINE with timce bound 6.0, we get
the success probability of 115%@ = 0.37 and the failurc probability of % = 0.07.

| ALPINE's
time weight time weight time
1 1.6 s 1.000 1.6 = 1.000 1.6 s
2 2.0 s 1.000 2.0 s 1.000 2.0 s
3 44 s 1.000 44 s 1.000 44 s
4 45 b
5 5.0 s 1.048 5.0 s 1.048 5.0 s
6 81.4 s N 1.048 | 814 s — 1.118 814 s
7 55 b 1.048 55 b
81 200.0 b 1.048 | 200.0 b 1.118 | 200.0 b
9 88 s 1.048 88 s 1.118 88 s
29 10.2 f 1.048 10.2 f 1.118 102 f
30 54 f 1.048 54 f 1.048 54 f
(a) (b) (©)

Tablc 2: Distributing the weights of interrupt times among the larger-time outcomes.

We next usc the (n + m + k — ¢) weighted times to compute the expected gain:

St (R=s)+ i v (=fi)+ (n+mtk—c—d—c) w-(-B)

n+m+k
Similarly, we usc the weights in cstimating the standard deviation of the expected gain:
v U Sum?
Sqr,Sum T ntmtk
(n+m+k)-n+m+k—c—1)

where

Sum = Sy - (=) + Ty - (~F) 4 (0 4 m bk — e — d) - (D),
SqrSum =S5y ui- (R—s)? + Sy v 2+ (n+m+k—c—d)-w- B~

The application of these formulas to the data in Table 2(c), for ALPINE with reward 30.0
and time bound 6.0, gives the expected gain 6.1 and the standard deviation 3.0.

If B is larger than the largest of the past bounds (that is, B > b;) and the largest time
bound is larger than all past success and failurc times (that is, b, > s, and by > f,,), then
the re-distribution procedurc docs not work. We nceed to distribute the weight of b, among
the larger-time problems, but the sample has no such problems. Thus, the data arc not
sufficient for the statistical analysis because we do not have any past cxpericnce with large
cnough time bounds.

We have assumed in the derivation that the exccution cost is proportional to the running
time; however, we may readily extend the results to any other monotonc dependency between
timc and cost, by replacing the terms (R—s;), (— f;), and (— B) with morc complex functions.

Notc that we do not usc past rewards in the statistical cstimate. The reward I may be
diffcrent from the rewards carncd on the sample problems. We may cxtend our results to

7

c number of the already processed success times
(the next success time to process will be s.41)

d number of the already processed failure times

€ number of the already processed interrupt times

h number of the already processed time bounds

S_Num sum of the weights of the processed successes, Y 5_; u;

F_Num sum of the weights of the processed failures, 2,4:1 v;

S_Sum weighted sum of the gains for the processed successes, Y5, w; - (R — ;)

F_Sum weighted sum of the gains for the processed failures, Z?ﬂ v - (= f;)

Sum weighted sum of the gains for all sample problems, for the current time bound B4

S_SgrSum weighted sum of the squared gains for the processed successes, 7., u; - (R — s;)°
F_SgrSum weighted sum of the squared gains for the processed failures, E;lzl v - fj2
SqrSum weighted sum of the squared gains for all sample problems, for the time bound B4

Iigurc 3: Variables used in the gain-estimate algorithm in Figure 4.

situations when the reward is a function of the solution quality, rather than a constant, but
it works only if the reward function docs not change from problem to problem. We replace
cach term (R—s;) by (R;— s;), where R; is the reward carned for the corresponding problem.
The resulting cxpression combincs the estimate of the expected reward and expected running
time, which gives us the expected gain:

Zleu;-(Rg—s.;)+2?=1vj'(—fj)+(n+m+k—c—d—c)-w~(—B)
n+m+k)

If we usc this approach, we also have to replace (I — s;) by (I; — s;) in cstimating tho
standard decviation of the cxpected gain.

To summarize, we can cstimate the cxpected gain if cither the reward docs not depend on
the solution quality or the dependency is the same for all problems. Relaxing this condition
is an important opcn problem. We will discuss other limitations of the analysis and ways to
overcome them in Section 9.

We now present an algorithm for computing the success and failurc probabilitics, gain
cstimatces, and cstimate deviations, for multiple valucs of the time bound B. We describe
the variables used in the computation in Figurc 3 and give the pscudocode in Figurc 4.

The algorithm dcterminces weights and computes gain cstimatces in onc pass through the
sorted list of success, failure, and intcrrupt times, and time-bound valucs. When processing
a success or failure time, the algorithm increments the corresponding sums of the weighted
gains and wcighted squarcs of the gains. When processing an interrupt time, the algorithm
modifics the weight value. When processing a time bound, the algorithm uscs the accumu-
lated sums of gains and squarcd gains to compute the gain estimatc and deviation for this
bound.

The time of this pass through thc sorted list of bounds and running times is lincar.
That is, for { timc bounds and a samplc of n successcs, m failurcs, and & interrupts, the
algorithm’s complexity is O(! + n + m + k). The complexity of pre-sorting the lists is
O((l+n+m+k)-log(l+n+m+k)), but in practicc it takes much less time than the

The input of the algorithm includes: the reward R; the sorted list of success times, sy,...,s,; the
sorted list of failure times, fy, ..., f,; the sorted list of interrupt times, by, ..., by; and a sorted list of
candidate time bounds, By, ..., B;. The variables used in the computation are described in Figure 3.

Set the initial values:
c:=0;d:=0;e:=0; h:=0
S_Num := 0; F_Num :=0
S_Sum = 0; F_.Sum:=0
S_SqrSum := 0; F.SqrSum:=0

Repeat the computations until finding the gains for all time bounds; that is, until h = 1:
e Select the smallest among the following four times: s.i1, fyt1, bot1, and Bpyg.
o If the success time s.41 is selected, increment the related sums:

S Num := S-Num +w

S_Sum := S_Sum+ w - (R~ 8;41)

S_SqrSum := S_SqrSum+ w - (R — s.41)2

ci=c+1
o If the failure time fy4; is selected, increment the related sums:

F_Num := F_Num+ w

F_Sum := F_Sum+ w- (= fay1)

F_SqrSum = F_SqrSum-w - f2 11

d:=d+1
e If the interrupt time b,41 is selected:

If no success or failure times are left (that is, c = n and d = m),
then terminate (the data are not sufficient to estimate the gains for the remaining bounds).

Else, distribute the interrupt’s weight among the remaining times, by incrementing w and e:
wi=wtw- _ntmthk—c—d—e

n+m+k—c—d—e—1
e:=e+1
o If the time bound Bj 1 is selected:
First, compute the sum of the sample-problem gains and the sum of their squares:
Sum := S_Sum+ F.Sum+ (n+m+k-c—d—¢€) -w-{—Bp1)
SqrSum = S_SgrSum + F_SgrSum+ (n+m+k—-c—d—¢€)-w- B,2hLl
Now, compute the success and failure probability, gain estimate, and deviation, for B, 1:

i S-_Num H B . Sum
Success probability: vl Gain estimate: ey
B M- MoNum . RIPTI b’qrb‘um—,ﬁ'umz/(n+m+/¢)
Failure probability: <=4, Estimate deviation: \/ CRTERA N o m——

Finally, increment the number of processed bounds:
h=h+1

Figurc 4: Computing the success and failure probabilities, gain estimates, and estimate deviations.

rest of the computation. We implemented the algorithm in Common Lisp and tested it on
Sun 5, the samc machinc as we used for solving the transportation problems. The running
time is about (I 4+ 7+ m+k) -3 -10~* scconds.

4 Selection of a method and time bound

We describe the usc of the statistical cstimate to choose among problem-solving methods and
to determine appropriate time bounds. We provide heuristics for combining the cxploitation
of past cxpericnce with oxploration of new alternatives and for making a choice in the absence
of past data.

The basic technique is to cstimate the gain for a number of time bounds, for cach available
mcthod, and sclect the method and time bound with the maximal gain. For cxample, if the
reward in the transportation domain is 30.0, than the best choice is APPLY with the time
bound 11.6, which gives the cxpected gain of 14.0. This choice corresponds to the maximum
of the dashed lines in Figure 2. If the expected gain for all time bounds is negative, than
we arc bettor off not solving the problem at all. For cxample, if the only available method
is DELAY and the reward is 10.0 (scc the dash-and-dot linc in Figurc 2), we should skip the
problem.

For cach mcthod, we usc its past success times as candidate time bounds. We compute
the expected gain only for these candidate bounds. If we computed the gain for some
other time bound B, we would get a smaller gain than for the closcst lower success time s;
(where s; < B < s441), because cxtending the time bound from s; to B would not incrcasc
the number of successes on the past problems.

In practice, we multiply the success times by 1.001 to obtain candidatc bounds, in order
to avoid the chance of interrupting a method too carly because of rounding crrors. We used
such candidatc bounds to construct the graphs in Figurcs 1 and 2. If scveral candidate
bounds arc “too closc” to cach other, we drop somc of them, to reduce the amount of
computation. In our implementation, we consider two bounds too closc if they arc within
the factor of 1.05 from cach other.

We now describe a technique for incremental learning of the performance of available
methods. We assume that we begin with no past expericnce and accumulate performance
data as we solve morc problems. For cach new problem, we usc our statistical technique to
sclect a method and time bound. After applying the sclected method, we add the result to
the performance data.

The usc of the previous scction’s results incrementally causcs a deviation from rigorous
statistics: the resulting success, failure, and interrupt times arc not independent, because the
time bound uscd for cach problem depends on the times of solving the previous problems.
In spite of this violation of rigor, the tcchnique gives good results in practice.

Notc that we nced to choosc a method and time bound cven when we have no past
cxperience. Also, we sometimes need to deviate from the maximal-cxpectation choice in
order to cxplorc new opportunitics. If we always used the sclection that maximizes the
cxpected gain, we would be stuck with the problem-solving method that vielded the first
success, and we would never choosc a time bound higher than the first success time.

10

We have not constructed a statistical model for combining cxploration and cxploitation.
Instead, we provide a heuristical solution, which has proved to work well for sclecting problem
solvers in PRODIGY. We first consider the task of sclecting a time bound for a fixed method,
and then show how to sclect a method.

Selecting a time bound

If we have no previous data on a method’s performance, we choose the time bound cqual
to the reward. This heuristic is based on the obscrvation that, for PRODIGY scarch cngincs,
the probability of solving a problem, say, within the next sccond, usually declines with the
passage of scarch time. If a method has not solved a problem within half a minutc, chances
arc it will not find a solution in the next half minute cither. Thus, if the reward is 30.0 and
the method has alrcady run for 30.0 scconds, it is time to interrupt the scarch.

Now supposc that we have accumulated some data on the method’s performance, which
cnablc us to determine the bound with the maximal expected gain. To cncourage cxploration,
wo sclect the largest bound whosc cxpected gain is “not much different” from the maximum.
Let us denote the maximal cxpected gain by gimax and its standard deviation by gpay. Supposc
that the cxpected gain for some bound is g and its deviation is o. Then, the cxpected
difference botween the gain ¢ and the maximal gain is gmax — g. If we assumc that our
cstimates arc normally distributed, then the standard deviation of the cxpected difference
is /0. + 0% Notc that this cstimatc of the deviation is an approximation, because the
distribution for small samples may be Student’s rather than normal, and because gy and
g arc not independent variables, as they arc computed from the same data.

We say that ¢ is “not much different” from the maximal gain if the ratio of the expected
difference to its deviation is bounded by somc constant. In our cxperiments, we sct this
constant to 0.1, which tends to give good cxperimental rosults:

Imax — ¢
V Ulznax + 0.2

We thus sclect the largest time bound whose gain cstimate ¢ satisfics this condition.

We present the results of this sclection strategy in Figurc 5. We ran cach of the three
mcthods on the thirty transportation problems, in order. The horizontal axcs show the
problem’s number (from 1 to 30) and the vertical axes arc the running time. The dotted
lincs show the sclected time bounds and the dashed lines mark the time bounds that give
the maximal gain cstimates. The solid lines show the running times; they touch the dotted
lincs where the methods hit the time bound. The successfully solved problems arc marked
by circles and the failurcs arc shown by pluscs.

APPLY’s total gain is 360.3, which makes an average of 12.0 per problem. If we used the
maximal-gain time bound, 11.6, for all problems, the average gain would be 14.0 per problem.
Thus, the usc of incremental learning yiclded a ncar-optimal gain, in spitc of the initial
ignorance. The time bounds used with this method (dotted line) converge to the estimated
maximal-gain time bounds (dashed linc), sincc the deviations of the gain estimates decreasc
as we solve more problems. APPLY’s cstimate of the maximal-gain bound, after solving all
problems, is 9.6. This cstimatc differs from the 11.6 bound, found from Table 1, because the
usc of bounds that cnsurc a ncar-maximal gain prevented sufficient cxploration.

< 0.1.

11

APPLY DELAY ALPINE

o 30F 30F
o]

525 25
[=]

Qo

- 20 20
c

@15 15
[]

£

=10 10
£

E s 5
]

0

0 0
10 20 30 10 20 30 10 20 30
problem’s number problem’s number problem’s number

Figurc 5: Results of the incremental learning of a time bound: running times (solid lines), time
bounds (dotted lines), and maximal-gain time bounds (dashed lines). The successes are marked by
circles and the failures by pluses.

DELAY’s total gain is 115.7, or 3.9 per problem. If we used the data in Table 1 to find
thc optimal bound, which is 6.2, and solved all problems with this bound, we would carn
5.7 per problem. Thus, the incremental-learning gain is about two-thirds of the gain that
could be obtained based on the advance knowledge. Finally, ALPINE’s total gain is 339.7, or
11.3 per problem. The cstimatce based on Table 1 gives the bound 11.0, which would result
in carning 12.3 per problem. Unlike APPLY, both DELAY and ALPINE cventually found the
optimal bound.

Note that the main “losscs” in the incremental learning occur on the first ten problems,
when the past data arc not sufficient for sclecting an appropriate time bound. After this
initial period, the choice of a time bound beecomes close to the optimal.

The total time of the statistical computations while solving the thirty problems is 0.26
scconds, which makes less than 0.01 per problem. This time is negligible in comparison with
the problem-solving time, which averages at 6.5 per problem for APPLY, 7.7 per problem for
DELAY, and 7.1 per problem for ALPINE.

Selecting a method

We next describe the usc of incremental learning to sclect a problem-solving method. If we
have no data on the performance of some method, we always sclect this unknown method.
If we have no data on scveral methods, we sclect among them at random. The optimistic
usc of the unknown cncourages cxploration during carly stages of lcarning.

If we have past performance data for all methods, we first sclect a time bound for cach
mcthod and determine the corresponding gain estimatce and its standard deviation. We then
make a weighted random sclection among the methods; the chance to choosc a method is
cqual to the probability that it is the best among the methods. This probabilistic sclection
results in the frequent application of methods that perform well, but also encourages some
cxploratory usc of poor performers.

We now describe a technique for cstimating the probability that a method is the best
among the available mcthods. We usc the statistical z-test to determine the probability that

some method is better than another one. Supposc that the expected gain for some method is
91 and its standard deviation is oy; similarly, the expected gain for another method is gz with
deviation a3. The expected difference between these two gains is gy — go. If e assume that
cstimatcs arc normally distributed, then the standard deviation of the expected difference is

v/of 4+ o3. The # valuc is the ratio of the cxpected difference to its standard deviation; that

is, z = —\5‘/1—;_—% The z-test converts this valuc into the probability that the average gain of
91T

the first method is larger than that of the sccond method.

The usc of the z-test for small samples of past performance data is an approximation; its
accuracy improves with sample size. We can obtain a greater accuracy by using the #-tost,
which is morc complex than the z-test. We did not use the £-test in the cxpceriments, because
we need the probability cstimates only for our “occasional cxploration” heuristic, which docs
not require high accuracy in dctermining the cxploration frequency.

We find the probability that a method is the best by calculating the product of the
probabilitics that it outperforms individual methods. This computation is also an approxi-
mation, occasionally quitc inaccuratc, since the probability valucs that we multiply arc not
indcpendent.

For cxample, supposc that we need to sclect among APPLY, DELAY, and ALPINE based on
the data in Table 1. We sclect bound 13.1 for APPLY, which gives the gain cstimate of 13.5
with deviation 3.3; bound 5.3 for DELAY, with gain cstimatc 5.3 and its deviation 3.0; and
bound 13.2 for ALPINE, with cxpected gain 11.2 and its deviation 3.2. We now usc the z-test
to determine the probability that APPLY’s gain is larger, on average, than that of DELAY.
The z valuc is % = 1.84; this valuc of # corresponds to the 0.97 probability that
APPLY gives a larger average gain. Similarly, the probability of APPLY’s average supcriority
over ALPINE is 0.69, and the probability of ALPINE’s supcriority over DELAY is 0.91. The
probability that APPLY is thc best among the three is cstimated as 0.97 - 0.69 = 0.67.
Similarly, the probability that ALPINE is the best is (1 — 0.69) - 0.91 = 0.28, and DELAY’s
chance of being the best is (1 —0.97) - (1 — 0.91) = 0.003. The resulting probabilitics do not
add up to 1.0 becausc of the approximation used in cstimating them. We now choosc onc of
the methods randomly; the chance of choosing cach method is proportional to its cstimated
probability of being the best.

We show the results of using this sclection strategy in the transportation domain, for
the reward of 30.0, in Figurc 6. In this cxperiment, we first usc the thirty problems from
Table 1 and then sixty additional transportation problems. The horizontal axis shows the
problem’s number and the vertical axis is the running time. We mark successes by circles
and failurcs by pluscs. The rows of symbols below the curve show the method sclection: a
circle for APPLY, a cross for DELAY, and an astcrisk for ALPINE.

The total gain is 998.3, which makes an average of 11.1 per problem. The overall time of
the statistical computations is 0.78, or about 0.01 per problem. The sclection converges to
the usc of APPLY with the time bound 12.7, which is optimal for this sct of nincty problems.
If we uscd this sclection on all the problems, we would carn 13.3 per problem. Notc that
the convergence is slower than in the bound-sclection cxperiments (sce Figure 5), because
we test cach method only on about third of all problem.

13

(]
(=]

020
E
g’
£10
o
]
of -
@ a0 0WOoOo WO W X OO0 00 M AL QOOIND Y
X X X XX X X X X X
MK ORK K MWK N K MK Ko, MK XK MK XK K MK KK bd
10 20 3 40 50 60 70 80 90

problem’s number

Figurc 6: Results of the incremental selection of a method and time bound, on ninety transporta-
tion problems. The graph shows the running times (solid line), successes (o) and failures (+), and
the selection made among ApPLY (0), DELAY (%), and ALPINE (*).

APPLY DELAY ALPINE
4007 400

2]

=]

o

=3

3 300 300

= | Y

c

©

@ 200 200

£

2

£ 100 100

=

2

I &b O(0(o e e RN .
10 20 30 10 20 30 10 20 30

problem’s number problem’s number problem’s number

Figurc 7: Incremental learning of time bounds in the extended transportation domain: running
times (solid lines), time bounds (dotted lines), and maximal-gain time bounds (dashed lines). The
successes are marked by circles and the failures by pluses.

5 Empirical examples

We have demonstrated the cffectivencess of the statistical sclection in a simple transportation
domain. We now give results in two other domains.

We first consider an cxtended version of the transportation domain, in which we usc
airplancs to carry packages betwoeen citics and vans for the local delivery within citics [Veloso,
1994]. The problems in this domain arc more complex, and the behavior of PRODIGY scarch
mcthods differs from that in the simpler domain used in the previous scctions. In Table 3,
wc give the performance of APPLY, DELAY, and ALPINE on thirty problems.

We present the results of the incremental learning of a time bound, for the reward of
400.0, in Figurc 7. The APPLY lcarning gives the gain of 110.1 per problem and cventually
scleets the bound 127.5. The optimal bound for this sct of problems is 97.0. If we used the
optimal bound for all problems, we would carn 135.4 per problem.

DELAY gains 131.1 per problem and chooscs the 105.3 bound at the cnd of the lcarning,.

14

time (sec) and outcome # of # time (sec) and outcome # of
APPLY | DmLAY | ALPINE | packs APPLY | DBLAY | ALPINE | packs
1 4.7 8 4.7 s 4.7 s 1 16 [351 s| 211 s 6.6 f 2
2 96.0 s 9.6 f 7.6 f 2 17| 605 s 75.0 f| 13.7 s 2
3 52 s 5.1 s 52 s 1 18 3.5 s 34 s 35 s 1
4 20.8 s 106 f| 14.1 s 2 19 4.0 s 3.8 s 4.0 ¢ 1
5| 1543 s} 314 s 7.5 f 2 20 | 232.1 s 97.0 s 9.5 f 2
6 2.5 s 2.5 s 2.5 s 1 21| 60.1 s| 73.9 3| 146 s 2
7 4.0 s 2.9 s 3.0 s 1 2215000 b | 5000 b | 12.7 f 2
8] 180 s| 198 s 4.2 s 2 23| 531 s| 748 s| 156 s 2
9 195 5| 268 s 4.8 s 2 24 {1 500.0 b | 500.0 b | 38.0 s 4
10 | 123.8 5| 500.0 b | 859 s 3 25 | 500.0 b | 2135 s | 99.2 s 4
11] 2389 s| 968 s| 76.6 s 3 26 | 327.6 s | 179.0 8 | 1214 s 6
12 | 500.0 b | 500.0 b 7.6 f 4 27| 97.0 s| 549 s| 128 s 6
13| 345.9 8| 500.0 b | 584 s 4 28 | 500.0 b | 500.0 b | 164 f 8
14 | 458.9 s 98.4 s | 114.4 s 8 29 | 500.0 b | 500.0 b | 430.8 s 16
15 | 500.0 b | 500.0 b | 115.6 s 8 30 { 500.0 b | 398.7 s | 2148 s 8

Tablc 3: Performance in the extended transportation domain.

The actual optimal bound for DELAY is 98.4, the usc of which on all problems would give
the per-problem gain of 153.5. Finally, ALPINE gains 243.5 per problem and chooscs the
bound 127.6. The optimal bound for ALPINE is 430.8, thc usc of which would give the per-
problem gain of 255.8. (ALPINE outperforms APPLY and DELAY becausc it uscs abstraction,
which scparatcs the problem of between-city transportation by airplancs from the problem
of within-city dcliverics.)

Even though the bound learncd for ALPINE is much smaller than optimal (127.6 ver-
sus 430.8), the resulting gain is closc to optimal. The rcason is that, in this cxperiment,
ALPINE’s dependency of the expected gain on the time bound has a long platcau, and the
choice of a bound within the platcau docs not make much difference.

Notc that ALPINE’s optimal bound is larger than the reward (430.8 versus 400.0). This
obscrvation shows the imperfection of the heuristic for sclecting the initial time bound (sce
Scction 4), which assumes that the optimal bound is no larger than the reward.

We show the rosults of the incremental sclection of a method in Figure 8. In this cx-
periment, we first usc the thirty problems from Table 3 and then sixty additional problems
from the cxtended transportation domain. The method converges to the choice of ALPINE
with time bound 300.6 and gives the gain of 207.0 per problem. The best possible choice for
this sct of problems is the usc of ALPINE with the time bound 517.1, which would give the
per-problem gain of 255.8. We identified this optimal choice in a scparate cxperiment, by
running cvery mcthod on all nincty problems.

We ncext apply our technique to a bound sclection when calling to a friend on the phonc.
We dctermine how many scconds (or rings) you should wait for an answer before hanging up.
The reward for reaching your party may be determined by the time that you arc willing to
wait in order to talk now, as opposcd to hanging up and calling again latcr. In Tablc 4, we give

15

running time

10 20 30 40 50 60 70 80 90
problem’s number

Figurc 8: Selection of a method in the extended transportation domain: the running times (solid
line), successes (o) and failures (+), and the selection made among AprLY (0), DELAY (x), and
ALPINE (*).

time # time # time # time # time
1 5.80 f 13| 1145 f 25| 11.30 f 37| 26.70 f 49 | 10.05 s
2 8.25 s 14 3.70 s 26 | 10.20 f 38| 6.20 s 50 6.50 s
31200.00 b 15 7.25 s 27| 4.15 s 39| 2445 f 51 15.10 f
4 5.15 s 16 4.10 s 28 | 14.70 s 40 | 29.30 f 52 | 2545 s
5 8.30 8 17 8.25 s 29 | 2.50 s 41] 12.60 s 53| 20.00 f
6 | 200.00 b 18 540 s 30| 8.70 s 42 | 26.15 f 54 | 24.20 f
7 9.15 s 19 4.50 8 31| 6.45 s 43| 7.20 s 55 20.15 f
8 6.10 f 20| 3285 f 32| 6.80 s 44 | 16.20 f 56 | 10.90 s
9| 1415 f 21 | 200.00 b 331 8.10 s 45| 8.90 s 57| 2325 f
10| 200.00 b 22 | 200.00 b 34 13.40 s 46 | 4.25 8 58 4.40 s
11 9.75 s 231 10.50 s 35| 5.40 s 47| 7.30 s 59 320 f
12 3.90 s 24 1445 f 36 | 2.20 s 48 1 1095 s 60 | 200.00 b

Tablc 4: Waiting times (seconds) in sixty phone-call experiments.

the timc mcasurements on sixty phonc calls, rounded to 0.05 scconds!. A success occurred
when our party answered the phone. A reply by an answering machine was considered a
failure.

The graph in Figurc 9(a) shows the dependency of the cxpected gain on the time bound,
for the rewards of 30.0 (dash-and-dot linc), 90.0 (dashed linc), and 300.0 (solid linc). We
assumc here that the caller is not interested in leaving a message, which mcans that a reply
by a machinc gets the reward of zcro. The optimal bound for the 30.0 and 90.0 rewards is
14.7 (three rings); the optimal bound for the 300.0 reward is 25.5 (five rings).

If the caller plans to lcave a message, then the “failure” reward is not zcro, though it
may bc smaller than the success reward. The graph in Figurc 9(b) shows the cxpected gain
for the success reward of 90.0 with three different failure rewards, 10.0 (dash-and-dot linc),
30.0 (dashcd linc), and 90.0 (solid line). Thc optimal bound for the 10.0 failurc reward is

1We made these calls Lo sixly difTerent people al their home numbers. We measured the time from the
beginning of the [irst ring, skipping the static silence of the connection delays.

16

(a) gains w/o failure rewards (b) gains with failure rewards

150 150
2

S 100 100
hel
2

§ 50 50
3

0 0

10 100
time bound time bound

Figurc 9: The dependency of the expected gain on the time bound in the phone-call domain:
(a) for the rewards of 30.0 (dash-and-dot line), 90.0 (dahsed line), and 300.0 (solid line); (b) for
the success reward of 90.0 and failure rewards of 10.0 (dash-and-dot line), 30.0 (dahsed line), and
90.0 (solid line).

N] ©
(=] [=] (=3

ey
, ©

waiting time and bounds

o

1 1
5 10 15 20 25 30 35 40 45 50 55
problem’s number

Figurc 10: Incremental learning of a time bound in the phone-call domain.

26.7 (five rings); for the other two rewards, it is 32.9 (six rings).

The graph in Figurc 10 shows the results of sclecting a time bound incrementally, for
the 90.0 success reward and zcro failurc reward. The learned time bound converges to the
optimal bound, 14.7. The avcrage gain obtaincd during the learning is 8.9 per call. If we
used the optimal bound for all calls, we would carn 41.0 per call.

The cxperiments in the two PRODIGY domains and the phonc-call domain demonstrated
that the incremental-learning procedurc usually finds a ncar-optimal time bound after solving
twenty or thirty problems, and that the gain obtained during learning is closc to optimal.
In Scction 8, we will present a scrics of cxperiments with artificially gencrated time valucs,
using normal, log-normal, uniform, and log-uniform distributions. We will demonstratc that
the learning technique gives good results for all four distributions.

6 Use of problem sizes

We have considered the task of finding a problem-solving mcthod and time bound that will
work well for most problems in a domain. If we can cstimatc the sizes of problems, we
improve the performance by adjusting the time bound to a problem sizc.

We dcfine a problem size as an casily computable positive valuc that corrclates with the
problem comploxity: the larger the value, the longer it usually takes to solve the problem.
Finding an accuratc mcasurc of complexity is often a difficult task; however, many domains
have featurcs that provide at lcast a rough complexity cstimate. For cxample, in the trans-
portation domain, we may cstimatc the problem complexity by the number of packages to
be dolivered. In the rightmost column of Tables 1 and 3, we show the number of packages
in cach of the samplc problems.

Notc that mcasurcs of a problem size arc usually domain-specific. The choice of a good
mecasurc is the uscr’s responsibility. We allow the uscr to specify different mcasurcs for
diffcrent problem-solving methods.

We usc regression to find the dependency between the sizes of the sample problems and
the times to solve them. We usc scparatc regressions for the times of successes and for the
times of failurcs. In PRODIGY, successes usually occur after cxploring a small part of the
scarch space, whercas failures require the cxploration of the entire spacc, and the dependency
of the success time on the problem size is quite different from that of the failurc time.

Woe assumc that the dependency of time on size is cither polynomial or cxponential. If
it is polynomial, than the logarithm of timc depends lincarly on the logarithm of size; for
an cxponential dependency, the time logarithm depends lincarly on size. We thus usc lincar
regression to find both polynomial and cxponential dependencics.

We usc the least-squarcs technique to perform the regression. In Figure 11(a) and 11(b),
wc give the regression formulas for a polynomial dependency between size and time; the
regression for an cxponential dependency is similar. We denote the number of sample prob-
lems by n, the problem sizes by sizey, ..., size,, and the corresponding running times by
timey, ..., time,.

We cvaluatc the regression results using the ¢-test. The ¢ valuc in this test is the ratio
of the estimated slopc of the regression line to the standard deviation of the slopc cstimate.
We give the formula for computing ¢ in Figure 11(c). The TimeDev valuc in this formula is
the standard deviation of time logarithms. It shows how much, on average, timc logarithms
deviate from the regression line.

The t-test converts the ¢ value into the probability that the usc of the regression gives
no better prediction of running time than ignoring the sizes and simply taking the mcan; in
other words, it is the probability that the regression docs not help. This probability is called
the P value; it is a function of the ¢ valuc and the number n of sample problems. When the
regrossed line gives a good fit to the sample data, ¢ is large and the P valuc is small.

In Figurc 12, we give the results of regressing the suceess times for the sample trans-
portation problems from Tablc 1; we do not show failurc regression. The top three graphs
give the polynomial dependency of the success time on the problem size; the bottom graphs
arc for the cxponential dependency. The horizontal axcs show the problem sizes (that is,
the numbecr of packages), and the vertical axes arc the times. The circles show the sizes and

18

(a) Approximate dependency of the running time on the problem size:
log time = o + 3 - log size
that is, time = ¢* - size®.

(b) Regression cocflicients:
’3 E, _ 4 log sizei-log time;— SizeSum- TimeSum /n

SizeSqrSum— SizeSum® /n 4
o= TimeSum - 3- bweéum,
n : n

where
TimeSum = Z "1 log timey,
SizeSum = Y7 log size;,

SizeSqrSum = Y1 (log size;)?.

(c) Thet vmluo for cvaluating the regression accuracy:
t= \/ SizeSqrSum, — Sizebum’
where

TimeDev = \/—nLZ . (Z:‘=1 (log time;)2 — T"’“""‘"”' -4 (Z log size; - log time; — 2izeSunm: TimeSum,))

n

TimeDev el.)eu

Figurc 11: Rergression coefficients and the ¢ value for the polynomial dependency of time on size.

timos of the problem instances; the solid lines arc the regression results. For cach regression,
wc give the ¢ valucs and the corresponding intervals of the P valuc under the graph.

We usc the regression only if the probability P is smaller than a certain bound. In our
cxperiments, we sct this bound to 0.2; that is, we used problem sizes only for P < 0.2.
This test cnsures that we usc sizes only if they provide a good corrclation with problem
complexity. If the sizc mcasure proves inaccurate, then the gain-cstimate algorithm ignorces
sizes. We usc the 0.2 bound rather than morc *customary” 0.05 or 0.02 becausc an carly
dctection of a dependency between sizes and times is more important for the overall cfficiency
than cstablishing a high ccertainty of the dependency.

For cxample, all three polynomial regressions in the top row of Figurc 12 pass the P < 0.2
test. The cxponcntial regressions for APPLY and ALPINE also satisfy this condition. On the
other hand, the cxponential regression for DELAY fails the test (sce the middle bottom graph
in Figurc 12).

The choice between the polynomial and cxponcntial regression is bascd on the valuc of ¢:
we prefer the regression with the larger £ In the example of Figurc 12, the polynomial
regression wins for all threc methods.

The user has an option to sclect between the two regressions herself. For example, she
may insist on the usc of the cxponcential regression. We also allow the uscr to sct a regression
slopc. This option is uscful when the human operator has a good notion of the slopc valuc
and the past data arc not sufficient for an accurate estimate. If the user specifics a slope,
the algorithm uscs her valuc in the regression; however, it comparcs the user’s value with
the rogression cstimate of Table 11, determines the statistical significance of the difference,
and gives a warning if the uscr’s cstimatce is off with high probability.

Notc that the lcast-squarc regression and the related ¢-test make quite strong assumptions

19

APPLY DELAY ALPINE

100 100 8 100 5
) o
f=4
[}
g
=
[
Q
@
T10
8
£
[=]
=
>
[=3
o
1 1
1 10 1 10 1 10
t=4.2 P<0.01 t=16, 01 <P<0.2 t=3.5, P<0.01
100 100 100
3 o]
T o
(]
T
g o
& N o
%10) 10 00, °
g 0.8 -eo/ g <
2 [}
H O) (o] gOO
&3 s ;
1 1 1
5 10 15 5 10 15 5 10 15
t=3.8, P<0.01 t=05, P>0.2 t=3.3, P<0.01

Figurc 12: The dependency of the success time on the problem size. The top graphs show the
regression for a polynomial dependency, and the bottom graphs are for an exponential dependency.

about the naturc of the distribution. First, for problems of fixed size, the distribution of the
time logarithms must be normal; that is, time must be distributed log-normally. Sccond,
for all problem sizcs, the standard deviation of the distribution must be the same. The
rogression, however, usually provides a good approximation of the dependency between size
and time cven when these assumptions arc not satisficd.

The usc of the problem size in cstimating the gain is based on “scaling” the times of
samplc problems to a given size. We illustrate it in Figure 13, where we scale DELAY's times
of a l-packagc success, an 8-package success, and an 8-package failurc for cstimating the
gain on a 3-package problem (the 3-package size is marked by the vertical dotted linc). To
scalc a problem’s time to a given size, we draw the line with the regression slope through
the point representing the problem (sce the solid lines in Figure 13), to the intersection with
the vertical linc through the given size (the dotted line). The ordinate of the intersection is
the scaled time.

If the size of the problem is sizeyq, the running time is #megyq, and we need to scale it to
a SIZC $izChew, USing a regression slope 3, then we compute the scaled time time,ey as follows:

Polynomial regression:
log timenew = log timegia + 3 - (log siztnew — lOg Siz6014);
Si'ZCnew)

that is, timegew = timegyq - (szzcold

20

pury

00

running time

1 10
problem size

Figurc 13: Scaling two success times (o) and a failure time (+) of DELAY to a 3-package problem.

Exponcntial regression:
log timepew = log timegy + 3 - (Sizepew — $i2Co1q);
that is, Himepew = timegy - cxXp(B - (Siztnew — Sizoa))-

We usc the slope of the success regression in scaling success times (sce the lines through
circles in Figurc 13), and the slopc of the failurc regression in scaling failures (the line trough
pluscs). The slopc for scaling an interrupt time should depend on whether the method would
succeed or fail if we did not interrupt it; however, we do not know which of these two outcomes
would occur. We usc the simple heuristic of choosing between the success and failure slope
based on which of them has the smaller P value. We also cxperimented with “distributing”
cach interrupt point between success and failure slopes, similar to the distribution of small
interrupt times described in Scction 3; however, it did not provide higher accuracy than the
simplc hcuristic.

For a sample of n successcs, m failurcs, and & interrupts, the overall time of computing
the polynomial and cxponential regression slopes, performing the #-test to sclect between the
two regressions, and scaling the sample times to a given size is about (n+m +k)-9- 104
scconds. For the incremental learning of a time bound, we implemented a procedure that
incrementally updates the slope and ¢ valuc after adding a now problem to the sample. The
amortized running time of this procedurc is approximately ((n+m+k)-2+7) - 10~* scconds
per problem.

After scaling the times of the sample problems to a given size, we usc the technique of
Scction 3 to compute the gain cstimatc and its standard deviation. The only difference is
that we reduce the sccond term in the denominator for the standard deviation by 2, becausc
the success and failure regressions reduce the number of degrees of frecdom of the sample
data. Thus, we computc the deviation as follows:

SqrSum — S
(n+m+k)-(n+m+k—c—3)

In Figurc 14, we show the dependency of the cxpected gain on the time bound when
using APPLY on 1-package, 3-package, and 10-package problems in the simple transportation
domain, described in Scction 2.

If we cstimatce the problem sizes in the transportation domain by the number of packages
to be delivered, and usc these sizes in the incremental-sclection cxperiments of Scctions 4

21

1 package 3 packages 10 packages

[2]
£
©
o
o
2
|53
@ 20p -~~~ _ -
3 ———__ o
0 ““““ ~, - ~
o
. ~
-20
10 100 10 100 10 100
time bound time bound time bound

Figurc 14: Dependency of ArrLY’s expected gain on the time bound in the simple transportation
domain, for the rewards of 10.0 (dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid lines).
The dotted lines show the standard deviation for the 100.0 reward.

| /o sizes | with sizes
transportation by vans (Section /)

APPLY’'s bound selection 12.0 12.2
DELAY’s bound selection 3.9 4.7
ALPINE’s bound selection 11.3 11.9
method selection 11.1 11.8
transportation by vans and airplanes (Section 5)
APPLY’s bound selection 110.1 121.6
DBLAY'S bound selection 131.1 137.4
ALPINE's bound selection 243.5 248.3
method selection 207.0 215.6

Tablc 5: Per-problem gains in the learning experiments, without and with the use of sizes.

and 5, we get larger gains in all cight cxperiments. In Table 5, we give the per-problem gains
in thesc cxperiments, without and with the usc of problem sizes.

In Figurc 15, we give a morce detailed comparison of gains without and with the regression,
for the bound-sclection cxperiments of Scction 4. The horizontal axcs show the problem’s
number, from 7 to 30. We skip the first six problems, because the algorithm docs not usc
sizes in sclecting the time bounds for these problems: it has not yet accumulated cnough
data for regression with sufficiently small P valuc.

The vertical axcs show the average per-problem gain up to the current problem. TFor
cxample, the left end of the curve shows the average gain for the first seven problems and
the right cnd gives the average for all thirty problems. The gain declines for problems 20 to
30 because these problems happen to be harder, on average, than the first twenty problems
(scc Table 1). The dotted lines give the average gains without the usc of problem sizes, and
the solid lines arc for the gains obtained with the regression.

The graphs show that the usc of problem sizes usually, though not always, provides a
small improvement of the performance. The apparent advantage of the regression in DELAY’s

APPLY DELAY ALPINE

20 20
18
[}
£
S16
]
g
a>3 14
[}
12 2
10 0 10
10 20 30 10 20 30 10 20 30
problem’s number problem’s number problem’s number

Figurc 15: Average per-problem gains without the regression (dotted lines) and with the regression
(solid lines), during the incremental learning of a time bound.

learning is mostly duc to the choicc of low time bounds for problems 9 and 10, which cannot
be solved in feasible time. This luck in sctting low bounds for two hard problems is not
statistically significant. If the algorithm docs not usc problem sizes, it hits the time bounds
of 16.9 and 14.0 on thesc problems (scc Figure 5) and falls behind in its per-problem gain.

7 Similarity hierarchy

We have cstimated the cxpected gain by averaging the gains for all sample problems. If we
know which of them arc similar to a new problem, we may improve the cstimate accuracy
by avcraging only the gains for these similar problems.

We dcescribe similarity among problems by a trece-structured similarity hicrarchy. The
lcaf nodes of the hicrarchy arc groups of similar problems. The other nodes represent weaker
similarity among groups. We assumc that cach problem bclongs to cxactly onc group and
that determining a problem’s group takes little computational time.

For cxample, we may divide the transportation problems into within-city and between-
city deliverics. We cxtend this cxample by a new type of problems, which involves the
transportation of containcrs within a city. A van can carry only onc containcr at a time,
which somctimes makes containcer delivery harder than package delivery. In Table 6, we give
the performance of APPLY, DELAY, and ALPINE on tcn container-transportation problems.
We now subdivide within-city problems into package deliverics and container deliverics. We
show the resulting similarity hicrarchy in Figurc 16(a).

The construction of a hicrarchy is presently the user’s responsibility. We plan to address
the problem of lcarning a hicrarchy automatically in the futurc work. We allow the uscr to
construct a scparatc hicrarchy for cach problem-solving method or a common hicrarchy for
all mcthods. We also allow the usc of diffcrent problem-size measurces for different groups of
problems.

We may cstimatce the similarity of problems in a group by the standard deviation of the

| time (sec) and outcome | # of # time (sec) and outcome # of
APPLY | DELAY | ALPINE | conts APPLY DELAY | ALPINE | conts
1] 23 8| 23 s 2.1 8 1 6 (200.0 b|200.0 b| 10.1 f 8
2| 31s| 51s 4.1 8 2 7 32 s 3.2 8 3.2 s 2
3| 5.0 51202 s 4.8 s 3 8 24.0 s 2000 b | 26.3 s 8
4] 33 s| 89 s 32 s 2 9 4.8 s | 86.2 s 34 s 4
51 6.7 s|368 s 6.4 s 4 10 8.0 52000 b 94 s 6
Table 6: Performance on ten container-transportation problems.
domain domain
extended succ dev: 1.39 succ dev: 1.08
transportation fail dev: 0.38 fail dev: 0.37
domain
- / within city between cities within city between cities
delive delive:
within city between cities succ dev: 0.86 succ dev: 1.60 succ dev: 0.64 succ dev: 0.69
(vans °D1Y)\ {vans & planes) fail dev: 0.44) | fail dev: 0.33 fail dev: 0.23) |feil dev: 0.29
[dsggfgge‘;f @g}litg%x%ﬂ packages containers packages containers
succ dev: 0.92 || succ dev: 0.75 succ dev: 0.73 | succ dev: 0.38

fail dev: 0.27 J{ fail dev: Unknown fail dev: 0.08) | fail dev: Unknown

(a) Similarity hierarchy (b) ALPINE’s deviations w/o regression (c) ALPINE's deviations with regression

Figurc 16: Similarity hierarchy and the deviations of ALPINK'S success and failure logarithms.

logarithms of running timcs, computed for the sample problems that bclong to the group:

- 7 ime:)?
TimeDev = J % ' (E(log time;)? — LZ’:!M)

i=1 n

We compute the deviations separately for suceesses and failurcs, and usc thesc valuces as a
heuristical measurc of the hicrarchy’s quality. The smaller the deviations for the lcaf groups,
the better the user’s hicrarchy. If some deviation value is larger than a pre-sct threshold,
the system gives a warning. In the implementation, we sct this threshold to 2.0.

If we usc the regression, we apply it scparatcly to cach group of the similarity hicrarchy.
If the regression confirms the dependency between problem sizes and times, we compute the
deviation of time logarithms by a different formula, given in the last lince of Figure 11.

Tor cxample, the deviation valucs for ALPINE in the transportation domain arc as shown
in Figurc 16. We give the deviations computed without the regression in Figure 16(b), and
the deviations for gain cstimates with the regression in Figure 16(c). The values show that
within-city problems arc morc similar to cach other than between-city problems.

Notc that the deviations of the logarithms do not change if we multiply all times by the
same factor, which mcans that thcy do not depend on the speed of a computer that runs
problem-solving mcthods. Also, the deviation valucs do not changg, on average, with adding
morc problems to the sample.

24

We may cstimate the cxpected gain for a new problem by averaging the gains of the
samplc problems that belong to the samc leaf group. Alternatively, we may usc a larger
samplc from onc of its ancestors. The leaf group has less data than its ancestors, but the
deviation of thosc data is smaller. We need to analize this trade-off when sclecting between
the lcaf group and its ancestors. Intuitively, we should usc ancestral groups during carly
stages of the incremental lecarning and move to lcaf groups after collecting more data.

We present a heuristical (rather than statistical) technique for sclecting between a group
and its parcnt, based on two tests. The first test is aimed at identifying the difference
between the distribution of the group’s problems and the distribution of the other problems
in the parent’s sample. If the two distributions prove different, we usc the group rather than
its parent for cstimating the problem-solving gain. If not, we perform the sccond test, to
dctermine whether the group’s sample provides a more accurate performance cstimate than
the parent’s sample. We now describe the two tests in detail.

If we do not usc the regression, then the first test is the statistical {-test that determines
whether the mcan of the group’s time logarithms differs from the mean of the other time log-
arithms in the parent’s sample. We perform the test scparately for successes and failurcs. In
our cxperiments, we considered the means different when we could reject the null-hypothesis
that they arc cqual with the 0.75 confidence. If we usc the regression and it confirms the
dependency between sizes and times, then we usc a different ¢-test. Instcad of comparing
the means of timc logarithms, we determine whether the regression lines arc different with
confidence 0.75.

A statistically significant difference for cither successes or failures is a signal that the
distribution of the group’s running times differs from the distribution for the other problems
in the group’s parent. Thercfore, if we nced to cstimate the gain for a ncw problem that
bclongs to the group, the usc of the parcnt’s sample may bias the prediction. We thus should
usc the group rather than its parent.

For cxample, supposc that we usc the data in Tables 1, 3, and 6 with the hicrarchy in
Figurc 16(a), and we need to cstimatc ALPINE’s gain on a ncw problem that involves the
dclivery of packages within a city. We consider the choice between the corresponding leaf
group and its parcnt. In this cxample, we do not usc the regression.

The cstimated mean of the success-time logarithms for the package-delivery problems is
4.07, and the standard dcviation of this cstimate is 0.20. The cstimated mcan for the other
problems in the parcnt group, which arc the container-dclivery problems, is 4.03, and its
deviation is 0.16. The difference between the two mcans is not statistically significant. Since
the container-transportation sample has only onc failurc, we cannot cstimate the deviation
of its failurc logarithms; therefore, the difference between the failure-logarithm means is also
considered insignificant.

If we apply the regression to this cxample and use the t-test to comparc the regression
slopes, it also shows that package-transportation and containcr-transportation times arc not
significantly diffcrent.

The sccond test is the comparison of the standard deviations of the mean cstimates for
thc group and its parcnt. The deviation of the mcean estimate is equal to the deviation of
the time logarithms divided by the squarc root of the sample sizc, ng“’ We compute
it scparatcly for success times and failurc times. We usc this valuc as an indicator of the

25

sample’s accuracy in cstimating the problem-solving gain: the smaller the valuc, the greater
the accuracy. This indicator accounts for the tradc-off between the deviation of the running-
time distribution and the sample size. It incrcascs with an increasc in the deviation and
dccrcascs with an incrcasc in the sample size.

If the group’s deviation of the mcan cstimatc is smaller than that of the group’s parent,
for cither successes or failures, then the group’s sample is likely to provide a more accurate
gain cstimate; thus, we prefer the group to its parent. On the other hand, if the parent’s
mcan-cstimatc deviation is smaller for both successes and failurcs, and the comparison of
the group’s mecan with that of the other problems of the parent sample has not revealed a
significant difference, then we usc the parent to cstimatce the gain for a new problem.

Supposc that we apply the sccond test to the group sclection for estimating ALPINE’s
gain on within-city package dclivery. The standard deviation of the mcan cstimate of the
success-time logarithms, for the corresponding leaf group, is 0.20; the deviation for its parent
is 0.16. The deviation of the mean cstimatc of the failurc-time logarithms is also smaller for
the parcent. Since the first test has not revealed a significant difference between the group’s
times and the other times in the parent’s sample, we prefer the use of the parent.

After sclecting between the leaf group and its parent, we usce the same two tests to
choosc between the resulting “winner” and the group’s grandparent. We then compare the
ncw winner with the great-grandparent, and so on. In our example, we need to compare the
sclected parent group with the top-level node (sce Figure 16a). After applying the first test,
we find out that thc mcan of the group’s success logarithms is 4.03 and the corresponding
mcan for the other problems in the top nodc’s sample is 5.39. The difference between these
mcans is statistically significant. We thus prefer the group of within-city problems to the
top-level group.

The time taken by the statistical computations is proportional to the depth of a hicrarchy.
If we usc a hicrarchy in thc incremental lcarning, and we have accumulated data on n
successes, m failurcs, and k intcrrupts, then the amortized time of performing the necessary
regressions, sclecting a group, and scaling the times of this group to the sizc of the new
problem is about ((n 4+ m + k) - 4 + 20) - depth - 107* scconds. This time is still very small
comparcd to PRODIGY’s problcm-solving time.

We have considered scveral alterations of the described group-sclection heuristic in our
cxperiments. In particular, we tried replacing the deviation of time logarithms with the
deviation of times divided over their mean. In most cascs, the usc of this mcasurc led to the
same sclection. We also tricd to usc cither success or failurc times rather than both successcs
and failures. This altcrnative proved to be a less effective strategy. When succeesscs are much
morc numcrous than failurcs, which happens in most PRODIGY domains, the results of using
successcs and ignoring failurcs arc ncar-identical to the results of using both success and
failurcs; however, when the number of successes and failurcs is approximatcly cqual, the use
of both successes and failurcs gives better performance.

In Table 7, we present the results of using the similarity hicrarchy of Figurce 16 in the
incremental learning, and comparc them with the results obtained without a hicrarchy. We
ran the bound-sclection experiments on a scquence of scventy transportation problems, which
was constructed by interlcaving the problem scts of Tables 1, 3, and 6. We used a three-times
longer scquence of transportation problems for the method-sclection cxperiments.

26

using leaf | using the heuristical
groups top group | group selection
without the use of problem sizes
APPLY’s bound selection 11.8 10.5 12.1
DELAY’s bound selection 7.0 4.7 7.5
ALPINE’S bound selection 19.5 18.1 19.5
method selection 13.1 11.1 13.4
with the use of problem sizes
APPLY’s bound selection 16.3 11.1 16.8
DELAY’s bound selection 12.1 5.2 12.0
ALPINE’s bound selection 22.6 18.4 22.6
method selection 19.4 13.7 21.0

Tablc 7: Per-problem gains in learning experiments, for different group-selection techniques.

In the first column, we give the results of using only lcaf groups in cstimating the gains.
In the sccond column, we show the results of using the top-level group for all estimates, which
mcans that we do not distinguish among the threc problem types. The third column contains
the results of using the similarity hicrarchy, with our heuristic for the group scloction. We
first ran the cxperiments using both success and failure times in the group sclection, and then
re-ran them using only success times. In all cight cascs, he results of using both successes
and failures were identical to the results of using successcs.

The experiments demonstrate that the usc of the complete hicrarchy gives larger gains
than cither the lcaf groups or the top-level group; however, the improvement is not large.

We next usc a similarity hicrarchy in sclecting a time bound for phonc calls. We consider
the outcomes of sixty-three calls to six different people. We called two of them, say A and
B, at their officc phones; we called the other four, C, D, I, and I7, at their homces. We show
our similarity hicrarchy and the call outcomes in Figurc 17.

For cach group in the hicrarchy, we give the cstimated mean of success and failure time
logarithms (“mcan”), the deviation of the time logarithms (“deviation”), and the deviation
of the mean cstimate (“mcan’s dev”). The mean of success-time logarithms for calls to offices
is significantly different from that for calls to homes, which implics that the distribution of
officc-call times differs from the distribution of home-call times.

The mean success logarithms for persons A and B arc not significantly different from
cach other. Similarly, the success means of C, D, and E do not differ significantly from the
mecan of the home-call group. On the other hand, the success mcan of I is significantly
different from the mean for the other people in the home-call group, implying that the time
distribution for I? differs from the rest of its parent group. Finally, the failurc-logarithm
moans of D, IZ, and I" arc all significantly different from cach other.

We ran incromental-lcarning cxperiments on these data with the reward of 90.0. An
cxperiment with the usc of the leaf groups for all gain cstimates yiclded the gain of 57.8 por
call. We then ran an cxperiment using the home-call and office-call groups for all cstimatcs,
without distinguishing among diffcrent people within these groups, and obtained the average
gain of 56.3. We next used the top-level group for all cstimates, which yiclded 55.9 per call.
Finally, we cxperimented with the usc of our heuristic for choosing between the leaf groups

all phone calls

successes
1.55
deviation: 0.72

mean:

Jailures
mean:

272
deviation: 0.32

mean’s dev: 0,10 | mean’s dev: 0.11

calls to an office phone

successes
mean: 0.92

deviation: 0.89

failures

NONE

mean’s dev: 0.19

N\

calls to a home phone

successes
mean: 1.84
deviation: 0.55

failures

mean: 272
deviation: 0.32

mean’s dev: 0.09 | mean’s dev: 0.11

/

AN

callsto A

callsto B

~

<

calls to C

calls to D

callsto B)

(calls to F

Successes

mean: 0.92
deviation: 0.18
mean’s dev: 0.06

successes
mean: 0.92
deviation: 1.13
mean’s dev: 0.43

successes

mean: 177
deviation: 0.44
mean’s dev: 0.14

successes
mean: 181
deviation: 0.60
mean’s dev: 0.18

mean: 1.89
deviation: 0.50
mean’s dev: 0.17

mean: 2.02
deviation: 0.007
mean’s dev: 0.004

Jailures Jailures failures Jailures Jailures Jailures
mean: 298 mean: 2.98 mean: 2.40
NONE NONE NONE deviation: 0,02 deviation: 0.11 deviation: 0.20
L JRS J L) {_mean’s dev: 0.01) | mean’s dev: 0.08) {mean’s dev: 0.05 |
outcomes outcomes outcomes outcomes outcomes outcomes
of calls to A of calls to B of calls to C of calls to D of calls to E of calls to F
200.0b| 230s 200.0b|200.0b 6.80s|2.60s 830s | 1.70s 560s| 5455
. A . 10.15f] 7.55s
2305 15000n| | 4855 [20000 7905|9705 71551 7805 | | 8105 | 4155
320 20.10f{19.30 ¢ 1830 £ 11.65 £
255s 1.855[17.205 7.60s |6.05s 205s| 6.05s 2125¢ 745s
2055 7405 | 8355 | | 9708 7508 .
3.10s [200.0b 0.50s| 2.30s 4955|2855 005s | 8755 2455|1125 s 10.15¢| 1240 ¢
275s| 195s 1.05s1 3255 6.70s 18.10s 1975f1 9.65s 8.85s 1| 9.90s

Figurc 17: Similarity hierarchy and call outcomes in the phone-call domain.

and their ancestors based on the mcans and deviations of timc logarithms; the gain in this
cxperiment was 59.8 por call. If we knew the time distributions in advance, determined the
optimal time bound for cach lcaf group, and uscd thesc optimal bounds for all call, then the
average gain would be 61.9.

The phone-call experiments have confirmed that the usc of a similarity hicrarchy improves
the performance, though not by much. Note, however, that the gain obtained with the usc

of the hicrarchy is much closcr to the optimal than the gain from the usc of lcaf groups or
top-level group.

8 Artificial tests

We give the results of testing the sclection mechanism on artificially gencrated values of
success and failurc times. The “running times” in these tests arc the valucs produced by a
random-number gencrator. The artificial data cnable us to perform controlled experiments
with known distributions.

The learning mochanism has proved effective for all tested distributions. The experiments

have demonstrated that the gain obtained in the incremental learning is usually closc to the
optimal. They have also shown that the usc of the regression improves the performance
when there is a corrclation between size and time, and docs not worsen the results when
there is no corrclation. We have not found a significant difference in performance for different
distributions.

We consider the following four distribution types:

Normal: The normal distribution of succcss and failurc times corresponds to the situation
when the running time for most problems is closc to some “typical” valuc, and problems
with much smaller or much larger times arc rarc.

Log-Normal: The distribution of times is called log-normal if timc logarithms arc dis-
tributed normally. Intuitively, this distribution occurs when the “complexity” of most
problems is closc to some typical complexity and the problem-solving time grows cx-
poncntially with complexity.

Uniform: The times arc distributed uniformly if they belong to some fixed interval and all
values in this interval arc cqually likely; thus, there is no “typical” running-timc valuc.

Log-Uniform: The logarithms of running timcs arc distributed uniformly. Intuitively, the
complexity of problems is within some fixed interval, and running time is cxponential
in complexity.

For cach of the four distribution types, we ran multiple tests, varying the values of the
following paramcters:

Success and failure probabilities: Wc varicd the probabilitics of success, failure, and
infinitc looping.

Mean and deviation: Wc cxpcrimented with different values of the mcan and standard
deviation of success-time and failurc-time distributions.

Reward: We sct the reward to 100.0 in all the cxperiments.

Length of the problem sequence: We tested the incremental-lcarning mechanism on sc-
quences of 50, 150, and 500 problems.

Correlation between sizes and times: We ran tests both without and with the usc of
problem sizes. We cxperimented with three different corrclations between size loga-
rithms and time logarithms: 0.0, 0.6, and 0.9.

We ran fifty independent cxperiments for cach sctting of the parameters and averaged
their results. Thus, cvery graph in this scction shows the average of fifty cxperiments.

Since the learning technique has proved cffective in all these tests, we conjecturce that it
also works well for most other distributions. We plan to cxperiment with a wider varicty of
distributions and identify situations in which the technique docs not give good results.

normal log—normal uniform log—uniform

£ 60 60 60 60
L=z
S a0 40 40 40
2 o P L P ¢ 9 [@
720 2of | || 20 L 20 =
@
= o o) o
o 50 o 50 o 50 o 50
60 60 60 eof |
e T 20 D M T
=3
= 404 x 40y x 4o x 49 T
=
B20 20 20 20
8
o o o o
o 50) 50 o 50 o 50
— 60 &0 60 60
=
=
§“°><l/|/H+l+H—l>< 4OXH’H’]+|'H_‘X “% LHHHHHHHH 4°><I/H,|_H_|_{_Hx
©
£ 20 20 20 20
o
o o o o
o 50 o 50 o 50 O 50

Figurc 18: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal
time bounds (bottom row) in the incremental learning on 50-problem sequences. The crosses mark
the optimal time bounds and the circles show the expected gains for the optimal bounds.

Experiments with short and long problem sequences

We first present the results of lcarning a time bound on scquences of 50 and 500 problems,
without thc usc of problem sizes. The success probability in these cxperiments is 1/2, the
failurc probability is 1/4, and the probability of infinitc looping is also 1/4. Thc mcan
of success times is 20.0 and their standard decviation is 8.0; thc failurc-timc mecan is 10.0
and standard dcviation is 4.0. We cxperimented with all four distribution types. For cach
distribution, we ran fifty cxpceriments and averaged their results.

In Figurc 18, wec summarize the results for 50-problem scquences. The horizontal axcs
in all graphs show the problem’s number in a scquence. The top row of graphs gives the
average per-problem gain obtained up to the current problem. The circles mark the gain
that the system would obtain if it knew the distribution in advance and usced the optimal
timc bound for all problems. Thc vertical bars show the width of the distribution of gain
valucs obtained in different cxperiments. Ifach bar covers two standard deviations up and
down, which mcans that 95% of thc cxpcriments fall within it.

The middle row of graphs shows the sclected time bounds. The bottom row of graphs
gives the system’s estimates of the optimal time bound (recall that the sclected bounds are
larger than optimal, to cncourage cxploration). The crosscs mark the valucs of the optimal
timc bounds. Notc that the system’s cstimates of the optimal bounds converge to their real
valucs.

In Figure 19, we give similar results for 500-problem scquences. In these cxperiments,
per-problem gains come closer to the optimal valucs, but still do not rcach them. The
diffcrence between the obtained and optimal gains comes from losscs during carly stages of
lcarning and from thec usc of larger-than-optimal bounds.

30

normal log—normal uniform log—uniform
60 60 60

0

per-problem gain
8. 38

(e]
o]
8
[¢]

(<]
o]
o
Q
o

(=]
=]
4
o
[e]

Q
[=]
4]
[}
s}

A O

40 40 40

20 20 20

=]

60 €0 60

(<]

20 20 20

selected bound
N h 0]

%

»

O

Y

el

B

%

(=]
(o]
o
o

(<) 500 © s00 O 500 © 500
60 60 60 60

E

§4°><H-H-]—H—H—-]>< 4°><]_H—H-H—H-l>< 4°,<l I _{ l |>< 4O"I—H—H—H—{~H’<

53

E 20 20 20 20

g

(=}
(e]
e]
(=]

Q
[
o
o
(=)
4]
o
o
o]
a
o
(¢}
(o]

500

Figurc 19: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal
time bounds (bottom row) in the incremental learning on 500-problem sequences.

Varying success and failure probabilities

We give the results of learning a timc bound for different probabilitics of successes and
failurcs. The mcans and standard deviations of the success and failurc times arc the same
as in the previous cxperiments.

We summarize the results in Iigure 20. The top row of graphs is for a problem-solving
method that succeeds, fails, and gocs into an infinite loop cqually often; that is, the prob-
ability of cach outcomec is 1/3. The middle row of graphs gives the results for a method
that succeeds half of the time and fails half of the time, and never gocs into an infinite loop.
Finally, thc bottom row is for a mcthod that succceds half of the time and loops forcver
otherwisc.

The solid lines show the average per-problem gain up to the current problem; the dotted
lines arc the sclected time bounds; and the dashed lincs arc the cstimates of the optimal
bound. The crosscs mark thc optimal time bounds, and the circles arc the expected gains
for the optimal bounds.

Note that, when the probability of infinite looping is zcro (the middle row), any large
time bound gives ncar-optimal results, because we never need to interrupt a method. Thus,
the system never changes the initial time bound and gets ncar-optimal gains from the very
beginning,.

Varying the means of time distributions

We now vary the mean valuc of failurc times. We keep the mean success time cqual to 20.0

(with standard deviation 8.0). We cxperiment with failurc means of 10.0 (with deviation 4.0),

20.0 (with deviation 8.0), and 40.0 (with deviation 16.0). We give the results in Figure 21.
The gains for normal and log-normal distributions comc closcr to the optimal values

than the gains for uniform and log-uniform distributions. This obscrvation suggests that

31

normal log—normal uniform log—uniform

o
= 100 100} | 100} - 100
< s0f e 50 50 50
Ko o om = = x L q e | 0 T,
8 EN . e~ D &N _ ®
s O 0 —mm Of == - ¥ ok ——m3 ok X
o 50 [} 50 o 50 o s0
o x b x x
e R OO} reerrreee TOOT +rvmrecrrrrnaenns FOOF +rrerreeevaanenns
= -
= e -
P -
g 5 _ 500 q 500 /, 50:) -, 4
8
zZ O of—————-—- ¥ o o
o 50 o 50 [§) 50 [50
o
&
of
a
o
=
w

Figurc 20: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal
time bounds (dashed lines) for different success and failure probabilities. The crosses mark the
optimal time bounds and the circles show the expected gains for the optimal bounds. We give the
values of success probability (“succ”) and failure probability (“fail”) to the left of each row.

normat log—-normal uniform log—uniform
o 80 80— 80— 80 (—
20 =) so| ™. o
§4%% ---~-- x40y R T T T SRR
£ .07~ b4 @ - N - . & - N
Eoof _—] 20of _ ———F 20} ———1 20
= e

]
o
4]
o
(<]
[¢]
4]
o
(=]
=]
4]
o
(]
[¢]
a
[e]

- 80 80 80— 80 -

éso 60 e &0 e &0 Tl

E 40x —————— x 40)(———— - X 40)(______ '3 40x ————— x
- - K -

E 20 20" ¢ 20 T 20% ¢

= — U] —

(=]
(=]
(=]
(=]

[«]
0
(o]
[¢]
[
(=]
[=]
u
(<]
o]
a
(o]

o 80 80— 80— 80
S e0 RETTIN eof el eo| .. eof e
AE """"""
g 40 === ¥ 40p e - Ok ___. % 40x e X
E 209 ® 20 ® 209 P 209 >
B - — —

o o o o

o
a
[e]
(=]
a
[¢]
[=]
4]
[¢]
=]
o
o]

Figurc 21: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal

time bounds (dashed lines) for different mean values of failure times. The mean of success times is
20.0 in all experiments.

normal log—normal uniform {fog—uniform

*
% 20 20 _
= - ——
8 - =
kS 104 -~ 10
£
8
o o
o 50 () 50
©
< 20 20 20 20 //‘_j
= - - Sl
8 T - - -
T 10}~ 10 . 10} = - ~-~ 10
[- -
8 7
o o o o
o 50 o 50 o 50 [¢) 50
2 20 20 20 20
=
% -/_/—
g<|0 /_/ 10 10 /__‘/ 10
(=3
(=3
o o o o
() 50 <) 50 o 50 <) 50

Figurc 22: Per-problem gains without the use of sizes (dashed lines) and with sizes (solid lines),
for different correlations between size logarithms and time logarithms.

our tcchnique works better for the first two distributions. The difference, however, is not
statistically significant.

Use of problem sizes

We comparc the gains obtained without and with the usc of the regression. Problem sizes in
this cxperiment arc natural numbers between 1 and 10, sclected randomly. The logarithms
of mcan success and failure times arc proportional to the problem-size logarithms. We
adjusted the deviation valucs to obtain desired corrclations between time logarithms and
sizc logarithms. We uscd the corrclation of 0.9 in the first scrics of cxperiments and 0.6 in
the sccond scrics. Finally, we ran cxperiments with zcro corrclation; the mcan times in this
scrics were the same for all problem sizes.

We give the results in Figure 22, where dashed lines show the average per-problem gains
without the regression, and the solid lines give the gains obtained with the regression. The
usc of the regression improves the performance and the improvement is greater for a larger
corrclation. If there is no corrclation, the system disregards the results of the regression and
performs identically without and with sizcs.

Method selection
Finally, we show the results of the incremental sclection among three problem-solving meth-
ods, on 150-problem scquences. In the first scrics of experiments, we adjusted mean success
and failurc times in such a way that the optimal per-problem gain for the first method was
10% larger than that for the sccond method and 20% larger than that for the third method.
We give the results in Figurce 23. The top row of graphs shows the average per-problem
gain without the usc of the regression (dashed lines) and with the regression (solid lines).
The circles mark the expected gains for the optimal time bounds, without the regression.
The other two rows of graphs give the probability of choosing cach mcthod, for the

33

normal log—normal uniform log—-uniform

25F 3 254
220 20
<
o=
E1s 15
=
210 10
5
2 s 5 5 5
o o o o
o 100 <) 100 o 100 o 100
w
g 1 1 1 1
2 e~
=05 / 0.5 /\’_/ 0.5 /// os|
=1
[
=5
o o o o
(<) 100 o 100 o 100 () 100
1 1 1 1
E /“/ — /\/\—/—\/ o~
§0.5 _/-—/ osf ~ _——tosli |05 P
=
g o o o o
() 100 o 100) 100 o 100

Figurc 23: Incremental selection among three problem-solving methods, where the average gain
for the first method is 10% larger than that for the second method and 20% larger than that for
the third method. We show the average per-problem gains in the experiments without and with
the use of the regression (the top row of graphs), and the probability of selecting each method (the
other two rows).

cxperiments without and with the usc of problem sizes. The distance from the bottom of the
graph to the lower curve is the probability of sclecting the first method, the distance between
the two curves is the chance of sclecting the sccond method, and the distance from the upper
curve to the top is the third mcthod’s chance. The graphs show that the probability of
sclecting the first method (which gives the highest gain) increascs in the process of lcarning.
The probability of sclecting the third (worst-performing) method decrcases faster than that
of the sccond method.

In the sccond scrics of cxperiments, the optimal gain of the first mcthod was 30% larger
than that of the sccond mcthod and 60% larger than that of the third method. We give
the rosults in Figurc 24. Notc that the probability of sclecting the first method grows much
faster, duc to the larger difference in the cxpected gains.

9 Conclusions and extensions

We have stated the task of sclecting among availablc problem-solving methods as a statistical
problem, derived an approximate solution, and used it to build a system for the automatic
sclection of the most cffective method. The system collects data on the results of using
the available mcthods and cstimates their average performance. It uses an approximate
mcasurc of problem sizes and information about similarity between problems to improve the
accuracy of the cstimates. The choice of the method is based on the cstimated performance.
The sclection heuristics combine the cxploitation of the past expericnee with the cxploration
of new alternatives.

34

normal log—normal uniform log—uniform

25f 3 25§ X
220 20
S
515 15
]
£10 10
g s 5

<) o

(4] 100 o 100

g 1 1
o
Eos /_/\/—_ 0.5 /J/\/
=
g

o o

o 100 (<) 100

g ! /_/\/"/ 1
D
5 i g
Zos // o5 //
€ o o o o
= "o 100 () 100 o 100 () 100

Figurc 24: Incremental selection among three problem-solving methods, where the average gain
for the first method is 30% larger than that for the second method and 60% larger than that for
the third method.

We have demonstrated empirically the system’s cffectivencss in choosing the right method
and a ncar-optimal timc bound. The sclection technique has proved cffective for a varicty of
running-time distributions. The technique gives good results cven when the distributions do
not satisfy the assumptions of the statistical analysis. Its performance, however, depends on
the user’s proficiency in sclecting an accurate measure of problem sizes and defining groups
of similar problems.

The generality of the statistical modcl makes our technique applicable to sclection among
multiple scarch methods in any Alsystem. Besides, the model extends to a wide range of real-
lifc situations outsidc of AL The main limitation of applicability stems from the restrictions
on the reward function. Another major drawback of the model is its inability to account for
specific propertics of given problem-solving mcthods.

We have implemented heuristics that enhance the statistical tochnique, though we have
not uscd them in the described experiments. In particular, we allow the user to provide a
prediction of the gains for different methods; we then combine the user’s prediction with
the statistical cstimate. If the sclected method has failed to solve a problem, we can choosc
another method for a sccond attempt to find a solution. We have designed an algorithm for
making this choice of a new method. The algorithm re-cvaluates the gain cstimates, to incor-
poratc the knowledge that the first attempt has failed. Finally, we provide a mechanism for
combining if-then preference rules for method sclection with our numecrical estimates. This
combination cnables us to morge the uscr-coded scmantic knowledge with the incremental
lcarning.

The statistical modcl for method sclection riscs many open problems, which include relax-
ing our simplifying assumptions, improving the rigor of the statistical derivation, cxtending
the model to account for more features of real-world situations, and improving the heuristics

35

uscd with statistical cstimates.

To make the modcl morc flexible, we need to provide a mechanism for updating the
time bound while scarching for a solution. We also plan to cxplorc the usc of competing
problem-solving mcthods on parallel machincs, which will require an extension to the scloc-
tion tcchnique. Another open problem is to consider possible dependencics of the reward
on the solution quality and cnhance the model to account for such dependencics. We also
neced to allow interlcaving of scveral promising methods, which is often morc cffective than
sticking to onc method.

To cnhance the usc of similarity hicrarchics, we should allow multiple inheritance among
groups and makc appropriate cxtensions to the group-sclection heuristics. Finally, we noed
to provide a mcans for lcarning similarity groups automatically, to minimizc the deviation
of timc logarithms (sec Figurc 11c) within groups.

Acknowledgements

I am grateful to Svetlana Vayner, who contributed many insights into my rescarch. She
helped to construct the statistical modcl for cstimating the performance of problem-solving
mecthods and provided a thorough fecedback on all my idcas. I owe thanks to Ilerbert Si-
mon, Jaime Carboncll, Manucla Vcloso, Karen Ilaigh, and Ilenry Rowley for their valuable
commoents and suggcestions.

References

[Bacchus and Yang, 1992} Fahicm Bacchus and Qiang Yang. The cxpected value of hier-
archical problem-solving. In Proccedings of the Tenth National Conference on Artificial
Intelligence, 1992.

[Blumer et al., 1987] Ansclm Blumer, Andrzcj Ehrenfoucht, David ITaussler, and Manfred K.
Warmuth. Occam’s razor. Information Processing Letters, 24:377 380, 1987.

[Cohen, 1992] William W. Cohen. Using distribution-free learning theory to analyzc
solution-path caching mcchanisms. Computational Intelligence, 8(2):336 375, 1992.

[Cohen, 1995] Paul R. Cohen. Empirical Mcthods for Artificial Intclligence. MIT Press,
Cambridge, MA, 1995.

[Gentner and Stevens, 1983] Dedre Gentner and Albert L. Stevens, cditors. Mental Models,
Tillside, NJ, 1983. Lawrcence Erlbaum Associatcs.

[Knoblock, 1991] Craig A. Knoblock. Automatically Generating Abstractions for Problem
Solving. PhD thesis, School of Computer Scicnce, Carncgic Mcllon University, 1991.
Technical Report CMU-CS-91-120.

[Knoblock, 1994] Craig A. Knoblock. Automatically gencrating abstractions for planning.
Artificial Intelligence, 68:243 302, 1994.

36

[Mendenhall, 1987] William Mendenhall. Introduction to Probability and Statistics. Duxbury
Press, Boston, MA, scventh cdition, 1987.

[Newell and Simon, 1972] Allen Newell and Ierbert A. Simon. ITuman Problem Solving.
Prentice Ilall, Englewood Cliffs, NJ, 1972.

[Pérez, 1995] M. Alicia Pérez. Learning Scarch Control Knowledge to Improve Plan Quality.
PhD thesis, School of Computer Scicnce, Carncgic Mcllon University, 1995. Technical
Report CMU-CS-95-175.

[Polya, 1957] George Polya. ITow to Solve It. Doubleday, Garden City, NY, sccond cdition,
1957.

[Stonc ct al., 1994] Pcter Stonc, Manucla M. Vcloso, and Jim Blythe. The nced for different
domain-independent heuristics. In Proceedings of the Second International Conference on
Al Planning Systems, pages 164 169, 1994.

[Valiant, 1984] Leslic G. Valiant. A theory of the learnable. Communications of the ACM,
27:1134 1142, 1984.

[Veloso and Stonc, 1995] Manucla M. Veloso and Peter Stonc. FLECS: Planning with a
flexible commitment strategy. Journal of Artificial Intelligence Rescarch, 3:25 52, 1995,

[Veloso et al., 1995] Manucla M. Veloso, Jaime G. Carboncll, M. Alicia Pérez, Danicl Bor-
rajo, Kugene Iink, and Jim Blythe. Intcgrating planning and lcarning: The PRODIGY
architecture. Journal of Fxperimental and Theorctical Artificial Intelligence, 7(1):81 120,
1995.

[Vcloso, 1994] Manucla M. Vcloso. Planning and Learning by Analogical Reasoning. Springer
Verlag, 1994.

