NASA Technical Memorandum 110257

Comparison of Separation Shock

for Explosive and Nonexplosive Release

Actuators on a Small Spacecraft Panel

M. H. Lucy and R. D. Buehrle
Langley Research Center, Hampton, Virginia

J. P. Woolley
Lockheed Martin, Sunnyvale, California

Approvea 1ex pudbiic releasst

{ LEsramovics FPRANIENT B }
Dismpunce ilnkmusd

s yiET

e 19970630 098

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001



COMPARISON OF SEPARATION SHOCK

FOR
EXPLOSIVE AND NON-EXPLOSIVE RELEASE ACTUATORS
ONA
SMALL SPACECRAFT PANEL
TABLE OF CONTENTS
ABSTRACT .......ootoecerieteiretrceirstetestestessessessstessessassessensassassesstassssereentestrasensasnsssesssssens 1
. 1.0 SUMMARY ......ooitirirctrteereettesneestessessesstensesssssseessesstestesasasesstassesstessessntroseesssessann 1
2.0 INTRODUCGTION.......c.ccoverveeiirteerenteniratrssesneresssssessessessassarsessasssesssnsessensassesesssassassensasn 1
3.0 TEST SETUP AND PROCEDURE...........cccecootieuerenenrnrarnereerieceeeneneeeeseesscssecsseseans 2
3.1 Release MeChamiSINS.........co.eoeermeerieeieeerieeeerseeeesnesineeesaeseesseessessaeeseessasesessaesnnas 2
3.2 Test Panel ConfigUurations...........ccccieeieeecieeceirieenensecieseseeereseeseesesasssaesenseseessessns 3
3.2.1 Bare Panel TESES.......ccceeveemeeiirrinenirieniensereeresnssesssessesseseessesseneessenessnsesasnassasnes 3
3.2.2 Mass Simulator TeStS........cevvreeiieiiirieiiienieesiereseeseeeeeesresseeesseeesssasssnassnee s 3
3.3 Release Device MOUNTINE........c.coeieiiiieieceeeeeeeeiesie et eee et ecee st sre e e e e sressesansaaes 3
3.4 PIEIOAM. ...ttt ettt ettt ettt st s et ens 3
3.5 Accelerometer Locations and TYPES.......ccccovereuerierirsieenerieenenireeeereceeniessesessavens 3
4.0 DATA ACQUISITION AND PROCESSING.......cccccocrmierrtrtreirnrerieereeseesnaessessseessenans 4
4.1 Shock MEASUTEIMEHLS. ........ccccerrreereeeeereeiriesreereteserateseasestasssentesaeessssseentesanesneesansane 4
4.1.1 TAimE-HIStOTIES.......cccuerreenreceieeerreireseeeseetestesnessanessesnsteseessessaesasesssesseeesesnens 4
4.1.2 Shock ReSPONSE SPECITA.......ccerriierenrinierenerireeeseesmesecnnesessseceeessssasss st eseseas 4
4.2 Tmpedance MEASUTEMENLS...........cccovvirrrereueeierreeneeneeseeseeesesaneencssesnesssessnsssscsssnnes 5
5.0 DISCUSSION OF RESULTS........ooeoticierieterrrteestesseresssasssassessesssessessaessessssesnsensenses 5
5.1 ShOCK RESPOMSES......cocurerreerrereanrerreeeeeessaestaensesseesessteessesssessessesssessaesaessssossasssessnons 6
5.1.1 Mass Loaded Panel Configuration (OEA, Hi-Shear 8mm and, 1/2-inch, ........ 6
G&H and Martin Concept)
5.1.1.1 Representative Response Levels..........ccccoeverrinrntnienenienncecnnnncneeeseeenns 6
5.1.1.2 Comparison of Effects of Preload Level for the Martin Concept.............. 7
5.1.1.3 Comparison of Levels from Different Release Devices............cceeeeveeenees 7
5.1.2 Bare Panel Configuration (OEA, Hi-Shear 1/2-inch and G&H Devices).......... 7
5.1.2.1 Representative Response Levels..........cocvviiiiieinoinniiienniecereecnceciaens 8
5.1.2.2 Comparison of Levels from Different Release Devices.......c.cccocerieneenns 8
5.1.3 Comparison of SRS Levels with the Bare and Mass Loaded Panel................... 8
5.2 Impedance and Transfer FURCHONS...........ccccocvecencrecrtenieieneneeneeneeieeesneceeeenensenes 8
6.0 CONCLUSIONS AND RECOMMENDATIONS..........cooceerirtreenirenreretesresseesieeneennnes 9

7.0 ACKNOWLEDGMENTS ..ottt eseesrer et emssssne s s sesssesssssanens 9




COMPARISON OF SEPARATION SHOCK FOR
EXPLOSIVE AND NON-EXPLOSIVE RELEASE ACTUATORS
ON A SMALL SPACECRAFT PANEL

ABSTRACT

Functional shock, safety, overall system costs, and emergence of new technologies, have raised concerns regarding
continued use of pyrotechnics on spacecraft. NASA Headquarters-Office of Chief Engineer requested Langley Research
Center (LaRC) study pyrotechnic alternatives using non-explosive actuators (NEAs), and LaRC participated with
Lockheed Martin Missile and Space Co. (LMMSC)-Sunnyvale, CA in objectively evaluating applicability of some NEA
mechanisms to reduce small spacecraft and booster separation event shock. Comparative tests were conducted on a
structural simulator using five different separation nut mechanisms, consisting of three pyrotechnics from OEA-Aerospace
and Hi-Shear Technology and two NEAs from G&H Technology and Lockheed Martin Astronautics (LMA)-Denver, CO.
Multiple actuations were performed with preloads up to 7000 pounds, 7000 being the comparison standard. All devices
except LMA’s NEA rotary flywheel-nut concept were available units with no added provisions to attenuate shock.
Accelerometer measurements were recorded, reviewed, processed into Shock Response Spectra (SRS), and comparisons
performed. For the standard preload, pyrotechnics produced the most severe and the G&H NEA the least severe functional
shock levels. Comparing all results, the LMA concept produced the lowest levels, with preload limited to approximately
4200 pounds. Testing this concept over a range of 3000 to 4200 pounds indicated no effect of preload on shock response
levels. This report presents data from these tests and the comparative results.

1.0 SUMMARY

Concerns arising from continued use of pyrotechnics on spacecraft ied NASA Headquarters-Office of Chief Engineer to
request Langley Research Center (LaRC) form a Pyrotechnic Alternatives Investigative Team. In February 1995 LaRC
was invited to cooperatively participate with LMMSC in evaluating actuation shock produced by several pyrotechnic and
non-pyrotechnic release devices. The tests would objectively investigate application of some non-explosive actuators
(NEAs) to reduce small spacecraft and booster separation event shock by demonstrating NEA release mechanisms,
comparing resulting levels with those from standard pyrotechnic devices, and evaluating effects of a different test panel
mounting arrangement. '

Tests were conducted at LMMSC on a structural simulator representing a current small spacecraft panel design—with and
without mass loading. Five different release mechanisms were tested in multiple firings with preloads ranging from about
3000 to 7000 pounds, the latter being the comparison standard. With the exception of a LMA rotary flywheel-nut
developmental NEA device, hereafter referred to as the Martin concept, all other separation devices were available, off-
the-shelf units with no additional provisions to attenuate functional shock.

Accelerometer measurements were made on the panel face and frame, acceleration-time histories reviewed for validity,
valid data processed into Shock Response Spectra (SRS), and the SRS data compared. As expected, comparisons for
standard preloaded (7000 pound) release mechanisms indicated the most severe levels were produced by the pyrotechnic
devices, while the G&H NEA device produced the lowest levels. The Martin concept clearly produced the lowest levels,
but its maximum preload capability was limited to approximately 4200 pounds. However, results from testing this
developmental device, where the preload range was 3000 to 4200 pounds, indicated there was no systematic effect raising
shock levels with preload.

Panel in-plane strain energy release was found to significantly raise the in-plane SRS levels compared to those in the
direction normal to the panel face. Normal direction levels were influential at low frequencies, but in-plane levels clearly
dominated at frequencies above 600 to 800 Hz. This result was not device dependent, although some spectral differences
were noted between the pyrotechnic and NEA devices. Impedance and transfer function data support consistency of the
SRS directional response evaluations. This latter data should prove useful in translating these test results to other
structures, providing similar data are available on those structures.

2.0 INTRODUCTION

Due to concerns arising from continued use of pyrotechnics on spacecraft, NASA Headquarters-Office of Chief Engineer,
requested LaRC form a Pyrotechnic Alternatives Investigative Team. Reasons for this request included: high functional
(actuation) shock levels; overall system costs; reusability, shrinking volume, weight and power budgets on smaller
spacecraft, emergence and availability of new technologies; potentially hazardous nature of the materials involved, and
several recent anomalies in which pyrotechnics could be suspect. Because of this activity, in February 1995, LaRC was
invited to participate in a cooperative, cost sharing effort with LMMSC to evaluate functional shock produced by several
pyrotechnic and non-pyrotechnic release devices. Consequently, LaRC initiated Task 31, "Low-Shock Booster Release



System Engineering Feasibility Demonstration" under Contract NAS1-19241, "Mission Systems & Operations Analyses of
NASA Space Station Freedom Advanced Concepts".

Limited data exist for determining component exposure to shock from payload separation devices on lightweight-rigid
structures characteristic of current generation, commercial sized spacecraft. Release devices used on previous spacecraft
structures are expected to produce shock levels above those for which many standard components have been qualified. A
current LMMSC spacecraft, Commercial Remote Sensing Satellite (CRSS), employs separation devices mounted so a
major portion of the strain energy released upon separation is in the mounting plane of some major components. Most
current experience is with mounting release devices on external brackets, which convert release motion into transverse
bending waves before the shock reaches most components of interest. Together, these situations provided a strong
motivation to obtain test data for the LMMSC mounting configuration using current separation devices and prospective
devices that promise to produce lower component shock levels. A shock test program was devised and carried out to
obtain such data.

The Task's purpose was to objectively investigate application of some NEAs to reduce small spacecraft and booster
separation event shock levels. The primary goal was to demonstrate NEA mechanisms for release functions, and
determine severity and compare resulting shock levels with those produced by standard pyrotechnic devices. A secondary
goal was to evaluate effects of the different release device panel mounting arrangement. LMMSC's initial planning
included developing math models, making analytical shock predictions, comparing test results with predictions, and
correlating results with the math models. Program resources and schedule precluded development of math models.

The resulting shock test program provided data from five different separation devices (all essentially separation nut
designs) mounted as indicated (Figure 1) on a model of the CRSS Radial Panel. This panel was configured with mass
simulators representing one of the more heavily loaded CRSS panels. Tests were also performed using three of the release
devices on the same panel in a bare configuration (no mass simulators). The standard preload released in the tests was
7000 pounds, as measured by a load cell washer under the restraining bolt head. However, two of the devices tested were
incapable of achieving this preload level. One of these, the Martin concept, showed considerable promise for producing
low shock levels. To assess its shock level variation with preload, a range of preloads from 3000 to 4200 pounds was used
for this device. Shock acceleration response level data were recorded at various points on the panel for each device
actuated.

Additional tests were performed to measure release device input mounting impedance and installed accelerometer
mounting block transfer functions. Such measurements are intended to aid in extrapolating the included test measurement
results to other mounting and structural configurations. A detailed description of the test setup and procedure is provided
as a further aid in interpreting test results. One possible method for performing such an extrapolation is described in
Reference 1! which resulted from work performed on NASA contract NAS5-29452 as reported in Reference 2%

3.0 TEST SETUP AND PROCEDURE
3.1 Release Mechanisms

Five different release mechanisms, immediately available from several sources, were tested on a single test panel.
Mechanisms ranged from state-of-the-art pyrotechnics (OEA [Ordnance Engineering Associates]-Aerospace 3/8-inch
diameter and Hi-Shear Technology Corporation 8mm and 1/2-inch diameter standard separation nuts—figure 2) to NEA
designs (G&H Technology, Incorporated and Martin concept rotary flywheel-nut 3/8-inch diameter separation devices--
figure 3). To obtain meaningful data, multiple firings of each device were conducted.

With the exception of the Martin concept, all other separation nuts were available, off-the-shelf units with no additional
provisions to attenuate actuation shock. The Martin concept (currently under patent disclosure) was an engineering
feasibility demonstration unit. Fundamentally it consisted of a housing containing a multi-start, coarse threaded bolt,
rotary nut, and locking mechanism. It was fully reusable, required minimal actuation energy, and functioned in less than
50 msec. Exclusive fabrication rights for the Martin concept are held by Starsys Research Corporation of Boulder, CO
where the concept, now referred to as the Fast Acting Shockless Separation Nut (FASSN), is undergoing further
development as a flight-weight unit. Under their Advanced Release Technologies Satellite (ARTS) II Program, the Naval
Research Laboratory, Naval Center for Space Technology, Washington, DC is currently evaluating FASSN in a 1/2-inch
diameter size with a preload capability of 10,000 to 13,000 pounds. Eventually Lockheed Martin plans to evaluate a
similar device and may investigate a 1-inch diameter sized FASSN in the 50,000 to 70,000 pound preload category.

! NASA CR-183480; Shock Prediction Technology: Pyroshock Source Characteristics Study; S.L.Hancock, J.H.Shea,
G.R.Dunbar, P.Chao, and A.W.York.
2NASA CR-183479; Shock Prediction Technology: Technical Manual, Y.A.Lee, D.R.Crowe, W.Henricks, and D.M.Park.



3.2 Test Panel Configurations

Tests were conducted at LMMSC on a structural simulator (Figure 1) representing a proposed Lockheed Martin Launch
Vehicle (LMLV) CRSS Radial Panel-with and without mass loading. This panel was considered representative of a
current small spacecraft design. The test unit consisted of a flat 1.5-inch thick honeycomb rectangular panel with overall
dimensions of approximately 19-inches by 38-inches. The test unit was suspended by two bungee cords and prevented
from excessive swinging by a third bungee attached to the bottom. Y orientation was perpendicular to the panel face, with
X and Z in the plane of the panel.

The panel consisted of a honeycomb core, face sheets, and a frame. The honeycomb core was 4.5-pounds per cubic foot
aluminum, and the face sheets were 0.032-inch thick 2024-T3 aluminum. The panel was framed by 0.080-inch 6061-T651
aluminum which formed a 1.5-inch wide channel with 1-inch legs. The face sheets were laid over and adhesively bonded
to the 1-inch legs. The bottom cut-out (Figure 1) was the release interface site. This cut-out was framed by channel
similar to that around the rest of the panel except the legs were 0.125-inch thick. The extension at the bottom of the cut-
out frame, through which the release bolt passed, was a minimum of 5/8-inch thick aluminum. Tests were run in a bare
panel configuration and in a configuration in which mass simulators were mounted to inserts through the panel face. Table
1 presents detailed conditions of all tests, devices tested, and the preload for each as determined by a load cell washer.

3.2.1 Bare Panel Tests

Tests were run in the bare panel configuration for the OEA and G&H 3/8-inch, and the Hi-Shear 1/2-inch diameter
devices. Due to limited availability of devices, only one test per device was run in the bare panel configuration.

3.2.2 Mass Simulator Tests

Tests were conducted for all included separation devices with mass simulators attached to the panel. In general, three
actuations were conducted for each device. However, the Martin concept was actuated seven times with preloads ranging
from 3000 to 4200 pounds. Mass simulators were constructed of aluminum plate, having the same weight and footprint on
the panel as the actual component. As shown on Figure 1, three simulators were used: two identical, 30-pound simulators
were mounted on opposite sides of the panel; and a third 53-pound simulator was mounted nearer to the release interface.

3.3 Release Device Mounting

Separation system mounting design for this panel (Figure 1) is somewhat unique as the majority of strain energy released
upon device actuation is along directions in the plane of the panel. Of particular interest in these tests was the distribution
of shock loads among the different directions for this mounting configuration. Such motion excites different modal groups
than the more usual, bracket mounted release mechanisms. The latter tends to primarily excite panel bending modes
where components are mounted, resulting in the dominant shock levels being oriented normal to the panel's surface.

The release interface was represented by a 1/2-inch thick steel plate, 10-inches square, representing the launch vehicle
simulator as shown on Figure 1. When a release device was actuated, this plate fell away thereby producing no secondary
contact with the test panel. Separation devices were mounted so the nut and catcher fell away with the steel plate, the bolt
staying with the test panel. Additionally, bolts attaching the nut to the plate were loose so the nut separated from the plate
by approximately 1/16-inch. Videotape recordings made of each test verified clean separation.

3.4 Preload

The release devices had maximum preload capabilities ranging from about 3000 to 20,000 pounds. A 7000 pound preload
was the comparison standard. In this Task, ranges of test parameters were minimized to obtain direct comparisons;
however, based on bolt strength, the Hi-Shear 8mm pyrotechnically actuated separation nut was only capable of about
2700 pounds preload. The Martin concept was incapable of the desired preload. To help evaluate effects of preload, a
series of tests were performed on the Martin concept in which only preload was varied. The remaining devices were tested
at 7000 pounds preload. The load cell washer, from which preload was determined, was located under the bolt head on
the panel side of the interface.

3.5 Accelerometer Locations and Types

Data acquisition included 13 accelerometer measurements on the panel's outer frame edge, to which the release device was
mounted. Additionally, 23 accelerometer data measurements were obtained on the panel face, where components would
usually be mounted. These latter accelerometers were mounted and data recording arranged so that panel instantaneous
directional response could be determined. Adequate frequency response up to 10 kHz was available.



The locations of various accelerometer blocks are shown on Figure 1. There were eight pyramid-shaped triaxial blocks
and six wedge-shaped biaxial blocks. Each was configured to provide normal (Y) and unambiguous in-plane (X and Z)
instantaneous accelerations for the surface on which they were mounted. The X and Z accelerations could be combined to
yield an instantaneous in-plane resultant, which should represent the maximum in-plane acceleration amplitude
experienced at the measurement location.

Different accelerometers were used on different blocks to accommodate the expected environment. Where the highest
levels were expected, Endevco type 7755 accelerometers, with a frequency response of + or - 5 percent from 10 Hz to 10
kHz and a maximum range of 50,000 g, were used on blocks 1,3 and 4. These accelerometers had an 11 kHz mechanical
filter to prevent high frequency, high level accelerations from corrupting lower frequency data. Endevco type 2255
accelerometers, with a frequency response of + or - 5 percent from 20 Hz to 20 kHz and a maximum range of 20,000 g,
were used on block 2. Endevco type 7250 accelerometers, with a frequency response of + or - 5 percent from 3 Hz to 20
kHz and a maximum range of 5,000 g, were used on the remaining blocks (pyramid blocks 5 through 8 and wedge blocks 9
through 14).

Accelerometers in locations 1 through 8 were mounted in a triaxial configuration on the pyramid-block mounts. The
pyramid mounts were geometrically designed to co-locate the three accelerometer sensitive axes at the specimen surface
(block mounting face). Locations 9 through 14 were mounted in a biaxial configuration using the wedge-block mounts.
The wedge mounts also geometrically positioned the two accelerometers to produce co-incident sensitive axes at the
specimen surface.

4.0 DATA ACQUISITION AND PROCESSING
4.1 Shock Measurements

The CRSS panel release mechanism shock measurement data were recorded using LMMSC's acoustic real-time data
acquisition system for vibration and acoustic testing. The system is composed of accelerometer transducers, signal
conditioning, anti-alias filters, digitizing and storage components. The signal digitization was performed at 50,000
samples per second with a resolution of 14 bits (1 in 16384).

4.1.1 Time-Histories

Basic shock data were recorded in the form of acceleration-time histories. Accelerometer blocks were shaped so the time
phased data could be combined to obtain resultant acceleration-time histories in any direction. Particularly, acceleration-
time history in the direction normal to the block mounting surface, and at least one direction in the plane of this surface
could be determined for each block. The pyramid block permitted resolution of acceleration into two orthogonal directions
in the plane of its mounting surface, as well as into an instantaneous resultant acceleration in that plane.

Response acceleration-time histories were reviewed to determine individual measurement validity. Data determined to be
valid was further processed into SRS. SRS were computed using a standard dynamic amplification factor (Q) of 10 (5
percent of critical damping). Data reduction was performed in stages to take advantage of existing LMMSC post-
processor software. First, accelerometer responses from each mounting block were vector summed to produce acceleration
resultants in the three primary panel axes (X-Y-Z for the pyramid and Y-Z or X-Z for the wedge). These resultants were
stored in ASCII data files, one per block-panel axis. Data from positions 1 through 8 were also vector summed to produce
the in-plane (X-Z plane) resultants. Finally, the ASCII data were input to the SRS post-processor to produce the SRS
output and plot data files.

Typical X-,Z- and Y-direction acceleration-time histories are shown on Figures 4 and 5. These are typical of results
obtained from resolving pyramid block data into orthogonal components. Similar results were produced by such resolution
of the two-dimensional wedge blocks. Figure 4 is an acceleration-time history taken from a test of the G&H NEA
separation nut. Figure 5 is similar data taken from a test of the Martin concept. Exclusive of the maximum levels
indicated, the first figure is more typical of separation nut acceleration-time histories (explosive or NEA) in that there is
only a single pulse associated with release. Data from the Martin concept, shown in Figure 5, exhibits three distinct
pulses, indicative of extended and multiple actions involved in the release process for this mechanism.

4.1.2 Shock Response Spectra

The ASCII data files were read into the processor, the anti-alias (11.2 kHz) filter transfer function was analytically
removed and a six pole, 10 Hz AC coupling was performed. The SRS was generated from 100 to 10,000 Hz with 1/6th-
octave filters. Positive, negative and noise floor SRS were computed. Files were also generated containing the time-
history and envelope of the SRS.



4.2 Impedance Measurements

A series of tests to characterize dynamic behavior of the CRSS panel when subjected to pyrotechnic inputs was performed.
These "tap" tests were performed using a Kistler instrumented hammer with an integral, calibrated load cell to tap on a
bolt representing the release device bolt. A special hard tip was used to provide significant energy up to 10 kHz. An
accelerometer placed on this bolt and the hammer's load cell enabled determination of an input impedance. The same
accelerometers and locations as shown in Figure 1 were used throughout the release tests, but the mass simulators were
removed. The response of these accelerometers were recorded during the tap tests to determine the transfer function
relating their response to a general input excitation. A series of measurements were taken with the 3/8-inch diameter
pyrotechnic-attachment point configuration. Then the hole was drilled to accept the 1/2-inch diameter pyrotechnic device,
and another series of measurements taken.

The tests were performed by first, attaching a steel block (1.25-inch cube) at the panel's release device attachment point.
The block was attached by first a 3/8- and later a 1/2-inch bolt, respectively, for the two series of tests. Excitation was
provided by impacting the steel block with the instrumented hammer at approximately 1-second intervals for about 30
seconds. In addition to the accelerometers mounted on pyramid and wedge blocks that were used for the release tests,
three accelerometers were mounted as close as possible to the impact point:

a. A Z-accelerometer was mounted at the top of the block-attachment bolt.
b. An X- and Y-accelerometer were mounted on the impact block opposite the impact point (refer to Figure 1 for the
axis orientations).

These accelerometers, called "foot" accelerometers, were intended to yield data representing the mounting point
impedance for this panel. Similar data for another installation should make the present results transferable.

The acceleration- and force-time histories were acquired by the LMMSC real-time data acquisition system. The data
acquisition rate was 30,000 samples per second and 8-pole, 11.2 kHz, Butterworth, low-pass (anti-alias) filters were used.
The impact levels were nominally 1500 pounds but varied between approximately 800 and 1900 pounds. Data analysis
was performed with the signal analysis processor. The procedure was:

A peak detection system was used on the force-time histories to determine when impacts occurred. Exactly 2048
points were selected around each impact. Each time-history was inspected to assure there was a pre-trigger of at least
256 points and that there was only a single impact within the range of sample points. Response data from up to ten of
the responses was retrieved for all "acceptable” time windows.

Transfer functions between responses and force input were calculated for each impact. These transfer functions were
then averaged (using ten averages for the "3/8-inch bolt" test and at least seven averages for the "1/2-inch bolt" test).

The 1/6th-octave impedance was calculated from the transfer functions by:

Calculating the acceleration impulse function via inverse Fast Fourier Transform (FFT).
Subtracting off the average offset (AC coupling).

Multiplying by 386.4 to convert from a "g" calibration to inches/second/second.
Integrating to obtain the velocity impulse function.

Calculating the velocity transfer function by forward FFT.

Calculating the impedance by complex inversion of the velocity transfer function.
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Determination of the 1/6th-octave impedance spectrum was completed by averaging the magnitude of the impedance-
spectral components over each 1/6th-octave band. The same 1/6th-octave center frequencies were used for these
calculations as for the SRS calculations.

5.0 DISCUSSION OF RESULTS

Overall measures of SRS produced by the devices were derived from the data and compared for accelerometers located on
the panel face. Comparisons indicated the most severe levels were produced by the OEA device, followed by the Hi-Shear
1/2-inch diameter device. Of the devices capable of 7000 pound preload, the G&H NEA device produced the lowest
levels. In these tests the Martin concept clearly produced the lowest levels, but its maximum preload capability was
limited. Of the devices tested, LMMSC selected the Hi-Shear 1/2-inch diameter separation nut for further consideration.
A comparison of results from the Martin concept for several preloads indicated there was no systematic effect of rising
preload causing an increase in shock levels over the range tested. Such a result may eventually break down at some higher
level of preload.




In-plane strain energy release was found to significantly raise the shock environment in-plane SRS levels compared to the
normal direction levels. It was still found that the normal direction levels were influential at low frequencies, but in-plane
levels were clearly dominant in the higher frequencies (above 600 to 800 Hz). This result was not device dependent,
although some spectral differences can be noted between the pyrotechnic devices and NEAs. The SRS generally showed
an increase with frequency, with only levels and local details varying with device. The panel's dynamic properties
probably provide the dominant aspect to determining spectral shapes with the devices all providing broad band excitation,
differing primarily in level only.

Impedance and transfer function data taken support the consistency of the SRS directional response evaluations. This data
should prove useful in translating the test results contained herein to other structures, providing similar data are available
on those structures. Comparative data used in this report are tabulated in Appendix A.

5.1 Shock Responses

SRS were determined for five different separation devices with the CRSS panel in the mass loaded configuration and for
three different devices with the panel in the bare (unloaded) configuration. Data were resoived into normal (Y-axis) and
in-plane (X- and Z-axis) as well as in-plane instantaneous resultant magnitude, before the SRS were calculated. The SRS
were computed for each orthogonal axis and in-plane resultant, where such data were available, using the standard Q of
10. SRS data were subjected to statistical analysis using various groupings to obtain comparisons for the differences
between devices and test condition effects.

Although data were taken and reduced to SRS form on the frame, only data from the face sheets were used in the analyses.
It was anticipated that shock propagation in this panel, with the type of mounting used for the separation devices, would
have been rather complex. The frame data were taken to enable the study of shock propagation for the panel in the event
these complexities actually appeared. The test results did not indicate that such studies were warranted or necessary, so
they were not performed. Only the non-frame, flat panel data are treated herein. These data represent the environment of
panel mounted components.

5.1.1 Mass Loaded Panel Configuration (OEA, Hi-Shear 8mm and 1/2-inch, G&H and Martin Concept)

Data from all five separation devices were taken for the test panel configured with mass simulators. At least three tests
were performed with each device for this panel configuration. Twenty-three accelerometer channels on the panel face
were recorded for each test. The standard preload for these tests was 7000 pounds, as indicated by the load cell
instrumentation. Two of the devices, the Hi-Shear 8mm device and Martin concept, were not capable of the standard
preload. They were loaded to the maximum permissible preload, which was about 2700 pounds for the Hi-Shear 8mm
device; and the Martin concept was tested over a range of preloads from 3000 to 4200 pounds, as indicated in Table 1.
Assimilation of this mass of data into an interpretable form was the first order of the analysis process. A statistical
approach was used for this purpose.

5.1.1.1 Representative Response Levels

Data from any one grouping of measurements was assumed to behave as a log-normal random variable. Various axis
groupings were constructed and log-normal statistical properties of these groups were compiled and compared. The groups
were: acceleration normal to the panel surface (Y-axis, designated as nfy), orthogonal in-plane (X- and Z-axes, designated
as nfxz); in-plane resultant (of X and Z components, designated as nfip); and combined normal and in-plane resultant
levels. In computing the statistical properties, no segregation by location on the panel face was included. Nomenclature
used includes; nf (no frame), and i or ip (in-plane). Figures 6 () through (e) show the comparisons of data groupings 95th
percentile levels for each device and preload:

(a) OEA 3/8-inch diameter pyrotechnic separation nut, 7000 pound preload.

(b) Hi-Shear 1/2-inch diameter pyrotechnic separation nut, 7000 pound preload.
(¢) G&H 3/8-inch diameter NEA separation nut, 7000 pound preload.

(d&) Hi-Shear 8mm diameter pyrotechnic separation nut, 2700 pound preload.
(e) Martin 3/8-inch diameter concept, 4000 and 4200 pound combined preload.

Figures 7 (2) through (e) show the same sequence of device results, but compare the maximum measured level in each
grouping.

In both sets of above figures, it may be seen that the combined normal and in-plane resultant levels serve as a reasonable
indicator of an upper bound level. The upper bound level is always this combination for the maximum measured levels of



Figures 7. This must be true because the in-plane resultant is greater than or equal to the X- or Z-direction maxima and
the combined maximum bears the same relation to the normal and in-plane directions.

If the reader seeks differences in the directional SRS levels, it may be observed that the normal direction is somewhat
more influential in the lower frequencies and the in-plane motion dominates the higher frequencies. It is suggested by the
impedance measurements, discussed later, that one might expect that panel modes associated with bending waves, which
involve out-of-plane motion, come to bear at lower frequencies than the shear and longitudinal wave modes. The reader is
cautioned that a resonant phenomenon is not involved here, but when the transient motion produced by the release is
spectrally resolved, the natural modes of the system will indicate pronounced motion in their frequency bands.

A few instances were noted where the X-Z direction maximum measured level appeared to exceed the in-plane resultant
level. These were found to be instances where there had been a zero shift in the accelerometer calibration during the test.
This shift was not apparent for the X- or Z- measurements alone, whereas it was for the in-plane measurement. The data
had been eliminated from consideration in the latter and not the former and thereby caused the faulty indication.
Inspection of the time-histories of the original data confirmed in all cases that the data were faulty when there was a
difficulty of this nature.

Flgures 8 (a) through (e) show the relation between the arithmetic mean, the log mean, the 95th percentile and the ‘
maximum measured levels for the same sequence of devices. The difference between the log mean and the 95th percentile
is indicative of the standard deviation for the data. These data, the standard deviation, sample size and Gumbel Factor (a
correction for statistical errors due to small sample size) are presented in tabular form in Appendix A, Table A-1, (a)
through (e), for the same sequence of devices.

There is close correspondence between the maximum measured and 95th percentile levels. It may be seen from these
figures that the maximum measured level is the upper bound of the 95th percentile at all but a few frequency ranges of
relatively narrow extent. Further, exceedances in these frequency ranges are of relatively small extent. These facts
indicate there is little data scatter. Since data were collected from the entire panel face, this indication reveals there is
little spatial variation of the shock levels over the panel face.

5.1.1.2 Comparison of Effects of Preload Level for the Martin Concept

The Martin 3/8-inch diameter NEA concept was incapable of achieving the standard preload. It was tested over a range
from 3000 to 4200 pounds. To assess effects of preload on results, these measurements are compared with one another.
Combined normal and in-plane resultant levels are used as the basis for this comparison. Statistical features of these
measurements are given in Appendix A, Table A-1, (e) through (i), for:

(e) Combined 4200 and 4000 pound preload
() 4200 pound preload
(g) 4000 pound preload
(h) 3500 pound preload
(i) 3000 pound preload

The 95th percentile and maximum levels are shown in Figures 9 (a) and (b), respectively. The reader should note there is
no clear trend associated with preload magnitude, as maximum measured SRS levels for 3000 pound are as great as those
for the 4200 pound preload. Interpretation of the 95th percentile data is somewhat more difficult due to the small sample
size producing more erratic indications.

5.1.1.3 Comparison of Levels from Different Release Devices

The SRS 95th percentile and maximum levels are compared for all devices as measured with the maximum preload
achieved for that device. These are shown in Figures 10 (a) and (b), respectively. The ordering of levels for the different
devices is the same for both the 95th percentile and maximum measured levels. The order from higher to lower levels is:
OEA,; Hi-Shear 1/2-inch; Hi-Shear 8mm; G&H; and the Martin concept. The Martin concept produced levels significantly
lower than the others; however, its greatest preload was only 4200 pounds as compared to 7000 pounds for the OEA, Hi-
Shear 1/2-inch and G&H devices. Such a difference in preloads could make a significant difference in the shock levels
produced, although its variation over the range tested did not indicate a strong dependence on this parameter.

5.1.2 Bare Panel Configuration (OEA, Hi-Shear 1/2-inch and G&H devices)

Tests were performed using OEA, Hi-Shear 1/2-inch and G&H devices at a preload of 7000 pounds with the test panel
devoid of mass simulators. Due to limited availability of release devices, it was possible to perform only one test for each




OFA and Hi-Shear 1/2-inch device with the panel in this configuration; however, three tests were performed with the
G&H device. A similar procedure was followed for evaluating data from the bare pane] tests as was done for the panel
with mass simulators.

5.1.2.1 Representative Response Levels

SRS acceleration levels measured on the panel face were grouped in the same axis directions as previously done for the
mass simulator data. As before, these groups were subjected to statistical analysis. The 95th percentile data are compared
in Figures 11, and Figures 12 for the maximum measured levels with data for the individual devices presented separately
in the (a), (b) and (c) versions of these Figures, as follows:

(a) OEA 3/8-inch diameter pyrotechnic separation nut.
(b) Hi-Shear 1/2-inch diameter pyrotechnic separation nut.
(c) G&H 3/8-inch diameter NEA separation nut.

The combined normal and in-plane directions grouping is again considered to best represent the levels produced by each.
device. However, results are not as clear as before because of the significantly smaller sample sizes in the measurements.

Figures 13 (a) through (c) show the relation between the arithmetic mean, log mean, 95th percentile and maximum
measured levels for the same sequence of devices in the bare panel configuration. The difference between the log mean
and 95th percentile is indicative of the standard deviation for the data. These data, the standard deviation, sample size and
Gumbel Factor are presented in tabular form in Appendix A, Table A-IL, (a) through (c), for the same sequence of devices.

Because of the small number of measurements, the 95th percentile levels are frequently greater than maximum measured
levels for this series of tests of the OEA and Hi-Shear 1/2-inch devices. This is not the case for the G&H device, since
three tests were performed with it in the bare panel configuration.

5.1.2.2 Comparison of Levels from Different Release Devices

SRS acceleration levels from the three devices were compared by means of results from the combined normal and in-plane
resultant measurements. Figure 14 (a) and (b) show comparisons between their 95th percentile and maximum measured
levels, respectively. The relative levels, as indicated by either the 95th percentile or maximum measured SRS
accelerations, indicate the highest output from the OEA device, followed by the Hi-Shear 1/2-inch diameter and G&H
device, respectively. However, there appears little difference between the last two devices for these bare panel tests as
compared to their relative levels for the panel with mass simulators (refer to Figures 9). The paucity of measurements for
the Hi-Shear device in the bare panel configuration is probably a major factor in this apparent difference. It is likely that
both the OEA and Hi-Shear device levels are inaccurately represented by the small sample size. Such likelihood is
reinforced by the results obtained by comparing the bare and mass loaded panel SRS levels produced by these devices.

5.1.3 Comparison of SRS Levels with the Bare and Mass Loaded Panel

Data representative of the SRS acceleration levels produced by the three devices that were tested on both the bare and
mass loaded panel were compared. Figure 15 (a) and (b) show the 95th percentile and maximum measured levels,
respectively, for the OEA, G&H and Hi-Shear 1/2-inch devices. This is a replot of data previously presented for each.

The reader may note for the first two devices, there are large frequency bands in which levels for the mass loaded panel
exceed those for the bare panel. One is tempted to conjecture by referring to Figure 1, that all accelerometers used in
compiling the statistics are in positions that are unshielded by the mass simulators. Furthermore, they may well be the
recipient of energy reflected from these simulator bodies, and one might expect higher response levels to be produced.
However, data for the G&H device follow the accepted behavior, and indicate the bare panel levels consistently exceed
those for the mass loaded panel, as physical reasoning would lead one to expect. Recall that data for the G&H device
represent a statistical sample which includes three test actuations of the device for each configuration. The mass loaded
data for the OEA and Hi-Shear devices also represent data from three actuations, but the bare panel levels represent data
from only one actuation of each. This is an indication that relative levels of the bare and mass loaded panels are not of the
same confidence level in representing the expected results from these two devices, whereas, those for the G&H device are.

5.2 Impedance and Transfer Functions
Impedance data were calculated for the "foot" accelerometers mounted near the separation device for the test performed

with the 3/8-inch bolt. Data from the 1/2-inch bolt test were not as good (the hammer hits and resulting data were erratic),
so they have not been reduced to 1/6th-octave results.



The 1/6th-octave "foot" impedances for the three orthogonal directions resulting from excitation in these X-, Z- and Y-
directions are shown in Figures 16, 17 and 18, respectively. The plotted data are also tabulated in Appendix A, Table A-
I (a) through (c). The first two of these directions lies in the plane of the panel, while the Y-direction is normal to this
plane. The general shapes of the impedance curves are similar for the X- and Z-direction excitations and responses, being
consistent with no modes associated with motion in these directions below about 600 Hz. The Y-direction excitation
impedances exhibit a character indicating modes associated with motion in this direction (probably bending) beginning in
the neighborhood of 300 Hz. As was mentioned in describing the SRS results, the Y- (normal) direction of motion seemed
to have the greater influence in the low frequencies and the in-plane motion seemed to dominate the higher frequencies.

The "foot" data are intended to represent the mounting point impedance for this panel. Similar data for another
installation should enable estimation of the shock input energy obtained in these tests to that of the other installation,
given proper dynamic models. The transfer function data for other test panel accelerometer blocks will be useful in
constructing and validating such models.

6.0 CONCLUSIONS AND RECOMMENDATIONS

SRS results for accelerations on the face sheets, where components are mounted, were combined into axis groups and
subjected to statistical analysis. It was found that variation of level over the panel face was relatively small, as indicated
in the small standard deviation from the statistical analysis. Differences between normal and in-plane resultant levels
were also small although some spectral differences were noted and are described below. A combination of these
directional levels was found to fairly represent behavior of the individual devices, although there would be little
qualitative difference noted in picking any of the groupings to represent a device.

Overall measures of shock levels (SRS's) produced by the devices were derived from the data and compared for
accelerometers located on the panel face. These comparisons indicated the most severe levels were produced by the OEA
device, followed by the Hi-Shear 1/2-inch diameter nut. Of the devices capable of 7000 pound preload, the G&H NEA
device produced the lowest levels. The Martin concept clearly produced the lowest levels in the test series, but its
maximum preload capability was only 4200 pounds.

A comparison of results from the Martin concept for preloads, from 3000 to 4200 pounds, indicated there was no
systematic effect raising shock levels with preload for this device over the range tested. However, it is expected that such
a result may break down at some higher level of preload or it may be only due to the small amount of data used.

In-plane strain energy release was found to significantly raise the in-plane SRS levels of the shock environment compared
to the normal direction levels. It was still found that normal direction levels were influential at low frequencies, but in-
plane levels were clearly dominant in the higher frequencies (above 600 to 800 Hz). This result is not device dependent,
although some spectral differences can be noted between the pyrotechnic and NEA devices. The SRS trends showed an
increase in level with frequency. The dynamic properties of the test panel probably provide the dominant aspect
determining the spectral shapes with the devices all producing broad band excitation, differing primarily in level only.

Impedance and transfer function data taken support the consistency of SRS directional response evaluations. They are
indicative of the presence of low frequency bending waves (beginning at about 300 Hz) and onset of shear and dilatation
waves at the higher frequencies (600 to 800 Hz). This data should also prove useful in translating these test results to
other structures, providing similar data are available on those structures.

Data used for comparison purposes in the report are tabulated in Appendix A which represent reduced test data.
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Table 1 CRSS Radial Panel Development Pyro Shock Tests

T‘Z" T;:t Type Time/Date Data File Preload Mass Sim V:;i:o ?:;;
1 1 3/8 G&H 10:38 27-Mar I.858E01 7000 Yes 3
2 2 3/8 G&H 13:21 27-Mar LL858E02 7000 Yes 4 A-1 (c)
3 3 3/8 G&H 14:15 27-Mar L.8S8E03 7000 Yes 5
4 4 3/8 G&H 15:40 27-Mar L858E04 7000 6
5 5 3/8 G&H 16:49 27-Mar L858E05 7000 7
A-2 (c)
6" 3/8 G&H 18:49 27-Mar 7000 8
7 6 3/8 G&H 18:56 27-Mar LB858E06 7000 9
8 7 8mm HiS 14:59 28-Mar L858E07 2440 Yes 10
9 8 8mm HiS 10:30 31-Mar L858E08 2670 Yes 1 A-1 (d)
10 9 8mm HiS 14:40 31-Mar L858E09 2600 Yes 12
1 10 3/8 OEA 14:23 03-Apr L858E 10 7000 Yes 13
12 11 3/8 OEA 10:54 12-Apr LL858E 11 7000 Yes 14 A-1 (a)
13 12 3/8 OEA 13:30 12-Apr L858E12 7000 Yes 15
14 13 3/8 OEA 11:20 13-Apr L858E 13 7000 16 A-2 (a)
15" 1/2 HiS 15:00 17-Apr 7000 1
16 14 1/2 HiS 09:38 18-Apr L.858E 14 7000 18 A-2 (b)
17 15 1/2 HiS 14:00 18-Apr L858E 15 7000 Yes 19
18 16 1/2 HiS 10:24 19-Apr L858E 16 7000 Yes 20 A-1 (b)
19 17 1/2 HiS 13:44 19-Apr L.858E17 7000 Yes 21
20™** 3/8 Martin 15:00 19-Apr 2700 Yes 22
21 M1 3/8 Martin 10:23 20-Apr L858MO01 3000 Yes 23
22 M2 3/8 Martin 11:30 20-Apr L.858M02 3000 Yes 24 100 & ()
A-1(j) & (k
23 M3 3/8 Martin 12:39 20-Apr L858M03 3000 Yes 25
24 M4 3/8 Martin 13:13 20-Apr L858M04 3500 Yes 26
25 M5 3/8 Martin 13:40 20-Apr L858M05 4000 Yes 27
. . A-1 (e)!
26 M6 3/8 Martin 14:00 20-Apr L858M06 4000 Yes 28 A-1 () & (K)
27 M7 3/8 Martin 14:28 20-Apr L.858M07 4200 Yes 29
F1 X~ Dir Tap A-3 (a)
F2 Z- Dir Tap A-3 (b)
F3 Y- Dir Tap A-3 (c)

*  Wire came loose on firing system - no release, no accl data retained.
=+ Bolt Bottomed-out in sep nut - squib fired, no release, no accl data retained.
*xx Preliminary release, no accl data recorded.
Note: 1) Because of inaccuracies of load washer, all preload values are approximate.
2) Impedance Test File Names: L858HAM1 thru HAMS. L858HAM4 thru HAM6 are retests

of L858HAM1 thru HAMS.
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Figure 8(a). OEA 3/8", with Masses, 7000 Ib., Combined Normal &
In-Plane Resultant, SRS (Q=10), Log-Normal Statistical Features.
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Figure 8(c). G&H 3/8", with Masses, 7000 |b., Combined Normal &
In-Plane Resultant, SRS (Q=10), Log-Normal Statistical Features.
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Figure 8(d). HiS 8 mm, with Masses, 2700 Ib., Combined Normal &
In-Plane Resultant, SRS (Q=10), Log-Normal Statistical Features.
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Statistical Features.
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Figure 12(a). OEA 3/8", Bare Panel, 7000 Ib., Various Axis
Groupings, SRS (Q=10), Maximum Measured Levels.
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Figure 13(a). OEA 3/8", Bare Panel, 7000 Ib., Combined Normal &
In-Plane Resultant, SRS (Q=10), Log-Normal Statistical Features.
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Figure 13(b). HiS 1/2", Bare Panel, 7000 Ib., Combined Normal &
In-Plane Resultant, SRS (Q=10), Log-Normal Statistical Features.
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Figure 14(a). Device Comparison, Bare Panel, 7000 |b., Combined
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Figure 16. 3/8" Release Device Mounting Point Impedances,
X-Direction Tap.
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Figure 17. 3/8" Release Device Mounting Point Impedances,
Z-Direction Tap.
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OEA 3/8", with Masses, 7000 Ib., SRS (Q=10),

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis

Table A-1(a)

0.9194

Gumbel Factor =

= 31

Number of Samples

Groupings.
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HiS 1/2", with Masses, 7000 Ib., SRS (Q=10),

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis

Table A-1(b)

0.9381

Gumbel Factor =

= 45

Number of Samples

Groupings.
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G&H 3/8", with Masses, 7000 lb., SRS (Q=10),

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis

Table A-1(c)

0.9381

Gumbel Factor =

= 45

Number of Samples

Groupings.
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HiS 8 mm, with Masses, 2700 Ib., SRS (Q=10),

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis

Table A-1(d)

0.9360

43 Gumbel Factor

Number of Samples

Groupings.
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LM 3/8", with Masses, Combined 4000 & 4200 Ib., SRS

10), Log-Normal Statistical Features of Combined Normal & In-Plane, & Various

Table A-1(e):

(Q

0.9381

Gumbel Factor =

= 45

Number of Samples

Axis Groupings.

40



Table A-1(f):

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis
Groupings.

Freq | Arithmetic| Log | Standard 95th Maximum
Hz Mean Mean| Deviation | Percentile
yi42 yi42 yi42 yi42
110 1.6 1.5 1.592 3.6 3.1
124 1.6 1.5 1.586 3.5 4.3
139 1.6 1.5 1.527 3.3 4.2
156 1.8 1.7 1.369 3.2 2.8
175 2.1 2 1.441 4 4.2
197 2.8 2.6 1.557 6 5.6
221 3.1 2.9 1.484 6 6.5
248 3.2 2.9 1.500 6.3 6.5
278 3.4 3.1 1.583 . 7.4 8
313 4.4 4 1.576 9.5 9.6
351 6 5.3 1.644 13.7 12.3
394 7.6 6.6 1.748 19 16.8
442 7.7 6.5 1.767 19.2 23
496 8.5 7.3 1.680 19.6 27.6
557 11 9.5 1.689 25.6 32.6
625 12.9 10.9 1.736 31 35
702 10 8.9 1.610 21.8 24.7
787 9.1 8.2 1.562 19 18.7
884 11.3 10.1 1.633 25.6 23.4
992 15.3 13.3 1.728 375 39.7
1114 15.4 13.9 1.587 33.3 32.9
1250 17.9 16.3 1.548 37.2 34.8
1403 25 229 1.5625 51 45.7
1575 27.4 25.1 1.545 57.2 §2.2
1768 31.5 28.7 1.577 68 54
1984 30.7 28.9 1.438 57.5 57.2
2227 31.1 29.7 1.352 52.6 60.2
2500 42.7 40.3 1.409 77.2 79.3
2806 50.8 48.2 1.383 89 101.8
3150 52.5 49.3 1.432 97.4 89.3
3536 75.5 70.6 1.468 145.9 140.3
3969 93.3 85.4 1.565 199.4 160.6
4454 118.8 111.1 1.458 227 220.3
5000 141.9 136.5 1.326 232.8 253.9
5612 130.4 123.9 1.358 221 271.6
6300 157.1 152 1.301 250 250.5
7071 172.8 166.6 1.322 2825 278.1
7637 167.4 159.7 1.358 285 290.9
8909 180.3 166.4 1.480 349.4 410.3
10000 162.3 138.6 1.739 395 467.6

Number of Samples =

15

Gumbel Factor
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LM 3/8", with Masses, 4200 Ib., SRS (Q=10),

= 0.8688



Freq | Arithmetic| Log | Standard 95th Maximum
Hz Mean Mean| Deviation | Percentile
yi40 yi40 yi40 yi40
110 1.3 1.2 1.555 2.6 2.6
124 1.3 1.2 1.570 2.6 3.3
139 1.4 1.2 1.686 3.1 3.7
156 1.7 1.4 1.823 4.1 4.8
175 2.1 1.7 1.959 5.7 5.7
197 2.9 2.3 2.034 8.1 9.3
221 2.8 2.3 1.939 7.5 7.9
248 2.6 2.2 1.896 6.8 8.8
278 2.8 2.3 1.909 7.3 9.7
313 2.9 2.5 1.781 6.9 9.2
351 3.7 3.3 1.586 7.6 8.7
394 4.2 3.8 1.601 8.8 9
442 4.2 3.7 1.694 9.6 8.8
496 4.8 4.3 1.635 10.3 10.5
557 6.3 5.7 1.638 13.8 13.3
625 8 7 1.701 18.2 18.3
702 8.5 7.8 1.573 17.5 15.7
787 9.6 ] 1.425 17 14.8
884 12.3 11.6 1.466 23 19.6
992 12.2 11.1 1.577 25.1 35
1114 13.3 11.6 1.672 29.3 33.9
1250 16.3 14.3 1.684 36.4 42.4
1403 22.1 18.2 1.886 56.7 67
1575 31.9 247 2.003 85.7 110.7
1768 34.3 28 1.884 87.3 103.8
1984 39.3 34.2 1.698 88.3 98.1
2227 44.3 39.8 1.570 89.4 111.9
2500 44.4 40.9 1.486 83.3 98.8
2806 54.6 48.3 1.615 114.1 131.6
3150 62.9 56.5 1.566 126.2 143.6
3536 77.7 72.4 1.457 142.2 158.3
3969 107.3 98.5 1.501 204 277.5
4454 143.9 133.7 1.448 259.5 385.9
5000 194.3 181.8 1.420 340.8 504.6
5612 253.5 224 1.610 526.1 835.6
6300 223.5 207.4 1.464 410.9 552.9
7071 246.2 225.8 1.523 480.1 458.8
7637 218.6 200.6 1.505 417.6 508.5
8909 215 196.1 1.521 415.8 558.4
10000 187.5 167.4 1.602 389.5 455.4

Table A-1(g): LM 3/8", with Masses, 4000 Ib., SRS (Q=10),
Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis
Groupings. Number of Samples = 30 Gumbel Factor = 0.9175
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Freq | Arithmetic|{ Log | Standard 95th Maximum
Hz Mean Mean| Deviation | Percentile
yi35 yi35 yi35 yi35
110 1.3 1.2 1.654 3.4 2.1
124 1.2 1.1 1.465 2.4 17
139 1.1 1 1.438 22 1.9 |
156 1.3 1.2 1.400 2.4 2
175 1.5 1.4 1.418 2.9 2.1
197 2.4 2.1 1.618 5.7 4.2
221 2.8 2.5 1.667 7.1 5.1
248 2.3 2.1 1.590 5.3 4.5
278 2.6 2.4 1.516 5.6 5.3
313 3.1 2.9 1.498 6.6 6
351 4.3 4 1.522 9.4 8.2
394 5.6 5 1.608 13.3 11.2
442 5.7 4.8 1.841 16.6 14.8
496 7 5.9 1.817 19.8 20.3
557 8.6 7.2 1.775 23.3 23.7
625 6.8 6.2 1.572 15.5 15.7
702 7.2 6.7 1.480 14.9 13.4
787 10.7 10.4 1.288 17.4 15.6
884 16.5 15.7 1.421 32.1 23.1
992 21.1 11.4 1.486 25.5 18.6
1114 11.4 10.5 1.509 24.4 21.4
1250 16.7 15.2 1.594 39.4 25.8
1403 17.9 16 1.701 47.3 29.9
1575 21.1 19 1.631 514 42.9
1768 22.5 21.5 1.384 41.8 32.5
1984 24.3 22.8 1.464 49.7 40.6
2227 24.2 23.6 1.287 39.5 34
2500 28.1 27.4 1.266 44.4 37.2
2806 37.6 36.9 1.230 56.2 55.6
3150 43.8 42 1.355 77.9 76.3
3536 63.7 60.2 1.415 122 118.1
3969 107.5 102.7 1.39 200.9 163.1
4454 150.5 145.1 1.349 266.9 187.6
5000 192.4 190 1.183 267.5 248
5612 206.4 199.7 1.313 347.5 323
6300 230.7 2225 1.333 399.8 338.7
7071 259.6 242.6 1.467 529.8 485.3
7637 167.7 162.1 1.323 286.8 250.8
. 8909 153.9 150.9 1.235 232.2 218.3
10000 131.6 128.8 1.247 202 192.8

Table A-1(h): LM 3/8", with Masses, 3500 lb., SRS (Q=10),
Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis
Groupings. Number of Sampies = 15 Gumbel Factor = 0.8688




Freq | Arithmetic | Log | Standard 95th Maximum
Hz Mean Mean| Deviation | Percentile
yi30 yi30 yi30 yi30
110 1.2 1.1 1.610 2.6 2.6
124 1.2 1.1 1.565 2.4 2.6
139 1.2 1.1 1.661 2.6 2.6
156 1.3 1.2 1.676 2.9 3.1
175 1.6 1.5 1.648 3.5 3.8
197 2.1 1.9 1.695 4.7 5.3
221 2.3 2 1.712 5.2 6.2
248 2.4 2.1 1.775 57 5.3
278 2.5 2.1 1.802 6 6
313 2.9 2.5 1.758 6.7 8
351 3.6 3.2 1.631 7.6 7.9
394 4.4 3.8 1.696 9.6 11.8
442 4.5 3.9 1.764 10.4 14.9
496 5.2 4.5 1.770 12.2 20.1
557 6.7 5.8 1.720 15 21.3
625 7.1 6.4 1.651 15.3 14.4
702 7.6 6.9 1.549 14.9 16.9
787 9 8.4 1.465 16.5 16.5
884 12.3 11.4 1.485 22.9 21.9
992 12.7 11.6 1.566 25.4 22.8
1114 13.6 11.9 1.680 29.6 35
1250 17.4 15.2 1.706 38.8 411
1403 19.5 16.9 1.705 43.1 51.7
1575 27.8 22.6 1.866 67.4 92.5
1768 30.7 26.2 1.747 69.7 79.6
1984 38.4 34.4 1.623 80.5 87.2
2227 38.3 34.1 1.621 79.5 94.7
2500 42.2 37.9 1.586 85 109.4
2806 55.7 49.1 1.649 118 160.5
3150 74.8 66 1.648 158.5 181.2
3536 100.5 90.7 1.573 200.6 241.8
3969 133.8 119.1 1.623 278.3 359.5
4454 140.3 130.7 1.45 250.7 325.5
5000 207.8 188.5 1.545 404.5 482.9
5612 224 200.4 1.581 447.6 616.3
6300 216.8 198.8 1.514 411.7 505
7071 257.3 229.8 1.608 528.6 637.8
7637 183.8 169.5 1.497 344 386.4
8909 193.4 178 1.489 357.7 473
10000 185.6 166.4 1.580 371.4 585.9

Table A-1(i): LM 3/8", with Masses, 3000 Ib., SRS (Q=10),
Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis
Groupings. Number of Samples = 45 Gumbel Factor = 0.9381
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OEA 3/8", Bare Panel, 7000 Ib., SRS (Q=10),

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis

Table A-2(a)

0.8407

Gumbel Factor =

11

Number of Samples

Groupings.

45




6561 28L1 06 0E6 2661 Sele 2661 1512 229'1 98 2.6 00001
v.S2 1212 8801 €eeh 9ese vSey 9652 11v2 129°t 266 vZiL 6068
89p1 9851 020t 9641 £v81 2692 ev8l o 1ert vi6 €6 LE9.
9.1 591 A 1881 6222 2eie 6222 ¥922 LEVP'L | Obht G2t 120
2051 bral ZIEL 009+ 0861 €812 0861 vS8 1 SZ2h | OLEE 021 00€9
/691 b85S} LVEL 529t ] 2581 ! 718} L16E'} 1.6 0201 2195
zi8 168 0.6 611 8911} 892} 8911 611 90€’} ] 9es 0005
8001 196 828 0201 Sovt SbSH Sopt 9611 cHbL 129 099 vShp
€e0!t 106 829 €0 9621 LISH 9621 Se0l vov'L €05 £vS 696€
X2 L6 €09 ov9 2i6 S0 26 098 geb’l SeY vov 9es¢e
2eL 129 9es 989 L0} 6601} L0} 588 161 oLy 16b 0Sie
b 122 529 62L Ev6 2001 ev6 €501 809'1 82y eLY 9082
L2l 292 S2e zee eel 6.8 €€/ S06 00L'} Lee 8.€ 00S2
€59 82. 992 162 £59 /€6 £59 8.. €69°L | /82 82e 1222
zel /18 6ic 092 22l 886 22l eLL 808°1 252 662 v861
616 126 102 622 LE6 002} /€6 228 1202 9l 642 89/1
889 169 LE} 08} 889 2€e8 889 S6S 298t €8l vee SISt
ISt 2L S5 502 LSt Lbb LSt L0¥ VA )T 891 covL
852 2ee ot vyl 852 0.2 852 182 819’} ELt 0 0set
66+ $92 8z 9z €02 6€2 €02 852 06L°} 98 001 m
0S|t S61 9 89 oSt 881 0St 122 5981 89 18 266
szt €St 6v 95 EL Sl LE1 69} YA 1) oL 88
L0t 9el €5 6S FEL Ot FEL LEL 6€9'1 vS 09 181
S8 ell St 8t 66 GiL 66 att 1291 by 0S 202
2L 00} ey ey 18 00} 18 S0l S69'1 6€ v 529
€9 88 Se €€ YL 68 v, 06 90} €e VA PAI
95 62 o€ ze 19 69 19 0L 18yt ee 9 96%
6 €L 62 /e 6t S5 6 9 99’1 Le € Zop
£V 9 ze 6€ ov 2S ov 85 9651 9 82 v6€
8e 95 €e o€ vv ) by 19 ovLL 12 ve 15e
e 2S 22 Se eV 8 eV 65 8/8°1 8l 12 gl
82 9v s2 9z 8e Sp 8e 6t 898°} St 8l 8.2
9z zv 22 8z 9e ) 9e gt 226t et ol 8v2
8z ov 9z 62 €e 2y ee St ¥002 T St 122
82z L€ ve 62 oe €e o€ 1y 986't m vl L6}
0z Se €2 sz 0z 12 €2 8g £80°2 ot 2l SLt
02 Se €2 62 02 92 €2 6€ €L12 6 ! oSt
sz 9e ve oe sz 82 sz vv vov'e 8 b 6E1
S2 ve S2 ) 82 62 82 Sp 2052 8 Ll vel
52 2e 92 ) 62 €6 62 3 68p°2 8 L oLl
zxu zqu Au Au dyu dyu tAju 1A 1A 1Au
a)uadiayg a|nuasIad ajjuaslad ajnuaalad | uoneinag |uesyy uesiy zZH
wowe | wse  Jwnwpew ] wise  Jwouxew | wse | wnwixep Wis6 piepues | 607 | onewymy | baiy

HiS 1/2", Bare Panel, 7000 Ib., SRS (Q=10),

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various AxXis

Table A-2(b)

0.8688

Gumbel Factor =

15

Number of Samples

Groupings.
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G&H 3/8", Bare Panel, 7000 |Ib., SRS (Q=10),

Log-Normal Statistical Features of Combined Normal & In-Plane, & Various Axis

Table A-2(c)

0.9370

Gumbel Factor =

44

Number of Samples

Groupings.
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1/6-Octave | X-Direction | Y-Direction | Z-Direction
Freq Lbf-Sec/ Lbf-Sec/ Lbf-Sec/
Hz Inch Inch Inch
197 93.1 18.8 273.2
221 105 20.7 425.5
248 113.9 26.7 371.9
278 126.8 35.7 458.8
312 156.9 36.2 539.7
351 225.9 53.4 861.7
394 259.6 52.1 739.7
442 363.4 72.2 1157.6
496 534.8 87.7 1367.9
557 3009.6 84.8 5666.7
625 2570.9 98.1 3770.8
702 626.2 117.9 3254.8
787 302.6 139.1 1044.4
884 148.8 133.9 526.1
992 216.6 123.3 550.1
1114 96.6 150.2 221.6
1250 219.6 214.6 351.9
1402 286.8 303.6 248.8
1574 131.7 389.8 105.4
1767 107.1 370.4 373.7
1984 39.6 299.5 402.3
2227 13.6 264.2 154.9
2500 42.6 961.3 172.1
2806 85.8 1305.8 318
3149 103.4 1460.4 166.4
3535 106.8 734.4 874.7
3968 205.8 1098 574.8
4454 87.9 2718.1 292.3
5000 161.3 1318 505.2

Table A-3(a):

48

"Foot" Impedances for 3/8" Mount, X-Direction Tap.




Table A-3(b):

1/6-Octave | X-Direction | Y-Direction | Z-Direction
Freq Lbf-Sec/ Lbf-Sec/ Lbf-Sec/
Hz Inch Inch Inch
197 401 17.8 260.2
221 545.5 22.6 312.2
248 522.4 27.1 306
278 549.9 33.7 411
312 913.7 32 588.8
351 904.9 49.8 710.1
394 670.9 52.4 694.9
442 975.3 76.7 916.8
496 1211.7 84.4 1884.2
557 1516.7 109.4 3478.1
625 2856.5 120.2 4143.2
702 3818.5 190.7 1063.6
787 4550.9 201.6 545.7
884 880.6 162.5 315.8
992 279.8 383.4 157.8
1114 601.2 243.5 470.1
1250 159.4 467.4 417.8
1402 210.2 600.4 298.7
1574 104.1 369 65.3
1767 694.3 524.5 180.1
1984 570.9 819.9 766.9
2227 222.6 189.7 498.1
2500 224.5 815.6 90.9
2806 289.1 543.5 690.4
3149 177.5 1017.5 288.5
3535 1526.2 332.7 229.3
3968 514 260.9 346.5
4454 496.1 508.9 364.5
5000 676.1 740.5 169.2
"‘Foot" Impedances for 3/8" Mount, Z-Direction Tap.
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1/6-Octave | X-Direction | Y-Direction | Z-Direction
Freq Lbf-Sec Lbf-Sec Lbf-Sec
Hz inch Inch inch
197 230.1 10.6 231.6
221 689.3 9.4 244.9
248 1593.1 12.6 309.7
278 2283.2 17.8 467.7
312 1435 27.1 1021.9
351 1134.5 36.1 964.6
394 21447 73 795.4
442 652.1 15.7 339.2
496 3545.2 21.6 525.2
557 3275.5 41.6 1002.7
625 1542.9 34 952.5
702 1278.8 117.6 953.8
787 559.8 33.8 1500.8
884 447 1 29.7 1446.6
992 318.7 117.9 535
1114 719.1 68.9 365.7
1250 549.2 43.1 971.3
1402 3452.3 108.8 2301.2
1574 945 221 7246.7
1767 1691.6 82.2 1409.1
1984 588.4 119.3 749.5
2227 336.3 36.6 1050
2500 630.8 93.9 2467
2806 709.8 95.1 1137.7
3149 1279.8 119 1259.1
3535 613.1 86.5 518.8
3968 1031.4 59 768.2
4454 1831.2 83.2 2908.4
5000 1454 103 876.7

Table A-3(c): "Foot" Impedances for 3/8" Mount, Y-Direction Tap.
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