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EXECUTIVE SUMMARY

Problems and Objectives: To reduce its logistics burden, the U.S. Army is using aviation turbine
fuel in compression-ignition powered vehicles. However, previous full scale pump stand tests, as well
as isolated reports of field failures, indicate that Jet A-1 may increase wear in rotary-type fuel
lubricated fuel injection pumps. Addition of a simple corrosion inhibitor additive, at higher treatment
levels than qualified under MIL-I-25017E, may reduce wear rate. However, wear mechanisms other
than oxidative corrosion, such as mild scuffing, are also involved. This report evaluates recently
developed fuel-lubricity additives, which may be more effective than those qualified under MIL-I-
25017E.

Importance of Project: The fuel-injection system is central to the reliable operation of compression
ignition engines. Rapid failure of these components may occur with low lubricity fuel, such as
kerosene. A more effective lubricity additive could significantly improve readiness of vehicles
operated with Jet A-1 kerosene. However, little data exists to compare recently developed,
commercially available lubricity additives. :

Technical Approach: A range of lubricity additives were obtained from commercial sources.
Laboratory scale tests were performed to define the effects of these additives on lubricity and
water-separation characteristics of a severely refined Jet A-1 fuel. More detailed laboratory tests
were performed with the better additives. However, any laboratory scale test is only an indicator of
real world performance. As a result, full scale pump stand tests were performed to define the benefits
provided by the most effective additive at two concentrations. To facilitate direct comparison with
the existing database, the pump stand test procedure was identical to that used in previous studies.

Accomplishments: The effectiveness of the lubricity additives varied considerably when evaluated
in the laboratory scale tests. The most effective additive was identified as that which produced
greatly reduced wear at a low concentration with minimal effect on water-separation characteristics.
The pump tests confirmed that an additive concentration of 80 mg/L presented significant benefits,
with a slight further improvement up to 200 mg/L. However, it should be recognized that
injection-system performance may be affected by other fuel attributes, such as viscosity and water-
separation characteristics, which may not be improved by lubricity additives.

Military Impact: This study confirms that the use of highly refined Jet A-1 in a temperate climate
may produce accelerated wear of rotary fuel-injection pumps. A lubricity additive was identified that
significantly improves injection-system durability with Jet A-1. The additive was slightly more
effective than dilineoleic acid, the additive chemistry currently qualified under MIL-I-25017.

i DTIC QUALIYY INSPRECTED 3
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I. OBJECTIVE

The objective of this study is to define the effectiveness of recently developed, commercially available
fuel lubricity additives. These additives will be compared to corrosion inhibitors qualified under MIL-
1-25017 (1)" and a high-sulfur no. 2 diesel fuel.

II. BACKGROUND
The U.S. Department of Defense is moving toward the use of a single fuel, JP-8, in ground
equipment. (2,3) In arelated area, other countries are already mandating severe restrictions on sulfur
and aromatic content in their diesel-fuel specifications. This trend,directed toward reducing
vehicle-exhaust emissions may benefit fuel quality, ignition ratings and stability. Laboratory studies
and recent field experience in Sweden and the United States suggest a reduction in the ability of fuels
to lubricate sliding components within the fuel-injection system. These factors, combined with the
trend toward increasing injection pressure in modern engine design, are likely to result in reduced
durability and failure of equipment which utilize rotary-type fuel lubricated fuel injection pumps to

meet long-term emissions compliance.

Diesel-fuel specifications have intentionally remained broad to allow the maximum availability of the fuel
and lowest possible price.(4) Historically, many developed nations have allowed a high sulfur content in
the range of 0.5 mass percent (mass%o), with no specification on aromatic content.(5) The industrialized
nations are currently tightening diesel-fuel quality specifications, with elimination of sulfur being the
primary concern. Reduction in sulfur content will minimize formation of sulfuric acid in the atmosphere
and will facilitate future development of platinum-catalyzed particulate traps.(4) Data generated in a
cooperative study sponsored by the Coordinating Research Council (CRC) as part of their Vehicle
Emissions Program (VE 1) confirmed the primary importance of sulfur in emissions. (6, 7) However, the
VE 1 study indicated that exhaust hydrocarbons, carbon monoxide, oxides of nitrogen, and particulate
matter were also marginally reduced by decreasing aromatic content. Later studies have indicated that

cetane number may be more directly related to emissions than aromatic concentration alone.(8)

“Underscored numbers in parentheses refer to the list of references at the end of this report.
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A selection of the relevant fuel specifications from around the world is summarized in TABLE 1. In
1991 and 1992, Sweden defined several new fuel classes that regulate a number of characteristics,
including sulfur and aromatic content. Different tax classes were designed to provide economic
incentives to use the clean burn Class I and II fuels rather than the higher sulfur Class III fuel. In the
In October 1993, the United States Environmental Protection Agency limited the maximum fuel
sulfur content to 0.05 mass% from its previous level of 0.5 mass%. Additionally, aromatics were
restricted by either a 40 minimum cetane index or a 35-vol.% aromatic limit. Based on the VE 1
study, the California Air Resources Board (CARB) mandated an additional requirement of 10-vol.%
aromatic in diesel fuel sold in California. Japan is scheduled to implement legislation to reduce sulfur

content within the next few years.

TABLE 1. Fuel Classes

Maximum  Maximum Minimum  90% Point, Mean

Fuel Class Introduced Sulfur, Aromatic, Cetane °C SLC*,
ppm vol.% grams
Sweden/Class | 1991 10 5 50 285 (95%) 1,200**%
Sweden/Class i 1991 50 5 47 295 (95%) 1,400™%x
Sweden/Class Il 1991 3,000 -- 46 340 -
Europe 1994 2,000 -- 48 - 3,800%
Europe/CEN 1996 500 -- 49 370 N/A
Japan Pre- 1997 2,000 -- 45 350 N/A
Post-1997 500 -- 45 350 N/A
USA/VV-F-800 Pre- 1993 5,000 -- 40 338 3,866
USA/EPA . Post-1993 500 350 40 338 3,086
USA/CARB Post-1993 500 100 43 320 3,081

* SLC = Scuffing Load Capacity

** Later Swedish fuels that contained lubricity additives had an SLC in excess of 3,000 grams.

% Represents data obtained from a small number of samples.

** Aromatic limited to 35 vol.% or a minimum cetane index of 40.

¢Fuel intended for use in California must have an aromatic content below 10 vol.% unless shown to
produce emissions below that a CARB-specified referee fuel.




Most components within the fuel-injection system rely on fuel for effective lubrication and wear
resistance. Many kerosene and low-sulfur fuels are severely refined. Hydrotreating reduces trace
components, such as oxygen- and nitrogen-containing compounds and polycyclic aromatics. These
naturally occurring, chemically active and polar compounds, which provide additive solubility and
some lubricating qualities in formulated oils, are the only active components present in non-additized

fuels to reduce wear.

To date, the Army has evaluated a number of those additives qualified under MIL-I-25017 for the
improvement of diesel or kerosene fuel lubricity characteristics. While treatment with this additive has
proved successful, the required treat rates are relatively high, ranging from 100 to 250 parts per million,
which represents a ten-fold increase over the recommended treatment levels spéciﬁed for aircraft
applications. Additionally, this additive was not originally intended as a diesel-fuel lubricity additive and
can produce unwelcome side effects, such as decreased water-shedding tendencies at higher treatment -
levels. Other cbmmercia]ly available diesel-fuel lubricity additives are available in the United States. The
present study will evaluate the effectiveness of these additives and identify any potential side effects.

lll. APPROACH

A. Summary of Technical Approach

Laboratory scale wear tests were performed to compare the effectiveness of commercially available
fuel lubricity additives. The additives were also evaluated using laboratory tests for water-separation
characteristics, according to ASTM procedures D 3948 and D 1094.(9, 10) These tests reflect the
difficulty in coalescing water from the fuel. Surfactants and antiwear additives affect the ability of
filter separators to remove free water prior to entering the engine. A number of laboratory scale wear
tests for fuel lubricity are available. Directional correlation has been shown between the laboratory
scale tests and full scale equipment.(5, 11) However, no laboratory scale wear test is completely
accurate under all conditions. In a full scale pump, viscosity, pressure viscosity coefficient, operating
temperature and fuel composition combine to create a complex lubrication process. In addition, the
wear conditions in most laboratory scale tests are accelerated to produce results in a reasonable
period, which may also affect accuracy. As a result, the most effective lubricity additive, as defined

using the laboratory scale tests, was evaluated using a 200-hour full scale pump test. Overall



degradation in performance was defined by operating each pump on a calibration stand before and
after each test. Finally, each pump was completely disassembled, and qualitative and quantitative
wear measurements were performed. The results were compared to baseline pump test data, obtained

under identical conditions as described in Reference 19 .

B. Laboratory Scale Wear Tests

Laboratory scale wear tests were performed using both the Ball on Cylinder Lubricity Evaluator
(BOCLE) and the high frequency reciprocating rig (HFRR). The principal test conditions used with
both machines are summarized in TABLE 2. A more detailed description of the procedures may be

obtained in References 12 and 21.

TABLE 2. Operating Conditions for Laboratory Wear Tests

BOCLE BOCLE

Test Parameter (SLWT) (ASTM D 5001) HFRR
Applied Load, kg 1 to 5 (variable) 05 0.2
Speed 525 RPM 240 RPM 50 Hz
Break-in, sec/kg 30/0.5 None None
Duration, min 1.0 30 75
Atmosphere Controlled Air Controlied Air Uncontrolled
Humidity, %Rh 50 10 Ambient
Temperature, °C 25 25 25 or 60
Pass/Falil 2.8kg 0.65 mm 0.38/0.45 mm*

* Depending on test temperature

The HFRR consists of a reciprocating 0.25 inch ball in contact with an opposing polished flat. The
test apparatus is completely computer controlled, with continuous measurement of both friction
coefficient and contact resistance. The HFRR test is performed at 25°C, over a period of 75 minutes.
A test procedure at 60°C is also available, but was not performed because it would have caused
excessive evaporation of the relatively light Jet A-1 fuel used in the present study. Following each
test, the ball specimen is removed from the reciprocating holder and the dimensions of the wear scar

measured using an optical microscope. The mean diameter of the wear scar is taken as a measure of
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lubricity. A wear scar diameter in excess of 0.38 mm is normally considered to indicate poor fuel

lubricity in tests performed at 25°C.

Two procedures exist for the Ball on Cylinder Lubricity Evaluator. The first is commonly referred to as
the Scuffing Load Wear Test (SLWT) and determines the minimum applied load required for a step
transition to adhesive scuffing.(12) During testing, the fluid is placed in a humidity-controlled reservoir.
A nonrotating steel ball is held in a vertically mounted chuck and forced against an axially mounted
polished steel ring. A sequence of one-minute tests is performed, and the applied load is systematically
changed until a disproportionate change in friction and wear is observed. The test cylinder is rotated at
a fixed speed while being partially immersed in the fluid reservoir. This partial immersion maintains the
cylinder in a wet condition and continuously transports the test fluid to the ball/cylinder interface. The
minimum applied load required to produce a transition to severe friction and wear is a measure of the
fluid-lubricating properties and is inversely related to wear. A Scuffing Load Capacity (SLC) below 2800
grams is normally considered to indicate poor fuel lubricity.(11, 13) However, this value is dependent on
a number of factors, including fuel viscosity, operating temperature and humidity.

A second BOCLE procedure, defined in ASTM D 5001, is widely used with aviation fuels but was
excluded in the present work.(14) The ASTM D 5001 test measures the diameter of the wear scar
formed on a test ball following 30 minutes of continuous, lightly loaded sliding. The principal wear
mechanism is oxidative corrosioh, which is significant only in the most severely refined fuels. The
oxidative mechanism is eliminated by trace quantities of natural or artificial compounds that act as
corrosion inhibitors. In fact, this test is primarily used to qualify the very low concentrations of corrosio
inhibiting/lubricity additives specified in MIL-I-25017, as used in JP-8. Further increases in additive
concentration have no effect on the very mild ASTM D 5001 BOCLE test. In reality, the load carrying
ability of the fuel is improved by higher concentrations of anti-wear compounds, a fact reflected by the
SLWT and HFRR tests. As a result, the ASTM D 5001 BOCLE test is only capable of predicting the
poorest lubricity fuels, while the SLWT and HFRR remain viable over the complete spectrum of fuels.

C. Test Fuel and Additives
The laboratory and full-scale pump stand tests were performed with a Jet A-1 fuel of known low

lubricity. This fuel has both very low viscosity and sulfur content. A complete summary of its




chemical and physical properties is provided in Appendix A. A sufficient volume of fuel was
obtained to allow completion of the required test matrix from a single batch. Tests were
performed using this fuel, both with and without additives. Eighteen lubricity additives were
obtained directly from the original manufacturers. All but two of the additives, which are
experimental in nature, are commercially available. The chemical composition of the additives
are proprietary. Laboratory scale tests were also performed using DCI-4A and NATO S-1750.
DCI-4A is a corrosion inhibitor additive qualified under MIL-1-25017 and is primarily dilineoleic
acid. NATO S-1750 is a multipurpose additive for diesel engines used by three NATO countries
(i.e., BE, FR and NL),and is described by the French DCSEA 751 issue specification.

Data from full-scale pump stand tests, performed under identical test conditions with Jet A-1 fuel
containing 30 mg/L of DCI4A and also reference no. 2 diesel fuel, are also included. These tests
were previously reported in Reference 19 and should be directly comparable to those in the present
report. The Jet A-1 fuel is identical to that used in the present tests. The reference n0. 2 diesel fuel
has excellent lubricity, with a scuffing load capacity of approximately 5000 grams. The remaining
chemical and physical properties of the reference no. 2 fuel are defined in Appendix A. '

D. Pump Test Procedure

Three standard (Model No. DB2829-4524) and three arctic fuel pumps (Model No. DB2829-4523) were
procured. The arctic component corresponds to that currently used on the High Mobility Multipurpose
Wheeled Vehicle (HMMWYV). Both pump models are identical in configuration, but the arctic pump
contains an improved metallurgy in certain critical components. A more complete description of the
Stanadyne pump and a schematic diagram are provided in Reference 19. For reference, each pump was
assigned a code, shown in TABLE 3. Test results, performed under identical conditions and previously
reported in Reference 19, are included as Pump Codes 7, 8, 9, and 10.



TABLE 3. Fuel Injection Pump Code Sheet

Additive Additive

Code No. Pump Type Serial No. Fuel Type Conc. mg/L
1 Standard 8239197 Jet A-1 None None
2 Arctic 8164640 Jet A-1 None

3 Standard 8239198 Jet A-1 Commercial 80

4 Arctic 8164642 Jet A-1 Commercial 80

5 Standard 8239209 Jet A-1 Commercial 200

6 Arctic 8066006 Jet A-1 Commercial 200
7 Standard* 6627505 Jet A-1** MIL-I-25017 30

8 Arctic* 6624984 Jet A-1* MIL-1-25017 30

9 Standard* 6627507 DF-2*** None None
10 . Arctic* 6624981 DF-2*** None None

*Data taken from Reference 19
**Jet A-1 containing additive qualified under MIL-1-25017 is effectively JP-8
***Test fuel used in Caterpillar 1-H2 Lubricants test

The pumps were not disassembled prior to testing, and no quantitative pretest dimensional
measurements were taken on individual pump components. A number of previous studies in this
area have attempted to record the weight loss of parts subject to wear.(15) However, previous
work at BFLRF with Stanadyne pumps has indicated that equally accurate post-test measurements

are possible using surface profilometry.(16,17)

Prior to testing, each pump was placed on a calibration stand, and the fuel delivery and
injection timing were precisely defined in accordance with the manufacturer's
specifications.(18) Complete descriptions of the calibration procedure, results, and
manufacturer's tolerances are provided in Appendix B. Because some tolerance is built into
the manufacturer's specifications, the operating characteristics of each pump were precisely
recorded. These results were maintained for comparison, and similar measurements were
taken after completion of the pump stand tests. After these initial measurements were taken,
no modifications or adjustments were made to the pumps until the test series and subsequent

reevaluation on the calibrated test stand were completed.




An arctic pump and a standard pump were tested simultaneously on a Unitest stand. Pump
performance was continuously monitored so that the test could be terminated prior to catastrophic
failure. To ensure a realistic environment, the mounting arrangement and drive gear duplicate that
of the GM 6.2L engine. A schematic diagram of the fuel delivery circuit is shown in Fig. 1. For this
study, 250 gallons of test fuel were maintained in an enclosed reservoir and was continuously
recirculated throughout the duration of each test. A centrifugal supply pump provided a positive head
of 3 psi at the inlet to the test pumps. A primary (sock) filter (AC Part No. T935) and a cartridge
filter corresponding to that used on the 6.2L engine in the HMMWYV (GM Part No. 14075347) were
used to remove wear debris and particulate contamination. Finally, a 5-kW explosion-resistant
circulation heater produced the required fuel-inlet temperature. The heater has a relatively low-watt
density of 15 W/in.? to minimize fuel degradation due to flash heating. A 40-liter (11-gal.) reservoir
was placed in line after the heater to ensure that the fuel supply temperature remained stable as the
thermostat cycled. Each pump was fully insulated using rockwool to ensure that the temperature of
the complete unit was similar to that of the incoming fuel.
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Figure 1. Schematic Diagram of Fuel Delivery Circuit
g

The high-pressure outlets from the pumps were connected to eight NA52X fuel injectors from a
GM 6.2L engine and assembled in a collection canister. Fuel from both canisters was then
returned to the bulk storage tank via a common return line. A separate line to the bulk storage .
tank was used to carry excess fuel from the governor housing. Fuel-to-water heat exchangers on

both the return lines from the injector canisters and the governor housing controlled the
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temperature of the fuel. J-type thermocouples were placed at the inlet side of each pump and in
the bulk storage tank. The temperature of the fuel reservoir was maintained below the minimum
flash point of Jet A-1 (given in Appendix A) to minimize evaporation of the lighter fractions in
the fuel. A pressure gauge was placed at the inlet to each pump, and a separate tool was
manufactured to allow continuous measurement of the internal transfer pump pressure during

normal operation.

IV. RESULTS
A. Laboratory Scale Tests

The results of initial screening tests are provided in TABLE 4. The peat Jet A-1 fuel has very poor
lubricity and good water-separation characteristics. Each additive was initially tested in Jet A-1 at the
concentration(s) recommended by the manufacturer. If the manufacturer recommended a range of
concentrations for the additive, then it was evaluated at more than one concentration. Additive A-4
failed to dissolve completely and was eliminated from further testing. Because additives D-4 and D-5

are not commercially available, they were excluded from more detailed study.

A wide variation in additive effectiveness was observed. Only two additives, C-2 and E-2, are
capable of increasing the scuffing load capacity to 2500 grams or more. A large reduction in wear
rate was also observed in the HFRR tests, with a slight effect on water-separation characteristics. The
results of more detailed testing with additives C-2 and E-2 are provided in TABLE 5. Baseline tests
are also included for Jet A-1 containing NATO S-1750 and DCI-4A. The NATO S-1750 produced
a slight increase in scuffing load capacity, but had no deleterious effects on water-separation

characteristics.

DCI-4A was not particularly effective in either of the wear tests reported in TABLE 5. This
additive is qualified under MIL-I-25017 for use at a concentration of approximately 22 mg/L to

reduce oxidative wear in kerosene fuels. Oxidative corrosion may occur in compression ignition
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equipment, but will be eliminated by all the additives in the present study. This wear mechanism
is best measured using the ASTM D 5001 test. The more severe wear tests designed for use with
diesel fuel recorded only a slight improvement in lubricity at low concentrations of this additive.
However, a significant improvement was recorded by both the SLWT and the HFRR wear test

at a DCI-4A concentration of 125 mg/L and again at 250 mg/L.

Commercial additive E-2 improved lubricity, as measured by the HFRR and SLWT, at a
concentration of 60 to 80 mg/L. At concentrations of 130 and 175 mg/L, additive E-2 showed
a slight additional improvement. The water interface and separation results for additive E-2 were
similar to those for DCI4A, while the results from the ASTM D 3948 microseparometer test were
somewhat better than those for DCI-4A. The neat fuel gave a perfect result of 100, which
indicates that almost no surface active substances are present. At a concentration of 175 mg/L,

additive E-2 still produced a good ASTM D 3948 result of 87.

Overall, the results of the laboratory scale tests indicate that additive E-2 is most effective.
Additive C-3 required significantly higher concentrations for good lubricity. The DCI-4A
additive, qualified under MIL-1-25017, performed well, but remained slightly less effective than
additive E-2, with a larger affect on water-separation characteristics. As a result, additive E-2 wasv

selected for evaluation in the full scale pump stand tests.
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B. Full-Scale Pump Stand Test Data

As detailed in TABLE 3, full-scale pump stand tests were performed using neat Jet A-1, as well as
Jet A-1 containing both 80 and 200 mg/L of additive E-2. The pumps were inspected at regular
intervals throughout each 200 hour test. Measurements taken for each of the six pumps are provided
in Appendix C. The data includes ambient temperature and humidity, along with fuel temperature at
the inlet to the pump, at the outlet from the pump and in the fuel-storage drum. Fuel pressure was
measured at the inlet to the pump, within the pump housing, and in the low-pressure fuel return line

following the collection canister.

Each of the pumps successfully completed the 200-hour test with no obvious failures. The
fuel delivery is plotted in Figs. 2 and 3 for the standard and arctic pumps respectively. The
plotted data represents the fuel flow through the high-pressure injectors and does not contain
the low-pressure excess fuel return from the pumps. In general, little or no variation in pump
delivery was observed during the 200-hour tests. However, a significant increase in delivery
was observed with neat Jet A-1 following 175 hours of testing. This increase was probably
due to wear of the rotor-retainer spring. Wear tests were performed with each test fuel
following completion of the 200-hour test. Little or no variation in fuel lubricity was
observed in tests performed with the HFRR and the SLWT. This indicates that the
composition of the test fuel was not significantly affected by degradation or contamination

during the extended pump test.
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C. Pump Calibration Stand

After completion of the 200-hour tests, each pump was reevaluated on a calibrated test stand. The
pump characteristics were measured using the conditions specified by the manufacturer (18),
repeating those made prior to testing. Both the pretest and post-test measurements are provided
in Appendix B. As expected, the pretest pump measurements were all within the range specified
by the manufacturer. Following the 200-hour test, with pumps 1 and 2 operated with neat Jet A-
1, the transfer pump pressures were slightly below the range specified by the manufacturer. By
comparison, little or no variation was observed for the remaining pumps, which operated on
additized Jet A-1. Overall, a significant degradation in pump operating performance was not

produced during any of the 200-hour tests.

D. Full-Scale Pump Disassembly and Wear Measurement

The post-test pump operating characteristics described in the previous sections are a complex
function of the degradation and wear processes distributed throughout the pump. Some
components, such as the drive tang and slot, will have no effect on the performance as measured
on the calibrated test stand. Wear of other components, such as the transfer pump vanes, may not
be evident until a critical level is reached. An accurate measure of additive effectiveness requires

quantitative measurement of wear throughout the pump.

Particular attention was given to areas of the pump previously demonstrated to be susceptible to
wear when used with low-lubricity fuels.(16, 17, 19, 20) Furthermore, the metallurgy in many
of these components was upgraded in the arctic kit, facilitating quantitative comparison between
the standard and arctic pumps. The following components were selected and include a wide range

of contact conditions:

a. Transfer pump blades e. Governor weights
b. Drive tang f. Cam roller shoe
c. Drive slot g. Rotor retainers

d. Governor sleeve thrust washer

16



The wear volume (mm® x10?

) measured in each of the pumps described in TABLE 3 is summarized in
TABLE 6. The dimensions of each wear scar were normally defined from surface profiles taken using
a Talysurf profilometer, although optical microscopy was also used in some instances. A more complete

description of the wear measurement procedure is available in Reference 19.

TABLE 6. Wear Volume on Selected Pump Components (mm® x 10%)
(NOTE: Bold text denotes arctic components with improved metallurgy.)

Pump Drive Drive Thrust Governor Roller Rotor

Blades Tang Slot Washer Weight Shoe Retainers
Pump No. 1 149 11025 4725 599 84 183 2640
Pump No. 2 10 4752* 1440 141 137 327 2442
Pump No. 3 2 640 176 80 60 17 1884
Pump No. 4 2 50 60 150 123 57 1635
Pump No. 5 2 91 41 239 89 7 990
Pump No. 6 3 14 14 183 95 3 -
Pump No. 7** 5 147 112 145 132 19 1188
Pump No. 8** 3 28 60 192 - 96 30 1188
Pump No. 9** 7 101 31 - 36 38 929

Pump No. 10™* 2 5 36 135 36 24 132

*Data taken from Reference 19
**This pump was provided to SWR! as an arctic pump but did not contain the modified drive tang

Clearly, a wide variation in the severity of the wear process exists among the components selected
for quantitative wear measurement. Many contacts are lightly loaded and produce a corrosive
wear mechanism with neat Jet A-1,resulting in a polished-surface topography. The inside of the
aluminum housing on both the arctic and standard pumps that operated on neat Jet A-1 contained
a brown rust deposit, while the pumps that operated on additized Jet A-1 were relatively clean.

No evidence of oxidative corrosion was present with any additized fuel. A similar effect was

previously discussed in Reference 19.




In general, severe wear is present throughout the complete standard pump (pump no. 1) that
operated on neat Jet A-1. Severe wear, due to an adhesive mechanism, was present on highly
loaded areas, such as the drive tang and roller shoe, when compared with tests performed with
additized fuel. Photographs of the wear scars on selected components are provided in Appendix
D. The DCI4A and the E-2 additives successfully reduced wear throughout the pump, sometimes
by over an order of magnitude. Increasing concentrations of the E-2 additive from 80 to 175 mg/1
showed only slightly improvement. Surprisingly, additive E-2 was no more effective than
DCI-4A in reducing wear on the components discussed in TABLE 6. In fact, the simple
dilineoleic acid type additive was used at only 30 mg/L, compared to the 80 and 200 mg/L for the
E-2 additive. Overall, the baseline tests with conventional high-sulfur diesel fuel produced least
wear (pumps 9 and 10), probably due to a combination of good lubricity and relatively high

viscosity.

The wear observed on arctic components is denoted using bold text in TABLE 6. The improved
metallurgy of the arctic components significantly reduced the amount of wear present on pump
vanes lubricated with neat Jet A-1. However, pump no. 2 came from the manufacturer with a
standard drive tang in place of the correct arctic component. As a result, no conclusion can be
drawn for either the drive tang or drive slot on this pump. The arctic components prodﬁced a
slight further reduction in the measured wear rate with the better lubricity fuels when compared
with the standard components. Clearly, the arctic kit improves pump durability, particularly with
low-lubricity fuels. It should be noted, however, that only a limited number of components have
the improved metallurgy. The governor thrust washer was the only revised component that was
not improved by the new metallurgy. However, in the present case, the degree of wear of this
component was not found to be critical, but was reduced by the use of lubricity additives. A

similar effect has been observed in previous reports. (19)

Only seven .components were selected for quantitative wear measurement. Detailed wear
measurement on the complex geometries of every component in each of the pumps is prohibitively

difficult. Instead, the procedure developed in previous reports (16, 17) was used; wear-prone

18



components throughout each pump were subjectively graded from O to 10 according to the degree of

wear present. The results of this process are given in TABLE 7.

TABLE 7. Subjective Wear Level* on Critical Pump Components

Pump

Component | 1 2 34 56 7.8 91

Hydraulic Head & Rotor

" Distributor Rotor
Delivery Valve
Plungers
Cam Rollers & Shoes
Leaf Spring & Screw
Drive Shaft Tang
Cam

NOINAEOIAN
NNNMNNMNNNO

Governor Governor Weights
Governor Thrust Washer
Governor Thrust Sleeve
Metering Valve

AN B OO0 N
S NN D NAENDEAAEAN
AN D NNNBARNL_O

NNDNODN

Transfer Pump Pressure Regulator
Regulating Piston
Blades
Liner
Rotor Retainers

OSoPD OORD AJIHLhDDOD
ObRDAE ADRAE NONOAAN
OONBdE NARAN NNNOOAN

DANDE
OO PN
AN DPOD

(o] DO EAN NN D NONPROEN
NNNAEN

(=] DA BNN AN A
L) NANMDM NNDNDDN NNMDNNDNNO

[¢)]
()]
IS
S
[o)}
N
N

Advance Piston

* 0 = No Wear; 10= Failure.
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The average results derived from all the components in each complete pump are summarized in
Fig. 4. This subjective measure of pump durability qualitatively agrees with the measurements
taken from selected components. The improved metallurgy in the arctic components normally
reduced wear, with a particularly large decrease for neat Jet A-1. Each of the lubricity additives
significantly reduced wear, although least wear was recorded for high-sulfur diesel fuel. Wear
rate for Jet A-1 with 80 mg/L of additive E-2 was only slightly lower than that observed for 30
mg/L of DCI-4A. However, a further reduction in wear rate was observed when the

concentration of additive E-2 was increased to 200 mg/L.

DFSC3

] Standard Pumps
Arctic Pumps

III|IIIII‘IIII'IIIIIIIIII!III‘I)|D

Subjective Pump Rating (0 Good, 5 Failed)

Figure 4. Subjective Wear Level on Pump Components-Averaged for Each Pump
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V. DISCUSSION

The effectiveness of fuel lubricity additives was evaluated using laboratory scale tests as well
as full scale pump stand tests. The laboratory scale screening tests were performed using
a range of commercially available lubricity additives in a severely refined Jet A-1 fuel.
Significant differences were observed in the effectiveness of the additives tested. The most
effective additive was evaluated in full scale pump tests at two different concentrations. The
200-hour test duration was not sufficient to produce a significant deterioration in pump
performance, with or without additive. Nonetheless, relatively severe internal pump wear
was observed with the Jet A-1 fuel, while the lubricity additives reduced wear to a level

approaching that observed with the reference no. 2 diesel fuel in previous studies.(19)

A large data base of laboratory and full scale pump data now exists at SWRI. The results
obtained using the SLWT are compared to wear produced in previous full-scale pump tests
in Fig. 5 using hollow symbols.(11) The results obtained with the test fuels used in the
present study are taken from TABLE 7 and depicted using solid symbols. Good correlation
was observed between the laboratory tests and full scale pump wear, with an overall
correlation coefficient 0.81 for the complete data base. Much of the pump test data was

produced by the original manufacturers, and significantly higher correlations were observed

among individual equipment types.
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Figure 5. Correlation Between Scuffing I.oad Wear Test
and Full Scale Pump Data

The present data is in general agreement with the trends of earlier tests, with the good-lubricity,
high-sulfur reference number 2 diesel fuel and the poor-lubricity Jet A-1 fuel both falling close
to the best-fit correlation line. The lubricity additives had a marginally greater effect on pump
wear with Jet A-1 fuel than predicted by the SLWT. In particular, Jet A-1 with 30 mg/L of DCI-
4A produced a result of only 1700 grams but still demonstrated relatively mild pump wear. As
a result, each of the lubricity additives produced similar wear rates in the full scale pump, even
though the SLWT and HFRR wear tests indicated that the E-2 additive should be measurably
better than DCI-4A. The reason for this result is unclear but may be due to the presence of an
oxidative corrosion wear mechanism in addition to the more severe adhesive mechanism produced
by the SLWT and HFRR tests. In addition, larger differences in pump performance may have

been apparent following a longer operating period than the 200 hours used in the present. work.
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VI. CONCLUSIONS

Unacceptably severe fuel-injection system wear may be produced by use of neat Jet A-1
fuel.

Pump wear rate may be significantly reduced through use of fuel-lubricity additives at

concentrations below 100 mg/L.

Fuel 1ubric£ity additive E-2 was the most effective chemistry evaluated in laboratory tests,

with minimal effects on water-separation characteristics.

Additive E-2 reduced pump wear at a concentration of 80 mg/L. A slight additional
reduction in wear rate was produced at 200 mg/L, at the expense of poor water-

separation characteristics.

DCI-4A corrosion inhibitor additive, qualified under MIL-I-25017E but used at ten times
the recommended allowable concentration, reduced pump wear to a level approaching

that observed with additive E-2.

Directional correlation was observed between the pump durability tests and the HFRR

and SLWT laboratory scale wear tests.

Lubricity additives were more effective in reducing full scale pump wear than would

have been predicted by the laboratory scale wear tests.

Pump durability was improved through use of arctic components that contain improved
metallurgy.
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APPENDIX A

Characteristics of Jet A-1 Test Fuel




Specifications
Test Minimum Maximum

Gravity, °API 37.0 51.0
Density, kg/m 0.775 0.840
Color Report
Distillation, °C

Initial Boiling Point

5%

10% 204

20%

30%

40%

50%

60%

70%

80%

90%

95%

End Point 300

Recovery, vol%

Residue, vol% 1.5
Loss, vol% 1.5
Sulfur, wt% 0.300

Doctor Test Negative
Freeze Point, °C -47.0
Flash Point, °C 38
Viscosity, c¢St, at -34°C 8.0
Viscosity, cSt, at 40°C
Copper Corrosion 1B
Existent Gum, mg/100 mL 7.0
Particulates, mg/L 1.0
Smoke Point, mm 20.0
WSIM Report
Hydrocarbon Composition, vol%
Aromatics 20.0
Olefins 5.0
Saturates Report
Acidity, total (mg KOH/g) 0.015
Net Heat of Combustion, MJ/kj 42.80
JFTOT, mm Hg 25.0
JFTOT, TDR 12
Water Reaction 1B
Separation Rating, max. 2.0
Interfacing Rating, max. 1B

TABLE A-1. U.S. Jet A-1 Turbine Fuel

29

Result

49.5
0.782
+25

160
165
167
169
170
172
175
178
182
187
195
207
218
99.1

0.9

0.0
0.002
Negative
-59.5

4
4.2
1.07
1B
3.4
0.8
29.0
99

8.1
0.0
919 .
0.004
43.54
0.0
1
1A
0.0
1A



TABLE A-2. Reference No. 2 (Cat 1-H) Diesel Fuel

Test

Gravity, °API
Distillation, °F (°C)

Initial Boiling Point

5%

10%

20%

30%

40%

50%

60%

70%

80%

90%

95%

End Point

Recovery, vol%

Residue, vol%

Loss, vol%
Cetane Number
Flash Point, °F (°C)

188 (87)
Cloud Point, °F (°C)

24 (-4)
Pour Point, °F (°C)

15 (-9)

Water and Sediment, vol%
Sulfur, wt%
Ash, wt%
Viscosity, cSt, at 40°C
Copper Corrosion
Neutralization No., mg KOH/g
Ramsbottom, 10% residium, wt%
Net Heat of Combustion, MJ/kj

30

Specifications
Minimum Maximum
33.0 35.0
500 530
590 620
650 690
47.0 53.0
140 (60)
20 (-7)
0.05
0.38 0.42
0.010
2.00 4.00
2
0.15
0.20

Result

34.1

400 (204)
449 (232)
462 (239)
476 (247)
489 (254)
501 (261)
515 (268)
531 (277)
550 (288)
573 (301)
611 (322)
642 (339)
669 (354)
99.0

1.0

0.0
50.0

<0.05
0.39
0.001
3.00
1A
0.07

-0.10

42.41



APPENDIX B

Pump Calibration Stand Results
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Pump Calibration Stand Measurements

Both the pretest and post-test pump calibration series were performed at a local San Antonio Stanadyne-
appointed dealer. Initially, the pumps were set to within the limits specified in "Stanadyne Injection Pump
Specification for Customer Part No. 23500414." In addition, the exact values were recorded in each
instance for comparison with the post-test measurements. The results of these measurements are provided
in Tables B-1 to B-8. The test stand conformed to ISO 4008 with SAE 0968/ISO 7440 calibrating
injectors. The calibration fluid was Viscor conforming to SAE 0967/ISO 4113. The fluid supply
temperature to the pump was maintained between 110° to 115°F (43° to 46°C) at a pressure of 5 + 0.5
psi (34.5 + 3 kPa). The pump was operated for 10 minutes prior to calibration to allow the system to
stabilize. The computerized stand provided a digital readout of pump delivery per stroke at the required
test speeds, eliminating errors. Injection advance is measured by a mechanical attachment that follows

the movement of the cam ring (commonly known as a bat wing gauge).




TABLE B-1. Pretest Pump Delivery

TABLE B-2. Pretest Transfer Pump Pressure

Pump#: Delivery, mm’St at rpm Pump#: - Pressure, psi at rpm
a5 200 1000 1800 1950 75 1000 1800 2100
Spec. >29 >47 51to 55 >46 >44 Spec. >12 70to 76 No Spec <135
1 375 435 54 54.5 52.5 1 30 75 108 130
2 38 48 54 54 51.5 2 18 76 112 140
3 37 50 53 545 52 3 20 76 104 120
4 415 51.5 54.5 56 53 4 20 74 110 135
5 41 49 - 55 53 5 22 74 106 128
6 37 475 54 55 52 6 20 72 106 135
Note: Readings at wide open throttle (St = Stroke). Note: Readings at wide open throttle.
TABLE B-3. Pretest Injection Advance Measurement TABLE B-4. Pretest Sundry Measurements
Pump#: Advance, Degrees on Pump Pump#: RF SO BA
Speed: 325 1000 Units: cc/min mm®/St mm®St
Throttle: LI WOT Spec. 22510375 <4 <8
Spec. >1.5 051t02.5 1 300 0 0
1 4 1.5 2 325 0 0
2 25 1.5
3 375 0 0
3 4 15 4 375 0 0
4 3 1.5
5 375 0 0
5 4.5 1.5 6 375 0 0
6 4 1.5 Note: RF = Return Fuel from Housing to Tank.
- SO = Shut Off Fuel Flow.
Note: LI = Low Idle; WOT = Wide Open Throttle. BA = Fuel Flow at Break-Away Speed (2100 pump rpm).
St = Stroke :
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TABLE B-5. Post-Test Pump Delivery

TABLE B-6. Post-test Transfer Pump Pressure

Pump#: Delivery, mm’St at rpm Pump#: Pressure, psi at rpm
75 200 1000 1800 1950 i 1000 1800 2100
Spec. >29 >47 51to55 >46 >44 Spec. >12 701076 No Spec <135
1 42 55 61 61 61.5 1 16 66 90 110
2 35 47 52.5 54.5 53.5 2 12 68 99 120
3 37 50 54 55 54 3 17 73 100 130
4 40 49 54 55 54 4 16 72 105 130
5 40 48 53.5 55 54 5 18 70 96 118
6 36 48 53 54.5 54 6 16 70 102 126
Note: Readings at wide open throttle (St = Stroke). Note: Readings at wide open throttle.
TABLE B-7. Post-test Injection Advance Measurement TABLE B-8. Post-test Sundry Measurements
Pump#: Advance, Degrees on Pump Pump#: RF SO BA
Speed: 325 1000 Units: cc/min mm?/St mm®St
Throttle: LI WOT Spec. 22510375 <4 <8
Spec. >1.5 0.5t02.5 1 340 0 0
1 25 5 2 340 0 0
2 1.75 5
3 425 0 0
3 4.5 1.5 4 350 0 0
4 3 1.5
5 425 0 0
5 3.5 1.5 6 400 0 0
6 3 1.5 Note: RF = Return Fuel from Housing to Tank.
] SO = Shut Off Fuel Flow.
Note: LI = Low Idle; WOT = Wide Open Throttle. BA = Fuel Flow at Break-Away Speed (2100 pump rpm).
St = Stroke







APPENDIX C

In Test Pump Measurements
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APPENDIX D

Photographs of Wear Scars on Selected Components
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Fig D-2. Drive Tang from Arctic Pump Operated on Neat Jet A-1
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Fig. D-3.
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Fig D-4. Drive Tang from Arctic Pump Operated on Jet A-1 + 80 mg/L, Additive E-2
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Fig. D-S. Drive Tang from Standard Pum
Fig D-6. Drive Tang from Arct




Fig. D-7. Transfer Pump Blade from Standard Pump Operated on Neat Jet A-1

Fig D-8. Transfer Pump Blade from Arctic Pump Operated on Neat Jet A-1
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Fig. D-9. Transfer Pump Blade from Standard Pump Operated
on Jet A-1 + 80 mg/L, Additive E-2
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Fig D-10. Transfer Pump Blade from Arctic Pump Operated
on Jet A-1 + 80 mg/L, Additive E-2
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Fig. D-11. Transfer Pump Blade from Standard Pump Operated
on Jet A-1 + 200 mg/I, Additive E-2

Fig D-12. Transfer Pump Blade from Arctic Pump Operated
on Jet A-1 + 200 mg/I. Additive E-2

54



Fig. D-13. Roller Shoe from Standard Pump Operated on Neat Jet A-1

Fig D-14. Roller Shoe from Arctic Pump Operated on Neat Jet A-1
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Fig. D-17. Roller Shoe from Standard Pump Operated on Jet A-1 + 200 mg/L, Additive E-2
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