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Abstract

In rccent years, rescarchers have established the viability of so called hybrid NN/IIMM
large vocabulary, spcaker independent continuous speech recognition systems, where neu-
ral networks (NN) arc used for the cstimation of acoustic cmission probabilitics for hidden
Markov modcls (IIMM) which provide statistical temporal modecling. Work in this dirce-
tion is bascd on a proof, that ncural nctworks can be trained to cstimatce posterior class
probabilitics. Advantages of the hybrid approach over traditional mixture of Gaussians
bascd systems include discriminative training, fewer paramcters, contextual inputs and
faster sentence decoding.

ITowever, hybrid systems usually have training times that arc orders of magnitude
higher than thosc obscrved in traditional systcms. This is largely duc to the costly,
gradicnt-bascd crror-backpropagation learning algorithm applied to very large ncural net-
works, which often requires the use of specialized parallel hardwarc.

This thesis examincs how a hybrid NN/IIMM systcm can benefit from the use of mod-
ular and hicrarchical ncural nctworks such as the hicrarchical mixtures of cxperts (IIME)
architecture. Bascd on a powerful statistical framework, it is shown that modularity and
the principle of divide-and-conquer applicd to ncural nctwork learning reduces training
times significantly. We developed a hybrid specch recognition system based on modu-
lar ncural nctworks and the statc-of-the-art continuous density IIMM speech recognizer
JANTUS. The system is cvaluated on the English Spontancous Scheduling Task (ESST),
a 2400 word spontancous spcech databasc.

We devcloped an adaptive tree growing algorithm for the hicrarchical mixtures of
cxperts, which is shown to vicld better usage of the paramecters of the architecture than
a pre-determined topology. We also cxplored alternative parameterizations of cxpert and
gating nctworks bascd on Gaussian classificrs, which allow cven faster training becausce
of ncar-optimal initialization tcchniques. Finally, we cnhanced our originally context
independent hybrid speech recognizer to model polyphonic contexts, adopting decision
tree clustered context classes from a Gaussian mixtures system.
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Chapter 1

Introduction

Spcech is the natural form of communication for humans. We arc using it cxcessively in
our cveryday life without noticing the complexity of this form of communication. Specch
production is a highly nonlincar proccss that is strongly influcnced by factors such as
regional dialects, age, gender and cmotional state. Specch perception is cven more com-
plex, since it involves a high degree of variability through additional background noisc,
diffcrent room acoustics and/or transmission characteristics in casc of telephone lines.
Despite this immensc variability, we arc able to usc this form of communication cven in
adverse cnvironments such as noisy partics. In fact, specch is the first and most natural
way of communication, that we humans lcarn in the very beginning of our life.

In contrast, communicating with a computer requires knowledge about how to usc
a mousc and a kcyboard and how to interpret textual messages appearing in lots of
diffcrent windows. Most pcople would prefer to use speech when dealing with machines
and computers. Somc applications such as information systems over tclephone lines cven
require this form of communication. There arc lots of other applications where the uscrs
hands arc busy doing other things and spcech is the only rcasonable input modality.
Think about computers in cars and airplancs.

Thercfore, there has been a large amount of rescarch in automatic speech recogni-
tion, understanding and translation sincc the carly 1950%s. Although rescarchers have
dcmonstrated impressive results with statc-of-the-art hidden Markov modecl based sys-
tems, today’s speech recognition technology is still far away from being competitive with
human skills. Current speech recognition systems perform very well in very specific and
limited domains. Applying such systems to ncw domains usually lcads to unacceptably
low performance.

Automatic spcech recognition has to be considered far from being a solved problem
and further improvement may requirc new insights and the cxploration of ncw paradigms.
The question is, what makes humans so good in perceiving, recognizing and understanding
spcech? Unfortunately we arc also far away from understanding the cognitive processes
nccessary to answer this question. What we do know is, that information processing
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in the human brain differs completely from the way this is donc in traditional comput-
crs. The human brain featurcs billions of small processing clements (ncurons) that are
intcrconnccted in complex ways and arc operating in parallel.

Roscarchers attempt to simulate this kind of information processing in a very simplified
way in form of artificial ncural networks. Decspite their simplicity, these networks have
been applied succesfully to static pattern recognition, very often improving performance
over traditional methods. They have also been used for the recognition of speech sounds,
though it is still an open question how to apply them to temporal modcling necessary
for continuous speech recognition. Since ncural networks arc very cffective modcls for
the discrimination of spcech sounds, rescarchers started to build hybrid systems that
combinc the advantages of ncural networks and hidden Markov modcls by replacing the
usual paramctric density modcling by discriminative artificial ncural networks. Such
systems have recently began to be competitive and somctimes supcerior to traditional
spcech recognition systermns.

Mostly, ncural networks arc designed with parallel processing clements in mind, but
implemented on standard scrial computers.  Also, they arc considered to be onc big
monolithic cntity that is trained and tested as a unit. This renders the lcarning process
computationally very cxpensive and takes orders of magnitude longer than training tra-
ditional density cstimators for speech recognition. Recently, modular and hierarchically
organized ncural nctworks have been studied cextensively in the neural network and ma-
chinc lcarning community (c.g. Mecta-Pi networks 18], Ilicrarchical Mixturces of Experts
[26],[27]). In these nctworks, the overall recognition task is divided among several small
sub-networks, so called experts. The cxperts decisions arc integrated in a hicrarchical way,
yiclding the overall network output. Training times for such miztures of experts systems
arc usually much smaller than thosc for traditional monolithic ncural nctworks.

In this thesis, we investigate modular ncural networks for hybrid continuous spcech
rccognition systems, showing that modularity on the network level is a well fitting concept
for cfficient and highly accurate neural network based specch recognition.

The thesis is organized as follows: Chapter 2 gives a short overview of traditional
ncural networks and their statistical interpretation. Chapter 3 reviews basic concepts in
statistical continuous spcech recognition and the extension to NN/IIMM hybrid spcech
rccognition. Chapter 4 introduces the hicrarchical mixture of cxperts architecturc and
lcarning algorithms for this modular ncural network. Chapter 5 gives a novel constructive
algorithm for automatically growing a hicrarchical network that improves performance
over static hicrarchics. Chapter 6 discusses how to modcl context dependent phones in
hybrid NN/IIMM systems and chapter 7 considers alternative parameterizations for sub-
nctworks in hicrarchical mixturcs of cxperts and discusscs advantages. IFinally, chapter 8
cvaluates a hybrid NN/IIMM system basced on hicrarchical modular ncural nctworks and
the JANUS IIMM spcech recognizer that was developed as part of this thesis. Chapter 9
presents conclusions and discusses enhancements in futurc work.




Chapter 2

Neural Networks

This chapter will bricfly review common necural network architecturcs as far as they arc
important for the remainder of this thesis. It finishes with an important scction on the
rclationships between ncural networks and statistical modcls.

2.1 Introduction

Artificial ncural networks arc a wide class of flexible nonlincar regression and classifi-
cation modcls. They consist of a (somctimes large) number of processing nodes, called
ncurons, which arc simple lincar or nonlincar computing clements. These clements arc
intcrconnected in a varicty of ways and often organized in layers. Fig. 2.1 shows a basic
processing node or ncuron.

)

el Output
O Function
Neuron —A
net() Activation
Function
W W
X, Xy

Figure 2.1: Processing clement (ncuron) in neural nctworks
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It consists of an activation function z = nct(zy,...,2x) : R¥ 3R and a (possibly)
non-lincar output function f(z): R — R. The most common uscd activation functions
arc

N
net(zy,...,2x) = D wim
=1

N

not(zy,...,en) = 3 (@i —wi)’

i=1

Choices for the output function f arc the identity, the sigmoid or the softmaz function

1 cxp(#)
2) = » 2) — v = ]
A e T

for a layer of n ncurons. Associated with cach ncuron is a weight vector w =
(wi,...,wn). Somctimes, an additional bias weight wo with a fixed input valuc of 1
is used in order to cxtent the modcl from lincar to affinc transformations. Learning
algorithms for ncural nctworks cstimate these weights (mostly) itcratively, in order to
minimize a given crror function of the outputs.

The most simple ncural network architccturc is a perceptron which may consist of just
onc ncuron. It can be trained to discriminate between lincarly separable classes using the
sigmoid or softmax non-lincarity as output function. Ilowcver, for more complex discrim-
ination or approximation tasks, nctworks with multiple layers of ncurons arc nccessary.
The next two scctions describe the most commonly used neural network architecturces for
complcx tasks and their lcarning algorithms.

2.2 Multi Layer Perceptrons

A multi layer perceptron (MLP) consists of scveral layers of ncurons with full intercon-
nections between neurons in adjacent layers (additional intcrconnections between non-
adjacent layers arc called shortcut connections). Fig. 2.2 depicts the structurce of such an
architccturc. Input data is presented to the network at the input layer, which contains
no processing nodes. It scrves only as a data source for the following hidden layor(s).
Finally, the nctworks output is computed by ncurons in the output layer. The activation
function of all ncurons is the inner product between input and weight vectors. Only the
activation of nodcs in the input and output layers is dircctly obscrvable. The nodces in
hidden layers computc internal representations of the data.

MLP’s arc uscful for supcrviscd pattern recognition where the task is to lcarn a map-
ping between inputs x and outputs t given a set of training oxamplos

T = {(x1,82), .-, (3N, tN))
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Hidden Layer

Figurc 2.2: Multi Laycr Pereeptron (MLP)

In the training phase, the weights of an MLP arc usually updated by an itcrative
lcarning algorithm called error backpropagation. After this procedurce converges, the MLP
can bec uscd to map new (unscen) patterns.

The crror-backpropagation lcarning algorithm is basced on the chain rule for derivatives
of continuous functions. The algorithm consists of a forward pass, in which training cx-
amples x arc presented to the network and activations of output ncurons y arc computed.
This is followed by a backpropagation step which updates the weights of ncurons using
the gradicnt of an crror function such as the mcan squarcd crror or the cross cntropy
between network outputs y and given target outputs t.

For cxamplc, using the mcan squarcd crror £ = 0.55, Zi(yf” — t,‘(-t))Z and the sigmoid
output function f(y;) = 1/(1 + cxp(—2)) with z = =; wi;h; where h; arc the activations
of the hidden layer, the gradient with respect to the weights of ncurons in the output
layer wij is

OF Sy — 4001 = 4

(')wij ¢
§ : () (&)
. 6!’ h;]

Thus, wcights in the output layer can be updated as follows in order to minimizce the
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crror function:

W™ = wff? —y 60K
t

The derivative of the error function with respect to weights in the hidden layer wyk
can be computed using the chain rule which yiclds

or
au)jk

I

336 i (1 = h)af?
t i

- e

t

This lcads to the following update rule for weights in the hidden layer:

m+1) m t) (¢
A ol <y A
¢

It is casy to gencralize the backpropagation algorithm to nctworks with more than onc
hidden layer of neurons. It should be noted that there arc lots of extensions of the basic al-
gorithm such as an additional momentum term which aim at improving convergence speed
and final performance. Nevertheless, the backpropagation algorithm is computationally
very expensive, especially for large MLP’s.

It can bc shown that MLP’s with at lcast onc hidden layer can approximate any
continuous function to any dcsired degree of accuracy, if there arc cnough hidden ncurons
available (this property is called universal function approzimation). Thus, MLP’s with onc
hidden layer arc sufficient, although additional hidden layers may improve performance
over single hidden layer networks with an cqual number of ncurons through incrcased
modcl complexity.

2.3 Radial Basis Function networks

In Radial Basis Function nctworks (RBT'), the hidden layer neurons computc radial basis
functions of the inputs, similar to kerncl functions in kernel regression. RBIF networks
consist of input, onc hidden and output layer. The activation function of hidden neurons
computes the Duclidean or Mahalanobis distance d between input and weight vectors.
Usually, the output function of hidden layer neurons is

dz
h; = cxp(—~—‘)—)

The output layer ncuron’s activation function is the same as the onc used for MLP's,
the inncr product of input and weight vector (with an additional bias input). The RBT
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Radial Basis
Function
Layer

Figurc 2.3: Radial Basis Function (RBF) nctwork

nctwork is mostly used for regression with a lincar output layer although it is also possible
to usc it for classification with a sigmoid or softmax output laycr.

Fig. 2.3 shows the structurc of a RBI' network. RBIF hidden nourons arc often called
localized receptive fields because of the special form of their activation function. Sometimes
the outputs of the hidden layer ncurons arc normalized to sum up to onc as in kernel
regression.

Training of RBI networks proceeds in two steps:

1. RBF estimation for hidden neurons Input fcaturc vectors arc clustered accord-
ing to the desired number of hidden neurons using a procedurc such as k-means,
LBG or ncural gas. This rosults in a sct of RBI" centers. If the model assumes
a bandwidth, variance vector or covariance matrix for the hidden ncurons, thesc
paramocters may be cstimated using the data within cach cluster.

2. Linear Least Squares for output weight matrix Oncc the paramcters of the
hidden ncurons arc computed, they remain fixed and the estimation of the weights
of the (lincar) output ncurons reduces to a lincar lcast squarcs problem which can
be solved by the standard matrix inversion algorithm.

RBT nctworks can be trained much faster than MLP’s, but it was shown that kernel
mcthods such as RBT' nctworks tend to require larger sample sizes to achicve the same
performance, cspecially in high dimensional feature spaces.
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2.4 Statistical Interpretation

Ncural nctworks and statistical modcls arc not competing methodologics for data analysis.
There is considerable overlap between the two ficlds. Statistical methodology is directly
applicablc to most ncural network modcls, resulting in morc cfficient paramecter cstima-
tion and optimization (lcarning) algorithms. Additionally, statistical methods provide
diagnostic tools such as confidence intervals and hypothesis testing which arc missing in
the ficld of ncural networks.

Recently, statisticians published works which cstablished tics between statistics and
ncural nctworks, sometimes showing the cquivalence of statistical and ncural network
modcls. Sarlc {48] shows rclationships between many neural nctworks and statistical
modcls and translates the jargons in the two ficlds. Ripley [47] provides a very interesting
overview of the similaritics of ncural networks and statistical modcls.

2.4.1 Perceptrons

A perecptron with a lincar output function computces a lincar combination of the input
features. It is nothing clsc but a lincar regression model that can be fit most cficiently
by lincar lcast squarcs.

In casc the output function is nonlincar, a pcrceptron is a gencralized lincar model
(GLIM) with thc cxception that for a perceptron, the nonlincarity is mostly chosen ad
hoc, while the nonlincarity of a GLIM is fixed, once a probabilistic modcl of the outputs
given the inputs is chosen. GLIM’s arc fitted by maximum likelihood mcethods for a
varicty of distributions of the cxponential family. For multiway classification, onc usually
assumcs a multinomial (Poisson) density model, which forces the use of the softmax
nonlincarity as output function for the GLIM/perceptron. It is considerably more cffective
to usc maximum likclihood fitting than mcan squarc crror minimization to cstimate the
paramcters of a perceptron. This fact is important for modular ncural networks with
simple perceptron-like processing clements, such as the architecture that we will introduce
later in this thesis.

2.4.2 Multi Layer Perceptrons

Like a pereeptron, a MLP has counterparts in statistics as well, depending on the number
of hidden layers and the number of ncurons in the hidden layers. Sarle [48] categorizes
MLP’s into the following threc groups:

e Small number of hidden neurons. MLP can be considered as a paramctric
modcl such as polynomial regression.

e Moderate number of hidden neurons. MLP can bec considered a quasi-parametric
modcl similar to projcction pursuit regression.
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e Large number of hidden neurons, possibly incrcasing with the sample size.
MLP can bc considered as a nonparametric sicve.

It is this smooth transition between paramectric and nonparametric modcls that ron-
ders MLP’s cspecially uscful. The crror-backpropagation learning algorithm for MLP’s
is itcrative, slow and requires the carcful adaptation of various lcarning paramcters such
as the lcarning ratc and thec momentum factor by trial and crror. Since MLP’s perform
multivariatc multiple nonlincar regression, its paramcters may be estimated much more of-
ficiently using nonlincar optimization algorithms such as thosc used for projection pursuit
modcls.

2.4.3 Unsupervised Learning

Unsupcrviscd lcarning for ncural networks consists in cxtracting uscful features from the
input data and climinating redundancy, without having any target or output vcctors
associated with cach input vector. Irom a statistical point of view, things arc different.
The goal in most forms of unsupecrvised learning is to cstimate featurce variables from
which thc obscrved data can be predicted. In this formulation, the observed data is
considered to be both input and target of the learning process.

Unsupcrvised IIcbbian learning for a onc layer lincar network, for example, is identical
to principal component analysis, which provides the optimal transformation matrix. This
fact is well-known from statistical theory and many variations of Ilchbian lcarning consist
of incfficient approximations of principal componcnt analysis.
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Chapter 3

Hybrid Speech Recognition

This chapter will first review the basic concepts of today’s statc-of-the-art speech recog-
nition technology bascd on hidden Markov models. It will then discuss advantages and
drawbacks and shortcomings of this approach which motivate hybrid speech recognition
systems. The term hybrid speech recognition systems is now widely usced for systems that
try to bring together the best of two worlds: Statistical time alignment by hidden Markov
modcls and discriminativc obscrvation probability cstimation by ncural nctworks instcad
of by mcans of paramctric multimodal distributions. We will bricfly discuss two such
systcms, onc based on the mulsi layer pereeptron (MLP) and onc bascd on recurrent
ncural nctworks (RNN), as they arc currently being investigated by rescarchers in the
spcech community. FPinally, we will discuss problems observed with large monolithic ncu-
ral nctworks as uscd in practical implementations of hybrid spcech recognition systems,
motivating the exploration of modular and hicrarchical ncural nctworks for hybrid spcech
rccognition.

3.1 Speech Recognition

This scction gives a quick overview of current hidden Markov model (IIMM) bascd spcech
recognition technology as it is used in almost all current statc-of-the-art speech recognition
systems. Recaders alrcady familiar with these concepts may want to skip to the next
scction.

3.1.1 Overview

[Fig. 3.1 shows thc basic sctup of a spcech recognition system rcvealing all its major
componcnts.

Input to the system is a sampled wavcform of the audio signal as recorded by a micro-
phonc. Notc that the room characteristics, the kind of microphonc and A/D transducers

11
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Preprocessing
Feature Extractionl

Acoustic Modeling

Language Model

~

Decoder/Search

[6:3:8]/8:6:5][6:8:]

{

Hypothesis

Figure 3.1: Overview: Automatic Speech Recognition

that arc used to rcecord the audio signal can have a scvere cffect on the speech ropresen-
tation and rccognition. Recently, large cfforts have been put into developing so called
robust systems, which tolerate different kinds of microphones, room characteristics and
noisc conditions in the prepocessing stage. This stage s somctimes called feature catrac-
tion or front-cnd. It computes a scquence of featurcs, mostly derived from spectral or
cepstral roprosentations of speech, which arc more suitable for the following stages than
the raw speech waveform. The acoustic modeling stage models a sct of speech sounds by
hidden Markov modcls and (mostly) continuous paramctric distributions. Ior any given
obscrvation at any time stop, the acoustic modcling stage provides local probabilitics for
cach of the modcled atomic sound units. These local scorcs arc then used in a dynamic
programming scarch ( decoder) stage, to determine the most likely sequence of words, given
the acoustics. Additional information about prior probabilitics of scquences of words is
supplicd to the decoder by the language model. We will now go into some details, con-
cerning the basic blocks of a speech recognizer, but we can not provide an cxhaustive
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overvicw of this ficld. Sec [52),[32],[51] for additional information.

3.1.2 Preprocessing

Specch signals have been observed to have stationary propertics over periods no longer
than about 20ms. Thercfore, most spcech rccognition frond-cnds usc a sliding window
of between 5ms-20ms to cxtract a vector of featurcs from the speech waveform. Such
voctors arc called frames and arc typically cxtracted at a ratc of about 1001Iz. The
ultimatc preprocessing stage should gencrate a representation of the speech signal, that (1)
comprcsscs the speech signal as far as possible, without loosing any information necessary
for the recognition afterwards and (2) facilitates discrimination between different specch
sounds. Fig. 3.2 shows the scquence of opcerations usually applicd to the spoech waveform
in order to computc spectral or cepstral featurcs.

Speech ->@®>{ DFT }>( 1og }>{ mFT F={ o F={ 1pa Feature

Window
function

Figure 3.2: Preprocessing for Speech Recognition

The speech signal is multiplicd with a window function, then a discrote Fouricr trans-
form (DFT) and the power spoctrum is computed. The cepstrum is computed by applying
the logarithm and an inverse discrete Fouricr Transform (IDFT) to the spectrum. Often,
additional stcps such as the following arc applicd:

e CMN (cepstral mean normalization) The idea behind this technique is, that
the obscrved audio signal is a lincar supcrimposition of spcech and noisc, which is
preserved in the cepstral domain. By subtracting the cepstral mecan over a whole
uttorance, the additive stationary parts of the cepstrum arc removed.

e LDA (linear discriminant analysis) This tcchnique has proven very uscful to
reduce the dimensionality of featurc vectors. It applics a lincar transformation that
minimizes intra-class distancc while maximizing intcr-class distance. Dimensional-
ity reduction is achicved by dropping cocfficients in the resulting feature vectors
according to thcir significance. Often, multiple frames arc concatenated prior to the
application of LDA to includc contextual information to the resulting featurcs.

e VTLN (vocal tract length normalization) Diffcrent spcakers have different
vocal tract lengths. Different vocal tract lengths imply different pitch and for-
mant frequencics for different speakers. This is usually compensated by a lincar or
piccewisc-lincar warping of the frequency axis in the spectrum based on statistics
of formant frequencics.
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¢ PLP (perceptual linear prediction) Pecrforms scveral psychophysically bascd
spcctral transformations. It is based on the all-pole filter modcl used in Lincar

Predictive Analysis (LPA).

3.1.3 Hidden Markov Models

IIMMs modcl a scquence of obscrvations (in our casc a sequence of feature vectors) as
a piccewisc stationary process. A discrete IIMM is a stochastic finitc statc automaton
A = (S,A,B,r} with a sct of stationary states S, a transition probability matrix A, a
emission probability matrix B and a sct of initial state probabilitics . Usually, spcech
rccognition systems use strictly left to right IIMMs to modcl words, sylables, phoncmes
or sub-phonctic units. Often, words arc modecled as a sequence of phonemes, which in
turn arc modcled as a scquence of IIMM states. [ig. 3.3 shows the topology of a typical

333363

Figurc 3.3: Ilidden Markov Modcl topology for phoncmes

Difforent states in a phonctic IIMM modcl different stationary acoustic sounds at the
beginning, middle and cnd of a phoncme. Viewing the IIMM as a generative model, the
term hidden’ becomes clecarer. IIMMs consist of two concurrent stoachastic processces.
Onc is the un-obscrvable sequence of states that models the temporal structurc of speech,
the other is the obscrvable scquence of cmitted output symbols in cach state, modcling
the the locally stationary character of specch sounds. There arc three problems arising,
when using IIMMs to model scquences of obscrvations:

Evaluation What is the probability that a given IIMM gencrated a given sequence of
obscrvations.

Decoding Given a scquence of obscrvations and a IIMM, what is the most likely sc-
quence of states through the IIMM that lead to the gencration of the observations.

Parameter estimation Given a IIMM and a sct of observation sequences to be modcled
by this IIMM, how can wc adapt the parameters (cmission and transition probability
distributions) of the model to maximizc the likelihood of gencration.
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All of the above three problems have very cfficient solutions in form of special cascs
of dynamic programming algorithms. Tor instance, the cvaluation problem occurs in
isolated word recognition where we want to score different word IIMMs according to their
likclihood. It can be solved using the Forward algorithm. The decoding problem occurs
in continuous spcech recognition where we are secking the most probable path through a
very large IIMM consisting of all possiblc secquences of basic sound units. Once we found
this path, we can derive the most probable scquence of phonemes or words. The decoding
problem can be solved using the Viterbi algorithm. Fig. 3.4 shows a typical trellis diagram
with the optimal path as a Viterbi algorithm would produce it. The diagram also shows
all possiblc statc transitions at onc specific time point.

states

time

01 02 03 04 05 06 O7 08 09 010 011 012
Observation Vectors

Figurc 3.4: Statc trcllis and the Viterbi algorithm

The last problem, also called the training problem, can be solved by the Forward-
Backward or Baum-Welch algorithm, which is cssentially a version of the Erpectation-
Mazimization (EM) [10] algorithm. In the casc of left-right IIMMs with a constant small
number of transitions in cach state, all three algorithms have a computational complexity
of only O(NT), where N is the number of states in the IIMM and T is the number of
obscrvations.

3.1.4 Acoustic Modeling

Today’s statc-of-the-art spcech recognition systems usc parametric multimodal probabil-
ity densitics to model continuous obscrvations instcad of discrete obscrvations as required
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in the standard IIMM. It was shown cmpirically, that such systems yicld better perfor-
mance than systems based on vector-quantization derived discrete obscrvation symbols.
Continuous densities arc mostly modcled by mixtures of Gaussians, since it was shown
that thesc mixture models can approximate any kind of distribution, given cnough data
to cstimatc its paramcters rcliably. In a continuous density [IMM, the probability of
obscrvation vector X in a statc s; is modcled by

N

. . 1 1 e
p(X|3i) = Z C,']‘A!r,‘j (X) with A.ij(X) = —‘——— CXp{—a(X — ,LLij)l E_‘-jl(x — ,U,ij)}
i=1 (2m)4 |25 -

The Forward-Backward algorithm can be cxtended to continuous density obscrvations
which yiclds update formulas for the paramecters ¢;; (mixture weights), p;; (mcans) and
¥;; (covariance matrices).

If there is not cnough training data to cstimatc a scparatc mixturc of Gaussians for
cach statc of large IIMMs, onc can sharc paramcters among different states, so that they
usc the same sct of Gaussians but with diffcrent mixturce weights, This form of paramcter
tying is known as semi-continuous density modeling (SCIHIMAM). For cxample, there is
a special casc of this kind of modcling, called phonctically ticd semi-continvous density
modeling (PTSCIIMM) where all the states of a phonctic IIMM sharc the same sct of
Gaussian densitics. Other forms of paramecter sharing include state clustering and/or
decision tree clustering.

Another issuc is the modcling of context-dependency on the IIMM level. It was shown
(sce for cxample [32]) that the cxplicit modcling of phoncmes in different contexts by
diffcrent IIMMs viclds a vast improvement over context-independent systems. Current
systcms model biphone, triphonc or cven polyphone contexts to account for the variability
of speech sounds in different contexts. Since the average number of monophones used in
a typical system ranges around 50, n-phonc contexts would require the modcling of 50
diffcrent acoustic models. This clearly is not fcasible in practice, cspecially since many
contexts occur rarcly or cven never in a given training corpus. The solution to this
problem is the usc of decision trec’s with a sct of phonctic context questions to cluster
the polyphonic contexts into a rcasonably small sct of context classcs, which arc then
modclled by scparate IIMM's. Scc [44] for an introduction to decision trees.

3.1.5 Decoding/Search

The decoder is the essential recognition part of a speech recognizer. It uses locally com-
puted cmission probabilitics to find the most likely scquence of words in a dynamic pro-
gramming fashion. Typical large-vocabulary continuous-speech recognition tasks today
involve a vocabulary of 20k to 50k words. Additionally, context-dependent modeling
viclds over 10k of context-dependent phoncme models. Clearly, the standard Viterbi al-
gorithm for finding the most likely scquence of IIMM states is not applicable without
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modifications, because of the combinatorical cxplosion of the size of the scarch space.
Thercfore, most decoders arc organized in a multi-pass strategy, applying more detailed
modcls in succesive passcs with restricted scarch spaces. Most decoders arc based on
cither time-synchronous Viterbi becam scarch or stack decoding, which is essentially an
A* scarch.

Viterbi beam scarch is a modified Viterbi algorithm, where active states arc pruncd
at cach timc stcp, based on cither their cummulative score or on their ranking in a list
sortcd by cummulative scorc. This way, only a very limited number of state, phonc and
word transitions (50-200) arc considered at cach time step. A disadvantage of the Viterbi
becam scarch is the time-synchronous left-to-right modce of operation which may lcad to
rccognition crrors because a lot of hypotheses arc being pruncd away bascd on just the
beginning part of the actual utterance although the remaining part may suggest to keep
the hypotheses.

A stack decoder is a non time-synchronous scarch algorithm, comparing incomplete
paths of diffcrent lengths by means of a likclihood function that cstimatces the probability
of the most likcly remaining paths. The basic data structurc used in this kind of scarch is
a stack which contains a sorted list of active incomplete paths together with their score.
At cach itcration of the scarch, the top cntry is cxamined and all possible cxtensions of
the associated incomplete path arc cvaluated and inscrted in the stack. The accuracy of
this algorithm clearly depends on the size of the stack. Often, a stack decoder is used as
a sccond scarch pass, following a Viterbi becam scarch that restricts the scarch space and
provides cstimatces of probabilitics of partial paths.

Other important scarch techniques, cspecially in the case of large vocabularies, include
thc organization of the pronunciation lexicon in form of a phonctic prefix tree. Since many
words start with the same scquence of phonemes, the storage requirements can be reduced
significantly using this approach.

Usually the output of the decoder is not only a single best scored hypothesis for a
given utterance, but a list of the first n-best hypotheses or a word graph (word lattice)
which can be subject to further processing.

3.1.6 Language Modeling

The task of automatic spcech recognition is to find the most probable word scquence w
given a sequonce of acoustic obscrvations x, which is the maximum posterior sentence
probability. According to Bayes rule, it can be decomposed into

P (w;
max p(w;|x) = maxM

i p(x)

The denominator can be neglected since it is constant for all w; and p(x|w;) is com-
puted by the acoustic model. It remains to provide a mcans for cstimating prior sentence
probabilitics P(w;). Thesc probabilitics arc computed by the language modecl and can be
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used in the decoder and/or in subscquent rescoring passes based on n-best lists or word
graphs.

We will not go into much detail here and only describe the very basics of language
modcling, that is, statistical n-gram modeling. The basic assumption here, is that proba-
bilitics of words in a sentence arc only depending on the previous n — 1 words. The prior
probability of a given sentence can then be factored as follows:

m m

P(W) = H P(wk|wk_1, veey wl) ~ H P(wk|wk_1, ceey w;,._.n+1)
k=1 k=1

In casc of a bigram modcl, we have to cstimatc probabilitics p(wy|wg-1), in casc of
a trigram modcl, we have to cstimate probabilitics p(wg|wg—1,we—2). This can be donc
by scanning large text corpora and counting occurances of word pairs or word triples,
respectively. Since many trigrams that may be cncountered in a test sentence do not
occur in cven the largest text corpora, we have to usc a smoothing tcechnique which
avoids word probabilitics of zcro. The standard procedurc here is to usc a weighted sum
of unigram, bigram and trigram probabilitics where the weights arc determined by an
algorithm called delcted interpolation. Despite the simplicity of this approach, it was
proven to work very well for large vocabulary continuous speech recognition.

3.2 Discussion

This scction discusscs advantages and drawbacks of the traditional IIMM based specch
rccognition systems, as they have been described in the previous scctions.
Advantages:

¢ Rich mathematical framework [TMM’s arc bascd on a flexible statistical theory
which allows to build cven large systems consistently.

o Efficient learning and decoding algorithms Thesc algorithms handle scquences
of obscrvations probabilistically and they do not require an cxplicit hand scgmen-
tation in terms of the basic speech units. They can be implemented very cfficiently
cven for very large systems.

e Easy integration of multiple knowledge sources Diffcrent levels of constraints
(c.g. phonological and syntacical) can be incorporated within the IIMM framework
as long as these arc cxpressed in the same in terms of the same statistical formalism.

Disadvantages:
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Poor discrimination Estimation of thc paramcters of IIMM’s is based on likcli-
hood maximization. This means, only corrcct modcls reccive training information,
incorrect models do not get any feedback.

1st order Markov assumption Current obscrvations and statc transitions arc
depending only on the previous state  all other history is neglected.

Independence assumptions Consccutive feature vectors arc assumed to be sta-
tistically indcpendent.

Require distributional assumptions For cxamplc, modcling acoustic obscrva-
tions by mixturc of Gaussians with diagonal covariance matrices requires uncorre-
lated feature cocfficients, which is not the casc.

Assumption that speech is a piecewise stationary process All representa-
tional powecr gocs into the modcling of stationary parts of specch, although it is
known that spcech should rather be modcled as a scquence of transitions or trajec-
torics in the featurc space. This is somchow alleviated by incorporating delta and
delta delta fecatures into the process of featurc genceration.

Assumption of exponential state duration distributions This assumption is
an integral part of 1st order IIMM’s. It can only be circumvent by applying cxplicit
statc duration modcling, that is, imposing cxternal duration distributions such as a
gamma distribution.

Maximum likelihood based This is a disadvantage because maximum likelihood
cstimation always rclics on the correctness of the models which is simply not truc
in the casc of spcech recognition.

Complexity All of the above disadvantages require additonal modifications and
cnhancements of the basic IIMM technology that lead to complex heuristics based
systems.

3.3 Hybrid Speech Recognition

ILybrid spcech recognition systems try to attack some of the disadvantages of traditional
[IMM’s whilc still adhering to the general statistical formalism. In particular, since these
mecthods usc ncural networks as cmission probability csimators, training is bascd on pos-
terior class probabilitics instcad of maximum likelihood. Necural nctwork classifiers arc
discriminativc in naturc and do not imposc constraints such as uncorrclated fcaturc cocf-
ficients although they arc not frec of distributional assumptions as shown in the previous
chapter.
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3.3.1 Neural Networks as Statistical Estimators

It was shown that ncural nctworks such as MLP’s can bc traincd to computc cstimatcs
of the posterior class probabilitics p(w;|x), given an input vector. IIMM’s require the
computation of likclihoods p(x, ¢;) for hypothesized states g;. Fortunatcly, we can apply
Bayes rule to convert posteriors into scaled likclihoods that can then be used as obscrvation
probabilitics:

y - Plailx)
p(x|g;) = P(g)

In the above cquation, P(g;) is the prior probability of statc ¢; and the ncural network
must be trained to produce cstimates of posterior statc probabilitics p(g;|x). This mcans,
wc need to train a ncural nctwork which has as many output nodes as there arc IIMM
statcs. We can compute scaled likclihoods by dividing the network outputs by the prior
statc probabilitics.

It should be noted that in theory, IIMM’s could also be trained using local posterior
probabilitics as cmission probabilitics. In [2], an itcrative proccdurc based on the EM
algorithm is used to computc local cstimates of posterior class probabilitics which can
be used as 'soft’ targets for ncural nctworks. This approach aims at optimizing the
global postcrior probability for the scquence of word modcls, instcad of maximizing the
likclihood.

To keep the number of states low cnough to train a large ncural nctworks in a rea-
sonablc amount of time, most rcscarchers first cxperimented with context-independent
IIMM systcms with onc-statc phonemic IIMM’s. In this case, the number of ITMM states
cquals the numbcer of phonemes and the ncural network cstimatcs posterior phoncme
probabilitics. The extension of this technique to context-dependent modcling is possible
by factoring contcxt-dependent posteriors and using multiple ncural networks to cstimate
context-dependent observation probabilitics. This will be described in detail in a scparate
chapter (6).

3.3.2 Training Issues

In order to train a ncural nctwork such that the resulting outputs cstimate posterior class
probabilitics, we nced to gencrate target vectors for cach frame. When training the net-
work on 1-out-of- N targets, an cxplicit scgmentation in form of class-labels for cach frame
is nccessary. Usually these labels arc gencrated by an cxisting IIMM spocch recognizer
for the given task. FFor any given training uttcrance, there is a sentence transcription
available. This transcription is used to build a sentence IIMM modcl by concatcnating
the IIMM’s of the corresponding word modcls, which in turn, arc build by concatenating
subword-unit ITMM modcls with respect to the word pronunciation dictionary. Once a
IIMM modecl for the complete utterance is built, we can do a forced Viterbi alignment
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using the cxisting recognizer, which gives us the most probable scquence of states through
the ITMM, given the scquence of acoustic obscrvations. Thus, we have gencrated state
labels for cach frame of the uttcrance. Once a ncural network is sufficiently trained on
these targets, using the performance on an independent cross validation sct as a mca-
surc of generalization, now targets can be computed by recomputing the forced Viterbi
alignment using the neural network to compute cmission probabilitics. This procedurce
may continuc in an itcrative manncr. Alternatively, the Forward-Backward instcad of the
Viterbi alignment algorithm may be used which will result in soft targets.

3.4 Examples of Hybrid Systems

This scction will bricfly describe two current hybrid systems that have been succesfully
uscd for continuous spcech rccognition. Onc is based on large multi layer pereeptrons
(MLP), the other uscs recurrent ncural networks (RNN).

3.4.1 A MLP based Hybrid

Rescarchers at the International Computer Science Institute (ICSI) in Berkeley have de-
veloped a hybrid speech recognition system that uses large multi layer perceptrons (MLP)
to cstimatc posterior class probabilitics. TFig. 3.5 shows an cxample of such a ncetwork.

P T

61 phones output layer
500-4000 hidden units hidden layer
9x26-dim vectors input layer

N

Figurc 3.5: ICSI’s multi layer perceptron topology

The nctwork is trained by stochastic gradient crror backpropagation using the Ring
Array Proccssor (RAP), a parallel computer needed to keep training times in a reasonable
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range (days and not wecks). To reduce training times cven further, the notwork was
initialized by training on a hand-labcled phonctic databasc (TIMIT) before training it on
the larger target task.

3.4.2 A RNN based Hybrid

The group at Cambridge University Engincering Department (CUED) has developed a
hybrid conncctionist/IIMM specch recognition system called ABBOT [21], which uscs
recurrent neural networks to compute cmission probabilitics. The network is depicted in
Fig. 3.6. It uscs a sct of statc units that have recurrent conncctions from their outputs
back to thcir inputs (thesc units also have connections to the input nodes). Statc units
and input nodcs arc connected to the output layer.

output layer recurrent layer
P yes | I —
Time
Delay
| x(t) l 1(t) I

input feature vectors

Figurc 3.6: Cambridge recurrent neural network

The network is trained using backpropagation through time. This training mothod is
computationally very cxpensive, rescarchers in Cambridge report training times of scveral
days on a dedicated parallel computer. Also, duc to potential instabilitics inherent in a
recurrent systems, training scems to require carcful adjustment of learning paramcters.
The system has fewer paramcters than a compctitive mixturc-of-Gaussian system which
viclds a faster decoding stage. Recently, the system was augmented to incorporate small
ncural networks to model context classes. This context-dependent system achicved the
lowest reported crror ratc on the 1995 SQUALL continuous speech recognition cvaluation
3.6.
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3.5 Problems

All of today’s cxisting hybrid specch recognition systems require special parallel hardware
to bc able to train the ncural nctworks in a rcasonablc amount of time. Also, they
require the choice of lots of paramecters such as the learning rate, momentum factor or
batch size. Although it was shown that large monolithic ncural nctworks can do an
cxcellent job in the computation of cmission probabilitics, they arc mostly considered
as 'black boxcs’. Becausc of the lack of understanding how the nctworks perform the
classification task, nctwork weights arc usually intialized with small random numbecrs
which requires lots of itcrations of backpropagation for the weights to converge. Mixtures
of Gaussians based rccognizers bencfit from powerful initialization methods like k-mcans
algorithm. Paramcters for such systcms usually converge within only 2-5 itcrations of
Torward-Backward training.

The major drawback of hybrid systems, however, is the incfficiency of gradient based
training algorithms. Sizes of speech databases and neural networks in hybrid recognizers
have gradually incrcascd and will incrcase cven further over the next years. Training
times for such nctworks could become prohibitive, even with fast hardwarc.
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Chapter 4

Hierarchical Mixtures of Experts

This chapter introduces Ilicrarchical Mixtures of Experts as a modular and hicrarchical
ncural network for supervised learning. It closcly follows the presentation by Jordan
and Jacobs [27], yct focussing on classification instcad of rcgression. The underlying
statistical modcl will be discussed in detail, in order to motivate the presentation of an

cffective learning method for the architecture  the EM algorithm.

4.1 Introduction

The Iicrarchical Mixturc of Experts for the purposc of classification is a dircct competitor
to other, non-modular and non-hicrarchical ncural nctwork classificrs such as the Multi
Laycr Perceptrons or the Radial Basis [Function Networks, which have proven to be very
powerful and genceral classifiers and function approximators. Thercfore, the rcader may
ask questions like: Why do we need a modular, hicrarchical network if we alrcady have
powcrful methods for classification and regression? What arc the drawbacks of traditional
ncural nctworks and other monolithic classificrs that lcad to the development of modular
and hicrarchical architccturcs?

Fig. 4.1 shows a particular situation, where a modular approach to, in this casc,
function approximation yiclds significantly better results than traditional methods. The
function to be approximated is picccwisc lincar with a discontinuity at z = 0. Clearly,
the best way to approximate this kind of function is to split the task into two subregions,
and apply standard lincar regression to the data in cach of the regions. This lcads to
the least possible number of paramcters and the best approximation possible. The figurce
also shows a typical approximation obtaincd by an MLP or a higher order polynomial
intcrpolation scheme. These methods usually produce smooth approximation surfaces not
able to capture discontinuitics like the one in our cxample. Iiven worse, the discontinuity
lcads to oscillations in the overall approximation surface that can only be reduced by
using a larger number of paramcters  which in turn leads to an unnccessarily incrcased
modcl complexity.
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1-2-1 MLP learns piecewise linear function
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Figurc 4.1: Learning to approximate a discontinuous function

Another major drawback of traditional ncural nctworks is the complexity of their
training algorithms, mostly bascd on gradient descent methods. This kind of training
algorithm is slow and tedious, requiring the user to sct various algorithmic paramecters by
trial and crror. Training of large MLPs on very large databascs (which is the casc in hybrid
speech recognition) requires such a large amount of CPU cycles, that cven when using
parallel implementations of backpropagation on dedicated hardware, rescarchers report
training times of scveral days. This renders the analysis and optimization of lcarning
paramcters very time consuming, if at all possible.

It should bc noted, that rceent work in statistics has shown similaritics between neural
nctworks and statistical modcls such as gencralized lincar models, maximum redundancy
analysis, projcction pursuit and cluster analysis, that allow the application of much morc
cfficicnt statistical lcarning/cstimation techniques to the training of MLPs. In fact, it
was shown, that an MLP with onc hidden layer is cssentially the same as the projection
pursuit modcl, cxcept that a MLP uscs a predetermined functional form for the activation
function in the hidden layer. Parameters of such a modcl can be estimated more cfficiently
by genceral purposc nonlincar modcling or optimization programs.

The remainder of this chapter will introduce a modular, hicrarchical architecture for
supervisced learning that tackles all the discussed problems of standard ncural networks.
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4.1. INTRODUCTION

4.1.1 Architecture

The Iicrarchical Mixturc of Experts architecturc consists of rclatively simple (i.c. onc
laycr) gating and cxpert networks, organized in a tree structurc as shown in Fig. 4.2.
The basic principle behind this structure is the well known technique called divide-and-
conquer. Algorithms of this kind solve complex problems by dividing it into simpler
problems for which solutions can be obtained very casily. Thesc partial solutions arc then
integrated to yicld an overall solution to the whole problem. In the Ilicrarchical Mixtures
of Experts architecture, the leaves of the trec represent cxpert networks, which act as
simple local problem solvers. Their output is hicrarchically combined by so called gating
nctworks at the internal nodes of the tree to form the overall solution. To be more specific,
the architecturc has to learn an input-output mapping y = f(x) bascd on a sct of training
samples 7 = {(x1,¥i),2 = 0,..., N}. The cxpert nctworks as well as the gating nctworks
receive the input vectors x; with the difference that the gating networks use the input to
computc confidence valucs for the outputs of their children, whercas the expert networks
usc the input to gencrate an cstimate of the desired output value.

il
Node (0)
\ g
Gating
F Network(0)
g1
g !
Node (1) Node (2) *
Gating Gating
Network (1) Network(2)
} g112
) o1 ) T
Expert Expert Expert Expert
x Network(1,1) Network(1,2) Network (2,1) Network (2,2) x
X X X X

Figurc 4.2: Ilicrarchical Mixtures of Fxperts Architecture

There arc cxisting similar tree-structured divide-and-conquer modcls in statistics,
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namcly CART by Brciman ct. al. [6], MARS of Fricdman [15] and ID3 by Quinlan
[44]. Tlowcver, these algorithms solve function approximation or classification problems
by explicitly dividing the input spacc into subregions, such that only onc singlc ’expert’
is contributing to the overall output of the model. Causcd by these 'hard-splits’ of the
input space, CART, MARS and ID3 tend to be variance-incrcasing, especially in the case
of high-dimensional input spaces, where data is very sparscly distributed. In contrast,
the gating nctworks in an IIME arc capable of computing soft splits of the input space,
allowing input data to lic simultancously in multiplec regions. In this casc, many cxperts
contribute to the overall output which has a variance-decreasing cffect.

All the cxpert networks in the IIME trec realize lincar mappings between the input
and the output space with an additional output non-lincarity. Onc can also intcrpret
the cxperts as single layer perceptrons. In the casc of multiway classification, the non-
lincarity is gencerally chosen to be the softmax function, whercas in the casc of regression
the non-lincarity is the identity and the cxperts arc strictly lincar. The scleetion of
the non-lincarity depends on the probabilistic interpretation of the modcl and will be
cxplainced in the following scction.

Consider the two-layer, binary branching IIME in Fig. 4.2. Tach of the expert networks
(7,7) produces its output p;; from the input X according to:

pij = f(Uy%)

where Uj; is a weight matrix and f is the output non-lincarity. The input vector x
is considered to have an additional constant coordinatc valuc of 1.0 to allow for network
biascs.

Thc gating networks arc also gencralized lincar. Since they perform multiway classi-
fication among the cxperts, the non-lincarity is chosen to be the softmax non-lincarity.
The output values g; of the top-level gating network arc computed according to:

o= exp(&i)
" Teoxp(éy)

Duec to the special form of the softmax non-lincarity, the ¢; arc positive and sum up to
onc for cach input vector x. They can be interpreted as the local conditional probability,
that an input vector x lics in the region of the associated children node. The lower level
gating nctworks compute their output activations similar to the top-level gating network:

gili = ————C)(p(gij)
T Tkexp(bin)
The output activations of the cxpert networks arc weighted by the gating networks

output activations as they procced up the tree to form the overall output vector. Specif-
ically, the output at the i-th intcrnal node in the sccond layer of the tree is

with & =vix

with f.,'j = V;-IJ:X
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pi = 3 G5l
7
and thc output at the top level (root nodc) is
p= Zgiﬂ'i
i

Since both the expert and the gating networks compute their activations as a function
of the input %, the overall output of the architecture is a nonlincar function of the input
(cven in the casc of lincar cxperts). Turthermore, different input spaces may be used
for gating and cxpert nctworks. In the casc of speech recognition, the gating networks
might be supplicd with additional input fcaturcs, c.g. spcaking ratc, in order to facilitatce
discrimination between different sounds.

4.1.2 Probabilistic Interpretation

The architecture is bost understood as a generative probabilistic decision tree. Obscrvable
data is assumed to be gencrated by the modcl in the following way: For cach input vector
%, the output valucs computed by the gating nctworks arc interproted as the multinomial
probabilitics of sclecting onc of the children nodes. Starting at the root node, a particular
scquence of decisions is madc based on the probability distributions imposed by the gating
networks. This process cventually ends in a terminal node of the trec containing a specific
cxpert network. This expert network computes a lincar activation muy; using its weight
matrix. The vector mu,; is considered to be the mean of a probability density that modcls
the generation of output vectors.

The gating nctworks parametcrization corresponds to a multinomial logit probability
model, which is a special casc of a Generalized Lincar Model (GLIM) [34]. That is, gating
nctwork outputs arc assumcd to follow a multinomial density

P( )_ ml Y1 Yn
Yi,---0n) = (y1|)(yn|)pl s Dy

whore the p; arc the multinomial probabilitics associated with the different classes
(in this casc the children nodes) and m = Tp; y; is gencrally taken to cqual onc for
classification problcms.

The probability density for the cxpert nctworks is assumed to be a member of the
cxponcntial family of densitics. In the casc of regression, the probabilistic component is
generally chosen to be the Gaussian density

1 T — My 2
P(y|x,0) = CXP{—EZ(—U;‘)“}

1
2r)/2T]; oy
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whercas in the casc of multiway classification, the expert’s probability density function
is the samc as for thec gating nctworks, with the difference, that the gating nctworks
discriminatc between children nodes and the cxpert networks discriminate between output
classcs.

Given thesc assumptions, the total probability of generating the output y from the
input x can be given in form of a hicrarchical mixturc model:

P(y|x,0) = Zgi(X,Vi)Equ(x’ Vij)P(Y|X, oij)

In this notation, 0 contains both thc gating nctwork’s paramcters v;, vy; and the cx-
pert’s parameters 0j;.

4.1.3 Posterior Probabilities

In order to develop lcarning algorithms for the hicrarchy, we need to introduce posterior
nodc and posterior branch probabilitics. Consider the training of a given IIME architec-
turc, where we cxplicitely know the desired output vector y for cach input vector x. In
this context, we consider the gating probabilitics g; and g;); to be prior branch probabili-
tics, since they arc computed based on the input vector x alone, without any knowledge
about the target output vector y. Using both the input and output voctors, posterior
branch probabilitics can be dcfined for the gating networks:

o 9 ¥; 931 Fis(y) hays = 931 P (y)
L i 9 Paly) T gbu(y)

Bascd on thesc conditional postcrior probabilitics, we can computec unconditional node
probabilitics for cach nodc in the trec by multiplying all the conditional posterior branch
probabilitics along the path from the root node to the node in question. This way, we
can assign a posterior probability to cach of the expert networks too:

991 i ()
Y9 2 91 P (y)

hi; is interpreted as the probability that cxpert network (s, 7) has gencrated the ob-
served data pair (%,y). Notc, that posterior probabilitics arc not available during testing,
where we do not have any knowledge about the target output vector y. They arc exclu-
sively needed for the derivation of lcarning algorithms.

hij = hihyy; =

4.2 Gradient Ascent Learning

Since we assumec that the IIME realizes a probabilistic generative modecl of our data, we
can definc the likclihood of our model given a training set 7 = {(%;,yi),i = 0,...,N}
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and trcat the learning problem as a maximum likclihood problem. This kind of learning
algorithm for IIMEs was introduced by Jordan and Jacobs [26]. The derivation of this
lcarning algorithm is fairly straight forward and it can be realized both as an on-linc and
a batch learning mothod.

4,2.1 The Likelihood

It is common to usc the log of the likelihood instcad of the likelihood itself, which converts
the product of probabilitics to a sum:

10, x)

Il

> log P(y¥[x®, 0)
t

N glogz,gi g Py 1x, 035)
1 7

In order to derive an update algorithm for the gating nctwork and cxpert network
paramcters, we need the derivatives of the log likelihood with respect to the gating and
cxpert paramcters, respectively. For the top-level gating network, we obtain

o0, x) D Ti(8¢i/0vi) 25 g5 P (y O |x ), 035)
Ovy, : i 9i 205 951 P(y ®[x®), 055)
T i 9:(8a — 96) T g5 Py |x Y, Oii)x(t)
7 i 6 2 931 P(y]x®), 035)
N 9 P 1%, 055) — 96 31 6 25 0 Py 1x 9, 035) o
. i 9 25 95 P(y@[x®), 05)
> (i — gi)x®

t

where we have used the derivative of the softmax function

0g;
5;; = g»z(Jm - gk)

Similarly, it can bc shown that the derivative of the likelihood with respect to the

sccond layer gating nctworks is

d1(0; X)
Ovi

=" by — gyu)x®
t

Since we arc interested in the sct of parameters that maximisc the log likelihood of
the obscrved data given the modcl, we perform gradicnt ascent in weight space using
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the likelihood gradients and a lcarning factor 7 to update the paramecters of the gating
nctworks:

vz(k+1) _ (h) +17 2 L gl X(f)

k
) +772h (hiti — g33:)x"

<
Il

The above learning rule suggests an update after the presentation of the complete
training sct. Instcad of computing the real gradicents of the log likelihood over the whole
training sct, we could also usc a variant, called stochastic gradient update, which updates
the paramcters cach time a fixed number m of training samples have been presented to
the architccture. This form of paramcter update is usually called on-line learning and
lecads to faster convergence.

It rcmains to derive parameter update rules for the cxpert networks. Depending on
the chosen probability density model for the cxpert networks, we obtain different update
rules. Thercforc we have to distinguish between regression and classification tasks and
derive the different update algorithms in the next two scctions.

4.2.2 Expert Parameter Updates for Regression

When the IIME is uscd for function approximation, the underlying probability density
is assumed to bc Gaussian. To simplify the derivation of the update rule, we assume a
unit variancc Gaussian density, although updatc rules for Gaussians with full covariance
matrices cxist too. The gradicnt of the log likelihood with respect to the (k,I)-th cxpert
is

o Xy _ Zg”g‘lk(ap(y(t)|x(”a0k1)/30m)
00y 7 D09 5 9 P(yO]x®, 0;5)

T (3 — )0

t

which lcads to the gradient update rule for expert paramcters

o+ = o) +n2h (7 — )

Notc, that thc above learning rule updates the whole weight matrix at once. If the
hicrarchy is capable of lcarning a given approximation problem perfectly, the differences
between the target voctors y( and the ITME’s lincar predictions p® will cventually
converge to zcro. The gradient of the log likclihood will vanish and the updates will
become zero.
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4.2.3 Expert Parameter Updates for Classification

The objective of this thesis is to apply modular neural nctworks in a hybrid specch recog-
nition cnvironment. Thercfore, we arc mainly interested in the use of IIMEs as classifiers
and postcrior class probability estimators. In the casc of classification, the same kind of
probability density applics to the expert and the gating networks, since they both per-
form multiway classification. Ilowcever, for training a classificr, we usually have a data
sct with ‘hard’ targets. That mcans, there is a class label associated with cach input
vector X. Using a 1-out-of-N cncoding of class labels, the multinomial probability density
dcgencrates as follows

_ m! ¢ ty _ 0 1 0 _
P(tl,...,tn)—mﬂf...[_lln Sl SRR PRy My 1 2

Lere, the p; arc the output values of the classifier and the ¢; arc the target valucs for
cach class (which arc zcro for all but onc class). g, stands for the output valuc associated
with the correct target class. Using this simplificd probability modecl, wc obtain the
derivative of the log likclihood with respect to the weight vector of node m in expert
network (k, )

ol(0; X) gy (OP (YO [xD, 04) /8041,
O00kim T X Ejgjlip(y(t)lx(t)70ij)
g (Opad /30
= Y9 5 9 P(yO)x®), 045)

Z h'kl (65771 - /valm)X(t)
t

S Bl = g )x® — 7 B x®

t,c=m t,cEm

Il

I

which lcads to the following cxpert network parameter update rule
b+l K .
040 = 08 + (2 hig(t = pign)x® — 3 hijpuiznx®)
tc=m t,cEm

Again, the updatc formulas can cither be used in on-line or in batch mode. We
will postponc the cvaluation of the gradient ascent learning rulc until after the next two
scctions, where we will derive a morce cfficient learning algorithm for the IIME architecture.

4.3 EM Learning

The Expectation Maximization (EM) algorithm of Dempster ct. al. [10] is a general tech-
niquc for maximum likclihood cstimation. It is mainly applicd to unsupervised learning,
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i.c. clustering and mixturc density estimation. The most popular application of EM to
unsupcrvised learning in the context of specch recognition is the Baum-Welch or Forward-
Backward algorithm that solves the learning problem for Ilidden Markov Modcls. The
EM algorithm is a very powcerful itcrative algorithm for maximum likclihod problems in-
volving missing data. For cxample, in speech recognition, the Baum-Welch Reestimation
usually converges in only 2-5 itcrations. There is no rcason, why the EM framcwork
should not be applicable to supervised learning problems like the IIMT learning as well.

4.3.1 General EM Algorithm

The itcrative EM algorithm is composcd of two steps. The E-step (Expectation) defines
a new likelihood function in cach itcration, that is maximised during the M-step (Max-
imization). Oftcn, E- and M-stcp are combined in a single undivisible algorithm, but
for thcorctical purposcs we will distinguish between the two steps. If the M-step only
increascs the likelihood instcad of maximizing it in cach step, the algorithm is called Gen-
cralized Expcctation Maximization (GEM). The learning algorithm for thc Boltzmann
machine, for ecxample, is cssentially a GEM algorithm.

In order to apply the EM algorithm to a ncw domain, a sct of 'missing’ or 'unknown’
variablcs have to be defined, that would simplify the optimization of the log likclihood, if
they were known. We then distinguish between the incomplete-data log likelihood 1(0; X)
over the obscrvable data X and the complete-data log likelihood [,(0; Y) over the extended
data Y = XUZ which includes the sct of missing variables Z. It is important to note, that
the complcte-data log likclihood is a random variable becausce the sct of missing variables
arc unknown.

The EM algorithm aims at increasing an estimation of the complete-data log likelihood
as follows. Using thc obscrved data and the current modcl, the E-step first computes the
cxpected value of the complete-data log likelihood:

Q(0,0%)) = E[L.(0: )| %]

The superseript & refers to the paramcters at the k-th iteration of the algorithm. The
E-step yiclds a deterministic function @ of the parameters of the modcl. The M-step
maximizcs the Q-function with respect to the model’s paramcters:

0¥+ — arg meaxQ(O, 0

The process itcrates by looping over - and M-step until the maximization yiclds no
further improvement. The M algorithm guarantces to computc parameter cstimatcs that
incrcasc the Q-function in cach itcration. The Q-function, however, is just the expected
valuc of the complete-data log likelihood. Our goal is to maximize the incomplete-data
log likclihood. Dempster ct. al. addressed this issuc and proved that an incrcasc in the
Q-function always implics an incrcase in the incomplete-data log likelihood:
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Q0,04 ) 2 Q(0,09) = Yot x) > 100, X)

That mcans, the original likclihood I(0; X') incrcascs monotonically with cvery itcra-
tion, converging to a local minimum.

4.3.2 Applying EM to the HME

Application of EM to the IIMT architecturc involves the definition of 'missing’ variables

that facilitate the optimization of the log likclihood. Let 2,2 =1,...,n be a sct of binary
indicator variablcs for the top-level gating network, and let 2,1,5 = 1,...,n be a sct of

binary indicator variablcs for the sccond layer gating nctworks. Tor any given input vector
x cxactly onc of the s is onc, all the others arc zero. Similarily, given the z;, cxactly
onc of the #z;; is one, all the others arc zcro. The #s and z;,s have an interpretation as
the (unknown) decisions corresponding to the probability modcl. An instantiation of the
#s and ;3 corresponds to a specific path from the root node of the tree to onc of the
lcaves, determining the cxpert responsible for data gencration. Note, however, that the
z;s and z;};s arc not known and must be trcated as random variables. If they were known,
the maximum likclihood problem for the IIME would decouple into a set of independent
maximum likclihood problems for cach of the gating and cxpert networks. Although the
z;s and z;);s arc unknown, we can spccify a complote-data log likclihood probability modcl
that links them to the obscrvable data and allows for the application of the EM algorithm:

L(0; ) logHHHg 0P (y®)
EZ}: Vlog (g g1 P (y9))

E Z Z 29 {log g + log ¢§f! + log Pi(y ™))

The above complcte-data log likclihood is much casicr to maximize than the cor-
responding incomplcte-data log likelihood, because we managed to bring the logarithm
inside the summation.

Onc can prove casily that the posterior probabilitics hy, hj; and hy; can be used as
the cxpected valucs for the unknown indicator variables z;, #;); and z;, respectively (sce
[26] for a proof). Using this fact, we can define the Q-function for the E-step of the EM
algorithm:

Q(0,0%) = ZZZWmMMmM%MMWW}
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The M-stcp requires the maximization of the Q-function with respect to the model’s
paramcters. We now sce the bencfits of applying EM, since the maximization decouples
into a sct of scparatc maximum likclihood problems that may be solved independently
during the M-step:

v§k+l) = arg n},;'n( E z hl(t) log gl(t)
t

V§ﬁ+l) = argmax ; > h,(t) ) hf,t;)u log 9,(,?11
o m
ogﬁ-l) = arg n;z}x E hf;') log P (y(t))
? t

Sincc we arc mainly interested in the IIME as a classificr, we will restrict the derivation
of solutions for the above maximum likclihood problecms to this casc, assuming a multi-
nomial (Poisson) density as the probabilitiy model for the cxpert as well as the gating
nctworks. Under these assumptions, the log likclihood cquation for the expert and gating
nctwork’s paramcters arc weighted log likclihoods for a special case of a Generalized Lin-
car Modcl (GLIM), namcly a multinomial logit modcl. For the top-level gating networks,
wc have to maximize the cross-cntropy between the posterior branching probabilitics by
and thc branching (prior) probabilitics g;. Tor the sccond level gating networks, we have
to maximizc the cross-cntropy between the posterior branching probabilitics A, and the
branching (prior) probabilitics g,,),, weighted by the posterior probability k; of the gating
nodc itsclf. In decper trees, the weight for the cross-cntropy is simply the product of
postcrior branching probabilitics along the path from the root node to the gating node in
question. Finally, the maximization problem for the cxpert networks involves maximizing
the cross-cntropy between the cxpert’s posterior probability and the output at the node
of thc actual correct class. Since all of the above maximization problems arc bascd on
likclihoods for gencralized lincar modcls, we can apply an algorithm called Iteratively
Rewcighted Least Squares (IRLS) [34] that solves such likclihood problems.

4.3.3 TIteratively Reweighted Least Squares (IRLS)

Applying the EM algorithm to the IIME architccture requires the computation of posterior
probabilitics h;, kj; and h;; for cach input vector x in the I-step, and the maximization
of independent maximum likelihood problems for GLIMs in the M-step. This process is
itcratively repeated until no further improvement can be obtained. This scction describes
the IRLS algorithm that can be used to solve the maximization problems within the M-
step. The IRLS algorithm is a special casc of the Fisher scoring method [12]. In order
to maximizc the log likclihood {(3; &) with respect to the paramcter vector 3, the Fisher
scoring mcthod updates 5 according to
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0303* 0B

This cquation strongly rescmbles the Noewton-Raphson cquation with the notable dif-
ference that in the IFisher scoring method, the Icssian is replaced by the expected value
of the Ilcssian. Besides the fact, that the cxpected valuc of the Ilessian is often casier to
compute, there arc statistical reasons for prefering it over the actual Ilessian.

We will now derive the IRLS algorithm for the special casc of a multinomial GLIM.
The multinomial density is a member of the cxponcntial familics of distributions which is
an important class of distributions in statistics. It can be rewritten in the following form:

Bl = gk) _ { [OZ(JU‘ )]}—1 (3., x)

m! y
4}7 B
(yll) (yn ) 3

m‘
= cxpjlo ———————-I- ;lo x}
p{ g(yl) (yn gy &F

P(ylv‘”ayn)

1 n-1

m!
cxpq log —————— + 110 + n lo, n}

=1 n

where we have used the constraint that the p; sum up to onc to cxpress p, as p, =
1 — 27! pi. Comparing this form of the multinomial density with the general form of a
dcn31ty of the cxponcential family

Py, 0) = o { D 4 oy )

with the natural paramcter n and the dispersion paramcter ®, we can define the natural
paramcter 7 to be the vector of 7;s:

ni = log—
Pi
1 _ n 11 P;

log {pi (1 + Zf CXp(m-)) }

This cquation can be inverted to yicld

H

pi = cxp(n:)
' 14 3321 oxp(n;)
cxp(7:)
Y51 cxp(n;)
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which is the 'softmax’ function that we have assumed as the non-lincarity for the gating
and cxpert networks. By paramcterizing the multinomial probability density in terms of
the natural parameter 7, we have forced the choice of the network’s output non-lincarity
to be the softmax function. The softmax function is refered to as the canonical link to
the multinomial distribution. Other choices of the output probability density result in
diffcrent canonical links, for cxample, assuming a Bernoulli density yiclds the standard
sigmoid function as the canonical link function.

ITaving justificd the choice of the output non-lincarity, we now procced in the derivation
of the IRLS update cquations. Tirst we define the function b implicit as the integral of
the softmax function:

0 _ 06 _oxp(n{)

u = :
I o exp(nt)

We can now compute the terms necessary for the Fisher scoring cquation, that is, we
nced the likelihood and the first and sccond derivatives of the likelihood of a multinomial
GLIM:

with 77i(t) = ;Tx®
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Finally, by asscmbling all these cquations into the Fisher scoring update function, we
obtain the following IRLS algorithm for multinomial GLIMs:

BE = g8 4 (XTWiX) T X Wies
where W; is a diagonal matrix with diagonal clements

w{! = Z[u 51 — )]

. ¢
and e; is the vector of scalars c.g )

ol =yl —

1

The weight matrices W; and the vectors e change from itcration to itcration because
they depend on the weight vectors ;. The above update cquation is cssentially a solution
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to a weighted least squarcs problem. In our casc, we need to cxtend the IRLS algorithm
becausc we have additional fixed observation weights imposed by the gating nctworks.
This can casily be donc by multiplying the fixed obscervation weights with the iteratively
varying weight matrices W;, which lcads to an itcratively rewcighted weighted lcast squares
algorithm. Applying this algorithm to the IIME architecture yiclds the following training
mcthod:

1. Expectation Step:
Computc posterior branching/nodc probabilitics h‘(-t), hf’[? and hg) for cach data pair

(x®, y®) of the training sct.

2. Maximization Step:

() Inner loop for experts:
For cach cxpert network, solve an IRLS problem with obscrvations (x(8), y())

and obscrvation weights hg).

(b) Inner loop for top-level gates:
Tor ca(ck)l top-level gating network, solve an IRLS problem with obscrvations
(x®, B").

(¢) Inner loop for second-level gates:
For cach sccond-level gating nctwork, solve a weighted IRLS problem with
obscrvations (x(®), hgtlz) and obscrvation wcights h§“.

3. Iteratc EM steps using the updated paramcter valucs.

This EM algorithm, though being quite cffective, needs an itcrative procedure in the
M-stcp, whilc postcrior probabilitics need to be stored temporarily. This is not feasible
when dealing with large data scts, as is the casc in speech recognition. Thercfore, we arc
interested in a version of the EM algorithm, that allows to solve the maximization steps
in onc pass. There arc two ways of achicving this. The first onc is, to rclax the constraint
of maximization in the M-step and derive a Genceralized EM algorithm (GEM) that only
guarantces to incrcasc the log-likelihoods during the M-step. The other way is to usc
lcast squarcs fitting instcad of likclihood maximization together with heuristics to derive
a practically uscful lcarning algorithm, which we will do in the next scction.

4.4 Least Squares and Heuristics

Recall the three maximization problems derived from the Q-function and which we want
to solve in a onc-pass algorithm:
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Computing the derivatives of the log likelihoods with respect to the paramcters vy,
v;;i and 0y rospectively, and sctting them to zero yiclds:

{h(t) }X(t) =0
R
S {H (80 - )} = o

In the above cquations, onc can think of the posteriors as being targets for the gating
and cxpert network outputs. As mentioned before, the posteriors arc estimates of the
unknown indicator variables which would be the correct targets, if they were known. By
inverting the softmax non-lincarity at the outputs of gating and cxpert networks, we can
computc targets for the lincar predictors which, in turn, can be used for standard lcast
squarcs fitting. Inverting the softmax function

|
o

exp(z;) . "
Y= = viclds  z;=logy, +log ) cxp(z;) =logy; + C
¥; exp(z;) ; !

The sccond term is constant for all @; and constant tcrms common to all ;s disappcar
when the softmax function is applicd. Thercfore, we can use the log y;s as targets for the

lincar predictors. In the casc of the gating networks we obtain the following onc-pass lcast
squarcs solutions to thc maximization problem:

v, = (XTX)'Xe
v = (XTWX)XWI

with e = (log ", ... log A{"), £ = (log Ay, .. log BS37), W = IS, hEY)).

ITowever, trying to compute targets for the hncmr prcdwtors of the expert networks,
we face the problem of having to computce the log of zcro sinee all but onc cocfficient of the
target vectors arc zcro. The heuristic here is, to usc targets ¢; out of {¢,1} instcad of the
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usual {0,1}. In practice, the valuc of ¢ is subject to optimization, but small valucs around
le — 3 have proven to work well. Thus, the least squarcs problem for cxpert networks is
solvablc as before:
i = (XTWX) ' XWe

with e = (logtfcl), .. .,logtE:\I)) and W = I(hg), . .,hg-v)). Using standard (wcighted)
least squarcs, we werce able to derive an cffective EM algorithm with a onc-pass M-step,
suitablc for large hicrarchics and large data scts. During training, we have to computc
postecrior probabilitics and accumulate the weighted input vectors into the least squarcs
matrices and vectors. After onc iteration, a single matrix inversion for cach cxpert/gating
nctwork and a matrix-vector multiplication yiclds new paramecter cstimates. In the re-
minder of this chapter, we will cvaluate the IEM algorithm and the gradicnt ascent al-
gorithm in terms of accuracy, genceralization and convergence speed on a rclatively small
task. We will also comparc the IIME with a multi layer percoptron (MLP) trained by
crror-backpropagation. The intcgration of IIMIE’s into a hybrid spcech recognition frame-
work will be cvaluated later in a scparatc chapter.

4.5 HME for Vowel Classification

We will demonstrate the propertics of the IIME architccture and its learning algorithms
on Pcterson and Barneys vowcl classification data sct [42]. We chosc this datasct becausce
it is non-artificial, spcech recognition related and relatively small, allowing to cxplore
and analyzc the spacc of learning paramecters. Another advantage of this datasct is its
low dimcnsionality. We can casily reduce the originally four-dimensional fecature vectors
to two-dimcnsional featurce vectors, which allows us to draw ccrtain propertics of the
classficrs in a two dimensional coordinate system. We think that this kind of analysis
provides deeper insight and better understanding of the way, the IIME works.

4.5.1 The Data Set

The data sct consists of 1520 four dimensional feature vectors. The feature cocfficients
arc the formant frequencics IF0,IF1,'2 and I"'3. The data sct contains an cqual number
of training vectors for cach of the following 10 Amecrican Iinglish vowcls (uniform prior
distribution).

IY IH EH AE AH AA AO UH UW ER

We did not preprocess the data in any way, cxcept that we normalized cach of the
four formant frequencics in the data sct independently to the range [0,1]. Fig. 4.3 shows
the complete data sot in the normalized (IF1,F2) feature space.
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Figurc 4.3: Peoterson & Barncys vowel classification data sct 2 =1, y =I'2

Syrdal and Gopal [50] performed classification on this datasct using a quantitative
perceptual model of human vowel recognition. They reported classification rates between
82.3% and 85.9% for their classificr bascd on bark scale differences and lincar discriminant
analysis (LDA). ITuman listeners achicved an average classification ratc of 94.4% when
hearing the original recordings of the vowels.

4.5.2 Results

Fig. 4.4 shows thc cvolution of the likclihood on the training data and the mecan squarc
crror and the classification crror on the test data for a GLIM a MLP and different IIME
architccturcs (branching factor 2, depth 1,2 and 3). The IIME's were trained with a
combination of the Least Squares heuristic to EM and the gradient ascent algorithm. We
found, that the Least Squarcs heuristic converges very fast (faster than the gradicnt based
training) but is not ablc to achicve the samce performance.
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Therefore, we used LS for the first fow iterations before switching to GA, which gave
the best results. The MLP was traincd with on-line stochastic gradient crror backprop-
agation with a lcarning ratc of 0.1 (opsimized by scveral trials). The training runs werc
performed on 4-dimensional feature vectors. Comparing classificr performances with re-
speet to the classification crror rate, onc can sce that a simple GLIM is compctitive with
both a 2-layer MLP with 24 hidden units and the different IIMIS architectures. However,
the cvolution of the likelihood and mcan squarc crror show that MLP and IIMI’s arc ablc
to lecarn the data better. Scveral things deserve to be mentioned:

e MLP and IIMIZ’s achicve roughly the same performance
e Convcergence is much faster for the IIMIE’s duc to the EM algorithm

¢ Different IIME architectures do not vary significantly in the casc of the vowel data.

IFig. 4.5 shows thc class boundarics imposcd on a 2-dimensional featurc spacc (IF1,F2)
by an IIME (dcpth 3,branching factor 2) and an MLP (24 hidden units), respectively.

R W
R :
\\\.\.\.sxx :
R
\ o A
R
SEE

Figurc 4.5: Class boundarics obtaincd by IIME (lcft) and MLP (right)

IIME and MLP wcere trained until convergence on the 2-dimensional featurc. The
plots in Fig. 4.5 were computed by sampling the intcrval [0, 1]?, coloring the class with
highest output activation in different shades of gray. The MLP scoms to prefer non-
lincar curvy class boundarics, whercas the ITMIE imposcs almost lincar oncs. It scems
that the IIME discovers that the task docs not neced a soft collaboration between cxperts,
thercfore partitioning the input space into disjunct scgments, which arc classificr by the
(generalized) lincar cxperts.
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Fig.4.6 shows the cvolution of the activation regions of the experts while training the
architccture. The plots arc sampled in the same region [0, 1)? as before, coloring the cxpert
with the highest cummulative gating probability in different shades of gray. Obviously,
as the training procceds, the IIME shuts off 5 of its 8 cxperts completely. A combination
of 3 cxperts scems to be cnough to solve the given task. This again mcans, that a lot of
paramcters in the IIMI tree arc rendered uscless in this specific application.

Figurc 4.6: LEvolution of cxpert’s regions of activation (after 1,2,3,4 and 9 iterations,
respectively)

Since we do not know in advance, how many cxperts arc sufficient to solve a given
problem adequatcly, we can only guess and usc an architecture that is likely to contain
morc cxperts than nceded. This approach to modcl sclection is clearly a wastce of parame-
ters. The next chapter addresscs this problem by presenting a constructive method which
itcratively grows an IIMIE architecturc that uscs its paramecters more cffectively.
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Chapter 5

Constructive Methods

5.1 Motivation

Onc of the cssential problems with the [IMIS approach, as with other ncural architccturcs,
is modcl sclection. Applying IIMIE’s to a classification or regression problem requires the
choice of structural paramcters such as the trce depth and the branching factor. As with
other architecturcs, the problem of model sclection is mostly solved in a rather simple
way. Architecturcs of diffcrent size arc trained and their poerformances arc compared
on an independent test sct to sclect the one, that gencralizes best. This approach is
computationally very cxpensive cspecially when dealing with large data scts.

Better solutions to sclecting model sizes arc constructive and/or pruning mcthods.
Constructive methods iteratively gencrate larger models starting from a very small onc.
FFor cxample, Fahlman’s cascade corrclation algorithm realizes such a constructive method
for a special multi-laycred network. The basic idea in all growing algorithms is to use
somc critcrion on the training data to sclect the locally best cxpansion out of the sct of all
possible cxpansions to adaptively generate an architccturc that fits the data better than
its static counterpart.

Pruning mcthods, on the other hand, usc the opposite strategy: A large (possibly
oversized) architecture is cvaluated to detect obsolete or incffective parts which then
arc rcmoved before the architecture is re-trained. This process can also be repeated
itcratively using the performance on an independent test sct as the stopping criterion.
Computationally, pruning mcthods have the disadvantage of repeatedly requiring the
training of unnccessarily large architecturcs.

Because of the inherent tree structure of the IIME, it is very appcealing to derive a
growing algorithm for this architecturc. The machine learning litcrature offers a wide
varicty of growing algorithms for classification and decision trees [44], [45], [6]. Unfor-
tunatcly, thesc algorithms require the cvaluation of the gain of all possible node splits,
using (mostly) cntropy or likclihood bascd criterions, to cventually realize the best split
and discard all thc others. Watcrhouse and Robinson [56] presented such an algorithm
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for the IIME architccture. They cvaluated their growing algorithm on a rclatively small
data sct. In the case of very large speech data scts, their approach is no longer applicable
in a rcasonablc amount of time. We therefore developed a different growing algorithm for
the IIME architecturc which imposcs very little overhcad and which is applicable in our
domain.

5.2 Algorithms

We distinguish between tree growing and tree pruning, although both techniques arc
usually applicd simultancously, in order to achicve faster lecarning and rccognition passcs.

5.2.1 Adaptive Tree Growing

In order to grow an IIMI, we have to definc an cvaluation criterion to scorc the cxperts
performancce on the training data, which in turn will allow us to sclcet the worst expert to
be split into a ncw subtree, providing additional parameters which can help to overcome
the crrors madce by this expert.

Viewing the IIMT as a probabilistic modecl of the observed data, we partition the input
dependent likelihood of data gencration using the cxport sclection probabilitics provided
by the gating nctworks

(@ %) = ZlogP(y(‘)IX(t),G) =ZzgklogP;,-(y(tHx(t),G);,.)
r PRl

3= 2 log[Bo(yWx, @)% = 37 14(Ok; X)
Kkt k

where the gy, arc the products of the gating probabilitics along the path from the root
nodc to the k-th cxpert, that is, g, is the probability that cxpert k is responsible for
generating the observed data (note, that the g, sum up to onc). The cxpert-dependent
scaled likelihoods 1,(@;X) can be used as a mcasurc for the performance of an cxpert
within its region of responsibility. We usc this measurc as the basis of our trec growing
algorithm:

1. Initializc and train a simple IIME consisting of only onc gatc and scveral cxperts.

2. Compute the cxpert-dependent scaled likclihoods [,(@®: X) for cach cxpert in onc
additional pass through thc training data.

3. Find thc cxpert k& with minimum /, and expand the tree, replacing the expert by a
new gate with random weights and new cxperts that copy the weights from the old
cxpert with additional small random perturberations.
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4. Train thc architccture to a local minimum of the classification crror using a cross-
validation sct.

5. Continuc with step (2) until desired tree size is reached.

The number of tree growing phascs may cither be pre-determined, or based on dif-
forence in the likelihoods bofore and after splitting a node. In contrast to the growing
algorithm in [56], our algorithm docs not hypothesizc all possible node splits, but dcter-
mincs the cxpansion node(s) directly, which is much faster, cspecially when dealing with
large hicrarchies.

5.2.2 Pruning

Furthermore, we implemented a path pruning tcchnique similar to the one proposed in
[56], which spccds up training and tcsting timos significantly. During the recursive depth-
first traversal of the tree (needed for forward cvaluation, posterior probability computation
and accumulation of nodc statistics) a path is pruncd temporarily if the current node’s
probability of activation falls bclow a certain threshold. Additionally, we also prunc sub-
trces permancently, if the sum of a nodc’s activation probabilitics over the whole training
sct falls below a certain threshold. This technique is consistent with the growing algo-
rithm and helps prevent instabilitics and singularitics in the paramcter updates, since
nodes that accumulate too little training information will be pruncd away, without being
considered for a paramcter update.

Temporarily pruning branches of the IIME trec can speed up training and testing
times considcrably, although this will most likely lcad to an incrcasc in crror rate. We
will present results of cxperiments with different pruning thresholds and their impact
on the performance of an IIME system. Ior spcech recognition applications, a mcans
for trading off accuracy against spced is very appealing, cspecially for demo systems,
where the system’s reaction time is more important than its performance (although an
improvement in both dircctions is desirable, of course). We will therefore also cxamine
the cffect of IIME pruning on specch recognition performance.

5.3 Experiments

We cvaluate the tree growing and pruning algorithms on the Pcterson & Barncy vowel
classification task, comparing thc resulting IIME’s with standard pre-determined IIME
architccturcs.

5.3.1 Tree Growing

We comparc a standard binary trec IIME (depth 3) containing 8 cxperts with an adap-
tively grown binary IIME with the same number of cxperts. Fig. 5.1 and Fig. 5.2 show
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the cvolution of the classification ratc and log-likclihood during training. The standard
IIME achicves it’s final performance after 9 itcrations, the growing IIME is able to achicve
the same performance after 8 itcrations, at this time consisting of only 3 experts. This is
consistent with our carlicr obscrvations.

Average Classification Rate for different test sets
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Figurc 5.1: Classification rate for standard and growing IIMI

The bumpincss of the curves for the growing IIME arc duc to the node splitting, that
was donc after cvery 4 itcrations. Fach time a node is being split, two ncw cxperts are
introduced and initalized by the splitting candidate’s paramcters with small additional
random perturberations. This causes an initial decrcasc in both classification ratc and
log-likelihood which is soon redeemed by the power of additional paramecters.

Onc of the motivations for the growing algorithm was the desire to usc the available
paramctoers cffectively. Fig. 5.3 and Fig. 5.4 comparc the two architccturcs in this respect.
They show the final topologics together with histograms at cach internal node, approx-
imating the distributions of gating probabilitics over the test set. The histogram trees
should bc interpreted as follows:

o A sharp pcak at the loft or right sidc of a histogram indicates that onc of the two
children nodes is shut off by the corresponding gatc.

e Pcaks both at the left and the right side of a histogram indicatc a morc or less hard
split of the input space by the corresponding gate.

e A pcak in the middle of the histogram indicates that the corresponding gate makes
usc of soft splits of the input space.
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Figurc 5.2: Log-likclihood for standard and growing I[IME

As onc can sce in Fig. 5.3, only 4 of the 8 cxperts can contribute to the overall output
of the hicrarchy, the remaining 4 cxperts arc 'pinched-off” almost completcly.

Fig. 5.4 shows the samc histogram trec for the grown architecture. Ilcre, almost all
cxperts contribute to the overall output. The criterion for splitting nodes during the
growing phasc implicitcly guarantees this because the splisting score is weighted by the
cxperts activation. An cxport that is hardly cver active will never be split into a new
subtrce which is cxactly what we want.

Fig. 5.5 and Fig. 5.6 comparc the rcgions of activation for cach of the 8 cxperts in
both architectures. Tach plot was obtained by sampling the cxpert’s activation (product
of gating probabilitics along the path from root to cxpert nodc) in the region [0, 1]2. White
color indicates high activation, whereas black color indicates low activation.

5.3.2 Pruning

IFig. 5.7 shows the cffect of different pruning factors during training on the final classifica-
tion performance. In this cxperiment we chosc the 2-dimensional feature space, consisting
of I1 and I2, because the difference between a GLIM and an IIME in terms of classifica-
tion performance is much morc obvious. The ITME consists of 8 cxperts, organized in a
binary trec of depth 3. A pruning valuc of 0.0 corresponds to no pruning at all, whilc at
a valuc of almost 1.0 only thc most probable cxpert is cvaluated.
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Figurc 5.3: Ilistogram trce for a standard IIMLE

Figurc 5.4: Iistogram trce for a grown IIME
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Figurc 5.5: Expert activations for standard IIME

Figurc 5.6: Expert activations for grown IIME

Since the test sct is relatively small, measuring the classification crror after only onc
training run is not very representative, because different initial weights influcnec the final
performance. Thercfore, we computed mean and standard deviation of the classification
crror ratc over 20 training runs, for cach sctting of the pruning factor. The lowest clas-
sification crror ratc over a maximum of 30 itcrations was computed and uscd in cach
training run, although most of the training runs converged in less than 8 itcrations. Ifi-
nally, Fig. 5.8 shows the impact of pruning during the testing of an IIMI. This time, the
IIMT: was traincd without pruning. Different pruning thresholds were applicd during the
computation of the mcan squarc crror on the test sct. We chose the MSE instead of the
classification ratc, since the test sct is too small to give significant results with respect
to the classification crror ratc (and because GLIM and IIMT performances arc relatively
closc).
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Figurc 5.8: Lffect of pruning during testing




Chapter 6

Context Modeling

It is well known from traditional IIMM bascd spcech recognizers, that the modcling of
phonctic context improves recognition accuracy significantly over context-independent
monophonc modcls. Incorporating context modecls into a connectionist hybrid IIMM sys-
tem is also cxpected to boost performance, but it requires a different approach, since
the computation of class likclihoods is not distributcd among scparate cstimators, but
is performed by computing class postcriors using onc big ncural network. This chapter
introduces posterior factoring as a technique to modcl phonctic contexts within a hy-
brid conncctionist specch recognizer and preseats a parametric clustering algorithm that
creates decision tree clustered polyphone contexts.

6.1 Phonetic Context Modeling

In a systom with » monophoncs, modecling of context windows of width d would requirc
the cstimation of models for n? classcs, which is not feasible in practice (n ~ 50,d > 3).
Usually, phonctic contexts arc hicrarchically clustered according to a distance measure be-
tween two paramctric distributions. The most popular ecxample arc gencralized triphones
[82]. Systems that usc this kind of modcling cluster the sct of all possible/observed
monophonc triples (& 125000) into a sct of about 5000 — 10000 modcls. This approach,
howcever, considers only the left and right ncighbors of a monophonc. Morc recently,
systcms have cmerged, that cluster broader contexts, so called polyphoncs. Whatever
the actual context modcling is, oncc a sct of rcasonable context classcs is computed, it
rcmains to cstimate likelihoods for cach of these classes.

A mixturc of Gaussians bascd context-independent (CI) IIMM system can be aug-
mented to a context-dependent (CD) one fairly simple, since cach class is modcled by
a scparatc multivariatc Gaussian mixturc and density estimation of onc context class is
independent of all the other classes. As far as the acoustic modcling is concerned, it only
requires a much larger sct of mixture densitics, the underlying mathematical framework
docs not restrict the number of modcled classes.
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Augmenting a CI conncctionist hybrid IIMM system to model context classes, we arc
facing some difficultics, since scaled class likclihoods arc computed out of class posteriors,
which in turn arc computed by one single ncural network. This works well for a CI system
with only about 50 classcs, but it is computationally not fcasible to modcl a sct of over
1000 context classes by onc single ncural network, which would require over 1000 output
ncurons. Also, such a nctwork would computc posteriors for all of the context classes in
cach framec, although most of them will never be used by the decoder. Training such a
big nctwork is potentially troublesome and would require too many training cpochs to be
applicable to speech domains with large training datascts.

6.2 Factoring Posteriors

Fortunatcly, postcriors for context dependent classes can be modcled by multiple ncural
nctworks, cach of which containing only a small number of output ncurons. Using Baycs’
rulc and standard rules for conditional probabilitics, the context-dependent monophone
likelihood p(x|c;,w;) for monophonc w; and context class ¢;, which is required by the
IIMM, can be factored in scparatc terms, depending on the statc topology.

6.2.1 Single State Topologies

In a system where cach context class is modcled by a single IIMM state, the cmission
probability (likclihood) to be cstimated in cach frame is p(x|c;,w;). Using Bayes’ rulc,
this is cqual to

plxlejwi) = Plcj,w;)

The above cquation can be factored as follows using the standard rulc for conditional
probabilitics

plej,wilx)p(x)
P(Cj,a)’i)

p(ejlwi, x)  plwix)
Pole) Pl 7

p(X’Cj,wi)

As usual, p(x) can be neglected since it is cqual for all context classes ¢; and all
monophoncs w; given a particular frame x, hence it will not affect the decisions made in
the decoder because the < relation is invariant to addition of constants.

The remaining terms in the numcrators arc posteriors, which can be approximated
by noural nets, while the terms in the denominators arc prior probabilitics which can be
cstimated bascd on the frequencics of classes in the training sct.
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The posteriors p(w;|x) arc conditioned on the input featurc vector x only and can be
approximated by a ncural network which discriminates between all the monophones in
the system.

The posteriors p(c;lw;,x) are conditioned on the input feature vector and on onc of
the monophones w;. Onc way of cstimating these probabilitics, which fits neatly in the
scheme of a modular ncural network system, is to train scparatc context expert networks
for cach of the monophonecs. The context cxpert for monophone w; would be a notwork
which approximates the posteriors p;(c;|x) for all the context classes of monophone w;.

Ilig. 6.1 gives an overview of a context dependent conncctionist hybrid system for
single statc topologics.

S E————
( ™
Monophone Context Bxpert
Expert Network for
Network monophone 1
Context Bxpert
Network for
monophone N
- J
monophone
inventory
*

context dependent posterior computation

Figurc 6.1: Overview: single statc topology hybrid context dependent system
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6.2.2 Multi State Topologies

Gencrally, acoustic modcls arc made up of multiple states in a left-right or Bakis [IMM
modcl, to account for tcmporal variations in the modeled speech sound. Today’s state-
of-thc-art rccognizers usc mostly 3-statc and 5-state left-right IIMMs. Tirst, consider a
context independent hybrid conncctionist IIMM system. There are two ways to model
multi-statc topologics in such a system: The first onc is, to treat all the state’s of all
monophonc modcls as onc big pool, and train a ncural nctwork to discriminatc between
all of them. This approach requires s * n output nodes for n monophoncs using s-statc
modcls. Instcad, we can adhere to the concept of modularity and factor the posterior
class probability further.

A multi-statec IIMM modcl requires the computation of the state, monophonc and
context dependent likelihood p(x|e;, wi, 8k), where sy is the IIMM statce, ¢; is the context
class and w; is the monophone. Applying Baycs’ rule and procecding as in the casc of
single statc modcls, we obtain:

_ plej, wi, se[x)p(x)
p(XICJ,wl,sk) = ——_——P(cj,w.,-,sk)

. p(cjvw-i|sk7x) p(sk|x)

~ Ploj,wilse)  P(sk) (x)
plejlwi, sk, X)) plwilse, x)  plselx)
Plolons)  Plals)  Pls) P

All the terms in the denominators arc again prior probabilitics, which we can cstimate
by rclative frequencics. The frame probability p(x) can be dropped, when secking the
modcl with maximum likelihood. It rcmains to compute the posteriors in the numecrators.

Starting from the right side, the posteriors p(sx|x) can be computed by a single ncural
notwork, discriminating betwoen the states in a s-state IIMM topology. Thercfore, we
call this notwork a state discriminating network (SDN).

The posteriors p(w;|sy, x) arc conditioned on the IIMM statc and the input framec
and can be computed by a sct of s notworks, onc for cach IIMM statc. These noetworks
discriminate between the monophones w;, given a particular IIMM state s;. The network
for statc s computes py(w;|x).

The posteriors p(e;|w;, s, %) arc conditioned on the input frame x, the IIMM statc sy,
and the monophonc w;. They can be computed by a matrix of nctworks consisting of s
times n nctworks (s is the number of states, n is the number of monophones). Tach of
thosc networks discriminates between all the context classes of a specific monophone in a
specific state. The network for state s, and monophonc w; therefore computes pi(c;|x).

Fig. 6.2 gives an overview of a context dependent connectionist hybrid system for multi
statc topologics.




6.2. FACTORING POSTLRIORS 59

— ﬁ ™
Monophone
P Context Expert
Experts Networks for
Monophone 1
SDN
Context Expert
Networks for
Monophone Monophone N
| | Model
- Inventory
ot
Computation of Context Dependent Posterior Class Probabilities

Figurc 6.2: Overview: multi statc topology hybrid context dependent system

The nctworks depicted in Fig. 6.1 and Fig. 6.2 look like single layer perceptrons, but
they arc mcant to represent arbitrary posterior probability cstimators. Computation of
a specific context dependent likolihood p(x|e;,wi, s4) requires the evaluation of three net-
works: The state discriminating network (SDN), onc of the monophonc cxpert nctworks
and onc of the context expert nctworks. Note, that the context-dependent hybrid connee-
tionist systcm can casily be switched back to context-independent (CI) mode by turning
off the contoxt cxpert nctworks, a featurc not available in mixturc-of-Gaussians bascd
systcms.

6.2.3 Related Work

The modcling of context dependent likclihoods as presented in this thesis most closcly
rescmbles the work in [30] and [31], with the notcablc difference, that we have gencralized
context-dependent posteriors to multi-state IIMM modcls.
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There arc other ways of factoring a conditional posterior probability. For instance,
onc could decomposce the conditional likelihood for a onc-statc IIMM modcl as follows:

plej, wilx)p(x)
p(x|0j,wi) = JP(C ”i)
gy

pdens)  plesh)
Plals) Pl PO

In this casc, context specific networks arc trained to discriminate between the mono-
phones w;, given a specific context class ¢;. Every context specific network performs a
simpler task than a contcxt-independent network. This approach is adopted by SRI [13].
However, it is loss attractive to us, because of the following two reasons: (1) Onc can not
switch between CI and CD modc and (2) discriminating between monophones in a specific
contcxt can lead to poor posterior cstimates, when some monophoncs occur rarcly or not
at all in this contcxt. Furthermore, as we will sce in the next chapter, our approach of
factoring postcriors allows to make usc of the same context clustering trees that arc used
in mixturc-of-Gaussian based IIMM systcms.

Yot another approach was adopted by Bourlard and Morgan at ICSI [3]. Their method
factors the posterior phonc-in-context probability in the samc way as we presented it.
ITowever, their system uscs only onec MLP to cstimate context posteriors instcad of a sct
of context cxperts as proposed carlicr in this thesis. This is possible by giving the context
MLP cxtra binary inputs, which cncode the current monophone. This approach has
the disadvantage of requiring multiple forward passes through the context MLP during
recognition, since the decoder will hypothesize more than one monophonc at cach time
stcp, which leads to different network input patterns.

6.3 Polyphone Clustered Contexts

We have presented an architecture for cstimating context dependent posterior monophonc
probabilitics, given a sct of context classcs. We have not yet talked about how we obtain
thesc contextual classes. The remainder of this chapter will present polyphone clustering
using decision trees, as it is uscd within the mixturc-of-Gaussians based JANUS rccog-
nizer. We will show, that the resulting context clustering trees can also be used to derive
phonctic context classes for the context expert networks in our hybrid framework.

6.3.1 Polyphones

Polyphoncs arc gencralizations of the well-cstablished triphones. They model a broader
context of a given monophone. TFor instance, the word 'BABYSITTING’ is modcled,
according to our dictionary, as the following scquence of monophones:
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B-EY-B-IY-S-1III- DX-IX- NG

If we'd modcl, for instance, polyphonic contexts of a maximum of +/ — 2 phoncs, the
above word would bec modcled as a scquence of the following polyphoncs:

] Monophonc |L Polyphonc —l

B *-*.B-EY-B

EY *-B-EY-B-1Y
B B-LEY-B-IY-S

IY EY-B-IY-S-1II
S B-IY-S-1III-DX
III IY-S5-III-DX-IX
DX S-1III-DX-IX-XNG
IX HI-DX-IX-NG-*
NG DX -IX-NG-*-*

An inventory of polyphoncs can be cxtracted from large text corpora and stored coffi-
ciently in a sct of binary dccision trces, onc for cach monophone. It should be obvious,
that the number of polyphoncs obscrved in a given large text corpus is far too high to
allow scparatc modcls for cach onc of them. In fact, many of the obscrved polyphones do
occur only once in the training sct. Additionally, there may be some polyphoncs in an
unscen test corpus, which were not present in the training corpus, no matter how big the
latter was.

Therefore, we need to apply a clustering procedure, which reduces the number of
distinct modecls while providing full coverage of unseen new test data. By far the most
popular technique is to usc decision trees with questions about the phonctic context. De-
cision trees arc very appcealing because they guarantee to cover all phones in any contexts,
whilc using a distance mcasurc based on the acoustic data to split nodes and grow the
tree.

6.3.2 Decision Tree Clustering

Dccision trees are divisive clustering methods making usc of binary trecs asking qucstions
at cach intcrnal node. Associatcd with a decision tree is a finite sct of questions which
can bc answered with yes or no. The children nodes of cach internal node correspond to
the two possible answers to the particular question asked. Starting with a trec containing
only the root node, succesive splits arc applied to grow the tree to a desired size.

The itcrative tree growing procedure works as follows: Initially, all the acoustic train-
ing data is associated with the root node. In cach growing step, a prcliminary split is
computed for all of the lecave nodes and all the possible questions, that can be asked.
Each of these preliminary splits is scored using a distance measure which models the
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goodncss of the split. The lcave nodc with the best scorce is then split, while all the other
prcliminary splits arc discarded. The training data associated with the node being split,
is distributed among the children nodes according to the answers to the actual quostion
being used. The distance measurc used to score the preliminary node splits is very much
dependent on the representation of the data. In [30],[81], unimodal multivariate Gaus-
sians with diagonal covariancc matrices arc used to model the data in cach leave node.
They usc the gain in log-likclihood duc to the data being split as the distance measure.
This involves the cstimation of diagonal covariance matrices for cach hypothesized node
split:

AL = nlog |X| — (n;log [Ty + n, log |E,|)

where n is the number of samples associated with the parent node, n, and n, arc
the number of samples associated with the children nodes, respectively, X is the diagonal
covariance matrix of the data in the parent node and X, and X, arc the diagonal covariance
matrices of the data in the children nodes, respectively.

Once a decision tree for a particular monophonc is grown to a desired size, its leaves
represent the context classcs of that monophone and are labeled accordingly.

6.3.3 Entropy based Clustering

The distance measurc used in [30],[31] requircs the cstimation of covariance matrices for
cach hypothcsized node split using all the acoustic data associated with the nodes involved
in the split. This can be very cxpensive, especially when the training datasct and the sct
of questions arc large.

Phonctic context decision trees in JANUS arc grown using a distancc mcasurc that
docs not depend on the acoustic training data dircctly. Instcad, the mixturce cocfficicnts
of the context independent Gaussian mixtures arc interpreted as discrete distributions
over a vector quantized feature space, represented by the codebooks of Gaussians. When
hypothesizing a new split, discrcte distributions over the same monophonc codcbook arc
computed for the two hypothesized children nodes. To scorc the goodncess of the split,
the gain in cntropy using scparatce distributions for the children nodcs is computed.

D(p7 P, pr) = nlIIl(pl) + anIr(pr) - TLII(p)

with  IIL(p) = —Zptilogpt-i
I(py) = = prilogpn
Io(p) = -3 pilogp;
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In the above cquation, the sums go over the number of cocficients in the discrete
probability distributions. Using thc above distance function to score splits in a decision
tree is cfficient and appcaling from an information theorctic point of view, since the
above splitting scorc can be interpreted as the mutual information between children nodes

distribution.

6.3.4 Analyzing Cluster Trees

To show propertics of the splitting criterion, we crcated cluster trees for the ESST speech
task with 5 diffcrent numbers of overall context models : 500, 1000, 1500, 2000 and 2500.
The ESST speech task is an English spontancous specch database which we also usc for
the cvaluation of the hybrid speech recognizer (sec Chapter 8 for dctails).

For cach of the 5 cluster trecs, we computed the number of context models generated
for cach monophonc (over all states of a 3-state left-right IIMM modcl). Fig. 6.3 shows
the cvolution of the number of context modcls over the 5 cluster phascs and the 52
monophoncs in our system.

Distribution of context models among monophones

# overall models: J
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Figurc 6.3: Distribution of context modcls

It is remarkable that the trees for the monophones N, T and IY together contain about
20% of all cluster modcls (2500) over all trecs. Tig. 6.4 shows a typical decision tree. It
was build for the middle statc of a three-state model of the monophone AX. It is part of
a forest of 156 dccision trees (52 monophones times 3 states) with an overall number of
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1000 context modcls. The polyphonic context is restricted to the 3 phones left and right
of a midphonc. The sct of all possiblc questions, that were available for the gencration of

the tree is listed in Appendix A.
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Figurc 6.4: Decision trec for monophone AX-m

Obviously, the clustering process favours questions about the immediate right or left
ncighboring phone. This is consistent with our intuition that the influcnce of context is
decrcasing with incrcasing ncighborhood distance. Nevertheless, the tree in Fig. 6.4 also
uscs questions about the broader context. It cven asks a question about a phonce that lics
3 frames in the future, although such questions gencrally occur only in the lower parts
of the trees. That means, that it is in fact helpful to consider broader contexts than
just triphones. In the beginning of node splitting, the trec concentrates on ncighboring
contexts, but when the trees get bigger, the splitting process starts to usc broader context
qucstions as wcll.




Chapter 7

Mixtures of Gaussian Experts

Until now, we have assumced a gencralized lincar modcl in both gates and cxperts of an
ITicrarchical Mixturc of Experts, although the architecture in principle allows arbitrary
paramctric forms of gates and cxperts. In the casc of classification, however, the modcls
for gates and cxperts have to fullfil the constraint, that their output activations sum up
to onc for cach input framec. Recently, Xu, Jordan and Ilinton [57] have proposed to usc
a paramectric form bascd on Gaussian kerncls for the gates. We will further develop their
work, showing that thc samc paramctric form can be used for cxperts as well. Such an
architccture is very attractive becausc it can be initialized to a necar optimal solution very
cflicicntly, thus reducing convergence time of the learning algorithm.

7.1 Alternative Parameterization

Instcad of applying a gencralized lincar model with softmax nonlincarity, the following
paramctcrization was proposed for the gate in a onc-level mixturce of cxperts architecture

([57):

a; P(x|vy) )
i(x,v —_— with ;=1 and @, >0
g ( ) Zk akP(lek) zk:ah an k
1 o
P(x|vi) Gy P {=1/20x = )" (x - M)}

This form of a gatc is legal, since the ¢'s by dcfinition sum up to one, thus providing
a partition of unity for cach input fcaturc vector Xx. The above paramctric form can be
interpreted as a paramctric a-posteriori classificr according to Bayces theorom:
Pwi)p(x[wi)
T Pwi)p(xws)
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where the prior probabilitics P(w;) arc the e;’s and the class likclihoods p(x|w;) arc
modcled by single Gaussian distributions.

7.2 Gaussian Classifier as Gate

Paramcterizing the gate of a mixturc of cxperts as a Gaussian a-posteriori classificr allows
to dcrive an cfficient single-loop EM algorithm to cstimate the paramcters of the gate.
Additionally, the special paramctric form allows to initializc the Gaussian kerncls and
a-priori probabilitics which spceds up training times significantly.

7.2.1 EM algorithm

The conditional mixturc underlying a mixturc of cxperts is

P(yx,®) = Zgl (y]x, ;)

_ o P(xlvi) o .
= LT Pl €1
> ——-—a}lzixl‘:’;) Pi(ylx, ©;)

If we attempt to derive an EM algorithm dircetly on this mixturc density, we find that
the M-step is not analytically solvable and would require itcrative processing, similar to
the IRLS algorithm. IHowcver, the above conditional mixturc can be rewritten in a form,
that allows an analytical solution for the ML problem:

P(y,x) = P(y|x,®)P ZaP x|vi) Pi(y|x, ©1)

Instcad of cstimating the gating paramecters to maximize the likelihood of the original
mixturc density, we can maximize the likclihood of the above joint density. Applying the
EM algorithm in a similar way as we did in the casc of gencralized lincar models leads to
the following iterative cstimation method:

(1) E-step For cach training vector, compute the posterior nodc probabilitics A; accord-
ing to

ol P Py O}x2, 07
Sk ok P(xO o) P (y0]x, 00

By Ol =
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(2) M-step Usc the &;’s to compute new cstimates for the parameters o, p; and I;
of the gate. The new cstimates can be computed directly, since the ML problem is
now analytically solvablec:

S Tk (yOx)
‘ T i b (y Ox®)
LG T, hf’)(y(t)lx(t))x(*)
‘ e b (yO]0)
. . . '1
A7) [0 7] [0 - )
A (y@]x®)

The ML problem for the cxperts remains analytically unsolvable (in the casc of clas-
sification) and thosc paramcters must be cstimated cither iteratively by gradient ascent
or by the lcast squarcs heuristic. Ilowever, the above EM algorithm for gates is computa-
tionally morc cfficient than the IRLS algorithm for GLIMs. Notc, that the computation
of nodc posteriors h; has changed compared to the EM algorithm for GLIMs. This indi-
rectly influcnces the cstimation of expert paramecters also, since the joint nodce posteriors
appcar in the re-cstimation formulas for cxperts.

Note also, that the above formulation of the EM lcarning docs maximize the sum of
the mixture likelibood and the conditional likclihood of the gatc instcad of maximizing
the mixturce likelihood itsclf. During testing, however, the output of the mixturce still
follows the mixture modecl of IIMT’s.

I

7.2.2 Initialization

The paramectric form which we have applicd to the gate is very attractive becausc it aliows
the initialization of parameters to ncar optimal values. There is a significant body of work
on the initialization of Gaussian mixturc models and radial basis function networks which
can be adopted here as well. In fact, since we alrcady know, that the paramctric form
can bc vicwed as a Gaussian a-posteriori classificr, its paramecters can best be initialized
by cstimating priors and class likclihoods by relative frequencics and maximum likelihood
cstimation, respectively. Ilowever, in the casc of a gate in a mixture of cxperts, we do
not have class labels to cstimate the parameters of a Gaussian classifier the way we just
proposcd (nevertheless, this technique will gain importance later, when we'll usec Gaussian
classificrs as cxperts also).

Onc possible initialization technique for Gaussian gates that works very well in practice
is to cstimatc the paramecters such that the likclihood of the data under an unsupervised
mixturc model is maximized. That mecans, we initalize the parameters of the gatc accord-
ing to
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;= argmax 3 log 3 o P(xjvi)
i m 7

with S, a4 = 0 and @, > 0. Usually, maximizing such a likclihood is donc in the
following threc steps:

(1) Extract Samples Initialize the mcans of the Gaussians by cxtracting the appro-
priatc number of samples randomly from the training set.

(2) Cluster Means Apply a clustering algorithm such as the k-mcans or LBG algorithm
to the moans. This corresponds to minimizing the distortion of a discrete vector-
quantized distribution where the codebook vectors arc the means.

(3) Maximum Likelihood Itcratively recstimate the mixturc cocfficients ¢, the means
it; and the covariance matrices X; according to the EM algorithm for Gaussian
mixturcs [10].

The possibility to initalize the gate parameters to ncar optimal solutions and the
singlc-loop EM re-cstimation algorithm render the Gaussian paramecterization a powerful
cxtension to the standard IIMT architecture.

7.2.3 Combining Multiple Classifiers

There is onc other application of Gaussian gates, namcly the task of combining multiple
classificrs (CMC). Supposc we have n different kind of pre-trained classificrs, all trained
on the samc data sct. Since cach of the classifiers might have learned diffcrent parts
of the data best, it is gencrally a good idca to combinc their cstimatces, if we have a
combination mcthod capable of supporting the good and suppressing the bad classificrs
for cach training sample.

The problem can be treated as a special case of a mixture of cxperts, where the experts
paramecters remain fixed and only the gates arc itcratively adapted. The single-loop EM
algorithm can thercfore be dircetly used to cstimate the gate paramcters. It was shown
in [57] that this can incrcase overall performance considerably, whilc avoiding the costly
re-cstimation of the expert classificrs. This makes this technique cven more attractive for
our purposc in spcech recognition, since we have to deal with large datascts consisting of
millions of featurc vectors.

7.3 Mixture of Gaussian Experts

Given the advantages of the Gaussian paramcterization of the gate, it would be nice, if
we could usc the same paramcterization for the experts as well. Also, we would like to
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gencralize the technique to hierarchicel mixturcs with morc than onc gate. Unfortunatcly,
the solution to the EM lcarning problem proposed in [57] docs not generalize to cxperts.
We will therefore relax the EM constraint and derive a generalized EM algorithm that
only guarantces to increase the mixturelikelihood in cach itcration, instcad of maximizing
it.

7.3.1 Gaussian Classifiers as Experts

The paramctric form based on Gaussian kernels is even more attractive for cxperts than
it is for gates. The reason is, that in the casc of experts, we have class labels for the
initialization available. This simplifics the initialization of expert paramcters, sincc cach
Gaussian kernel can be cstimated independently on a subscet of the data. Given that
the gate is alrcady initialized, the initalization of the experts requires just a single pass
through the training data, yet yiclding paramcter cstimates which give the mixturce an
initial performance that is closc to the optimal onc, cven beforc applying any kind of
training algorithm to the wholc architecture.

7.3.2 GEM algorithm

As promised, we will now derive a generalized EM algorithm for a mixturc of cxperts
which uses Gaussian paramcterizations cxclusively. The probability modecl of the overall
architecturc is

Pylx, @) =3 a(ylx, vi) P(v]x, ©;)

where the F; arc multinomial densitics, modcling the multiway classification task im-
posed on the oxperts and the vi and @; arc the scts of paramcters for gate and cxperts,
respectively. The cxpert activations are computed the samce way as the gate activations,
assuming a Gaussian a-posteriori classifier:

a;; P(%[®;)
S 0 P(x]Oy)

1 .
P(x|®) = CSEEREE cxXp {—1/2(){ — i) S (x - ,u.ij)}

yij(X, G)z) = with Eaik =1 and ¢4 >0
k

The cxpert activations can be re-written in an interesting form:

cxp( ;)

yij(x’ @i) - P CXP(ZM-)

. 1 ‘ e
with ;= log(ay) — 5 [nlog(2r) + log|Sis| + (x — piy)! 85 (x ~ poiz)]
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We have cxpressed the expert activations using the same 'softmax’ nonlincarity as in
the GLIM casc. The difference is, that we changed the underlying lincar model which
computes # = WX to a radial model, which basically computes z = (X —W)?2. Ixpressing
the new modcl in terms of the softmax function allows us to unify lincar and radial cxpert

modcls.
The M-step of the EM algorithm for mixtures of cxperts involves the maximization of

the following two likclihoods (assuming a multinomial probability modcl)

v5’°+1) = argmax Z E h(i log g(t)

k+1) (i t) t)
) = argm{gx?hi zt( logy(

J

where the tgt) arc targets for the cxpert output nodes. Because of the nonlincarity of
the softmax function in both g and g, there is no closed-form solution to this problem.
Thercefore, we derive a GEM algorithm which incrcases the likelihoods using gradient

ascent

0z
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where §;; is the Kronecker symbol, 7 is the learning rate, and the z; arc the lincar or
radial functions prior to the softmax nonlincarity.

In the casc of Gaussian cxperts with diagonal covariance matrices, we obtain the
following update rules for the paramecters of a specific cxpert I

ol

. ' ‘ 1
R L T D& {Et(ﬂ(% - yl(t))] @
t (

{

(1) _ ® (5, — 4 (2 — )
/'ij - ]771+ Eh [Zt )] UZ(‘)J

am
(k+1) (%) t t
g‘?m = yzm + Eh( ) I:Z t( )

2 _ 52

t)) (xm - ]771) Tim

4(8)
jm

The e;’s need to be normalized after cach iteration, in order to fulfill the constraint,

that thcir sum yiclds onc. To speed up convergence, it is possible to usc this algorithm

in a stoachastic gradicnt basced version, updating the paramcters cach time M training
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samples have been presented. The presented GEM algorithm is basically a first-order
technique, therefore, the reader may arguc that convergence speed might be too slow
to render this algorithm uscful. Ilowever, we will show, that thc combination of this
algorithm with the initalization tcchnique presented above yicld very fast convergence in
practice.

7.3.3 BBI Trees for Pruning

In [16], we presented a binary tree based space partioning algorithm which is very offective
in speeding up the cvaluation of Gaussian mixturcs with diagonal covariance matriccs.
This algorithm partitions the featurc spacc in a sct of 2¢ so called buckets by means of
hyperplancs orthogonal to onc of the coordinate axis. Given a particular featurc vector x,
the algorithm is able to determine the bucket, in which the vector resides, with just a few
scalar comparisons. Ilaving determined the correct bucket, a reduced list of Gaussians,
which is computed in advance, is cvaluated instcad of the whole mixture.

This algorithm can casily be applied to spced up a Gaussian classificr based hicrarchical
mixturc of cxperts, if the diagonal covariance assumption holds. First, we computc a
BBI space partioning trec for cach of the Gaussian classificrs (cach node in the MGE
tree). During training or testing, when the MGE nodes arc asked to compute posterior
probabilitics, the BBI trces arc uscd to determine a reduced sct of Gaussians, which
contributc morc than a specific threshold. Only these Gaussians arc then cvaluated, all
the romaining oncs arc pruncd to an activation of 0.0. This technique can be scen as
a form of MGE trcc pruning, if applied to gating nodes, where cach Gaussian in the
gate classifier corresponds to onc of the children nodes. We found that BBI trees for
MGE pruning arc particularly uscful for MGE topologics with a high branching factor.
The overhead of pre- computing BBI trees for cach MGE node is neglectable during the
training of MGL's. Tor testing, the BBI trees only have to be computed once and can be
storcd together with the remaining MGE tree paramcters.

7.4 Experiments

We trained a GLIM- and a Gauss-classificr based mixturc of cxperts on the Peterson &
Barncy vowcel data, to comparc the two paramctcrizations. The architecture was the same
in both cascs, a 1-level tree, featuring 1 gate and 10 cxperts. We chose the branching
factor of the trec to be the number of output classcs, bocausc this allows an cven faster
initialization scheme for the MGIS than presented so far. Initialization for the MGE
proceeds in two steps (requiring two iterations through the training data):

(1) Estimatc paramcters of a single Gaussian cxpert. Expand the tree to a 1-lovel, 10
children architecture, switching the Gaussian expert to a Gaussian gatc and freeze
its paramecters.
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(2) Estimate paramcters of the 10 now experts, using the gate activations as obscrvation
weights.

After the initalization, we train the architccturc using the GEM algorithm, presented

carlicr. Fig. 7.1 shows the log-likclihood on thc training sct for an MGE and an IIME.

Fig. 7.2 shows the mean squarc crror on the test sct for the same training run.

Log-likelihood for 1-10 GLIM- and Gauss-HME's
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Figure 7.1: Evolution of log-likclihood for IIMIE and MGE during training

Mean Square Error for 1-10 GLIM- and Gauss-HME's

MSE

GLIM

Figure 7.2: Evolution of MSE for IIME and MGE during trainig

The first two itcrations for the MGE consist of initializing the paramcters. The perfor-
mance of the MGE after initialization is alrcady very high, yet the following GEM training
can improve performance further. Note, that the initialization phasc for the MGE is tak-
ing considcrably less time than a regular GEM or EM itceration, where we have to compute
nodc and branching posteriors. Taking this into account, thc MGE comparcs favourably
to a same-size [IME.




Chapter 8

Evaluation

8.1 Hybrid Janus

This scction bricfly introduces the hybrid IIMIE/IIMM speech recognition system, that was
developed during this thesis. As a starting point of this work, there was a fully functional
continuous-density IIMM spcech recognizer available - JANUS-SR version 3. This system
intcgrates the basic recognizer modulces, such as feature oxtraction, acoustic modeling,
language modeling and the decoder. The goal of this thesis was, to implement a complcete
ncw acoustic scoring modulce based on IIMIE's for JANUS, which can be used stand-alonc
or in combination with the cxisting mixturc-of-Gaussians scoring module. Version 3 of
the JANUS recognizer was constructed as a speech recognition toolbox, cxporting all the
rclevant data structurcs and mcethods in an objcct oriented fashion, using the Tel/Tk
toolkit as the user front-cnd.

8.1.1 General Concept

The JANUS rccognizer implements acoustic scoring by a gencric object, called “strcam’.
A system can contain onc or morc of such strcams. Each strcam can be traincd and
asked for cstimatcs of modecl likclihoods. Onc important concept in JANUS is, that
the strcams arc responsible for the modcling of basic acoustic units. All other modules
interface with the strcams by tagged scquences of phones. This allows the usc of different
context-modcls by different strcams and facilitates the integration of a connectionist scorc
computer. For instance, a ticd-statc continuous density mixturc-of-Gaussians scoring with
typically about 5000 context modcls can casily be combined with a context-independent
conncctionist a-posteriori scoring,.

The hybrid system, developed for this thesis, allows context-independent and context-
dependent connectionist (ITME) scoring of multi-state IIMM’s, using decision treces to
cluster models. Fig. 8.1 gives an overview of the connectionist part of the hybrid JANUS
system.
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Figurce 8.1: Overview: Modules of hybrid JANUS rccognition system

The IImeStream object realizes model clustering, score computation and training by
refering to the [ImeSet object. The IImeSct object contains a sct of IIme objects for con-
text independent and context-dependent modcling. The ITmeSct object also manages the
distribution of training and testing frames to the required IIme objects. An Ilme object
rcalizes an arbitrary hicrarchical mixtures of experts tree (arbitrary topology). It con-
tains gatc and cxpert nodces, which in turn contain Classifier objects. Right now, 3 types
of Classificr objccts arc available in JANUS: Standard GLIM’s as proposcd for IIME’s
by Jordan & Jacobs, Gauss classificrs nceessary to build Mixtures of Gaussian cxperts
(MGE) and two-layer perceptrons (MLP). The concept of allowing arbitrary classificrs as
IIME nodcs generalizes the original idca of IIME's which was cntircly based on GLIM’s.
More classificr types can casily be added to JANUS, giving a great deal of flexibility to
ITME objects. Also, non-modular approaches likc ICST's single MLP hybrid system can
be modecled by single node IIME’s. Apart from being used as IIME nodces, all the classificr
types export their functionality through the user interface, which allows to usc them for
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other spcech- or cven non-speech related purposcs as well.

When computing scores or updating paramcters, the lmeStream refers to a [ImeTree
objoct to cluster phonctic contexts to model names. In the context-independent casc,
this dccision tree is degencrated to a decision list. Once phonctic contexts arc resolved
to modecl namcs, the IImeStrcam hands them down to the IImceSct object which refers
to a IImeMapList objcet to map modcl names to the appropriatc IIME and output nodc
identificrs.

8.2 Task Description

To cvaluate the system, we usc the English Spontancous Scheduling Task (ESST), a 2500
word spontancous spcech databasc in the domain of mecting negotiation. The databasc
consists of roughly 8000 uttcrances (26 hours of speech), recorded at a sampling rate of
16 kIlz. Typical cxamples of uttcrances arc

I I MEANT MAY TWENTY SIXTH ARE YOU AVAILABLE MAY TWENTY
SIXTH BECAUSE MAY THIRTY FIRST TO JUNE THE SECOND I°LL
BE OUT OF TOWN

OKAY WE NEED TO SCHEDULE ANOTHER MEETING MY WEEK ISN’T
LOOKING THIS WEEK ISN'T LOOKING TOO BAD MONDAY I’'M FREE
IN THE AFTERNOON AND TUESDAY I'M FREE IN THE MORNING SO
I GUESS WE'LL START WITH THAT AND I'LL SEE HOW YOUR
SCHEDULE IS

The databasc features lots of spontancous cffects, such as false starts, stuttering and
incomplete sentences. It contains a roughly cqual amount of male and female speakers.
The utterances were recorded under low noise conditions using closc talking headsct mi-
crophones. Nevertheless, the recordings contain a considerable amount of human (coughs,
breathing) and non-human (key clicks, clectronic hum) noisc.

8.3 General System Description

The featurc space for the system is copstrum based. ADC data is preprocessed in the
following steps:

(1) Detect Speech primarily based on signal power. Usc this featurc to suppress non-
speech scgments.

(2) Computc short-time FI'T over 16ms windows at a frame ratc of 100 frames//scc.
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(8) Convert frequency scale into a log melscale with 30 cocflicients.
(4) Computc cepstrum with 13 cocfficients.

(5) Computc delta and dclta-dclta featurcs and merge them with cepstrum and some
ADC features like power and zcro crossing rate.

(6) Apply context-independent LDA and shrink the resulting 47 dimensional vector to
the 32 most-significant cocfficicnts.

(7) In somc cxperiments, we did merge a 5-frame window of 32-dimensional featurcs to
a 160-dimensional featurc to provide morc context information for the networks.

Since the IIME’s require superviscd training, we need to gencratc alignment paths for
cach training uttcrance, which in turn provide targets for cach frame. There arc many
ways of computing training alignments for a conncctionist system. A purcly conncctionist
hybrid system, however, requires iterative training, where the system of a previous itera-
tion itsclf is used to align the training data for the next iteration. There arc two major
drawbacks of this kind of training. It rcquircs many itcrations and a consistent stopping
criterion, and, it relics heavily on rcasonable initial network paramcters. Somec rescarchers
accomplish the latter by pre-training the networks on a hand-labeled phonctic databasc
such as TIMIT.

We usc a different training scheme. Since our recognizer integrates connectionist and
mixturc-of-Gaussians based scoring, it is relatively casy to usc a well-trained Gaussian rec-
ognizer to align the training data for the hybrid system. Thercfore, we computc alignment
paths for cach training uttcrance and savc them to disk. Thesc paths arc subscquently
uscd as targets for the NN training. We found, that this training scheme worked very well,
although ultimatcly, we might gain performance by re-training the networks on alignments
that were generated by the (trained) hybrid system.

All experiments were carried out using a 3-statc IIMM left-right topology and 51
monophoncs. The resulting sctup for the IimeStrcam thercfore was as follows: 1 state
discriminating ITMI, 3 monophonc IIME’s and a maximum of 153 context modcling
ITME’s for context-dependent systems.

The systems arc cvaluated in terms of word accuracy (WA), substitution (S), dcletion
(D) and inscrtion (I) ratcs, using a sct of 291 test uttcrances which were kept apart from
the training data. The number of training itcrations performed and the size of the system
in terms of the number of acoustic modeling paramecters arc reported also.

8.4 CI Systems

We trainced scveral systems, based on different IIMIE architectures and differont IIME
node classifiers to cvaluate the hybrid system. We started to cxperiment with context-
independent hybrid IIME systems and investigated the following architectures:
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e GLIM nodes: Trees of depth 2 with a branching factor of 4. Gatc and cxpert
nodes were generalized lincar modcls.

e Gaussian nodes: Trcos of depth 1 with a branching factor of 52, which is the
nurmber of monophoncs in the system. The branching factor was chosen as the
numbecr of monophones to be able to usc the fast initialization technique for MGE’s
that wc presented carlier.

o Growing trees: Trces with a constant branching factor of 4 and GLIM nodcs,
adaptively grown with the constructive method presented in this thesis. The trees
were grown until they contained the same number of cxperts (16) as the other GLIM
bascd architecture. To spoed up the tree growing phase, we used a restricted training
sct of about onc tenth of all training uttcrances. Ilowever, the grown architecture
was then retrained on the whole training sct.

e MLP nodes: Trces of depth 1 with a branching factor of 4 and 2-layer MLP nodcs.
Each MLP containcd cither 100 or 300 hidden nodes. The architecture was trained
by gradient ascent in log likclihood, assuming a multinomial probability modecl for
gates and cxperts. Therefore, the output non-lincarity of all MLP’s was the softmax
function.

¢ Single node MLP: IIMI’s consisting of only onc singlc cxpert node, containing
a 2-layer MLP with 500 hidden nodes. This architecture is comparable to ICSI’s
hybrid system bascd on MLP’s.

¢ Gender dependent MLP nodes: Scparatc MLP-IIME’s traincd on malc and
fcmale speakers, respectively. After training, the two gender dependent ITME’s
were combined to a new IIME, introducing an additional top-lcvel gatc. The whole
architccture was then retrained for onc additional itcration. This form of initalizing
an IIMI resecmbles the Mota-Pi paradigm, as introduced in [18].

Results for the above systems arc summarized in the following table:

| Systcm}] nodcs—|7# params T#itcr | itim(ﬂL VVCTI Subs | Dcls ] Ins | VVAT

IME-1 || GLIM 421k 4| 18h | 66.1% | 23.2% | 10.7% | 8.4% | 57.7%
MGE-1 || Gauss 530k 3 8h || 67.8% | 22.4% | 9.8% | 9.5% | 58.3%
ITME-2 || GLIM 421k 9 Th [ 67.0% [ 22.5% | 10.5% | 9.1% | 57.9%
IME-3 | MLP 962k 3| 26h | 68.9% | 20.5% | 9.6% | 8.1% | 60.8%
IME4 || MLP 420k 41 17h | 68.5% | 21.9% | 9.6% | 9.3% | 59.2%
IIME-5 || MLP 1.0M 3| 30n [ 69.6% | 20.6% | 9.8% | 7.9% | 61.7%

In this table, #iter stands for the number of training itcrations that were performed
and itime stands for the amount of time required for onc iteration through the training
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data (mcasurcd on a DEC alpha workstation). WC, Subs, Dels, Ins and WA arc abbre-
viations for word correct ratc, substitution rate, delction rate, insertion ratc and word
accuracy, respectively.

We achicved the best results with systems that used MLP’s as node classificrs. Ilowever
this is largely duc to the fact, that these systems had morc parameters than the ones that
were based on GLIM’s. Larger GLIM based IIME’s have the disadvantage of increased
tree traversal overhecad during training and testing.

8.5 CD Systems

Next, we trained and tested context-dependent hybrid systems. Since the context-de-
pendent posteriors arc modcled by independent sets of CI and CD IIME's, the context
I[IMI’s can be trained scparatcly. Also, the context ITME’s arc traincd on much smaller
training scts, depending on the priors of the corresponding monophonces. Thercfore, the
complexity of context IIMIVs can be kept low, which is favourable both in tcrms of the
number of additional paramecters and in the additional training time. For this thesis, we
trained context IIMI’s consisting of only onc cxpert node, a multinomial GLIM. This
requires only a very modest incrcase in the number of paramcters and in the training
time. I'rom our continuous density [IMM recognizer, a polyphonc clustering decision tree
with 2000 context classcs was available. This tree can be shrinked to any desired number
of context classes. We used trees with 500 and 1000 context classes for our cxperiments.
Training the contoxt IIMIE’s took only about 2-5 hours and rcquired only onc itcration
through the training data. Aftcr the context IIME’s have been trained, they were used to
augmoent some of the context-independent hybrid systcms presented in the last scction.
The following table summarizes the results for the context-dependent hybrid ITME/IIMM
systcms:

System Typc CI CD-500 CD-1000

WA T # param WA | # param WA | # param
IME-CD-1 | GLIM-2-4 [ 57.7% 421k || 60.8% 501k |} 63.8% 581k
[IME-CD-2 | MLP-1-4 | 60.8% 962k 61.7 1.06M || 65.8% 1.14M
IIME-CD-3 | MLP-GD || 61.7% 1.0M N/A 1.08M | 67.1% 1.16M

The numbers reported in the WA columns arc word accuracics. The best hybrid
IIME/IIMM system achicved a word accuracy of 67.1% using 1000 context classes. Qur
context-dependent continuous-density mixture of Gaussians IIMM recognizer currently
achicves between 71% and 73.1% modcling 5000 context classcs with ticd-mixtures over
2000 distinct codcbooks. This systcm contains over 4 miilion paramecters, which is 4-8
times morc than obscrved in the ncural network systems, that we analyzed for this thesis.
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Furthermore, decoding speed is about 2-5 times faster for the hybrid system, rendering it
uscful for ncar-realtime decoding (i.c. demo situations). Fig. 8.2 gives an overvicw of the
performance of the various hybrid systems in terms of word accuracy.

Word Accuracies for hybrid HME/HMM systems
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Figurc 8.2: Word accuracics for scveral hybrid IIME/IIMM systcms

8.6 CD Smoothing

In our contcxt-dependent hybrid ITMM system, we cstimate scaled acoustic model likeli-
hoods the following way:

ﬁ(X]C' ws Sk) — p(Cj Iw,‘,Sk,X) p(wilslnx) P(Sk X)
v P(cjlwi, k) Plwilss)  P(sk)

As in [30], we introducc a smoothing factor for thc context dependent posteriors
in order to compcnsatc diffcrent dynamic ranges of context-independent and context-
dependent posteriors. The above likelihood cstimation is therefore modified to include a
context-dependent likelihood scaling factor v with 0.0 < v < 1.0

il o s,) = [ PLEl@0 88, %) T pwilse,x)  psilx)
p(xlc,ﬂwl? k) ( P(lewiask) ) P(wilsk) P(Sk)
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A smoothing factor v = 1.0 corrcsponds to the original likclihood cstimation, wherc
context-dependent and context-independent scaled likclihoods arc weighted cqually. As
~ gocs towards zcro, the contribution of the context-dependent IIME’s is reduced. For
~ = 0.0 the system degencrates to a context-independent system, context-dependcent
likclihood cstimatces arc fully suppressed.

66 Smoothing of context-dependent scaled likelihoods
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Figurc 8.3: Smoothing contcxt-dependent scaled likelihoods

The cffect of this kind of smoothing can be scen in Fig. 8.3, which shows the word
accuracy for diffcrent smoothing factors applicd to the IIME-CD-2 system.

In this experiment, the word accuracy of the system could be improved by 1.1% with
a smoothing factor of 0.8. Instcad of using just onc single smoothing factor for all the
context-dependent IIME’s, it might be advantageous to have scparate smoothing factors
for cach onc of the context-dependent IIME’s. In principle, this option is available in
the current implementation of the hybrid systecm. IIowcver, a lcarning algorithm for
the smoothing factors must be implemented, because they can no longer be adapted by
sampling the word accuracy. This might be done in future work.

8.7 Prior Division and SDN

Our implementation of the hybrid system allows the sclective activation of cach single
ITME. This allows to cxpcriment with different sctups, without having to boot new systems
from scratch. Tor instancc, a context-dependent system can casily be switched to a
context-independent one by turning off all the context networks. Furthermore, the state
discriminating nctwork (SDN) in a multi-statc topology can also be switched on and off.
To cxperimentally check the validity of theoretical results, we performed scveral test runs
with the SDN cnabled and disabled, respectively. The results were consistent with the
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theory for all tests. The systcms with disabled SDN were always 2-3% worsc than the
oncs with thc SDN cnabled, in terms of word accuracy.

Division of nctwork outputs by class prior probabilitics was obscrved to boost perfor-
mance also. Ilowever, in some casecs where we trained the networks on relatively small
amounts of data, we found that prior division had the opposite cffect of decreasing overall
performance. Since prior probabilitics arc estimated by relative frequencics in the training
sct, smaller training sct sizes will lead to poorer cstimatces of class priors. Especially when
somc of the classes have very low priors, a large training sct is incvitable.

8.8 Analyzing the Systems

A hybrid spccch recognition system should not only be evaluated in terms of word accuracy
or word crror ratcs. We will therefore take a closer look at some other aspects of the hybrid
rccognition process.

8.8.1 Sample Hypotheses

Taking a closcr look at some of the recognizer’s hypotheses can provide insight in the kind
of crrors that arc made. Also, it is intcresting to comparc recognition hypotheses from a
hybrid and a traditional system. Following is a list of typical falsc recognition hypotheses
of the traditional IIME (TRD) and the hybrid IIME (IIYB) system together with the

correct reference (RET):

REF: Dkay that’s fine so wednesday the third at the coffee shop
TRD: We could do it so fine so wednesday the third at coffee shop
HYB: Okay that sounds fine so wednesday the third at that coffee shop

REF: should we meet again sometimes
TRD: with with should we meet again some times with
HYB: should we meet again some times

REF: Well would you be free on friday the eighth
TRD: hours now would june be you free on friday the eighth
HYB: I’m then Ron would you be free on friday the eighth

REF: okay see you then
TRD: okay see you then
HYB: okay see you then is

REF: yes today is january the fourth so yeah tomorrow is that okay
TRD: yes two days january four so yeah tomorrow is that okay
HYB: I yesterday january the four so I’m yeah tomorrow is that okay
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Generally, both systems commit crrors in the same regions. Ilowcever, there arc also
parts, were onc of the systems is detecting the right words wercas the other system is
complctely wrong and vice versa. This cncourages the cxploration of systems, where
obscrvation likclihoods arc computed as a combination of ncural network and paramectric
mixturc methods.

8.8.2 Gating Probability Diagrams

Onc of the advantages of IIME’s over monolithic ncural networks is the distributed way
of solving thc classification task. To demonstratc how the IIMIE’s that we've trained on
ESST data behave in terms of gating and distributing responsibility among cxperts, we
devcloped a tool that allows to plot gating probabilitics (cxpert activations) over time
for an IIME. Fig. 8.4 shows such a plot for thc mid-statc IIME of the ITMIE-1 system
prosented carlicr. The IIME consists of 16 cxperts and 5 gates, organized in a 2-lovel
trec of branching factor 4. The plot was generated by computing IIME activations along
a forced alignment of a recognized hypotheses. It also contains vertical lines indicating
word boundarics.
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Figurc 8.4: Expert activations over time for IIME-2-4

The above plot reveals some intcresting aspects of our hybrid IIME system. The
beginning and ending part of the above uttcrance contains long noisc parts, which coincide
with strong activations of just two cxperts (number 10 and 11 from top to bottom).
Experts number 2,13 and 16 arc contributing most during speech segments. There arc
also somc cxperts, which arc hardly cver active at all (1,6 and 8, for instance). Ilowever,
we found, that in othcer utterances, spoken by different speakers, some of these experts
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show diffcrent behaviour and arc contributing to the IIMIYs decision. Nevertheless, some
cxperts arc subject to pruning, becausc their contribution, cummulated over a sct of test
uttcrances, is too low to be of any significance.

8.8.3 Phoneme Recognition

To analyze the framc accuracy of the hybrid recognizer, we computed monophonc clas-
sification crror ratcs and monophonc confusion matrices. Since the confusion matrix for
a system with 52 monophoncs is rather big, we decided to present a sorted list of top-5
confusions for cach monophonc instcad. Appendix B contains such a confusion table. In
the first column, it lists all monophones with their counts as mcasured on a list of 100
uttcrances. The remaining columns contain the top-5 confusion candidates, including the
actual monophonec itsclf, together with the confusion percentage.

Most confusions arc consistent with what we would cxpect, but there arc also some
confusions which appcar to be less obvious. The following list contains some obscrvations
regarding the confusion table:

e The phonc priors arc distributed highly non-uniform, somc phones arc very rare (for
instancc OY and ZII).

e The noisc modcling phoncs (indicated with a lcading +) arc mostly confused among
themsclves. Two noisc phones appear to have cxtremcly low prior probabilitics

(+LA and +TII).
e The vowcls arc mostly confused with other vowcls.
e Thc phonc NG is often confused with the phone N.
e The phone R is often confused with AXR.

e The phoncs M and N arc both recognized with about 60% correct rate but the phone
M is much morc often confused with an N than vice vorsa.

¢ The silence phone SIL is recognized with the highest accuracy (96.5%).

e The average monophonc classification crror ratc was observed to be between 35%
and 42% for thc different systems.
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Chapter 9

Conclusions

9.1 Summary

We developed a modular neural network based system for cstimating (scaled) emission
probabilitics in a IIMM spccch recognizer. It is based on gencralized hicrarchical mixturces
of cxperts (IIME), allowing the intcgration of arbitrary ncural nctwork modcls into trec
structurcd classifiers. We contributed some original work to both the ficld of IIME’s in
genceral and the ficld of hybrid systems:

e Wc presented a constructive algorithm for IIME’s based on likclihood partitioning
among cxperts. It is considerably less cxpensive than standard decision trec growing
algorithms which require the cvaluation of potential splits for all leaves.

o We investigated an alternative paramcterization for both gates and cxperts - a
mixturc of Gaussian Experts (MGE). In this architecture, cvery node consists of a
Gaussian classificr instcad of the usual gencralized lincar model (GLIM). We showed
that the MGE offcrs a varicty of initialization tcchniques which allow to train it cven
faster than an IIME.

e We developed a conncectionist acoustic context modeling, based on factoring context
dependent acoustic posterior probabilitics. Polyphonic acoustic contexts arc clus-
tered by decision trees, which we adopt from a mixturc of Gaussians based IIMM
rccognizer. We showed, that such cxplicit modecling of context improves the hybrid
recognizer's performance significantly.

The hybrid IIMM systcm presented in this thesis offers many advantages over tradi-
tional mixturc of Gaussians based systems. It contains considcrably less paramcters and
allows fastcr decoding, cspecially when pruning is cnabled. Furthermore, training time
rcequirements have been reduced compared to other hybrid systems, which arc bascd on
monolithic ncural networks. Ilowcver, further optimizations arc necessary to fully exploit
the potential of this technology.

85
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9.2 Further Work

The presented system can be enhanced in various ways. Somc of the ideas that camc
up during the cvaluation of the current system arc summarized here. We belicve, that
the presented system still has a lot of potential for improvement. Tor instance, the
various lcarning and testing paramcters (cspecially for decoding) arc most probably not
vet optimal. Further work might concentrate on the following issucs:

e Mixture of likelihood estimators

The idca of multiple cxperts, whose decisions arc combined by a gate can also
be applicd at higher lovels in a speech recognizer. A hybrid system relics on dis-
criminatively trained ncural nctworks for (scaled) likclihood cstimation whercas a
traditional IIMM system is bascd on paramctric mixturc densitics. A system should
bencfit from the combination of both tcchniques by a gating or mediator modcl on
top of the two (or possibly morc) acoustic cxperts. In this case, the objective is to
maximizc the combincd cstimates of the acoustic likelihood. ITowever, gain factors
nced to be applied to the different acoustic cxperts estimates, in order to account
for the different scales.

e Unsupervised ML adaptation

Unsupervised specaker adaptation has proven uscful in traditional IIMM speech rec-
ognizers. A (usually lincar) transformation of the paramcter space is iteratively
updated by maximum likclihood when scveral utterances of a particular spcaker
occur. The samc principle can be applied to a hybrid system. Additional front-cnd
nctworks, which compute a lincar transformation of the featurc space can be used to
account for spcaker variations. Training labels for the front-cnd lincar networks can
bc gencrated by back-propagating crrors resulting from a Viterbi-alignment of de-
coder hypothesis. Notc, that this kind of spcaker adaptation can also be interpreted
as a spcaker adaptive LDA.

¢ Improving convergence speed

The GEM and gradicnt ascent algorithms which we presented for the IIMIE archi-
tecturc arc subject to lots of additional optimization tcchniques to improve their
convergence speed. We alrcady cmployed methods such as momontum terms and
on-linc stochastic gradicnts. Espccially when MLP’s arc used as gates and cxperts,
lcarning paramecter optimization is crucial to reduce the number of required training
itcrations. Although the presented system can be trained in 2-3 days on standard
workstations, a further decrcase in training time is desirable.

e Incorporating additional knowledge sources
The IIME architecture allows in principle the usc of different feature spaces for
gates and cxperts. Why not supplying the gates with additional featurcs such as an
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cstimate of the speaking rate, gender or dialect region? Together with pre-trained
cxperts, the classification task may become casicr and the whole architecture may
be trainable much faster.

Speaker/Utterance clustering

Although it is a well known fact, that acoustic features arc highly spcaker dependent,
most IIMM rccognizers make use of a single sct of paramcters for all spcakers or at
most, distinguish between male and female speakers. In the casc of speech databascs
with a high degree of speaker variability, it might be morc cffective to cluster similar
spcakers into groups which then arc used to train a set of ncural networks. These
pre-trained ncural networks can then casily be integrated and trained further as
ITMEs.

Learning CD smoothing factors

We introduced a smoothing factor between context independent and context depen-
dent network outputs which was shown to improve performance over a non-smoothed
systcm. We were using a single smoothing factor for all the context networks in our
system. Our system also allows a scparate smoothing factor for cach onc of the
context networks. Ilowcever, it remains to derive a learning algorithm for these
smoothing factors (maximum likclihood). Scparatc smoothing factors will provide
a better information scaling between the CI and CD networks.

Dynamic score scaling factor

We discovered large differences in the number of inscrtions and delctions among the
decoded test set utterances. In some cases, the inscrtion rate is much higher than
the dcletion rate, indicating that the word inscrtion penalty is too low. In other
cascs however, the opposite behaviour can be obscrved (for the same language modcl
paramcters). It sccms, that the variation in the acoustic scorcs lcads to different
rclative weights of the language modecl paramcters. An adaptive score scaling factor
might help to overcome this cffect.

Confidence measure based on posteriors

Since the acoustic models in a hybrid system are trained discriminatively, it might be
uscful to derive a phone or word confidence measurc bascd on the networks estimates
of framc posteriors. Furthermorc, a simple mcasure of the frame confidence (such as
the difference in scorc between the best and the second best acoustic model) might
be uscful to dynamically adjust the scarch beam during decoding,.
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Appendix A

Question Set for Decision Trees

Question-Name I Set of Phonemes covered j

NOISES +BR +HU +NH +SM +TH +LA

HUMAN-NOISES | +BR +HU +SM +TH +LA

LAUGHTER +LA

UHHUH +F

SILENCES SIL

CONSONANT PBFVTHDHTDSZSHZHCHJHKCGCHHMNNGR
Y W L ER DX AXR

CONSONANTAL | PBFVTHDHTDSZSHZH CHJH K GHHM N NG DX

OBSTRUENT PBFVTHDHTDSZSHZHCHJHKG

SONORANT MNNGRYWLER AXR DX

SYLLABIC AY OY EY IY AW OW EH IH AO AE AA AH UW UH IX AX
ER AXR

VOWEL AY OY EY IY AW OW EH [H AO AE AA AH UW UH IX AX

DIPHTHONG AY OY EY AW OW

CARDVOWEL IY IH EH AE AA AH AO UH UW IX AX

VOICED BDGJHVDHZZHMNNGCWRYLERAY OYEYIY
AW OW EH IH AO AE AA AH UW UH DX AXR IX AX

UNVOICED PFTHTSSHCHK

CONTINUANT FTHSSHVDHZZHWRYLER

DEL-REL CH JH

LATERAL L

ANTERIOR PTBDFTHSSHVDHZZHMNWY L DX

CORONAL TDCHJHTHSSHDHZZHNL RDX

APICAL T DN DX

HIGH-CONS KGNGWY

BACK-CONS KGNGW

LABIALIZED R W ER AXR

STRIDENT CHJHFSSHVZZH

39
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APPENDIX A. QUESTION SET I'ORR DECISION TREES

l Question-Name

| Set of Phonemes covered

SIBILANT SSH Z ZH CH JH
BILABIAL PBMW
LABIODENTAL FV

LABIAL PBMWEFV
INTERDENTAL TH DH
ALVEOLAR-RIDGE | TDNSZL DX
ALVEOPALATAL SH ZH CH JH
ALVEOLAR TDNSZLSHZH CHJH DX
RETROFLEX R ER AXR
PALATAL Y

VELAR K GNCW
GLOTTAL HH

ASPIRATED HH

STOP PBTDKCGMNNG
PLOSIVE PBTDKG
FLAP DX

NASAL M N NG
FRICATIVE FVTHDHSZSH ZH HH
AFFRICATE CH JH
APPROXIMANT RLYW

LAB-PL P B

ALV-PL TD

VEL-PL KG

VLS-PL PTK

VCD-PL BDG

LAB-FR FV

DNT-FR TH DH

ALV-FR SH ZH

VL5-FR F TH SH
VCD-FR V DH ZH
ROUND AO OW UH UW OY AW OW
HIGCH-VOW 1Y IH UH UW IX
MID-VOW EH AH AX
LOW-VOW AA AE AO
FRONT-VOW 1Y IH EH AE
CENTRAL-VOW AH AX IX
BACK-VOW AA AOUH UW
TENSE-VOW IY UW AE
LAX-VOW IH AA EH AH UH
ROUND-VOW AO UH UW
REDUCED-VOW IX AX
REDUCED-CON AXR




| Question-Name | Set of Phonemes covered

REDUCED IX AX AXR
LH-DIP AY AW
MH-DIP OY OW EY
BF-DIP AY OY AW OW
Y-DIP AY OY EY
W-DIP AW OW
ROUND-DIP OY AW OW
LIQUID-GLIDE | LRWY
W-GLIDE UW AW OW W
LIQUID LR

LW LW

Y-GLIDE IYAYEYOYY
LQGL-BACK LRW
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Appendix B

Monophone Confusion Table

I Correct Phone “ 1 2 | 3 4 T 5 —I
+BR,14988 +BR (53.776%) | +SM (14.905%) SIL (7.986%) +NH (7.686%) | +F (5.171%)
+1,9129 +F (52.788%) | +BR (12.794%) AY (4.962%) +HU (3.626%) N (3.494%)
+HU,1710 SIL (11.754%) | +BR (11.345%) +1(9.240%) +NH (8.538%) | +HU (8.129%)
+LA0
+NH,27337 +NH (70.728%) | SIL (11.793%) | +5M (6.566%) | +BR (6.113%) | +HU (0.647%)
+SM,11179 +5M (63.360%) | +BR (15.556%) | +NH (12.228%) | SIL (5.314%) ¥ (1.565%)
+TH,0
AA,IT04 AA (30.927%) AO (12.617%) AY (10.915%) | +F (10.622%) | AW (5.869%)
Ab,4248 AR (48.682%) AY (8.781%) EY (6.097%) EH (5.508%) 1H (4.355%)
AH,4396 AH (35.873%) 1Y (7.302%) +F (6.938%) AX (5.823%) AY (4.504%)
A0,4057 AO (53.882%) AY (7247%) OW (6.655%) L (4.757%) +1° (4.585%)
AW,3058 AW (34.565%) AY (11.772%) +F (10.203%) | OW (9.287%) | AO (8.600%)
AX,4290 AX (21.655%) 1H (9.207%) +F (5.991%) AH (5.921%) AE (5.524%)
AXR,1533 R (33.203%) AXR (26.419%) | ER (8.089%) UW (6.393%) | AX (3.196%)
AY,5195 AY (59.800%) +F (7.468%) AOD (4:354%) AE (3.563%) EY (3.405%)
B,2747 B (68.657%) DH (3.932%) D (3.640%) M (2.803%) P (2.039%)
CH,506 CH (43.251%) 5(9.091%) JH (8.696%) " (8.300%) K (7.510%)
D,4708 D (55.501%) N (6.967%) T (6.670%) B (3.951%) DH (3.717%)
DH,4463 DH (58.122%) D (8.582%) B (4.549%) N (3.742%) TH (3.495%)
DX,687 DX (38.428%) T (15.429%) 1Y (6.114%) D (5.677%) B (4.076%)
£H,5590 EH (40.626%) Al (12.701%) AY (9.911%) R (4.991%) 1H (4.347%)
ER,3703 ER (63.003%) R (24.764%) AXR (2.457%) AY (1.728%) EY (1.512%)
1KY 5590 EY (71.521%) 1Y (10.877%) IH (2.934%) EH (1.932%) AL (1.538%)
F,5490 b (84.390%) ‘TH (4.645%) +NH (1.949%) | +BR (1.712%) | +5SM (1.202%)
G,1441 G (46.495%) K (13.393%) D (11.797%) B (3.747%) N (3.400%)
HH, 1927 HH (50.337%) | +BR (12.818%) | +NH (7.317%) | AY (5.138%) AE (2.750%)
1H,2637 1H (39.477%) EY (7.433%) UW (6.560%) AH (5.650%) | AX (3.906%)
1X,1811 1X (29.376%) 1Y (17.449%) [H (9.442%) EY (9.277%) AX (4.252%)
1Y,10362 1Y (74.551%) EY (9.303%) Y (2.422%) UW (1.776%) 1X (1.756%)
JH,622 JH (46.463%) 1 (15.756%) D (6.752%) CH (4.502%) K (3.698%)
K,5774 K (74.645%) T (6.304%) +5M (3.395%) SIL (3.135%) | +BR (2.598%)
L,5621 L (57.161%) +¥ (6.611%) OW (6.138%) AO (2.597%) R (2.491%)
M,6345 M (60.772%) N (19.196%) +BR (3.830%) +F (3.515%) W (1.481%)
N,13024 N (63.506%) M (6.741%) +BR (5.413%) +F (3.209%) NG (2.434%)
NG,1751 NG (34.609%) N (29.640%) M (5.768%) 1Y (4.797%) EY (4.169%)
OW 4039 OW (35.623%) FF (9557%) L (7.923%) AO (5.620%) AY (4.085%)
0Y,20 EH (45.000%) AY (30.000%) A0 (10.000%) 0Y (5.000%) OY (0.000%)
P,1221 P (44.062%) K (16.298%) T (7.043%) B (6.470%) SIL (4.556%)
R,5334 R (69.835%) ER (6.580%) AY (4.124%) AXR (2.081%) [ +F (1.669%)
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| Correct Phone “ 1 2 | 3 | 4 | 5 I
S$,8708 5 (83.532%) 7 (6.431%) I (2.664%) T (2.251%) ‘TH (2.079%)
SH,597 SH (53.266%) 5 (13.903%) CH (8.878%) T (7.873%) Z (6.365%)
SLL,53729 SIL (96.516%) | +BR (1.539%) | +5M (0.631%) | +NH (0.281%) K (0.143%)
T,13190 T (61.266%) K (7.779%) 5 (3.215%) D (2.926%) +5M (2.449%)
T'H,4353 TH (53.986%) | F (10.705%) +BR (4.663%) | SIL (4.319%) | +SM (4.273%)
UH 1147 UH (40.977%) | UW (8.950%) BY (8.195%) 1H (7.934%) AX (6.103%)
UW,4354 UW (52.526%) | 1Y (5.122%) EY (5.076%) 1H (4.410%) | +BR (2.802%)
V,2565 V (42.105%) F (16.725%) M (4.405%) B (3.782%) N (3.197%)
W,5849 W (69.345%) L (5.779%) AO (4.360%) R (4.274%) M (1.351%)
Y,1755 Y (47.008%) 1Y (28.262%) UW (3.305%) 1H (2.963%) BY (2.336%)
27,2994 7 (59.987%) S (29.125%) T (2.204%) DH (1.035%) ‘TH (0.969%)
/H 6 1Y (50.000%) ¥ (33.333%) | +BR (16.667%) | +BR (0.000%) | +BR (0.000%)
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