The symposium was attended by internationally recognized speakers from sixteen countries. Sixty-six papers were presented at the symposium of which fifty-four are contained in this proceedings volume. Much of the symposium centered around technological opportunities in molten salts and related materials. In keeping with this theme, Prof. Niels J. Bjerrum in his 1996 Max Bredig Award address emphasized that molten salt electrochemistry has a rich past with a bright future in numerous technologically important areas, including alloy electrodeposition, production of amorphous metals, electrochemical deposition of superhard materials, electrocatalysis, and corrosion. Of course, the basis for these technological advances is derived from the fundamental understanding of molten salts provided by numerous researchers, and excellent papers were presented that provided further insight into the complexity of molten salt thermodynamics, transport properties, structure, and spectroscopy.
Contractor’s Final Report

on

Tenth International Symposium on Molten Salts

Dr. Richard T. Carlin (P.I.)
Covalent Associates, Inc.
10 State Street
Woburn MA 01801

Contract No. F49620-96-1-0157

This Contract in the amount of $2,000 was sponsored by:

USAF, AFMC
Air Force Office of Scientific Research
110 Duncan Avenue Suite B115
Bolling AFB DC 20332-8080

The technical monitor of this program is:
Maj. Hugh C. De Long, Ph.D.

Period Covered 1 Apr 96 to 1 Aug 96

Date Submitted: 14 Nov 96

19970602 138
Table of Contents

Abstract ... 3
Table of Contents from Proceedings Volume ... 4
Max Bredig Award Address ... 9
Budget Summary .. 11
Abstract

The Tenth International Symposium on Molten Salts was held during the 189th Meeting of the Electrochemical Society in Los Angeles, California, May 6-10, 1996. The symposium was attended by internationally recognized speakers from sixteen countries. Sixty-six papers were presented at the symposium of which fifty-four are contained in the proceedings volume. Three copies of the proceedings volume entitled *Molten Salts X* have been sent to AFOSR to satisfy the contract requirements. The Table of Contents of the proceedings is provided on page 4 of this report.

Much of the symposium centered around technological opportunities in molten salts and related materials. In keeping with this theme, Prof. Niels J. Bjerrum in his 1996 Max Bredig Award address emphasized that molten salt electrochemistry has a rich past with a bright future in numerous technologically important areas, including alloy electrodeposition, production of amorphous metals, electrosynthesis of superhard materials, electrocatalysis, and corrosion. Of course, the basis for these technological advances is derived from the fundamental understanding of molten salts provided by numerous researchers, and excellent papers were presented that provided further insight into the complexity of molten salt thermodynamics, transport properties, structure, and spectroscopy. A summary of the Max Bredig Award address is provided on page 9 of this report.

Financial support for this symposium came from several generous sources, including the Air Force Office of Scientific Research, the Physical Electrochemistry and High Temperature Materials Divisions of the Society, the Molten Salt Committee of the Electrochemical Society of Japan, and The Petroleum Research Fund, administered by the American Chemical Society. Funds from AFOSR ($2,000) were used to supplement travel expenses for US and international distinguished speakers.
Table of Contents from Proceedings Volume

Max Bredig Award

Molten Salt Electrochemistry: Present and Future Priorities
N. J. Bjerrum...1

Opening Session: A Dedication to Gleb Mamantov

Minimizing Fouling and Corrosion by Ionic Liquids Formed in the Combustion of Biomass
M. Blander ..3

Vibrational Modes and Structure of Rare Earth Fluorides and Bromides in Binary Melts: LnX₃-KX (X=F, Br; Ln=Y, La Ce, Nd, Sm, Gd, Dy, Yb)
B. Borresen, V. Dracopoulos, G. Photiadis, B. Gilbert,
and G. N. Papatheodorou..11

Effects of Hydrophobic Interaction in n-Alkanecarboxylate Hydrate Melt
S. Deki, H. Nakahara, J. Kondo, and A. Kanjinami28

Electrodeposition of Cobalt-Aluminum Alloys from the Aluminum Chloride-1-Methyl-3-Ethylimidazolium Chloride Room-Temperature Molten Salt

Near Infrared Spectroscopy of Anionic Conducting Polymer Membranes
D. S. Newman, G. Bi, D. L. Snavely, J. Dubsky,
F. Zamborini, and T. S. Cina ..53

Electrochemical Reactions of Nitrogen in Molten Chloride System
Y. Ito, M. Tada, and T. Goto ...62

Catalysis and Acid-Base Chemistry

Nonaqueous Room-Temperature Ionic Liquids: A New Class of Solvents for Catalytic Organic Reactions
H. Olivier and Y. Chauvin..70

Physico-Chemical and Structural Properties of DeNOₓ and SOₓ Oxidation Catalysts
S. G. Masters, C. Oehlers, K. Nielsen, K. M. Eriksen, R. Fehrmann,
A. Chrissanthopoulos, and S. Boghosian..................................74
Acidity of HCl in Neutral Buffered Chloroaluminate Molten Salts
D. King and R. A. Osteryoung ... 80

Molten Salt and Related Acids
K. E. Johnson, W. D. Chandler, and B. D. Fahlman 92

Gutmann Acceptor Properties of LiCl, NaCl, and KCl Buffered Ambient-Temperature Chloroaluminate Liquids
R. A. Mantz, P. C. Trulove, R. T. Carlin, and R. A. Osteryoung 104

Electrochemical Studies of Acyl Halide Reduction in a Room-Temperature Molten Salt
G. T. Cheek .. 116

A Study of Binary Molten Pyridinium Salts
A. M. Elias, M. E. Elias, and A. J. S. Carmo .. 125

Measuring the Rates of Solid State Reactions Between AlCl₃ and C₃H₆NCI Using Differential Scanning Calorimetry
D. S. Newman, J. Rosinski, and K. S. Leis ... 135

Effect of Alkali Metal Fluoride on Anodic Reaction in a Molten NH₄F-HF System
A. Tasaka, T. Kawagoe, and T. Osada .. 144

Spectroscopic Investigation of Effect of Lewis Basicity on the Valence-State of an Uranium (V) Chloride Complex in Ambient Temperature Melts
S. Dai, L. M. Toth, G. D. Del Cul, G. R. Hayes, and J. R. Peterson 152

Metals and Alloys

Electrodeposition of Magnesium from Halide Melts

Effect of Additives on Ti Electrorefining in Molten Chloride
T. Takenaka, A. Sugimoto, Y. Mitani, and M. Kawakami 171

Cathodic Behavior of the Deposition of Nb and Al in NaCl-AlCl₃ Melt
Y. Sato, K. Iwabuchi, N. Kawaguchi, H. Zhu, M. Endo,
T. Yamamura, and S. Saito .. 179

Electrochemical Properties of Nb₃Cl₈ in the MgCl₂-NaCl Eutectic at 471°C
M. Mohamedi, N. Kawaguchi, Y. Sato, and T. Yamamura 189

Demonstration Experiment of Uranium Metal Production System
A Study of Production Process of Uranium Metal by Molten Salt Electrolysis Using Zinc Cathode - A Study of Uranium Chloride Production Step

Corrosion Behavior of Materials Used in Uranium Metal Production

Development of Transuranium Elements Recovery from High-Level Radioactive Liquid Waste
Y. Akai and R. Fujita ..230

Characteristics of Cathodic Reactions in BaCl₂-NaCl Melts Containing AlF₃ Components
M. Ueda, S. Konda, T. Sasaki, and T. Ishikawa236

Electrochemical Behavior of Glassy Carbon and Some Metals in a ZnCl₂-NaCl Melt
Y. Okano and A. Katagiri ..244

A New Experimental Approach to Measure Electrical Conductivity of Molten Fluoride Electrolytes
X. Wang and R. D. Peterson ..254

Titration of Refractory Metal Compounds in Molten Salts by Square Wave Voltammetry
P. Chamelot, B. Lafage, and P. Taxil ..269

EQCM Studies of Aluminum and Aluminum Alloys in Room Temperature Molten Salts
H. C. De Long and P. C. Trulove ..276

EQCM Measurements of Cobalt-Aluminum Alloys
H. C. De Long and R. T. Carlin ..284

Electrodeposition and Nucleation of Lead from Chloride Melts
T. Støre, G. M. Haarberg, T. E. Jentoftsen, and R. Tunold ..290

High Temperature Electrochemical Synthesis of Zirconium Diboride from Chloro-Fluoride Melts
V. P. Lugovoi, S. V. Deviatkin, G. Kaptay, and S. A. Kuznetsov ..303

High Temperature Interaction of Boron Oxide with Aluminum Fluoride
S. V. Deviatkin, K. I Arsenin, and G. Kaptay ..312
Formation of LaNi5 Film on Nickel Substrate by Electrolysis in Molten Chloride and Its Hydrogen Absorption Property
M. Okido, R. Ichino, and R. Tamura ... 320

Elimination of Primary Silicon Phase in Hyper-Eutectic Al-Si Alloy by Molten Salt Process
T. Inoue, H. Kanematsu, Y. Kunieda, S. Hayashi, and T. Oki 334

Batteries

Modification of LiCl-LiBr-KBr Electrolyte for LiAl/FeS2 Batteries
T. D. Kaun, A. N. Jansen, G. L. Henriksen, and D. R. Vissers 342

Polarization Phenomena at β"-Alumina/Molten Salt Interface
M. Matsunaga, K. Minamoto, and M. Morimitsu ... 355

Rechargeable Alkali Metal and Li-Al Alloy Anodes in Ionic Liquid Electrolytes
R. T. Carlin and J. Fuller ... 362

Morphology of Lithium and Sodium Electrodeposits in Room-Temperature Molten Salts
J. Fuller and R. T. Carlin ... 372

Electrochemistry of Vanadium Oxides in Room Temperature Molten Salt Electrolytes
D. M. Ryan and T. L. Riechel .. 381

Fuel Cells

The Role of Melt Chemistry in Molten Carbonate Fuel Cell (MCFC) Technology
J. R. Selman and M. S. Yazici .. 388

Mass Transfer and Steady State Concentration Distributions of Binary Electrolytes and Additives in MCFCs
Th. Brenschedt, O. Böhme, and H. Wendt ... 396

High Temperature Corrosion of Tantalum with the Presence of Molten Carbonate

High Temperature Corrosion of Separator Material in Li2CO3- Na2CO3 and Electrolyte Consumption for MCFC
Electrochemical Response of Stainless Steel 310, 316L and Nickel-Rich Alloy in Molten Carbonate
M. S. Yazici and J. R. Selman ..422

Thermodynamics, Transport Properties, Structure, and Spectroscopy

Thermochemistry, Physico-Chemical Properties and Modeling of the Liquid MX-LnX₃ Mixtures (M = alkali, Ln = rare-earth, X = halide)
M. Gaune-Escard ..439

Electron Mobilities in Solutions of Alkali Metals in Molten Alkali Halides
G. M. Haarberg and J. J. Egan ..468

Application of Thermodynamic Databases to Calculation for Surface Tension of Molten Salt Mixtures
T. Tanaka and S. Hara..484

Copper Deposition from Cu(I) Ions in CuCl-BPC Molten Salts - Microstructural Analysis of the Melts

Ionic Dissociation Model for (Li, K)X Binary Melts (X=F, Cl, Br or I)
P. Hebart and G. S. Picard..500

Anomalous Behavior of Ag(I) and Tl(I) Ions in Mobilities of Molten Nitrates
I. Okada and P. Chou..511

New Development of Fiberoptic Raman Spectroscopic Probes for High Temperature Molten Salts
S. Dai, H. M. Xiao, Y. H. Lee, and J. P. Young ..524

Raman Spectroscopic and Electrochemical Studies of Tungsten Species in Alkali Chloride Melts
G. Carountzos, C. Hasiotis, and C. G. Kontoyannis...530

Local Structure of K₂O-SiO₂ Glasses and Melts
N. Umesaki, K. Handa, N. Ohtori, and N. Kamiyo ...541

Author Index ..561

Subject Index ...563
Max Bredig Award Address

MOLTEN SALT ELECTROCHEMISTRY:
PRESENT AND FUTURE PRIORITIES

Niels J. Bjerrum

Materials Science Group, Chemistry Department A, Technical University of Denmark, DK-2800
Lyngby, Denmark

Molten salt electrochemistry is by no means a new research area. Some of the initial
experiments go back two hundred years in history (e.g., electroreduction of alkali metals) and
such an important metal as aluminum has been produced for more than hundred years by an
electrolysis of a molten salt electrolyte (the Hall-Hérault process).

However, molten salt electrochemistry is a very dynamic scientific and industrial area of
electrochemistry looking not into the past but into the future.

There are numerous important technical areas in molten salt electrochemistry. In some of
these areas enough knowledge have been accumulated to develop qualitative improvement and
often parameter optimization:

(i) **Electrochemical production of metals** is one of the most mature areas. In connection with
aluminum production the main aim of developments is to obtain a higher efficiency of the
process and to solve serious ecological problems.

(ii) **Electroplating of protective layers on metal surfaces.** The recent developments are mostly
concerned with the electrodeposition of refractory metals from molten salt electrolytes. The
most important problem in this technology is control of the composition of the molten
electrolytes. Another problem with refractory metal electroplating can be illustrated with the
help of the example of tantalum deposition. Two different crystal forms of tantalum can be
obtained electrochemically: α- and β-tantalum. The deposit with the α-form has better
mechanical properties than that consisting of the β-form. Therefore, the problem of the
optimization of the electrolysis parameters has to be solved with allowance for this special factor.

However, the most interesting scientific results and applications are expected in the new
areas of molten salt electrochemistry:

(iii) **Metal alloy production** is an area with a considerable potential. This technique gives a
possibility to obtain, for example, the alloys of aluminum with lithium (metals with high and low
melting points), or in general alloys which are difficult to make by a direct combination.
(iv) Electrodeposition of amorphous metal layers is a technique which can be realized in molten salt electrolytes and may be the background for progressive technologies for the production of highly corrosion resistant materials.

(v) Electrosynthesis of superhard materials. Many such materials can be obtained electrochemically from boron-, carbon- or nitrogen-containing melts. This could be a relatively cheap technology giving a useful modification of metal surfaces. To the same area we can add the high temperature electrochemical technologies for the improvement of surface properties of superhard materials with electroplated metal layers.

(vi) High-temperature electrocatalysis is a process in which material is consumed or produced in an electrochemical reaction on a catalyst that is an electronic conductor. Obviously, the currently most interesting and important cases in this area are the molten carbonate fuel cells. The main problem here is to obtain non-soluble and catalytically active electrode materials.

(vii) Electrochemical promotion of catalysts deals with the change of activity or selectivity of molten salt catalysts using inert electrodes. It can provide an effective management concerning quality and composition of the products of the catalytic reactions.

(viii) Hot corrosion has the possibility of becoming a very important area of molten salt electrochemistry taking into account the perspective of combustion of new types of fuels or traditional but low quality fuels. It has been proven that the most severe hot corrosion problems are caused by a thin molten salt layer on the surface of the exposed metal and therefore have an electrochemical nature. Another example where hot corrosion is important is provided by high-temperature batteries and molten carbonate fuel cells. Electrochemical techniques can be powerful tools in searching for new ways of corrosion protection.

(ix) High-temperature electrochemical protection from corrosion. Cathodic and anodic protection are well known and widely used at ambient temperatures but have not to any extent been used in connection with hot (or molten salt) corrosion. For example, in connection with fire tube corrosion in boilers at power stations electrochemical protection can be one of several possible ways of prolonging the lifetime of power-station hardware.
Budget Summary

Contract No. F49620-96-1-0157; Tenth International Symposium on Molten Salts

AFOSR Contract Award: $2,000

Allocation of AFOSR Funds for Symposium:

Travel Supplement:
US Invited Speakers (2): $640
International Invited Speakers (3): $900

Advance Registration:
US Invited Speakers (2): $460

Total AFOSR Expenditures $2,000