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ABSTRACT 

This annual report describes our progress during the period from May 1996 to April 1997. 
Two tasks are described in this report. The first task considers the hybridization of the 
finite-element method (FEM) and the shooting-and-bouncing-ray (SBR) method for 
scattering by large bodies with small, inhomogeneous protruding scatterers, and the 
hybridization of the method of moments (MoM) and SBR method for scattering from 
conformal slotted waveguide arrays on a large, complex platform. The second task studies 
a variety of finite-element and boundary-integral (FE-BI) methods for three-dimensional 
electromagnetic analysis. Several journal articles and conference papers supported by the 
research are also listed in this report. 



PROGRESS 

The main goal of our proposed research is to develop numerical methods that can simulate 
the interaction of electromagnetic fields with complex systems in a large, complex 
environment. During the second year of the award, we have made significant progress 
toward this goal. We have worked on several tasks, which form the integral parts of the 
proposed research and whose successful completion is vital to the development of the 
proposed technique. Two of these tasks are described in detail in this report. 

The first task deals with the development of two hybrid techniques to solve two different 
classes of electromagnetic scattering problems. The first technique combines the finite- 
element method (FEM) and the shooting-and-bouncing-ray (SBR) method for scattering by 
large bodies with small, inhomogeneous protruding scatterers. The second technique 
combines the method of moments (MoM) and SBR method to characterize the scattering of 
conformal slotted waveguide antenna arrays in a large, complex platform. This task can be 
considered as the further extension of the work described in Tasks 1 and 2 in the first 
year's annual report. It demonstrates further the power of the proposed hybrid technique 
for complex electromagnetic problems. 

The second task studies a variety of finite-element and boundary-integral (FE-BI) methods 
for three-dimensional electromagnetic analysis. A new formulation is proposed, which is 
shown to be accurate, efficient, and immune to interior resonance corruption. This work 
lays a foundation for the development of a very useful and powerful technique, which 
combines FEM with the multilevel fast multipole method (MLFMM), for a large class of 
electromagnetic problems. 

In addition to the two desks described above, we have also (i) developed the concept of 
complementary perfectly matched layers (PML) to significantly improve the accuracy of the 
FEM solution (Appendix 5); (ii) developed the spectral Lanczos decomposition method 
(SLDM) for efficient time-domain and frequency-domain FEM solution of Maxwell's 
equations; (iii) applied the method of asymptotic waveform evaluation (AWE) for multi- 
frequency scattering analysis; and (iv) developed a new k-space method using the 
transpose-free quasi minimum residual (TFQMR) method and FFT for solving volume- 
integral equation arising from the problem of electromagnetic interaction with 
inhomogeneous objects such as the human body (Appendix 6). 



Task 1: Hybrid SBR/FEM and SBR/MoM methods for large and complex 
scattering problems 

Two years ago, our research group developed a hybrid technique for computing scattering 
by large bodies with cracks and cavities. This technique employs the shooting-and- 
bouncing-ray (SBR) method to compute the scattering by large bodies and uses the finite- 
element method (FEM) to characterize the cracks and cavities. The two methods are 
combined through a coupling scheme based on the electromagnetic equivalence principle 

and the reciprocity theorem. The coupling scheme is designed in such a manner that it 
includes all significant interactions between the FEM and the SBR method and it permits 
the SBR and FEM computations to be done separately. The resulting technique is shown to 
be efficient and accurate. During the first year of the award, we extended this method to the 
calculation of the radiation patterns of conformal antennas in a complex environment (see 
Task 1 of the first year's annual report). Comparison with experimental data showed that 
the technique can predict accurately the effect of the environment on the radiation of 

conformal antennas. 

During the past year, we further developed a hybrid FEM/SBR method to compute 
scattering by large bodies with small inhomogeneous protruding scatterers, a problem that 
is very important, but fundamentally different from those treated before. To be more 
specific, we first employ the field equivalence principle to replace the protruding scatterers 
by a set of equivalent electric and magnetic currents. The total scattered field then becomes 
the superposition of the field scattered by the large body without protrusions, which is 
calculated using the SBR method, and the field radiated by the equivalent currents in the 
presence of the large body, which is also calculated using the SBR method with the aid of 
the reciprocity theorem. The required equivalent currents are computed using the FEM, 
which permits the handling of complex material composition of the protrusions. The 
method has been applied to two-dimensional problems, simply to demonstrate the 
feasibility of the proposed technique. The technical details are given in Appendix 1, which 
includes some very encouraging results. 

In the first year's annual report, we reported our preliminary work on the analysis of 
cylindrically conformal waveguide slot antennas and arrays. Since then we have completed 
the analysis and studied the scattering properties of a variety of conformal waveguide slot 
antennas and arrays (Appendix 2). Furthermore, we have combined the method of analysis 



with the SBR method to compute scattering from conformal waveguide slot antennas and 
arrays in a complex geometry. This extension is important because almost all conformal 
antennas and arrays are placed on a complex geometry in practice and their scattering 
characterization is critical for applications such as target identification. The technical details 
are given in Appendix 3. 

Task 2: Hybrid finite-element and boundary-integral method for electro- 
magnetic analysis 

In our originally proposed research, we planned to develop hybrid techniques to combine a 
high-frequency asymptotic method with a numerical method to simulate the interaction of 
electromagnetic fields with complex systems in a large, complex platform. To date, we 
have successfully developed several such techniques as described in Task 1 of the first 
year's annual report and in the Task 1 of this report. Because of the use of the high- 
frequency method, the source of the electromagnetic fields must be far away from the 
platform, which is the case for many practical problems. However, there is another class of 
important problems which involve sources near or on the platform, such as the problem of 
mutual coupling between two antennas on the same platform and the interaction of a 
radiating source with a system on the same body. Such a problem cannot be analyzed by 
the method proposed in this research. We decided to go beyond the originally proposed 
plan and develop a technique for this class of problems. 

The technique which is to be developed combines FEM with the multilevel fast multipole 
method (MLFMM). It is based on the finite-element and boundary-integral (FE-BI) method 
pioneered by the PI. The FE-BI method first divides the problem into an interior and 
exterior problems. The field in the interior region is formulated using FEM, and the field in 
the exterior region is represented by a boundary-integral equation (BDE). The interior and 
exterior fields are then coupled by the field continuity conditions. Although the FE-BI 
method is remarkably more powerful than other numerical techniques in dealing with 
complex problems, it still has a bottleneck which is the full matrix generated by BIE. This 
bottleneck severely limits the capability of the FE-BI method in dealing with large 
problems. Our objective is to apply MLFMM to BIE to completely remove the bottleneck in 
the FE-BI method for general 3D problems. The first step is to study a variety of FE-BI 
formulations and identify the most accurate and efficient one. 



During the past year, we studied in detail a variety of formulations for the hybrid FE-BI 
method for 3D electromagnetic scattering by inhomogeneous objects. It is shown that the 
efficiency and accuracy of the FE-BI method depend highly on the formulation and 
discretization of the BIE used. A simple analysis of matrix condition identifies the 

efficiency of the different FE-BI formulations and an analysis of weighting functions 
shows that the traditional FE-BI formulations cannot produce accurate solutions. A new 

formulation is then proposed and numerical results show that the resulting solution has a 
good efficiency and accuracy and is completely immune to the problem of interior 
resonance. The technical details are given in Appendix 4. 



FUTURE WORK 

In the coming year, we plan to focus our effort on the development of the FEM/MLFMM 
for fast and accurate analysis of conformal antennas and other electromagnetic devices on a 
large, complex platform. Such a technique is urgently needed for many applications, such 
as EMP due to nearby sources, design of special-purpose antennas taking into 
consideration of the environment/platform, and characterization of mutual coupling between 
two antennas on a large, complex body. Currently, MLFMM has been implemented only 
for conducting and impedance surfaces, both of which contain only one type of integral 
operator. Its application to the proposed work requires the treatment of two different types 
of integral operators. In addition, we also plan to develop fast solvers based on the spectral 
Lanczos decomposition method (SLDM) and the method of asymptotic waveform 
evaluation (AWE) for the FEM analysis. 
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APPENDIX 1 

Hybrid FEM/SBR Method to Compute Scattering 

by Large Bodies with Small Protruding Scatterers 

X. Q. Sheng and J. M. Jin 

Center for Computational Electromagnetics 

Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801-2991,USA 

Abstract-A hybrid method that combines the finite-element method (FEM) 

and the shooting-and-bouncing-ray (SBR) method is presented to compute scat- 

tering by large bodies with small protruding scatterers. In the method, the field 

equivalence principle is employed to replace the protruding scatterers by a set of 

equivalent electric and magnetic currents. The total scattered field then becomes 

the superposition of the field scattered by the large body without protrusions, 

which is calculated using the SBR method, and the field radiated by the equiva- 

lent currents in the presence of the large body, which is also calculated using the 

SBR method with the aid of the reciprocity theorem. The required equivalent 

currents are computed using the FEM, which permits the handling of complex 

material composition of the protrusions. Two-dimensional examples are presented 

to demonstrate the feasibility of the proposed method. 
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I. INTRODUCTION 

Recently, a hybrid technique was developed for computing scattering by large 

bodies with cracks and cavities [1]. This technique employs the shooting-and- 

bouncing-ray (SBR) method to compute the scattering by large bodies and uses 

the finite-element method (FEM) to characterize the cracks and cavities. The two 

methods are combined through a coupling scheme based on the electromagnetic 

equivalence principle and the reciprocity theorem. The coupling scheme is de- 

signed in such a manner that it includes all significant interactions between the 

FEM and the SBR method and it permits the SBR and FEM computations to 

be done separately. The resulting technique is shown to be efficient and accurate 

and, because of this, it is extended to the calculation of the radiation patterns of 

conformal antennas in a complex environment [2]. 

The hybrid FEM/SBR method summarized above belongs to a larger class of 

hybrid method pioneered by Thiele et al. [3]—[11]. A common feature in these 

methods is that they combine a high-frequency asymptotic technique, such as the 

geometrical optics (GO), physical optics (PO), or geometrical theory of diffraction 

(GTD), with a low-frequency numerical technique, such as the method of moments 

(MoM), FEM, or finite-difference method (FDM). They are specifically designed 

to tackle three types of problems that cannot be handled accurately and efficiently 

by either a high-frequency method or a low-frequency method. The first type 

includes scatterers with a size in the intermediate region between the high and 

low frequencies [7]—[11]. The second type is the scattering by small objects in the 

presence of large bodies [3]-[6]. The third type is the scattering by large bodies 

having small indenting structures such as cracks, gaps, and cavities [1], [2]. 

In this article, we extend the hybrid FEM/SBR method, developed originally 

for the third type of problem, to compute scattering by large bodies with small 

protruding scatterers, a problem that belongs the second type. To be more specific, 

we first employ the field equivalence principle to replace the protruding scatterers 

by a set of equivalent electric and magnetic currents. The total scattered field 

then becomes the superposition of the field scattered by the large body without 

10 



protrusions, which is calculated using the SBR method, and the field radiated by 

the equivalent currents in the presence of the large body, which is also calculated 

using the SBR method with the aid of the reciprocity theorem. The required 

equivalent currents are computed using the FEM, which permits the handling of 

complex material composition of the protrusions. In this article, the formulation 

and analysis are described for two-dimensional problems, simply to demonstrate 

the feasibility of the proposed technique. 

II. FORMULATION 

Consider the problem of wave scattering by a large, perfectly conducting body 

with a small protruding structure, whose cross-section is illustrated in Fig. 1. The 

protruding structure can be a perfect conductor or a dielectric/magnetic material 

or a combination of these. In accordance with the field equivalence principle [12], 

the protrusion can be removed and its effect in the exterior region can be rep- 

resented by a set of equivalent electric and magnetic currents on the surface of 

the protrusion. The equivalent electric and magnetic currents are related to the 

electric and magnetic fields by 

Js = h x H,   Ms = E x h (1) 

where n denotes the outward unit vector normal to the surface of the protru- 

sion. Apparently, the original problem becomes the two equivalent subproblems, 

depicted in Fig. 2. The first is the scattering by the large body without the protru- 

sion and the second is the radiation of the equivalent currents in the presence of the 

large body. Whereas the field scattered by the large body without the protrusion 

can be calculated efficiently and accurately using the SBR method [13]—[15], the 

calculation of the equivalent currents and their radiation is more involved. In the 

proposed method, the currents are calculated using the FEM in conjunction with 

an absorbing boundary condition (ABC) and the radiation is calculated using the 

SBR method with the aid of the reciprocity theorem. These are discussed below 

in more detail. 
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To use the FEM with an ABC to calculate the equivalent electric and magnetic 

currents, we first enclose the protrusion in a larger artificial surface denoted as T0 

(see Fig. 3). We then apply the second-order ABC [16] to the scattered field on 

-*__,*-+„_£_ (2) 
where 0 = Ez for transverse magnetic (TM) or Ez-polarization, <j> = Hz for trans- 

verse electric (TE) or ^-polarization, n denotes the outward unit vector normal 

to ra, s is the arc length measured along Ta, and 

•   2 
Q = -ifco-^+gr

JK  , v   ß= or 
3   , x (3) 

2        ${JK - fco) 2{JK — fc0) 

where K(S) is the curvature of ra at 5. Since the field (<^sca) scattered by the 

protrusion can be considered as the difference between the total field ((f)) and the 

incident field in the presence of the large body (^>s6r), the ABC can be written as 

--a<f>-ß— = q (4) 

where 
d<y*        br     d24>sbr 

q^-^r-^ ~ß-^r- (5) 

This boundary condition, together with the Helmholtz equation satisfied by <f> 

inside Ta, defines a unique boundary-value problem, which can be solved using the 

FEM [16]. Once <j> inside ro is found, the equivalent electric and magnetic currents 

on the surface of the protrusion can be obtained using their definition in (1). Note 

that in (5), <j>sbr is calculated using the SBR method. 

Once the equivalent currents are calculated, their radiated field in the presence 

of the large body can be calculated using the SBR method with the aid of the 

reciprocity theorem [1], [2], [17]. To be more specific, for the TM polarization, we 

place an infinitely long current filament Jo at the observation point p0. If p0 is far 

from the origin, the free space electric field radiated by this current is given by 

E'z(p) = -r,0jJ^e-jkoPoej^xcose+ys{n6>> (6) 
V oTTPo 
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where 770 is the free-space intrinsic impedance. Apparently, if we choose 

Jb = --Ä*-, (7) 

£^(p) then becomes a plane wave incident from the direction of the observation 

point. If the current filament is placed at the observation point in the presence 

of the large body without the protrusion, the field can be calculated conveniently 

using the SBR method. Using the reciprocity theorem, the field radiated by the 

equivalent currents is then given by 

Es
z
ca{p) = -i / (Es

z
brJz - HfrMt)dl (8) 

JO J^b 

where Tj denotes the surface of the protrusion, Es
z
hr and Hfr are the field due to 

the current filament and are calculated using the SBR method. Similarly, for the 

TE polarization, the field radiated by the equivalent currents is given by 

Hs
z
ca{p) = -£ Jr(Hs

z
brMz - EtJt)dl (9) 

where M0 is given by 

M°=-'»\/l^Ä'•• (io) 

Note that in the formulation described above, because of the use of an ABC on 

ra, we neglected the field scattered by the protrusion, reflected and/or diffracted 

back to the protrusion by the large body, and scattered by the protrusion again. In 

most problems, this contribution is insignificant. However, when the protrusion is 

very close to edges and reflecting surfaces, the contribution can become significant 

and its omission can cause a substantial error in the solution. When this happens, 

we can use either PO or the SBR method to calculate the field radiated by the 

equivalent currents and reflected and/or diffracted back to the protrusion. Using 

this as the secondary incident field, we can update the equivalent currents. This 

process can be repeated until there is no significant change in the values of the 

equivalent currents. The field radiated by the currents is then calculated using 

either (8) or (9). 
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III. NUMERICAL RESULTS 

In this section, we present several examples to demonstrate the validity of the 

hybrid method described above. 

The first example is a circular cylinder with a small conducting protrusion. 

The radius of the circular cylinder is 5A and the protrusion is 1A wide and 1A 

high. The monostatic radar cross section (RCS) is given in Fig. 4. As can be 

seen, the hybrid solution is in good agreement with the MoM solution [18]. In the 

calculation, the absorbing boundary is placed 0.5A away from the surface of the 

protrusion. 

The second example is a 16Ax8A rectangular conducting cylinder having a 

conducting protrusion on its upper surface. The protrusion is 0.8A wide and 0.8A 

high. The monostatic RCS is shown in Fig. 5 and compared to the MoM solu- 

tion. The accuracy here is slightly worse than that in the first example, and this 

degradation is due to the error in the PO solution of the scattered field. 

The third example, shown in Fig. 6, places a conducting protrusion at the 

corner of the rectangular cylinder. Again, reasonably good agreement is obtained. 

Therefore, the method is not limited to the protrusions placed on a locally flat 

surface. 

The last example is an L-shaped conducting body with a protrusion on the 

surface. This problem differs from the former ones in that both incident and 

scattered fields can have multiple bounces. The hybrid solution obtained without 

iteration is given in Fig. 7, from which a noticeable error is observed. This is 

expected because the protrusion is close to the reflecting surface. The results 

obtained using the iterative approach are also shown in Fig. 7, which demonstrate 

clearly the improvement achieved by the iterative approach. 
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IV. CONCLUSION 

In this article, we presented the hybrid FEM/SBR method to compute scatter- 

ing by large bodies with small protruding scatterers. We first employed the field 

equivalence principle to replace the protruding scatterers by a set of equivalent 

electric and magnetic currents. We then used the SBR method to calculate the 

field scattered by the large body without protrusions and the FEM to compute 

the equivalent currents. The field radiated by the equivalent currents was also 

calculated using the SBR method with the aid of the reciprocity theorem and was 

superimposed to the field scattered by the large body. Two-dimensional problems 

were given to demonstrate the feasibility of the proposed technique. Its extension 

to the three-dimensional space is straightforward. 
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FIGURE CAPTIONS 

Fig. 1 Original problem: A large PEC body with a small protrusion. 

Fig. 2 Equivalent problem: The protrusion is replaced by equivalent electric and 

magnetic currents. 

Fig. 3 Region for FEM calculation: The protrusion is enclosed in an artificial 

boundary. 

Fig. 4 Comparison of the monostatic RCS calculated by the hybrid SBR/FEM 

and the MoM for a circular cylinder with a conducting protrusion. 

Fig. 5 Comparison of the monostatic RCS calculated by the hybrid SBR/FEM 

and the MoM for a rectangular cylinder with a conducting protrusion. 

Fig. 6 Comparison of the monostatic RCS calculated by the hybrid SBR/FEM 

and the MoM for a rectangular cylinder with a conducting protrusion at the 

corner. 

Fig. 7 Comparison of the monostatic RCS calculated by the hybrid SBR/FEM 

and the MoM for an L-shaped cylinder with a conducting protrusion. 
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Protrusion 

PEC Large Body 

Figure 1: Original problem: A large PEC body with a small protrusion. 

Figure 2:  Equivalent problem: The protrusion is replaced by equivalent electric 

and magnetic currents. 

Figure 3: Region for FEM calculation: The protrusion is enclosed in an artificial 

boundary. 
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Figure 4: Comparison of the monostatic RCS calculated by the hybrid SBR/FEM 

and the MoM for a circular cylinder with a conducting protrusion. 
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and the MoM for a rectangular cylinder with a conducting protrusion. 
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APPENDIX 2 

SCATTERING FROM A CYLINDRICALLY CONFORMAL 

SLOTTED-WAVEGUIDE ARRAY ANTENNA 

Guo-Xin Fan and Jian-Ming Jin 
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Department of Electrical and Computer Engineering 
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ABSTRACT 

A numerical method is developed to investigate electromagnetic scattering by a cylindrically 

conformal waveguide-fed slot array. The problem is first formulated in terms of integral equa- 

tions using the equivalence principle. The integral equations are then solved using the method 

of moments (MoM) in conjunction with global sinusoidal basis functions and Galerkin's testing 

procedure. The MoM solution requires the evaluation of the generalized admittance matrices 

involving various dyadic Green's functions. The slow convergence of the series associated with 

the summation of waveguide modes is accelerated using the Kummer transformation and the 

slow convergence of the series associated with the summation of the exterior modes is avoided 

by using the asymptotic solutions with proper treatment for singular integrals. The evaluation 

of the excitation vector and scattered field is also accelerated using Watson's transformation 

and asymptotic solutions. Numerical results are presented to illustrate the scattering character- 

istics of the cylindrically conformal waveguide-fed slot arrays, such as the effects of curvature, 

slot thickness, and waveguide termination on the radar cross section of the arrays. 

This work was supported by the Office of Naval Research under the grant N00014-95-1-0848, 

NASA under the grant NAG3-1474, the National Science Foundation under grant NSF ECE 

94-57735, and a grant from AFOSR via the MURI Program under contract number F49620- 

96-1-0025. 
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I. INTRODUCTION 

Slotted-waveguide array antennas are widely used on modern airborne radars because of 

their large power handling capability, high efficiency, light weight, compact structure, and low 

side lobes. However, being highly efficient radiating structures, by the reciprocity theorem these 

antennas are also efficient scatterers, which contribute significantly to the overall radar cross 

section (RCS) of the host vehicle. Usual RCS reduction techniques cannot be applied to these 

antennas without degrading their performance. Bandpass radomes, made of frequency selective 

surfaces (FSS), can reflect nearly all the incident energy outside the working frequency band 

and allow the incident energy within the working frequency band pass through to reach the 

antennas. However, it is at the working frequency band that the slot arrays have a significantly 

higher RCS. Therefore, it is necessary to predict the RCS of the slot arrays for applications 

such as target identification, electromagnetic compatibility, and stealth technology. 

Because of a large number of slots and the mutual coupling between the slots through 

the waveguides and exterior space, a full-wave analysis of slotted waveguide arrays is very 

difficult. In the past, most work was focused on the radiation analysis of a single slot [1]-[10], 

one-dimensional arrays and small two-dimensional arrays [11]-[17], all in a planar surface. In 

particular, Stevenson [1] developed what is now considered the classical theory for a single slot 

and Oliner [2] presented a variational solution of the problem. Khac and Carson [3] employed 

the method of moments (MoM) to seek a numerical solution to the slot field using pulse basis 

functions and point match technique. The efficiency of the MoM solution was improved by 

Lyon and Sangster [5] and Stern and Elliott [6] by using global and piecewise sinusoidal basis 

functions and Galerkin's technique. The MoM was also applied to tilted slots [9], dielectric- 

covered slots [8], [10], edge slots [18], and slots in a sectoral waveguide [19]. Recently, Fan [20] 

analyzed cylindrically conformal slotted-waveguide array antennas with a curved waveguide as 

the feeding guide and sectoral guides as the radiating guides. Whereas the literature for the 

radiation analysis of the slot arrays is abundant, little work was done on the scattering from 

the planar slot antennas [21]-[23], let alone the curved ones. Josefsson [21] analyzed scattering 

by a single slot in an infinitely long waveguide and Chen and Jin [23] developed the MoM 

and finite element method (FEM) solutions for the slots in the waveguides terminated with 

arbitrary loads. No work was found on the analysis of the scattering characteristics of slotted 

waveguide arrays on a curved surface. In this paper, we present such an analysis. 

The key problem in the analysis of slotted waveguide arrays is to solve for the slot aperture 

fields.   Among various numerical methods, the MoM is most efficient and accurate for this 
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purpose because only a small number of basis functions are needed to represent the aperture 

fields.  However, the major difficulties in the MoM are (i) its formulation requires the dyadic 

Green's functions for the waveguide, the exterior space, and the slot if it has a finite thickness, 

and (ii) the evaluation of its matrix involves highly singular integrals and very slowly converging 

series.   In this paper, we address all these problems.  To be more specific, we first formulate 

the integral equations for the problem and apply the MoM with global basis functions and 

Galerkin's testing procedure.  We then describe in detail the evaluation of the MoM matrix 

involving various dyadic Green's functions. The slow convergence of the series associated with 

the summation of waveguide modes is accelerated using the Kummer transformation and the 

slow convergence of the series associated with the summation of the exterior modes is avoided by 

using the asymptotic solutions developed by Boersma and Lee [24] and Bird [25]. The evaluation 

of the excitation vector and scattered field is also accelerated using Watson's transformation 

and asymptotic solutions. Finally, we present some numerical results to illustrate the scattering 

characteristics of the cylindrically conformal slotted waveguide arrays, such as the effects of 

curvature, slot thickness, waveguide termination, and frequency on the RCS of the arrays. 

I. THEORY 

In this section, we describe in detail the formulation of the problem and its solution by 

the MoM. Particular attention is given to the computation of the elements of the generalized 

admittance matrices. 

A. Integral Equations and MoM Solution 

Consider the problem of electromagnetic wave scattering by a waveguide-fed slot array on a 

cylindrical surface whose radius is />3, as depicted in Fig. 1. The cross section of each waveguide 

is an annular sector with inner radius pi, outer radius p2, and subtended angle A<£, and the 

thickness of the curved walls of the waveguides is t = p3 - p2. Each waveguide is terminated at 

z = zi and z2 with an arbitrary load. All radiating slots are longitudinal slots cut in the outer 

wall of the waveguides, having the same width 2w and different length and offset with respect 

to the center-line of the waveguides. 

For the ith slot, its inner and outer apertures, Sj and Sf, divide the space into three regions: 

the waveguide region (region a), the region outside the cylinder (region 6), and the slot region 

(region c), as illustrated in Fig. 2. In accordance with the equivalence principle, the fields in the 

three regions can be decoupled by covering the apertures Sf and Sf with a perfectly conducting 

surface and introducing equivalent magnetic currents above and below the perfectly conducting 

surface. Denoting the equivalent magnetic current below S{ as Mf and that below Sf as M, , 
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because of the continuity of the tangential electric fields across the apertures, the equivalent 

magnetic current above S{ is — Mf and that above Sf is —Mf. Therefore, the field in region a 

is due to Mf, the field in region b is due to —Mf and the incident field, and the field in region 

c is due to -Mf and Mf. 

By enforcing the continuity of the tangential magnetic fields across S( and Sf, we obtain 

the integral equations satisfied by the equivalent magnetic currents, Mf and Mf, as 

£ H?,.(Mj) + H^(Mf) - H^(Mf) = 0 reSf (1) 
3 

£ B&(Mf) + H^(Mf) - H',.(Mf) = H#      r € Sf (2) 
3 

where the subscript r denotes the tangential component, the summation in (1) is carried out 

for all inner apertures in the same waveguide, and the summation in (2) is carried out for all 

outer apertures. The magnetic field is related to the surface magnetic current by 

Ha(r) = ff 3a(r, r') • M{r')dS' (3) 
s 

where a = a for region a, b for region b, and cfor region c, respectively, and Ga(r, r') denotes the 

magnetic-source magnetic-field dyadic Green's function in the corresponding region. Finally, 

Hprt is the field due to the incident field in the presence of the conducting cylinder without 

slots. 

To seek a numerical solution of (1) and (2), we first expand each equivalent magnetic current 

using the global sinusoidal basis functions 

Mf = zMJ'E = z Y: VV sin a„-e r € SJ'J (4) 
9=1 

where aqj = qtc/Lj with Lj being the length of the jth slot. Applying Galerkin's procedure, 

the integral equations can be converted into the matrix equation given by 

[Y^(a) + y^(C,S/;S/)] [-Y;i(c,S[;S?)]      ]  f [vg] 
(5) 

ml] fw\ 
l [vgl J     \[/pdj \-Yij(c,sf-,sj)}      [y;i(b) + YjKcsf-,sf)] J I [vg] 

where Yp|(a) and Yp^(&) are the generalized admittance matrix for regions a and b, respec- 

tively. yp'| (c, 5/;Sn is the generalized admittance matrix for region c, in which S{ is the 

aperture on which the field point is located and Sj is the aperture on which the source point is 

located. Finally, [Ipi\ is the generalized excitation vector. 

In the remainder of this section, we describe the evaluation of the elements of each gener- 

alized admittance matrix and excitation vector, necessary for a numerical solution of (5). 
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B. Generalized Admittance Matrix Elements for Region a 

The admittance matrix elements due to the internal coupling in the sectoral waveguide 

(region a) are given by 

Y£(a) = JjJJGa
zz(T,T')smapi^ smagJZ'dSdS' (6) 

s! st 

where Gzz is the ii-component of the magnetic-source magnetic-field dyadic Green's function 

for the sectoral waveguide, which is derived in [26] and given by 
00       00 j. 

Ga„=ME £B(ro,n)CvcJ*(z-*') 
m=0 n=0 *■ 

\2 
Amn \r-jhmnU-z'\        I><   JlhmnZip-jhmniz+z') 

A/''■mn'-^mn 

where 

in which 

_D>    e-j2hmnZ2eJhmn(z+z')   i   p<    D>    e-iAmn(z2-^l)ei^mnk-2'| 
mn '  mnmn 

2      £„ (Xmnp) Bv (Xmnp') 
B(m,n) = 

l + <*Om fc2]VAm„A^ 
P=P-P2 

Bv\Xmnp)  —  Jv(XmnPi)Yv[Xmnp) — /^(AnjTiPjjJj/^ATOn/)), 

(7) 

(8) 

(9) 

(10) 

Also, in the above, ^ = rmr/A<f), Cv = cosi/y?, Cy = cos utp', hmn = >/fc2 — A^n, Amn are 

the roots of B'u(Xmnp2) = 0, Amn = 1 - R<nR>ne^hmn^-z^, and J?<n and i?>n are the 

reflection coefficients for mode (m, n) at 2 = z\ and z — z2, respectively. For shorted terminals 

Rmn = — 1, and for matched terminals Rmn = 0. 

The integrals in (6) can be evaluated analytically through the transformation of variables, 

resulting in 
OO        00 

Y£(a) = -jue £ £B(mfn)iJ'(m) \l% (m,») + I%m K n)] (11) 
m=0 n=0 

where Jj'(ro) = /J,(m)/j(m) with 4(0) = 1w and 

4(m) = £ £ sgn(t7) sin fÜ (*£* + * + lA]        m * 0 

and 5i denotes the offset of the ith slot from the center of the waveguide. Also, 

Pj0(m, n) = C(m, n) [l + (-1)*+«] [l - (-l^-i^l + sj^f^i 

Iz
j

0(m,n) = C(m)n)cTJ'fc™"K*0i-*°>>-(L'-L>)/2l 

30 

pi 

Z0i < 20j 

(12) 

(13) 



with 

C<m' ■> = 2jh\     a'"-*   o?"-» <14» *Jlimn^mn "p;      nmn aqj      nmn 

and z0i and z0j denote the center of the ith and jth slots, respectively. Finally, Vjim (TO, n) can 

be written in three parts as 

with 

I^m(m, n) = Jg(m, n) + I%{m, n) + I%{m, n) (15) 

1% (TO, n) = -C(ro, n)Ä<Be-J,fc™"Ka»''+*0>)-^«+L>>/2-2*1' 

• 1 - (-l)Pe-
jhmnLi] [l - (-l)9e-

j/lmnM (16) 

rj2(m,n) = -C(TO,7i)fi>ne-J'/lm"^2-^oi+z°>)+(Li+I'^/2] 

• [l - (-l)?^"1"1"'] [l - (-iye
jhmnLA (17) 

4(m,n) = C(m,ri)Ä<nß>ne-2^-"^-^) 

• [1 + (-1)"+«] [l - (-l)Pej7lm"Li] (18) 

I%(m, n) = C{m, ^R^R^e-2^™^-*1^^™^-^-^-^^ 

•    1 - (-lJPeTJfcmnLij   jj _ (_1J,c±jkm„I,ij Zo. > 2Qji (19) 

While the summation in (11) can be evaluated without any difficulty when i ^ j, its 

evaluation when i = j involves a slowly converging series given by 

oo 

S(m) = £ B(m, n)I% = Si(m) + 52(TO) (20) 
n=0 

where 
oo 

S^m) = Y, B{m, n)C(m, n) [l + (-l)p+?] [l - (-l)Pe~ih™Li] (21) 
n=0 

°° (k2-a2)L- 
S2(m) = £ B(m,n)Spq

K  2 _ g  '. (22) 
n=0 ap» m» 

To show this, let us examine the asymptotic behavior of the series when n —► oo. Using the 

asymptotic expression of the Bessel functions for large arguments, we obtain the approximate 

solution to the eigenvalue equation B'u(Xmnp2) = 0 as 

nir 
(23) 

and hence 

P2-P1 

., nir _,        . 1 2 ,    . 
jhmn ~ ,    B(m, oo) ~ r-r-F—Tö-, T—-T- (24) 

P2-P1 l + %mk2{p2- p\)p2(t>o 
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Clearly, the asymptotic form of the terms in Si(m) is proportional to n~3 and that in 52 (m) is 

proportional to n~2. To accelerate the convergence of 52(m), we apply the Kummer transform 

[27] to (22), resulting in 

J3(m,n)       (pi - pi\2 B(m,oo) 
\     n     J    n2 + x2 52 (m) = SPg(k2 

a2- - h2 

+ 

where 

{00 

E 
ro=0 

= (^)2{<-2- 

(25) 

(26) 
.(P2 ~ Pl)<t>0. 

The first summation in (25) converges rapidly and the second summation can be written in a 

closed form as 
i + 7T coth irx 2x 

n=0 
n2 + X2 

-1 

z2>0 

a;2<0. 
(27) 

A + 7rcot7r|a;| 
.\x\ 

In passing, we note that when p\ and p2 —> oo, the expressions for sectoral waveguides 

reduce to those for the corresponding rectangular waveguides [26]. 

C. Generalized Admittance Matrix Elements for Region b 

The admittance matrix elements due to the external coupling in region b are given by 

PI (b) = JIJJGKT, r') sin <*pt£ sin agj? dSdS' (28) 

sP sf 

where Gb
zz is the zS-component of the magnetic-source magnetic-field dyadic Green's function 

for the conducting cylinder. The rigorous expressions of the dyadic Green's function involve 

infinite series and infinite integrations of Hankel's functions [28], [29]. Although these expres- 

sions can be converted into the forms suitable to numerical calculation [29], it is still very time 

consuming to compute the matrix elements, especially when the cylinder is large. Therefore, 

it is necessary to seek the fast converging asymptotic solutions. Several different approximate 

asymptotic solutions have been developed in the past [24], [25], [30]-[32], and each has its ac- 

curacy and range of validity. A comparative study [29] shows that the B-L [24] and TSB [25] 

solutions offer the best overall accuracy, and these two solutions are complementary to each 

other. More specifically, the B-L solution is more accurate when the field point is near the 

source or in the paraxial region while the TSB solution is better when the field point is far 

from the source and off axis. In this work, the TSB solution is used for two distant slots whose 

centers have the same z-coordinate, whereas the B-L solution is employed for all other cases. 
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When i ^ j, the integrals in (28) can be evaluated numerically without any difficulty [26]. 

However, when i = j, G\z has a t~3 singularity as t -» 0, and hence, a regularization is needed 

to for the evaluation. To do this, we first write Gb
zz as 

Gb„ = G°„ + G„ (29) 

where G°zz is the iz-component of the dyadic Green's function for an infinite conducting ground 

plane, given by 

and Gzz can be considered as the perturbation due to the curvature of the cylinder [31], given 

by 

Gzz = Go(0{ [v{ß) - l] [cos2 6 + q (1 - q) (2 - 3 cos2 0)] 

-*& {ß) g cos2 § + q (£ + I tan2 6 - H C0S2 e)] } (31) 

where G0(t) = exp{-jkt)/(4irt), t = ^/(z - z')* - {<p-<p')2, 0 = arctan[(z - z')/(<p - <p% 

q = j/kt, ß = (kcosAe/2R2)llH, and v is the surface Fock function defined in [24]-[26]. As a 

result, the self-admittance matrix element can be written as 

Yä(b) = Ypf(b) + Y£(b). (32) 

Using integration of part and transformation of variables, Y°^(b) can be written as [8] 

n- k2 14- (—1)P+V   rU  r2u> p~ikt 

Kv-jjrisihL I V^*"" (33) 
where t — y/u2 4- v2 and 

,,,      v      f !fe? [«pi(k2 - a2i) sin a„-ti - agi{k
2 - a2 •) sin apiu]     pjLq 

F(u,v) = <    J»    «' L ' J (34) 
I (2™ - t>) [(if - «) (A;2 - <4i) c°s <V« + ■£-(k2 + a2 •) sin apiu]     p = q. 

The integral in (33) becomes regular when evaluated in the polar coordinates. 

To evaluate the perturbation term in (32), we first let 77 = p3ip, rj' = p3(p', and write it as 

Yvl (6) = /     /    /     /    Gzx (£ - £', T] - rf) sin api-£ sin aqi? drf df' dr) <f£. (35) 
JO    J—wJO    J—w 

Introducing the transformations u = £ - £', u = 77 - 77', u' = £ + £' - Z,,, and v' = 7? + 77', and 

observing that Gzz(u, u) is an even function of u and v, we obtain 

Y£(b) = [l + (-l)H-»] ^   jfo  (2t0 _ r)G^(U) „)£(tt) rft;dtt (36) 

33 



where 
i-pr^r [(-l)p+«apt- sin agiu - aqi sin apiu\ p^ q 

Pi    *L J (37) 

(Li - u) cos ap{U + ^- sin a^u p = q. 

With another transformation « = £cos0, and v = tsm 6, (36) becomes 

~.. r -\ (    f8o  rLi/cosB        t^l^ /•2ui/sinfi 1 W=[l +(-!)-]{/„/„ +/o/o } 
■(2w - isin 6») G„(t, 9) F(t, 0)tdOdt (38) 

where 60 = tan~1(2u)/JL.) and <5^(t,ö) has the same form as (31). The integrals in (38) 

become regular by letting t = r2, which can be evaluated by expanding the integrand in terms 

of the power of r and using a Gaussian quadrature. The Fock function can evaluated using its 

small-argument expansions. 

D. Generalized Admittance Matrix Elements for Region c 

It can be shown [26] that the magnetic field in the cavity (region c with a sectoral cross- 

section), formed by the slot with its two apertures covered by a perfectly conducting surface, 

due to the surface magnetic current z6(p — p') sin ap,£ is given by 

„,     „      ßC   . (B(p2,p)B(p3,p') p<p' 
Hz(p, P) = -— sin api£ < 

3W P^[B(p3,p)B(p3,p') p>p> 
(39) 

where ß2 = \k2 - a2
pi\ and 

C= [B(p2,p')B'(p3lp') - B(p3,p')B'(p2,p'))-1 (40) 
)j'0(ßp>)YQ(ßp)-Y>(ßp>)JQ(ßp)     k>api 

B(p,p)={ (41) 
\l'Q(ßp')KQ(ßp)-K'0(ßp')h(ßp)     k<api. 

K   } 

Using (39), we obtain the expressions for the generalized admittance matrix elements for 

region c as 

Yp
ii(c,Shs!) = ^§f^6ij6pq (42) pq J jup B'(p3,p2) 

WCS!;® = ^l^—)SiA, (43) 

WcSfiSf) = ^J-^-J^ (44) 

vH(r cl.ql\ - LjWß-B(p2,p3) 

Note that when p2 and p3 —> oo, the expressions above reduce to those for a rectangular cavity 

[26]. 
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E. Excitation Vector and Scattered Field 

Consider an incident plane wave of arbitrary polarization and incidence angle, whose electric 

field is given by 

Einc _ 0inc cos ^ + pnc gin ^-jfcr'-.r (4g) 

where if) is the polarization angle, (0mc, <ptnc) denote the incidence angles, and (rtnc, 9inc, (ptnc) 

are the unit vectors. The primary field, Wrt in (2), is given by 

jypri 
P=PZ 

= -Y0sini>sm9incejkzcos<>incM(kp3smOinc,<p- <pinc) 

where 
„,. 2^,2     jncosmp 

from which we obtain the elements of the excitation vector as 

sin otpi£ dS 

(47) 

(48) 

ipt •a 
si 

mrt 
P=P3 

= 4Y0^ri sin 1> sin 6inc ejkzoi cos6<nc fp(6inc) M{kp3 sin 0inc, <poi - <pinc, Ay>)      (49) 
pn 

where 

/pW = 
kL{ 
 cost? 
pn 

2^2 

_1 f - cos (*J£ cos #)        p = odd 

j sin f =|^ cos 6) p = even 

j"cosnyj 
M(x, v, Aw) = -— Y^ r—-—r^r—- sinc(n Au>) 

in which A<p — w/p3. For narrow slots, we can use the midpoint integration to find 

(50) 

(51) 

hi = 4Y0 
AipLi 

pn 
sin i> sin 6inc ejkzoi cosßinc fp{6inc)M(kp3sm 0inc, <p0i - <finc). (52) 

When x becomes large, M(x,ip) for the lit region can be evaluated more efficiently using the 

expression [28] 

M(x,<f)^2ejxcosv (53) 

which can be considered as the geometrical optics approximation and it has the same accuracy 

as Gorianiov' more complicated expression [33]. For the neighborhood of the shadow boundary 

and the shadow region, M(x,ip) can be evaluated using the expression obtained using the 

Watson transformation and Fock theory [28], 

M(x,(p)r.e-jx('fi~^g 
IT 

^"2"; V2 

1/3' 
+ e-H

3-i~^g (T-*)G) 
1/31 

(54) 
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where g(x) is the far-zone Fock function, whose definition and evaluation are discussed in [26], 

[28], [34], and [35]. 

Once the equivalent magnetic currents on the slot apertures are found, we can compute the 

scattered field using the reciprocity theorem. 

III. NUMERICAL RESULTS 

The formulation described above has been implemented in a computer program and a variety 

of numerical results have been obtained to study the effects of various factors on RCS. Because 

of limited space, we present only some typical results; more results can be found in [26]. 

For all the examples considered, the cross-section of sectoral waveguides is given by |(pi + 

/>2)A</> = 21 mm and p% — p\ = 10.16 mm. The distance between the center-lines of the adjacent 

waveguides is 22 mm, measured on the surface of the cylinder. The adjacent slots on the same 

waveguide are spaced Aflo/2 apart in the z direction, where Aflo is the waveguide wavelength at 

the working frequency (the center frequency of design). The shorted planes are placed Xg0/4 

away from the first and last slots, respectively. In order to avoid the numerical overflow in the 

computation of the generalized admittance elements for the shorted waveguides at the working 

frequency, the position of the shorted planes is displaced by Az, which can be considered as an 

acceptable manufacturing tolerance. All other parameters, unless otherwise specified, are given 

by: 2w = 1.6 mm, Li = 16 mm, Si — 1.5 mm, At = 0.8 mm, Az = 0.01 mm, if) = 90°, and the 

working frequency /0 = 9.1 GHz. The normal at the center of the array is 6 = 90° and <f> = 0° 

in the spherical coordinate system. 

The computer program was first validated by comparing its solution to those obtained by 

MoM and FEM [23] for a single slot and for four slots on a planar surface. Good agreement 

was observed between the three solutions. 

To demonstrate the effect of the curvature of the host cylinder on the RCS of a conformal 

slot array, Figs. 3 and 4 show the RCS for pi = oo, p\ = 500 cm, px = 200 cm, px = 100 cm, and 

px = 50 cm in both E- and H-planes. As can be seen, the cylinder's curvature has a significant 

effect on the patterns and values of the RCS in the E-plane. When p\ becomes large, the RCS 

approaches that for a planar array. When p\ decreases, the grating lobes begin to disappear 

and the maximum RCS decreases. In contrast, the pattern of the RCS in the H-plane remains 

the same and only the value of the RCS is decreased as p\ decreases. 

To further demonstrate the effect of the cylinder's curvature on the RCS, Fig. 5 presents 

the space distribution of the RCS for px = oo, pi = 200 cm, px = 100 cm, and px = 30 cm. As 

can be seen clearly, as pi decreases the grating lobes in the E-plane is dilated where the pattern 

36 



in the H-plane remains the same. 

To show the effect of the waveguide terminals on the RCS, Fig. 6 gives the RCS of a 8 x 8 

conformal slot array (pi = 100 cm) when the waveguide terminals are matched and shorted. It 

can be seen that when the plane wave is incident normally on the cylinder (0 = 90°), the RCS 

is very small for the array with shorted terminals. This is because at the working frequency, the 

wave entered the waveguide is reflected by the shorted terminals and the reflected wave cancels 

the incident wave at the slot. Thus, the total electric field or the total equivalent magnetic 

current is zero at the aperture of the slot. An alternative explanation is that with the shorted 

terminals, the equivalent impedance looking at the aperture of the slots is zero. Therefore, 

when the shorted planes are displaced, the equivalent impedance will be changed and so is the 

RCS. This is clearly demonstrated in [26]. 

The effect of the slot thickness on the RCS is also investigated in [26]. It is observed that, 

at the working frequency, the slot thickness has no effect on the RCS when the waveguides are 

matched and when the waveguides are shorted, it has a significant effect. This effect can also 

be explained using the concept of the equivalent impedance. 

Finally, Fig. 7 shows the frequency responses of a 8 x 8 array {px = 100 cm) with matched 

and shorted terminals, respectively. It is very interesting to note that the RCS of the slot array 

is almost identical no matter the waveguides are matched or shorted when the frequency is not 

close to the working frequency. At the working frequency, the RCS is substantially different. 

This implies that when the frequency of the incident wave is not close to the working frequency 

of the slot array, the energy entering the waveguides is very trivial and the main contribution to 

the RCS is the wave scattered by the slots directly. Therefore, in this case the dominant factor 

is the geometry of the slots, instead of the structures behind the slots. Figure 8 shows the space 

distribution of the RCS of a 16 x 16 array {px = 100 cm) at three different frequencies. 

IV. CONCLUSION 

In this paper, a method of moments (MoM) solution was developed for electromagnetic 

scattering by a cylindrically conformal waveguide-fed slot array. Numerical results were pre- 

sented to illustrate the scattering characteristics of the cylindrically conformal waveguide-fed 

slot arrays, such as the effects of curvature, slot thickness, and waveguide termination on the 

radar cross section of the arrays. It was observed that (i) as the curvature of the host cylinder 

increases, the grating lobes in the E-plane dilate and eventually disappear and the maximum 

RCS is reduced; (ii) the internal structure of the waveguides such as the waveguide terminals 

has negligible effect on the RCS when the frequency of the incident wave is not close to the 
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working frequency of the slot array; (iii) at the working frequency the RCS of the slot array with 

a shorted terminals at normal incidence changes significantly with the position of the shorted 

terminals; and (iv) at the working frequency the slot thickness has no effect on the RCS of 

the array with matched terminals whereas for the array with shorted terminals its effect is 

noticeable. 
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FIGURE CAPTIONS 

Figure 1. Conformal slotted-waveguide array. 

Figure 2. Division of three regions and surface magnetic currents. 

Figure 3. The effect of the cylinder's curvature on the RCS in the E-plane for a 16 x 16 slot 

array with matched terminals at / = 9.1 GHz. (a) planar, p\ = 500 cm, (b) p\ = 200 

cm, (c) pi = 100 cm, (d) p\ = 50 cm. 

Figure 4. The effect of the cylinder's curvature on the RCS in the H-plane for a 16 x 16 slot 

array with matched terminals at / = 9.1 GHz. (a) planar, p\ = 500 cm, (b) p\ = 200 

cm, (c) p\ — 100 cm, (d) p\ = 50 cm. 

Figure 5.  RCS (dBsw) of a 16 x 16 slot array with shorted terminals at / = 9.1 GHz.   (a) 

planar; (b) px = 200 cm; (c) p\ = 100 cm; (d) p\ = 30 cm. 

Figure 6. The effect of the terminals on the RCS of a 8 x 8 conformal slot array (pi = 100 cm). 

• • • matched terminals,  shorted terminals, (a) E-plane pattern; (b) H-plane pattern. 

Figure 7. RCS of a 8x8 conformal slot array (pi = 50 cm) as a function of frequency. 9,nc = 90°, 

<pinc = 45°. 

Figure 8. RCS (dBsw) of a 16 X 16 conformal slot array (pi = 100 cm) at three frequencies, 

(a) / = 8 GHz; (b) / = 9.1 GHz; (c) / = 12 GHz. 
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Figure 2: Division of three regions and surface magnetic currents. 
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Figure 3: The effect of the cylinder's curvature on the RCS in the El-plane 
for a 16 x 16 slot array with matched terminals at / = 9.1 GHz.  (a)  
planar,   p1 = 500 cm, (b) pi = 200 cm, (c) pi = 100 cm, (d) pi = 50 
cm. 
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Figure 4: The effect of the cylinder's curvature on the RCS in the H-plane 
for a 16 x 16 slot array with matched terminals at / = 9.1 GHz.  (a)  
planar,   pi = 500 cm, (b) pi = 200 cm, (c) pi = 100 cm, (d) px = 50 
cm. 

44 



(a) (b) 

1100 

1201 

1« 

160 

PEslllllsgB 
^.    ----H 

«""''■■''•» jijiVjh-^i»,».. .~"~^IZL...^»«„fcaj 

-80-60-40-20 0 20 40 
Phi{degiBes) 

(c) (d) 

Figure 5:  RCS (dBsw) of a 16 x 16 slot array with shorted terminals at 
/ = 9.1 GHz. (a) planar; (b) px = 200 cm; (c) px - 100 cm; (d) px = 30 cm. 
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Figure 6: The effect of the terminals on the RCS of a 8 x 8 conformal slot 
array (pi = 100 cm).  • • • matched terminals,   shorted terminals,   (a) 
E-plane pattern; (b) H-plane pattern. 
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Figure 7: RCS of a 8 x 8 conformal slot array {p-y = 50 cm) as a function of 
frequency, (a) 6inc = 90°, <pinc = 0°; (b) 0inc = 90°, ^ = 45°. 
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Figure 8: RCS (dBsw) of a 16 X 16 conformal slot array (pi = 100 cm) at 
three frequencies, (a) / = 8 GHz; (b) / = 9.1 GHz; (c) / = 12 GHz. 
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APPENDIX 3 

Hybrid MoM/SBR Method to Compute 
Scattering from a Slot Array Antenna 

in a Complex Geometry 

Andrew D. Greenwood and Jian-Ming Jin 

Center for Computational Electromagnetics 

University of Illinois 

Urbana, Illinois 61801 

1    Introduction 

The presence of a slotted waveguide array antenna on a radar target may have 

a significant contribution to the overall radar cross-section (RCS) of the target. 

Therefore, the computation of the RCS should include the scattering from the 

slot array. Recently, a method of moments (MoM) procedure has been introduced 

to compute the scattering from a cylindrically conformal slotted-waveguide array 

antenna [1,2]. However, this procedure does not take into account the geometry 

in which the slot array is located. If the slot array is located in a complex, three 

dimensional (3-D) geometry, the MoM cannot efficiently account for the effect of 

the geometry. A more efficient method to compute the scattering from a large, 3-D 

body is the high frequency shooting and bouncing ray (SBR) method. However, 

this method cannot accurately account for the slots, each of which is typically 

smaller than an electromagnetic wavelength in size. In this paper, the MoM com- 

putation of the scattering from a slot array is hybridized with the SBR method to 

compute the electromagnetic scattering from a large, 3-D target which includes a 

slot array antenna. 

The basis of the hybrid method is the field equivalence principle, which allows 

the scattering geometry to be decomposed into separate regions. The MoM is 

applied to the slotted waveguides, while the SBR method is applied to the region 

outside the waveguides, which includes the complex, 3-D target. By using the 

hybrid method, the scattering from a large, 3-D target, which includes a slotted- 

waveguide array antenna, can be efficiently and accurately computed. 
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Figure 1: Example of a complex, 3-D target with a slot array antenna and the 

local slot geometry. 

The remainder of this paper is divided into five sections. Section 2 describes 

the formulation of the problem, including the use of the MoM, the use of the SBR 

method, and techniques to decouple the computations of the two methods. Section 

3 describes briefly how the method has been tested, and Section 4 gives some 

numerical results which show the capability of the method. The results in Section 

4 also demonstrate the need to include the slot array in scattering computations. 

Finally, Section 5 gives a brief conclusion. 

2    Formulation 

Consider the example target shown in Figure la. The target is complex and 3- 

D, and it includes a slotted waveguide array antenna on its surface. The slotted 

waveguide array antenna may be planar, or it may conform to the surface of a 

cylinder. The first step to compute the scattering from this target is to analyze 

the slotted waveguides using the MoM. Then, the scattering from the target with 

the slot apertures covered by perfect electric conductor (PEC) is computed using 
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the SBR method. During the SBR calculation, the incident field on the slot array 

antenna is computed and stored. This incident field is combined with the MoM 

analysis to find an equivalent magnetic current on the outer aperture of each slot. 

Finally, the radiation of these equivalent magnetic currents in the presence of the 

complex, 3-D target is computed using the reciprocity theorem. This result is 

added to the previously computed SBR scattering result. 

2.1    Use of MoM 

The first step in the formulation of the problem is to analyze the slotted waveguides 

using the MoM. There are two main steps in the application of the MoM. First, 

the problem must be described in terms of an integral equation. Then, the integral 

equation is discretized to find a numerical solution. The steps are outlined here, 

and more detail is given in [1,2]. 

To derive the integral equation, the apertures of each slot are first covered 

with PEC, and equivalent magnetic currents over each aperture are introduced. 

Figure lb depicts the situation for the ith slot. The region outside of the antenna 

is denoted Region I, the region inside the slot is Region II, and the region outside 

of the slot but inside the waveguide is Region III. An equivalent magnetic current 

Mf is introduced on the inside of the outer slot aperture (between Regions I and 

II), and the equivalent current M- is introduced on the waveguide side of the 

inner aperture (between Regions II and III). Because the electric field must be 

continuous across each aperture, -M? must be introduced on the outside of the 

outer aperture, and —M\ must be introduced on the slot side of the inner aperture. 

Note that when the analysis is complete, -M- are the currents that radiate in the 

presence of the complex, 3-D body as discussed above. 

To derive the integral equation, the continuity of the tangential magnetic field 

across each aperture is enforced. Denoting the tangential magnetic field in Region 

III on the ith slot aperture due to the magnetic current on the jth aperture as 

H™(Mj), the following must hold on each inner aperture: 

£ H£(M$) + H5(M}) - ES(M?) = 0. (1) 
i 

Further, denoting the tangential incident field on the ith slot aperture as H^fR, 

£ H^(M°) + H£(M°) - H5(M}) = H*f R (2) 
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must hold on each outer slot aperture. Note that the incident fields are calculated 

using the SBR method, and the magnetic field due to a magnetic current is found 

from 

Ha(M) = //^°(r, r') ■ M(r')dS' (3) 
s 

where a is I, II, or III, depending on the region of interest, G (r, r') is the magnetic 

source-magnetic field dyadic Green's function in the appropriate region, and r 

corresponds to the point at which the magnetic field is to be evaluated. Combining 

Equations 1, 2, and 3 gives an integral equation for the magnetic currents. 

The second main step in application of the MoM is to discretize the integral 

equation to find a numerical solution for the currents. To accomplish this step, the 

currents are expanded in terms of sinusoidal basis functions. Defining | to be the 

direction parallel to the lengths of the slots and using a local coordinate system 

in which £, = 0 at one end of the jth slot, the current on the jth slot aperture is 

expanded as 

Mf = |f;^sm(^) (4) 

where N is the number of terms in the expansion, and ß represents a for the 

current on the outer aperture or b for the current on the inner aperture. Equation 

4 is valid for points on the jth slot aperture; for points outside of the aperture, the 

expansion is defined to be zero. Assuming the width of a slot is much less than its 

length, the £ component of the current is the only component of interest. 

Substituting the expansion given in Equation 4 into the integral equation allows 

the integral equation to be converted to a matrix equation which can be solved 

numerically. For the more details about solving the integral equation, the reader 

is referred to [1,2]. However, one important step that should be mentioned here is 

the derivation of the dyadic Green's functions for the various regions. The Green's 

functions given in [1,2] for Regions II and III are applicable to the present problem. 

For Region I, the dyadic Green's function can be written as 

ÜI(r,r')=^Cyl(r,r')+^diff(r,r'). (5) 

The Green's function given in [1,2] for the exterior region corresponds to G    (r, r'), 
=diff 

and G    (r, r') is a perturbation term due to diffraction and reflection by the 
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complex target in which the slot array is embedded. Neglecting G (r, r') neglects 

fields which are scattered by the slots, diffracted or reflected by the large body 

back to the slots, and scattered by the slots again [3]. These fields are usually an 

insignificant part of the scattering, and this term is neglected in the computations. 

Thus, the Green's function given in [1,2] for Region I is used for the present 

problem. 

2.2    Use of SBR 

As previously mentioned, the MoM is used to analyze the slot array antenna while 

the SBR method is used for the remainder of the problem. Thus, there are three 

main tasks to be accomplished by the SBR method: to compute the scattering 

from the complex, 3-D target, to compute the incident magnetic fields on the slot 

apertures, and to compute the radiation of the equivalent currents on the slot 

apertures in the presence of the complex, 3-D target. In all of these cases, the slot 

apertures are covered with PEC. 

In the SBR method, a dense grid of rays, corresponding to a plane wave, is 

launched toward the target, and each ray is traced as it bounces around the target. 

The bounces are governed by Geometrical Optics (GO), and as each ray leaves the 

target, its contribution to the scattering is computed by a Physical Optics (PO) 

integration. If more accuracy is desired, the first order edge diffracted terms are 

computed using the Geometrical Theory of Diffraction (GTD) and added to the 

result [3-6]. For the present problem, this SBR procedure is followed to compute 

the scattering from the complex, 3-D target with the slot apertures closed by PEC. 

The SBR procedure is implemented using the XPATCH software package [4,5]. 

The incident magnetic field on the slot apertures is computed using SBR at the 

same time the scattering from the complex, 3-D target is computed. While tracing 

the rays to find the scattering, some rays will hit on or near a slot aperture. The 

field contributions from each of these rays are combined with appropriate phase 

shifts to find the incident magnetic field on each slot aperture. The incident mag- 

netic fields on the slot apertures are used by the MoM to compute the equivalent 

magnetic currents on the apertures. 

The remaining step in the problem is to compute the radiation of the magnetic 

currents in the presence of the large body.  The SBR method together with the 
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reciprocity theorem is employed for this task [3,6]. Consider an infinitesimal dipole 

placed at the scattering observation point. If the target containing the slot array 

is in the far field of the dipole, the dipole launches a plane wave toward this 

target. Recall that for the SBR method, the grid of rays launched toward the 

target corresponds to a plane wave. Note also that the reciprocity theorem states 

jjj Eslot • JdV = If HfR • Ma (6) 
v s 

where HpR is the incident field on the slot apertures due to the dipole at the 

scattering observation point, M" is the current on the outer slot apertures, which 

is found using the MoM, Eslot is the radiation due to -Ma, and J is the dipole 

current. Thus, if the dipole current (J) is appropriately chosen and monostatic 

scattering is being computed, all components to find Eslot using reciprocity are 

computed already. If bistatic scattering results are desired, HpR resulting from a 

dipole at the scattering observation point must be computed first, then Eslot can 

be computed. 

2.3    Decoupling the MoM from the SBR Method 

As they are presented in Section 2.1, the MoM computations are coupled to the 

SBR method computations. This is due to the fact that the incident magnetic field 

on the slot apertures, which is computed using the SBR method, is required for the 

MoM computations. To avoid having to repeat the MoM computations in order 

to analyze the scattering from many different incidence angles, it is desirable to 

decouple the computations of the two methods. There are two ways of doing this. 

The first method preserves the coupling interactions between different slots; the 

second involves an approximation which neglects the coupling between different 

slots to achieve lower computational complexity. 

To decouple the MoM computations from the SBR computations while preserv- 

ing the coupling between the various slots, the incident magnetic field on the slot 

apertures can be expanded in terms of basis functions. Assuming that the width 

of a slot is much less than its length, the component of the incident magnetic field 

along the length of a slot is the only component of interest. A convenient basis 

set is the set of pulse basis functions, where the ith basis function is defined to be 

one on the ith slot aperture and zero elsewhere. There will be n basis functions 
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in the set, where n is the number of slots in the array. The magnetic currents on 

each slot aperture are then computed with the incident field on the slot array set 

equal to each of the n basis functions in turn. A matrix-vector multiply is then 

carried out during the SBR computations. This matrix-vector multiply converts 

the incident magnetic fields on the slot apertures to the equivalent currents on the 

apertures. 

The second method of decoupling the MoM computations from the SBR com- 

putations neglects the coupling between the individual slots. One slot on the slot 

array is chosen, and it is assumed that this slot is the only slot present. The MoM 

computation is carried out with a magnetic field of unit amplitude on this slot, and 

the result is a magnetic current for the slot. It is then assumed that all of the slots 

in the array are equivalent; the magnetic current on each slot is set equal to the 

magnetic field on that slot times the single magnetic current which is computed by 

the MoM. This approximation reduces the computational complexity and the sizes 

of data files. However, it does not produce accurate results when the frequency is 

near the working frequency of the slot array. This is demonstrated in Section 4. 

3    Testing 

Before using any new numerical technique, the technique should be tested against 

existing techniques to ensure its validity. The validity of the MoM computation 

involving the coupling between the different slots in the array is validated by 

comparison with previous MoM and finite element method (FEM) techniques [2,7]. 

The SBR method is also validated through extensive, previous testing [4,5]. The 

hybrid technique is validated by comparison with a previous hybrid method to 

compute the scattering from complex targets with cracks and cavities on their 

surfaces [3]. This is accomplished by considering a waveguide with a single slot 

on its surface. The slotted waveguide is placed an a large plate, and the problem 

is modeled both with the hybrid MoM/SBR method discussed in this paper and 

with the hybrid FEM/SBR method presented in [3]. The two solutions show good 

agreement. 

55 



Figure 2: Configuration of the slots on the surface of a waveguide. 

4    Numerical Examples 

To show the validity and utility of the proposed technique, several numerical re- 

sults are presented. For all of the numerical examples, the slot array contains 16 

waveguides with 16 slots on each waveguide, and the array is designed to radiate 

at 9.1 GHz. In addition, the following parameters apply to all of the examples 

presented: the upper waveguide wall in which the slots are cut is 0.08 cm thick, 

the waveguides are separated by walls 0.1cm thick, each slot is 1.6 cm long and 

0.16 cm wide, and the slots are positioned on the waveguide surface as shown in 

Figure 2, where the offset of each slot from the center of the waveguide is 0.15 

cm. Unless otherwise noted, the coupling between individual slots in the array is 

included in the results. 

The first example is a planar slot array which is in a simple ground plane 

geometry. The waveguides are 2.230 cm wide by 1.016 cm high, the slot centers 

are 2.444 cm apart, and the first and last slots centers are 1.222 cm from the ends 

of the waveguides. Thus, the entire slot array and the ground plate are 37.3 cm 

wide by 39.1 cm long. In Figure 3, the radar cross-section (RCS) of the plate with 

the slots is superimposed on the scattering from the plate alone. The scattering 

frequency is 9.1 GHz, which is the working frequency of the slot array. Figure 3 

shows results in both the //-plane and the 12-plane and for waveguides which are 

terminated both with matched loads and with short circuits. For some incidence 

angles, the slot array has a dominant effect on the scattering. 

The second example is a slot array on a cylinder with a nose cone. The radius 

of the cylinder is 16.096 cm, and the length without the nose cone is 100 cm. The 

nose cone is 30 cm long. The waveguide cross-sections are sectoral in shape and 

are 1.016 cm thick. Along the slotted surface, the waveguides are 2.230 cm wide. 

The slots are 2.573 cm apart, and the first and last slots are 1.287 cm from the 

ends of the waveguides. The entire slot array is 37.3 cm along the circumference of 

the cylinder and 41.2 cm along the axis of the cylinder. In Figure 4, the üT-plane 
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Figure 3: RCS of a planar slot array on a ground plate at 9.1 GHz, the working 

frequency of the slot array. 

RCS of the cylinder alone and the RCS of the cylinder with the slot array are 

compared. Again, the scattering frequency is 9.1 GHz, the working frequency of 

the slot array, and again, there are scattering directions for which the slot array 

dominates the return. 

The next example is intended to show the effect of the uncoupled slot approx- 

imation which was discussed in Section 2.3. Figure 5 shows the RCS of the same 

geometry considered in the second example, but as a function of frequency. The 

incident direction is 40° in the ff-plane. The RCS computed considering the cou- 

pling between individual slots is plotted with the RCS computed by neglecting the 

slot coupling. The approximation neglecting slot coupling is reasonably accurate 

57 



-40 

-61 

—cylinder with slot array 
--cylinder only 

-45 0 45 
Elevation Angle (degrees) 

90 

-40 

-61 

-cylinder with slot array 
■ cylinder only 

(a) Matched waveguide loads 

-45 0 45 
Elevation Angle (degrees) 

(b) Short-circuit waveguide loads 

90 

Figure 4: RCS of a conformal slot array on a cylinder with a nose cone at 9.1 GHz, 

the working frequency of the slot array. 

8.5 9.1 9.7 
Frequency (GHz) 

(a) Matched waveguide loads 

10.3 8.5 9.1 9.7 
Frequency (GHz) 

10.3 

(b) Short-circuit waveguide loads 

Figure 5: RCS of a conformal slot array on a cylinder with a nose cone. The 

scattering is computed with and without including the coupling between individual 

slots. Near the working frequency of the slot array (9.1 GHz), the slot coupling 

must be included. 
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away from the working frequency of the slot array antenna, but there is significant 

error near the working frequency. Thus, this approximation must be applied with 

care. 

The final example shows the usefulness of the method. The slot array antenna 

from the first example is mounted on the belly of an f309 aircraft, with the lengths 

of the slots perpendicular the the length of the aircraft body (see Figure 6a). Figure 

6b shows the W-polarized range profile of the airplane both with and without the 

slot array. The range profile is the time domain response to an incident sine pulse. 

The sine pulse in this example has a center frequency of 10 GHz and a bandwidth 

of 2 GHz, and the slot array has matched waveguide loads. The slot scattering 

dominates the range profile. 

5    Conclusion 

A hybrid MoM/SBR method is developed to compute the scattering from a com- 

plex, 3-D target with a slotted waveguide array antenna. Because the target is 

large and 3-D, the MoM alone cannot efficiently compute the scattering, and be- 

cause the slots on the waveguides are small features, the SBR method alone is 

not accurate. The hybrid method combines the two individual methods in such a 

manner that the scattering can be efficiently and accurately computed. In the hy- 

brid method, the MoM is used to model the details of the slot array, and the SBR 

method is used to model the electromagnetic interactions with the large, complex 

target. The method is validated by comparison to previously published methods. 

Numerical examples show the need to include a slot array model when computing 

the scattering from a complex target with a slotted waveguide array. The examples 

also illustrate the capability of the method. 

Acknowledgements: This work was supported by the Office of Naval Research 

under grant N00014-95-1-0848 and by NASA under grant NAG3-1474. 

Dr.   G. X. Fan's contribution to the development of the computer code for slot 

array scattering is acknowledged. 

59 



<^( ~^V   ^^^\7\ 
\\.5———-—\/ 

i    i    i    i    i    i    i    i    §    i    i 

-300  -250  -200  -150  -100   -50       0       50     100     150    200    250    300 
Down Range (Inch) 

(a) f309 with slot array 

-100 
-300 -200 -100 0 100 

Down Range (Inch) 
200 300 

(b) Range profile without slot array. 

-20  1 1 1 1 1  

-40 A 

|   "6° '^f% i w Wvwwf*A,/i   • 
-80 

-100 1 «              < i         i 

-300 -200 -100 0 100 
Down Range (Inch) 

200 300 

(c) Range profile with slot array. 

Figure 6: Range profile of an f309, W-polarization, 10 GHz center frequency, 2 

GHz bandwidth. The slot array has matched waveguide loads. 
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APPENDIX 4 

On the Formulation of Hybrid Finite-Element and 

Boundary-Integral Method for 3D Scattering 

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew 
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Abstract-This paper studies in detail a variety of formulations for the hybrid 

finite-element and boundary-integral (FE-BI) method for three-dimensional (3D) 

electromagnetic scattering by inhomogeneous objects. It is shown that the effi- 

ciency and accuracy of the FE-BI method depend highly on the formulation and 

discretization of the boundary-integral equation (BIE) used. A simple analysis of 

matrix condition identifies the efficiency of the different FE-BI formulations and 

an analysis of weighting functions shows that the traditional FE-BI formulations 

cannot produce accurate solutions. A new formulation is then proposed and nu- 

merical results show that the resulting solution has a good efficiency and accuracy 

and is completely immune to the problem of interior resonance. 
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I. INTRODUCTION 

The hybrid finite-element and boundary-integral (FE-BI) method is a powerful 

numerical technique for computing scattering by inhomogeneous objects. The 

method first divides the problem into an interior and exterior problems. The field 

in the interior region is formulated using the finite-element method (FEM), and the 

field in the exterior region is represented by a boundary-integral equation (BIE). 

The interior and exterior fields are then coupled by the field continuity conditions. 

The hybrid FE-BI method has been first applied to two-dimensional (2D) scat- 

tering problems [l]-[6] and later extended to more challenging three-dimensional 

(3D) scattering problems [7]-[14]. To be more specific, Paulsen et al [7] developed 

the first FE-BI formulation for a general 3D scattering problem, which employed 

node-based FEM to discretize the interior fields and used either the electric-field 

integral equation (EFIE) or the magnetic-field integral equation (MFIE) as BIE 

to represent the exterior field. The formulation, however, exhibited two major 

drawbacks. First, it inherited all the difficulties caused by the use of node-based 

elements to discretize the electric and magnetic fields directly [15]. These diffi- 

culties include the treatment of dielectric interfaces and sharp conducting edges 

and corners and the appearance of spurious solutions. Second, it failed at the 

interior resonant frequencies, which are defined as the resonant frequencies of a 

cavity formed by covering the surface where BIE applies with a perfect conductor 

and filling its interior with the exterior medium. The first difficulty was removed 

by the use of edge-based FEM [8], [9], [12]-[14] and the second difficulty was alle- 

viated by the use of the combined field integral equation (CFIE), which is a linear 

combination of EFIE and MFIE [10]-[12], [14]. 

Although the FE-BI method with the implementation of edge-based elements 

and CFIE is remarkably more powerful than other numerical techniques in dealing 

with inhomogeneous objects, it still has a bottleneck which is the full matrix gen- 

erated by BIE. As pointed out in [16], this bottleneck severely limits the capability 

of the FE-BI method in dealing with large objects. Although this problem can be 

circumvented in some special problems [9], [16] or partially alleviated using special 

surfaces to separate the interior and exterior regions [11], [14], no efficient method 

has been developed for general 3D problems so far. 

Our renewed interest in the FE-BI method originated from the recent devel- 

opment of the fast multipole method (FMM) [17] and the multilevel fast multipole 

algorithm (MLFMA) [18]. Our objective is to apply MLFMA to BIE to completely 

remove the bottleneck in the FE-BI method for general 3D problems. During the 
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course of pursuing this goal, we have encountered several problems associated with 

the efficiency and accuracy of the FE-BI method implemented using the edge-based 

elements and CFIE. This paper reports our study of these problems. 

In this paper, we first formulate the general FE-BI method for 3D scattering 

problems. We then show that there are several different approaches to the dis- 

cretization of CFIE, yielding solutions of different efficiency and accuracy. How- 

ever, none of the traditional approaches produces satisfactory results. The cause is 

determined and a new formulation is proposed. Furthermore, we show that, con- 

trary to the common belief, not all CFIE formulations are immune to the problem 
of interior resonance; however, the new one is. 

II. FORMULATION AND ANALYSIS 

Consider the problem of electromagnetic wave scattering by an arbitrarily- 

shaped and inhomogeneous body characterized by relative permittivity and per- 

meability (er, /ir), which can be complex if the body is lossy. To solve this problem 

using the FE-BI method, we first introduce an artificial surface S (which can be 

the surface of the body) to enclose the body and divide the problem into an in- 

terior and exterior ones. The field inside S can be formulated into an equivalent 
variational problem with the functional given by [15] 

F^-\L (V x E) • (V x E) - fc0
2erE • E 

+jk0 f(ExÜ)-hdS 
J s 

dv 

(i) 

where V denotes the volume enclosed by 5, n denotes the outward unit normal 

to S, k0 is the free-space wavenumber, and H = Z0H with Z0 being the free- 

space intrinsic impedance. Using FEM with edge elements, we obtain the matrix 
equation 

Kn 

Ksi 

KIS 

Kss 

0 

B 
Es 

Hs 
(2) 

where {Ei} is a vector containing the discrete electric fields inside V, {Es} and 

{Hs} are the vectors containing the discrete electric and magnetic fields on S, 

respectively. Furthermore, [KH], [KIS], [KSi], [Kss], and [B] are sparse matrices 

and, in particular, [KH] and [KSs] are symmetric and [KIS] = [KSi]T, where the 
superscript T denotes the transpose. 
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Ku   Kis   0 I f El 1 f°l 
Ksi   Kss   B <   Es • = { 0 

0      P    Q . . Hs . UJ 

Equation (2) cannot be solved unless a relation between {Es} and {Hs} is 

specified. Such a relation is provided by BIE for the exterior field, whose dis- 

cretization yields 

[P]{Es} + [Q]{HS} = {b} (3) 

where {6} is a vector related to the incident field.   Combining (2) and (3), we 

obtain the complete system 

(4) 

which can be solved for the field inside V and on S. 

Whereas the generation of (2) using FEM is standard, the generation of (3) 

using MoM can take many different forms. The basic equations for generating (3) 

are the electric-field integral equation (EFIE) given by 

L(J) - K(M) = E*' (5) 

and the magnetic-field integral equation (MFIE) given by 

K(J) + L(M) = & (6) 

where J and M are related to the fields on S by J = n x H and M = E x n, 

respectively, and (El, H') denote the incident fields. The operators L and K are 

defined as 

L(X) = jfco/s[x(r') + ^VV'-X(r') G(r,r')dS' 

K(X) = TY(r) + / X(r') x VG(r,r')^5" 
J s 

where Y is related to X by X = n x Y and 
p-ikoR 

G(r,r') = 
AnR 

(7) 

(8) 

(9) 

in which R = |r — r'|. The bar integral symbol is used to denote the principal value 

and the parameter T is given by T = 1 — Ü/47T where 9, is the solid angle subtended 

by the observation point [19]. For a smooth surface, 0 = 2n and T = 1/2. 

Equations (5) and (6) can be discretized by first expanding J and M as 

Ns 

«=i 
Ns 

t=i 

(10) 

(11) 
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where Ns denotes the total number of edges on S and gt denotes the RWG vector 
basis functions [20], which are completely compatible with the vector basis func- 
tions for the edge elements. Substituting (10) and (11) into (5) and using g, as the 
weighting function, we obtain the TE formulation (short for i • E where i denotes 
a unit vector tangential to S) 

[PTE]{Es} + [QTE]{Hs} = {bTE} (12) 

where 

Pj* = -jfg.-.K(R)dS' (13) 

Qjf = Jsgi-L(gj)dS (14) 

bf^J^.KdS. (15) 

Similarly, from (6) we obtain the TH formulation (short for i • H) 

[PTH}{Es} + [QTH]{Hs} = {bTH} (16) 

where 

P?H = Jsgi-L(Ej)dS = Qlf (17) 

Ql? = jsgi.K(gj)dS = -P?E (18) 

bJH= f gi-WdS. (19) 

Alternatively, we may choose h x g; as the weighting function and obtain from 
(5) the NE formulation (short for h x E) 

[PNE]{Es} + [QNE]{Hs} = {bNE} (20) 

where 

PSE = -Jsfixgi.K(gj)dS (21) 

Q^E=fhxgi-L(gj)dS (22) 

b?E= [ hx&'WdS (23) 

and from (6) the NH formulation (short for n x H) 

[PNH){ES} + [QNH]{Hs} = {bNH} (24) 
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where 

P$H=[fix8i-USi)dS = QgB 

Q»j
H=[nxgi.K(gj)dS = -P$ 

J s 

b?H= [nxgi-WdS. 
J s 

(25) 

(26) 

(27) 

Equations (20) and (24) can also be obtained by taking the cross product of h with 

(5) and (6) and then use gi as the weighting function (That is the reason we used 

the abbreviations NE and NH for the two equations). 

Theoretically, any of (12), (16), (20), and (24) can be used as (3). However, 

each of them suffers from the problem of interior resonance and fails to produce 

accurate solution at and near certain frequencies corresponding to the resonant 

frequencies of the cavity formed by covering S with a perfect electric or magnetic 

conductor and filling it with the exterior medium. To eliminate this problem, one 

has to combine an equation from EFIE to another equation from MFIE to obtain 

a combined equation (that is, CFIE) [21]. For example, one can combine (12) 

with (16) to obtain the TETH formulation or (12) with (24) to obtain the TENH 

formulation. One can also combine (20) with (16) to obtain the NETH formulation 

or (20) with (24) to obtain the NENH formulation which is the one employed in 

[12]. Among the four CFIE combinations, TENH and NETH are used most widely. 

However, it is not clear which combination would produce the most efficient and 

accurate solution. 

Let us consider the issue of efficiency first. It is known that the FEM matrices 

in (4) are diagonally dominant. Hence, (4) would be better conditioned if [Q] is 

diagonally dominant. An analysis of the matrix property shows that [P^-5] and 

[QNH] are most diagonally dominant, [QTE] and [PTH] are diagonally dominant, 

and [PTE], [QTH], [QNE], and [PNH] are least diagonally dominant. These facts 

can be denoted as 

[PNE] = -[QNH] [QTE] = [pTH] „ 

THi [p™] = -[g™]~ ,    [QNE] = [PNH] (28) 
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From these, we obtain the matrix structure for the TETH formulation as 

[P\Q]~ i        I        l (29) 

For the TENH formulation, we have 

[P\Q] 

For the NETH formulation, we have 

(30) 

[P\Q] 

Finally, for the NENH formulation, we have 

[P\Q] 

(31) 

(32) 

Considering the properties of the FEM matrices in (4), heuristically, it is ap- 

parent that the TENH formulation would produce the best conditioned matrix for 

(4), the NETH formulation would yield the worst conditioned matrix, and both 

TETH and NENH formulations have condition numbers between those of TENH 
and NETH. 

To verify the above predictions, we consider the problem of plane-wave scat- 

tering by a coated sphere. The coated sphere has a radius r2 and its conducting 

core has a radius rx. The dielectric coating has a relative permittivity er - 4 and 

a free-space permeability and its thickness is chosen large enough so that there 

is an appreciable tangential electric field on the surface. Equation (4) is solved 

using the conjugate gradient (CG) method. Figure 1 displays the residual norm 

versus the number of iterations, from which we see clearly that TENH converges 

most quickly, NETH has the worst convergence, and the convergence of TETH and 

NENH lies between those of TENH and NETH. This observation agrees perfectly 
with our earlier prediction. 
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Next, we consider the issue of accuracy. Examining (12)—(27) carefully, we find 

that in the TE formulation, where g; is used as the weighting function, the first 

term in (8) has no contribution to (13) when i — j, or in other words, the first term 

in (8) is not tested. The same observation can be made for the TH formulation. 

However, in the NE formulation, where h x g,- is used as the weighting function, 

the first term in (7) cannot be tested, and thus has no contribution to (22) when 

i = j. The same observation can be made for the NH formulation. Clearly, neither 

g, nor n x gi forms a complete set of weighting function for (5) or (6). Therefore, 

when g, or h x g, is used alone, the solution can become inaccurate. Since all 

the formulations described earlier (TETH, TENH, NETH, and NENH) are the 

result of using either g; or n x g, as the weighting function, their solutions can be 

inaccurate as well. 

The above analysis on accuracy is also verified by the numerical analysis of the 

problem described earlier. Figure 2 shows the bistatic radar cross section (RCS) 

of the coated sphere. It is obvious that all the four formulations have a significant 

error in their solutions. Our further numerical experiments show that such errors 

cannot be reduced significantly by using finer discretization. It is interesting to 

note that both TETH and NENH have a similar error and both TENH and NETH 

also have a similar error. However, the error in TETH and NENH is smaller than 

that in TENH and NETH. We note that this problem of inaccuracy occurs only 

when there exist simultaneously nontrivial tangential electric and magnetic fields 

on the surface S; therefore, it disappears when one deals with a bare conducting 

body or a conducting body with a very thin coating where the tangential electric 

field is very small. This is why the problem was not observed in [12]. We also note 

that this problem was not observed in [10], [11], and [14] because none of them 

employed the RWG functions as both the expansion and weighting functions. 

To alleviate the inaccuracy discussed above, it is clear that a more complete 

set of weighting functions has to be used. A natural choice is a combination of gi 

and n x g,. When this is applied to (5), we obtain a matrix equation, which is 

equivalent to the sum of (12) and (20) and is referred to as the TENE formulation. 

When this is applied to (6), we obtain a matrix equation, which is equivalent to 

the sum of (16) and (24) and is referred to as the THNH formulation. However, 

since TENE comes from EFIE and THNH comes from MFIE, both would suffer 

from the problem of interior resonance. One remedy is to combine TENE and 

THNH. A more efficient alternative is to combine TENE with either the NH or 

TH formulation. A simple analysis of matrix condition shows that among NH and 
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TH, NH is a better choice for the combination with TENE. Figure 3 shows the 

result of TENENH, from which we see that TENENH has a significantly better 

accuracy than those in Fig. 2. The remaining error in TENENH can be reduced 

by using a finer discretization. The corresponding convergence curves are given in 

Fig. 4. 
The results presented above are obtained at the frequency that does not coin- 

cide with the frequency of interior resonance. To ensure the validity of our analysis, 

we consider the same coated sphere at a frequency of interior resonance. Figure 5 

displays the residual norm versus the number of iterations, from which we observe 

a similar convergence behavior that agrees with our prediction. However, com- 

pared to Fig. 1, the number of iterations for TETH and NENH in this case has 

increased significantly whereas that for TENH and NETH remains the same. To 

investigate this problem further, we recorded the number of iterations at the fre- 

quencies near the frequency of interior resonance and the result is given in Fig. 6. 

To our surprise, both TETH and NENH have a sharp peak at the frequency of in- 

terior resonance. This implies that both TETH and NENH yield an ill-conditioned 

matrix and still suffer from the problem of interior resonance, although they are 

derived from the CFIE formulation. However, the bandwidth of the ill-conditioned 

peaks is extremely narrow (less than 1%), compared to those resulting from either 

the EFIE or the MFIE (about 10%), and this is probably the reason that this 

problem was not detected before. The results for the RCS are given in Fig. 7. 

As expected, both TETH and NENH yield a result drastically different from the 

exact solution whereas both TENH and NETH produce a stable result with an 

error similar to that in Fig. 2. The result obtained using TENENH is presented in 

Fig. 8, from which a good agreement is observed. The number of iterations at the 

frequencies near the frequency of interior resonance is also given in Fig. 6, showing 

a very stable behavior. 

Next, we present several other examples to demonstrate the accuracy and ca- 

pability of the proposed formulation for other geometries. Figure 9 shows the 

bistatic RCS of a finite dielectric cylinder and Fig. 10 displays the result for a 

dielectric cube. All the results are compared with those obtained from MoM and 

excellent agreement is observed in each case. We note that the MoM solutions 

shown in Figs. 9 and 10 are obtained from the PMCHW formulation [22], which is 

a combined-source integral equation (CSIE). The PMCHW formulation is known 

to produce accurate solution [23], [24]; however, it can be applied to only homoge- 

neous objects. 
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III. CONCLUSION 
In this paper, we studied in detail a variety of formulations for the hybrid FE-BI 

method for calculating 3D electromagnetic scattering by inhomogeneous objects. 

We showed that the efficiency and accuracy of the FE-BI method depend highly on 

the formulation and discretization of BIE used. We considered four formulations 

(TETH, TENH, NETH, and NENH) obtained from the discretization of the CFIE, 

and we found from analysis and verified numerically that 

• TENH produces the best condition FE-BI matrix equation and NETH produces 

the worst conditioned matrix equation. Therefore, when an iterative solver 

such as the CG algorithm is employed to solve the matrix equation, TENH 

is the most efficient formulation. 

• None of the four formulations produces accurate FE-BI solution because neither 

the RWG vector basis functions (g,-) nor its cross product with the unit 

normal (n x g;) form a complete set of weighting functions for EFIE or 

MFIE on a general surface where nontrivial equivalent electric and magnetic 

currents exist simultaneously. 

• Both TETH and NENH suffer from the problem of interior resonance although 

the bandwidth of the bad solution is extremely narrow, compared to those 

resulting from EFIE and MFIE. However, TENH and NETH are immune to 

the problem of interior resonance although their results are inaccurate. 

Based on the analysis, we proposed a formulation (TENENH) that has a good 

efficiency and a good accuracy and is completely immune to the corruption of 

interior resonance. The TENE part of this formulation is equivalent to testing the 

pertinent EFIE twice, or equivelent to testing an equation with N unknowns 2N 

times, yielding 2N equations. This is an overdetermined system whose solution 

can be sought by the least square approach. However, we find that by adding the 

equations, which is equivalent to testing EFIE by g, + h x gt, good result is also 

obtained. Our next step is then to apply MLFMA to the proposed FE-BI method 

to enhance its capability to deal with larger objects. 
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Figure 1: The normalized residual norm versus the number of iterations in the CG 

solution of scattering by a coated sphere. 
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Figure 2: The bistatic RCS of a coated sphere. Neither of the four formulations 

produces accurate results. 
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Figure 7: The bistatic RCS of a coated sphere. Neither of the four formulations 

produces accurate results. In particular, both NENH and TETH yield erroneous 

results. 

W-Pol 

80       100 
theta (degrees) 

180 

Figure 8: The bistatic RCS of a coated sphere at the frequency of interior reso- 

nance. Again, good results are obtained using the TENENH formulation. 
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Figure 9:  The bistatic RCS of a finite dielectric cylinder in the x-z plane for a 

plane wave incident along the 2-axis. (a) VV-polarization. (b) HH-polarization. 
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Abstract 

A new approach is proposed to reduce the reflection error of a perfectly matched layer (PML) in 

the frequency-domain finite-element solution of electromagnetics problems. The approach is based on 

the complementary nature of a PML backed by a perfect electric conductor (PEC) and one backed by 

a perfect magnetic conductor (PMC). By averaging the solutions obtained by PEC- and PMC-backed 

PML, the error is reduced by 20log|fi| dB where R is the reflection coefficient of the PEC- or PMC-backed 

PML. Numerical results are presented to demonstrate the accuracy of the complementary PMLs. 

1    Introduction 

The perfectly matched layer (PML) has recently been introduced by Berenger [1] as a material absorbing 

boundary condition (ABC) for electromagnetics problems. An infinitely thick PML has no reflection for all 

incident angles and all frequencies at its interface with another medium. However, when the PML is used 

to truncate the finite difference or finite element solution domain, it must be terminated or backed by a 

perfectly conducting or impedance surface.   As a result, the PML does not possess zero reflection for all 

incident angles. Instead, the reflection coefficient increases as the incident angle and reaches 1 at grazing. 

To reduce the error from this artificial reflection, one must either place the PML at some distance away 

from the object or increase the PML thickness. Both would result in a large solution domain and reduce the 

efficiency of the numerical solution. Recently, we have studied the optimization of the PML [2] and proposed 

a combination of the PML with ABC to reduce the artificial reflection [3]. 

"The authors are with the Center for Computational Electromagnetics, Department of Electrical and Computer Engineering, 
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2991 USA. 
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In this paper, we propose a new approach to reduce the numerical error associated with the artificial 

reflection of the PML. This approach employs a pair of PMLs that have exactly the same material composition 

or parameters, but one is backed by a perfect electric conductor (PEC) and the other by a perfect magnetic 

conductor (PMC). As a result, the PEC-backed PML has a reflection coefficient negative to that of the 

PMC-backed PML, or in other words, the PEC- and PMC-backed PMLs are complementary to each other. 

Assuming that the PEC-backed PML has a reflection coefficient R, the numerical solution obtained with this 

PML has an error proportional to R. When the same problem is solved using the PMC-backed PML, the error 

is proportional to —R. Averaging the two solutions eliminates the error proportional to R and the remaining 

error is proportional to R?, which is due to the double reflections of waves. The use of the complementary 

PMLs is demonstrated by both two- and three-dimensional waveguide discontinuity problems. We note 

that a similar idea was employed before for the finite-difference time-domain (FDTD) solution of partial 

differential equations [4-6]. 

2    Analysis 

To demonstrate the application of complementary PMLs, consider a parallel-plate waveguide discontinuity 

problem, sketched in Fig. 1(a). To solve this problem using the finite-element method (FEM) in conjunction 

with the PML, we terminate both ends with the PML and place a magnetic current sheet to excite the 

desired incident field, as illustrated in Fig. 1(b). Using the coordinate-stretching approach proposed in [7] 

and extended in [3], we can show that for a TM mode incidence, the magnetic field satisfies the differential 

equation 

l_d_ 
eZ dx 

where ex and ez are coordinate stretching variables. For a PML normal to the x axis, ex = sx(x) and ez = 1, 

and for a PML normal to the z axis, ez = sz(z) and ex = 1, where sx and sz are parameters for the PML. 

In this case, there is no PML normal to the x axis and for the PML normal to the z axis, we choose 

sz(z) = l-jSmax(l/L)2 (2) 

where Smax denotes the maximum loss tangent, / is the distance from the air/PML interface, and L is the 

thickness of the PML. 

To illustrate the accuracy of the complementary PMLs, we first considered the parallel-plate waveguide 

without the discontinuity and calculated the field distribution for the TEM incidence at 15 GHz. For the 

calculation, L = 5 mm and Smax = 30// where / denotes the frequency in GHz.  For such a PML, the 
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reflection coefficient is 6.3% (—24 dB). The FEM discretization is 1 element per 1 mm. The relative error 

in the solution obtained with the PEC-backed PML (PEC-PML) and complementary PMLs (COM-PML) 

is given in Fig. 2. The error in the PMC-PML solution is similar to that in the PEC-PML solution. As can 

be seen, the maximum error in the PEC-PML solution is about 6.6% and that in the COM-PML solution is 

about 0.33% (—50 dB), which agrees with our earlier prediction, that is, about the square of 6.6%. 

The reflection coefficient due to the discontinuity for the TEM incidence is given in Fig. 3, where we have 

plotted the results obtained with PEC-PML, PMC-PML, and COM-PML, compared to the solution obtained 

using the exact ABC [8]. Excellent agreement is observed between the COM-PML and exact ABC solutions, 

whereas those obtained with PEC-PML and PMC-PML deviate from the exact solution significantly. We 

note that with the COM-PML, we can place the PML as close as 3 mm away from the nearest edge of the 

discontinuity (resulting in 226 unknowns) with an accuracy comparable to that obtained with a 20-layer 

PEC-backed PML placed 10 mm away from the discontinuity (resulting in 710 unknowns) [2]. Therefore, 

although the COM-PML requires solving the problem twice, it is still more efficient than the PEC-PML 

because of the reduced number of unknowns. 

Next, we consider a three-dimensional waveguide discontinuity problem, illustrated in Fig. 4. To numer- 

ically solve this problem, we again terminate both ends of the waveguide with the PML and introduce an 

electric current to excite the desired incident field. The differential equation for the electric field is given by 

[3] 

Ve X ^(Ve X E) - klerE - -jk0Z03 (3) 

where 

„.1Ö1.1Ö1.1Ö1 

in which ex, ey, and ez are defined in the same way as above. 

Again, to illustrate the accuracy of the COM-PML, we calculated the field in the empty waveguide due to 

the TEio incidence at 10 GHz. For the calculation, L = 6 mm and Smax = 30//, and the FEM discretization 

is 1 element per 2 mm. The relative error is given in Fig. 5, where the maximum error in the PEC-PML 

solution is about 15%, in contrast to 1.4% in the COM-PML solution. 

The reflection coefficient due to the discontinuity for the TEio incidence is shown in Fig. 6. For the 

calculation, the PML is placed only 2 elements away from the nearest edge of the dielectric obstacle. The 

results are compared to the data obtained using the method of orthogonal expansions [9]. Excellent agreement 

is observed between the COM-PML and reference data. 
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3    Conclusion 

A new and simple approach was proposed to significantly reduce the PML reflection error in the finite 

element solution of electromagnetics problems. The approach was validated by numerical examples for both 

two- and three-dimensional waveguide discontinuity problems. It was shown that the reflection error can be 

reduced from 201og|Ä| dB to 401og|iJ| dB. 
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FIGURE CAPTIONS 

Figure 1. (a) Parallel-plate waveguide discontinuity problem, (b) PML truncation. 

Figure 2. Relative error in the field of an empty parallel-plate waveguide when the waveguide is terminated 

by (a) PEC-PML and (b) COM-PML. 

Figure 3. Reflection coefficient for the dominant-mode incidence. 

Figure 4. Rectangular waveguide loaded with a dielectric obstacle having er = 6. For numerical simulation, 

the waveguide is terminated with a PML. 

Figure 5. Relative error in the field of an empty rectangular waveguide when the waveguide is terminated 

by (a) PEC-PML and (b) COM-PML. 

Figure 6. Reflection coefficient for different dielectric lengths, (a) d = 1.2 cm. (b) d = 0.8 cm. 
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Abstract 

A simple and efficient numerical method is presented for computing electromagnetic 

fields in three-dimensional inhomogeneous dielectric bodies. The method employs a two- 

stage discretization to convert an integro-differential equation into an implicit system of 

linear algebraic equations. This discrete system is then solved using a transpose-free quasi- 

minimal residual (TFQMR) algorithm, which avoids the complicated calculation of the 

multiplication between the transpose of the system matrix and a vector. The simple mul- 

tiplication between the system matrix and a vector required in the TFQMR algorithm is 

calculated efficiently using only six fast Fourier transforms (FFT). Numerical results for 

strongly inhomogenous and lossy spheres show that the method has a stable convergence 

behavior and excellent numerical performance. 

I. Introduction 

Efficient computation of electromagnetic fields in arbitrarily-shaped, inhomogeneous 

dielectric bodies in a three-dimensional (3D) space plays an important role in many appli- 

cations such as nondestructive testing, microwave imaging, scattering control, target identi- 

fication, electromagnetic hyperthermia, and magnetic resonance imaging. The well-known 

method of moments (MoM) [l]-[3] is one of the popular methods for this computation. 

In this method, an integro-differential equation is first formulated in terms of volumetric 

equivalent current that accounts for the effect of the permittivity and conductivity of an 

inhomogeneous body. This integro-differential equation is then discretized using mostly 

Galerkin's procedure. The discretization results in a matrix equation with a very large 

number of unknowns, whose solution using a direct solver, such as Gaussian elimination 

and LU decomposition method, is basically impractical, because a direct solver has a mem- 

ory requirement of 0(N2) and computational complexity of 0(N3), where N denotes the 
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number of unknowns. This difficulty can be circumvented by solving the matrix equation 

using an iterative solver and in each iteration the required matrix-vector multiplication is 

evaluated using the fast Fourier transform (FFT) [4]. In the past, the conjugate gradient 

(CG) and the biconjugate gradient (BCG) methods have been employed as such an itera- 

tive solver, and the resultant methods are often referred to as the CG-FFT and BCG-FFT 

methods [5]-[7]. The use of the so-called CG-FFT or BCG-FFT method reduces the mem- 

ory requirement to O(N) and computational complexity to 0(NiterNlog N), where Nuer 

denotes the number of CG or BCG iterations. 

There is a large body of literature on the CG-FFT and BCG-FFT methods for a 

variety of electromagnetics problems and it is not our intention to review it here. Instead, 

we shall focus on those for 3D volumetric material problems. The first application of 

the CG-FFT method to such problems can be found in the analysis of the absorption of 

electromagnetic power by human bodies [5]. However, the use of pulse basis functions 

yielded slow convergence and poor results when dealing with materials with high dielectric 

contrast. Better formulations were later proposed [8]-[12], and most used mixed-order 

(linear in one direction and constant in the other two directions) basis functions. Among 

these, the methods proposed by Zwamborn and van den Berg [10] and Gan and Chew [11] 

are the most accurate for materials with high dielectric contrast. In both methods, one is 

required to calculate within each iteration the multiplication between the transpose of the 

system matrix and a vector, in addition to that between the system matrix and a vector, 

resulting in at least 12 FFTs per iteration. Furthermore, the multiplication between the 

transpose of the system matrix and a vector is found to be more complicated than that 

between the system matrix and a vector. 

In this paper, we present an alternative and more efficient method for computing elec- 

tromagnetic fields in arbitrarily-shaped, inhomogeneous dielectric bodies. In this method, 

a transpose-free quasi-minimal residual (TFQMR) algorithm [13] is employed to avoid the 

complicated multiplication between the transpose of the system matrix and a vector, result- 

ing in a much simpler computer implementation. Moreover, the number of FFTs is reduced 

to only six per iteration. It is observed that the TFQMR-FFT method yields excellent 

results even for highly inhomogeneous dielectric objects. 

II. Formulation 

Consider the problem of scattering by a lossy inhomogeneous dielectric object with a 

complex permittivity 

e(x) = €r(x)€o-J-f-i (1) 

where er denotes the relative permittivity and a denotes the electric conductivity of the 
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object, which is in a free-space having a permittivity eo- The incident electric field is 

denoted as Einc = (E\nc, El
2
nc, El

3
nc)T. The scattering problem can be formulated as the 

following domain integral equation over the object domain V: 

Einc(x) = ^-(^ + VV.)A(x),    x€V (2) 

where ko = w^/eÖMÖ and 

A(x) = - I G(x - x')X(x')D(x')dx' (3) 
«o Jv 

with 

XW~     e(x)    ' { >~       4TT|X-X'|       * 

To discretize this equation, we place the object in a uniform mesh with grid widths of 

Azi, Ax2, and Az3 in the x\, x2, and £3 directions, respectively. Therefore, the object is 

modelled approximately as a collection of small grids. The center of each grid is denoted 

as XM,N,P — {(M — |)Aa;i, (N - ^)Ax2, (P — |)Ax3} and within each grid the complex 

permittivity is assumed to be constant with value (.JA,N,P — e(xM,JV,p)- 

To convert (2) into a matrix equation, we expand the generalized electric flux density 

and the electric-contrast vector potential as 

D(x) = eoE £ <&*&(*),      x € V (4) 
q=lI,J,K 

A(x) = EE 4!^*i:UW,       x € V (5) 
g=l I, J,K 

where ^/j/f(x), ^jJK{x.), ^/j^-(x) are vector volumetric rooftop functions in x\, x2 

and £3 directions, respectively [10], [11]. We then apply the Galerkin's testing formulation 

to (2) and obtain 

(*^iP(x),E-(x)) = (*&),N,p(x),^)-^(*g7V)P(x),A(x)) 

+<V-*SV,P(X),V.A(X)> (6) 

for q = 1,2,3, where (•) denotes the inner product of two vector functions. Substituting (4) 

and (5) into (6), we obtain the following weak form of domain integral equation 

[eM,N,p\ ~ iuM,N,P;I,J,K\[dI,J,K\ ~ ik0vM,N,P;I,J,K ~ WM,N,P;I,J,K1[
A

I,J,K] (7) 

where 

eM,N,P - \*M,N,Pi ^     /' UM,N,P;I,J,K ~ \*M,JV,P' £(x\ *J,J,K7» 

VM,N,P;I,J,K - \*Af,JV,P> ^I,J,Kli WM,N,P;I,J,K ~ \v    vM,N,P> v    *I,J,K/' 
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r 

The relationship between a^N p and A^N P 
can be found by substituting (4) and (5) into 

(3), yielding 

AM,N,P = AV     S     GM-M',N-N',P-P'XM',N>,P>dM>,N',P> 
M',N',P' 

= AVDFT-* {DFT{GM,N,P} • DFT{X$N,Pd$NfP}} (8) 

where AV ■=■ AxyAz^Axz. Substituting (8) into (7), we obtain a system of linear algebraic 

equations, which can be symbolically written as 

einc = Ld. (9) 

The formulation described above was first proposed by Zwamborn and van den Berg 

[10]. Its major advantage is the simplicity in treating the singularity of the integrals in 

(2) and, more important, in calculating the right-hand side of (7), which is accomplished 

through two stages. The first stage is to calculate Aj^N P from (8) and the second stage 

is to substitute it into (7). Note that the matrices implied in (7) are sparse matrices and 

their product with a vector can be evaluated with 0(NT) operations, where NT denotes the 

number of unknowns. Although the matrix implied in (8) is a dense matrix, the computation 

of its product with a vector can be evaluated with O (NjlogNT) operations with the aid of 

the FFT. 

III. TFQMR-FFT Iterative Algorithm 

Once (9) is formulated, its solution yields a numerical solution to the original problem. 

However, since the number of unknowns in (9) is usually very large, its solution using 

a direct solver, such as Gaussian elimination and LU decomposition method, is basically 

impractical, because a direct solver has a memory requirement of 0(NT) and computational 

complexity of 0(NT). This difficulty can be circumvented by solving (9) using an iterative 

solver and in each iteration the required matrix-by-vector product is evaluated using the 

FFT, as pointed out earlier. In the past, the CG and BCG methods have been employed 

as such an iterative solver, and the resultant methods are referred to as the CG-FFT and 

BCG-FFT methods [5]-[12]. The use of these methods reduces the memory requirement 

to O(NT) and computational complexity to 0{NnerNT log NT), where Niter denotes the 

number of CG or BCG iterations. However, both CG-FFT and BCG-FFT algorithms 

require the calculation of a matrix-by-vector product with the conjugate transpose of the 

system matrix, which is not an easy task since the system matrix in (9) is nonsymmetric. 

Furthermore, the CG method has a problem of slow convergence although it converges 

monotonically, and the BCG method does not guarantee convergence although it usually 
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converges quickly. Although this problem can be alleviated by using the quasi-minimal 

residual (QMR) method [14], which converges monotonically with a convergence rate similar 

to the BCG method, the QMR still requires the calculation of a matrix-by-vector product 

with the conjugate transpose of the system matrix. Here, we consider other alternatives. 

There are four algorithms that do not require the calculation of the transpose of the 

system matrix. The first one is the conjugate gradient squared (CGS) algorithm [15], which 

is the transpose-free variant of the BCG algorithm. However, like the BCG method, it also 

exhibits a rather irregular convergence behavior with wild oscillations in residual norm and 

does not guarantee convergence. The second method is the BCG stabilized (BCGSTAB) 

algorithm [16], which uses local steepest descent steps to obtain a more smoothly convergent 

CGS-like process. While this algorithm seems to work well in many cases, it still exhibits 

the irregular convergence behavior for some difficult problems. Also, its convergence is 

considerably slower than the CGS algorithm. The third method is the transpose-free QMR 

(TFQMR) method [13]. This algorithm can be implemented easily by changing only a few 

lines in the standard CGS algorithm. However, unlike the CGS algorithm, the iterations 

of the TFQMR algorithm are characterized by a quasi-minimization of the residual norm. 

This leads to smooth convergence with a convergence rate similar to the CGS algorithm. 

The TFQMR algorithm can be considered as a new version of the CGS algorithm which 

"quasi-minimizes" the residual in the space spanned by the vectors generated by the CGS 

iterations. Recently, a QMR variant of the BCGSTAB algorithm (QMRBCGSTAB) [17] 

is proposed. Our experimental calculation shows, however, that its convergence can be 

slower than the TFQMR for our problems. After a comprehensive comparison, the TFQMR 

algorithm is chosen for this work. 

The TFQMR algorithm for solving (9) is given as follows [13], [18]: 

1. Compute w0 = u0 = r0 = emc - Ld0, v0 = Lu0, go = 0; 

2. r0 = ||ro||,0o = 7?o = O 

3. Choose TQ such that p0 = (r^, ro) ^ 0. 

4. For m — 0,1,2,..., until convergence Do: 

5. If m is even then 

6. OJm+l =ttm = Pm/(vm, TQ) 

7. uTO+1 = um - amvm 

8. Endif 

9. wm+i = wTO - amLum 

10. gm+l = Um + (0™/am)»7mgm 

11. 0m+i = ||wro+1||2/rm;cro+i = (l + ö^+1)-2 

12. rm+i = Tm0m+icm+i;rim+i = cm+1am 

13. dm+i = dm + J/m+lgm+l 
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14. If m is odd then 

15. pm+i = (wm+i,r5);^m_! = pm+i/pm-l 

16. um+1 = wm+1 +ßm_1um 

17. vTO+1 = Lum+1 +/3m_1(Lum + /3m_ivm_1) 

18. Endif 

19. EndDo 

The residual norm of the approximate solution dm is given by ||rm|| < (m + l)aTm. 

From the algorithm, it is easy to see that each odd iteration requires two matrix-by-vector 

products and each even iteration does not require a matrix-by-vector product. Therefore, 

on average the TFQMR algorithm requires only one matrix-by-vector product, which can 

be calculated using six FFTs. 

IV. Numerical Results 

To demonstrate the accuracy of the TFQMR-FFT algorithm, we analyze the scattering 

of a plane wave from two layered dielectric spheres and compare the results with the Mie 

series solution. In all simulations, we assume that the incident plane wave is polarized in the 

a?! direction and propagates in the x3 direction. The amplitude of the incident electric field 

is 1 V/m. The first sphere has two layers, whose inner layer has a radius ci = 0.075 m and 

eir = 72.0 - j'161.779 and the outer layer has a radius a2 = 0.15 m and e2r = 7.5 - j'8.9877. 

The frequency is 100 MHz. The second sphere has three layers, whose inner layer has a 

radius ci = 0.3333A0 and elr = 1.2, the middle layer has a radius a2 = 0.6667A0 and 

e2r = 2.0, and the outer layer has a radius a3 = A0 and e3r = 2.4. Figure 1 shows 

the field in the two-layer dielectric sphere and Fig. 2 gives the results for the three-layer 

sphere. The convergence criterion for these results is rss = ||rm||/||r0|| < 10-3. Excellent 

agreement is observed between the exact solution and the numerical results obtained using 

31 x 31 x 31 grids. The relative error vs. the number of iterations is given in Fig. 3 for both 

cases for different grid sizes. As can be seen, the TFQMR-FFT algorithm exhibits a stable 

convergence behavior. The computation time needed to evaluate one iteration, the total 

number of unknowns, and the required computer storage are given in Table 1. 

To demonstrate the efficiency of the algorithm, we consider again the problem illustrated 

in Fig. 1. As can be seen in Fig. 3(a), using the TFQMR-FFT algorithm with 31 x 31 x 31 

grids, it takes 112 iterations to reduce rss below 10~3. Since each iteration requires six 

FFTs, the total number of FFTs is 672. This problem was also treated using the CG-FFT 

algorithm in [10] and the BCG-FFT algorithm in [11]. For the same grid size and accuracy, 

the CG-FFT algorithm takes about 360 iterations and, since each iteration requires 12 

FFTs, the total number of FFTs is about 4320, which is 6.4 times that of the TFQMR- 
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Table 1: Computation Time and Storage on DEC Alpha 

Mesh size FFT size 

Number of 

unknowns 

CPU-time 

per iteration 

Computer 

storage 
15 x 15 x 15 32 x 32 x 32 10800 0.74 sec 2.2 Mb 
31 x 31 x 31 64 x 64 x 64 92256 9.5 sec 16Mb 
63 x 63 x 63 128 x 128 x 128 762048 152 sec 105 Mb 

FFT algorithm. When the BCG-FFT algorithm is used, it takes only 54 iterations and, since 

each iteration requires 18 FFTs, the total number of FFTs is 972, which is 1.4 times that 

of the TFQMR-FFT algorithm. Furthermore, the BCG-FFT algorithm has an irregular 

convergence behavior and does not guarantee convergence. 

Finally, to demonstrate the capability of the TFQMR-FFT algorithm to treat strongly 

inhomogeneous dielectric object, we consider the plane wave scattering by a human head. 

The construction of the electromagnetic model of the head is discussed in [19] and the 

material property of the tissues of the head is given in [20]. The incident wave propagates 

in the -x3 direction (from top) and the incident electric field is polarized in the Xi direction 

(from the left ear to the right ear). The incident electric field has an amplitude of 1 V/m 

and the frequencies considered are 64 MHz and 256 MHz. The results are presented in the 

form of spatial absorption rate (SAR) defined as SAR = a\E\2/2p, where p denotes the 

density. Figures 4 and 5 show the SAR in the axial, sagittal, and coronal planes at the 

two frequencies. Figure 6 shows the relative error vs. the number of iterations for the two 

frequencies. Again, the TFQMR-FFT algorithm exhibits a stable convergence behavior. 

VI. Conclusion 

This paper presented a TFQMR-FFT algorithm for computing electromagnetic fields in 

a 3D arbitrarily-shaped, inhomogeneous dielectric body. It is observed that this algorithm 

yields excellent results and exhibits a very stable convergence behavior. Because of the 

use of the TFQMR method, the algorithm avoids the computation of the multiplication 

between the transpose of the system matrix and a vector, which is required in both the 

CG-FFT and BCG-FFT methods. As a result, the programming complexity is greatly 

reduced. Furthermore, since on average the TFQMR method requires only one matrix-by- 

vector multiplication, which can be evaluated using six FFTs, the TFQMR-FFT algorithm 

is more efficient than the currently available CG-FFT and BCG-FFT methods. 
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Figure Captions 

Fig. 1 The magnitude of the total electric field inside a two-layer dielectric sphere along 

the xi, x2, and x3 axes. The inner layer has a radius ax = 0.075 m and clr = 

72.0 - j'161.779 and the outer layer has a radius a2 = 0.15 m and e2r = 7.5 - j'8.9877 

and the frequency is 100 MHz. The solid line is from the Mie series solution and the 

dash-dot line is from the TFQMR-FFT solution with grids 31 x 31 x 31. 

Fig. 2 The magnitude of the total electric field inside a three-layer dielectric sphere along 

the xi, x2, and x3 axes. The inner layer has a radius ax = 0.3333A0 and elr = 1.2, 

the.middle layer has a radius a2 = 0.6667A0 and e2r = 2.0, and the outer layer has a 

radius a3 = A0 and e3r = 2.4. The solid line is from the Mie series solution and the 

dash-dot line is from the TFQMR-FFT solution with grids 31 x 31 x 31. 

Fig. 3 The relative error vs. the number of iterations for different grid sizes, (a) For the 

case of the two-layer sphere, (b) For the case of the three-layer sphere. 

Fig. 4 SAR (W/kg) in the axial, sagittal, and coronal slices at 64 MHz for a uniform plane 

wave excitation polarized in the xx direction and propagating in the -2:3 direction 

using 63 x 63 x 63 grids. 

Fig. 5 SAR (W/kg) in the axial, sagittal, and coronal slices at 256 MHz for a uniform plane 

wave excitation polarized in the xx direction and propagating in the -x3 direction 

using 63 x 63 x 63 grids. 

Fig. 6 The relative error vs. the number of iterations for different frequencies with 63 x 

63 x 63 grids, (a) For the case of 64 MHz. (b) For the case of 256 MHz. 
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Figure 1: The magnitude of the total electric field inside a two-layer dielectric sphere along 

the xi, £2, and xz axes. The inner layer has a radius ai = 0.075 m and e\r = 72.0-j'161.779 

and the outer layer has a radius a<i = 0.15 m and t<ir — 7.5 — j'8.9877 and the frequency is 

100 MHz. The solid line is from the Mie series solution and the dash-dot line is from the 

TFQMR-FFT solution with grids 31 x 31 x 31. 

Figure 2: The magnitude of the total electric field inside a three-layer dielectric sphere 

along the x\, x%, and x$ axes. The inner layer has a radius ai = 0.3333Ao and €ir = 1.2, 

the middle layer has a radius ü2 = 0.6667Ao and €2r = 2.0, and the outer layer has a radius 

0,3 = Ao and £3,. = 2.4. The solid line is from the Mie series solution and the dash-dot line 

is from the TFQMR-FFT solution with grids 31 x 31 x 31. 

102 



10" 

— 15X15X15 

— 31X31X31 
— 63X63X63 

10O 200 
number of iteration 

(a) 

300 

— 15X15X15 

-31X31X31 
- 63X63X63 

100 200 
number of iteration 

(b) 

300 

Figure 3: The relative error vs. the number of iterations for different grid sizes, (a) For the 

case of the two-layer sphere, (b) For the case of the three-layer sphere. 
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Figure 4: SAR (W/kg) in the axial, sagittal, and coronal slices at 64 MHz for a uniform 

plane wave excitation polarized in the xi direction and propagating in the — £3 direction 

using 63 X 63 x 63 grids. 
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Figure 5: SAR (W/kg) in the axial, sagittal, and coronal slices at 256 MHz for a uniform 

plane wave excitation polarized in the xi direction and propagating in the -x3 direction 
using 63 x 63 x 63 grids. 
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Figure 6:   The relative error vs. the number of iterations for different frequencies with 

63 x 63 x 63 grids, (a) For the case of 64 MHz. (b) For the case of 256 MHz. 
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