., . MASTER COPY REEP THIS COPY FOR REPRODUCTION PURPOSES ‘
) Form Approved

REPORT DOCUMENTATION PAGE OMS8 No. 0704-0188

puplic reporting burden for this collection of infarmation 15 estimated 10 average 1 houf per response, inctuding the time for reviewing Instructions, searching existing data sources,
gathernng and maintaiming the data needed, and comoleting and reviewsng the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, inctuding suggestions for reducing this burden. 10 Washington Headquarters Services, Directorate for iInformation Operations and Reports, 1215 Jefferson
Oawvis Highway, Suite 1204, Arlington, VA 22202-1302. and 10 the Ottice of Management and Budget, Paperwork Redyction Project (0704-0188), washington, OC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Reprint

4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS

Software Merge: Combining Changes to Decampositions
5. AUTHOR(S) Ao MIPR, / 56-9 %

V. Berzins, D. Dampier

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Computer Science Department
U.S. Naval Postgraduate School
Monterey, CA 93943

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADODRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211 ARO 309 857"3 -MA

11, SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.
12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Computer aid for software evolution is needed for more effective software develop-
ment, particularly in contexts where changes to large systems must be made rapidly.

This paper addresses computer aid for the evolution of ré&;uirements models and high
level software designs. We present an improved method for automatically merging
changes to software designs expressed via annotated dataflow diagrams and hierarchi-
cal decomposition. This improvement addresses the structure of the design as well as
the system behavior the design implies. We also present an improved method for
automatically reporting and repairing conflicts between structurai changes. These
methods can be applied to the informal dataflow diagrams com:only used in require-
ments modeling and software design as well as to the more specific executable design

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE COUE

T7. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIbTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 } Stangard Form AZQ&__(_R‘E—V. 2-89)

DR

Journal of Systems Integration, 6, 135-150 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Software Merge: Combining Changes
to Decompositions

VALDIS BERZINS
Computer Science Department, Naval Postgraduate School, Monterey, California 93943

DAVID A. DAMPIER
Army Research Laboratory, 115 O'Keefe Building, Atlanta, Georgia 30332-0800

ISSN 0925-4676
OFFPRINT FROM

Remember the Library!
they need your
suggestions to service
your needs

Kluwer
academic
publishers

50

S

\ gl

Journal of Systems Integration

An international Journal

Editor-in-Chiet:
Peter A. Ng. New Jersey Institute of Technology. USA: C.V. Ramamoorthy, University of California at Berkeley. USA:
Laurence C. Seifert, AT&T, USA: Raymond T. Yeh, International Software Systems inc., USA

Editorial Board:

Frank N. Barnes, Lockheed Missiles & Space Co.inc.. P. Bruce Berra, Syracuse Umiversity, Bharat K. Bhargava. Purdue
University. Stefano Ceri, Politecruico di Milan. Peter P. Chen, Louwsiana State Umversity. Kenneth W. Dormuth, AECL
Research; Kiichi Fujino, NEC Corporation; 1. Jules Ghedina, KPMG Peat Marwick. Louis R. Gieszl, The Johns Hopkins
University. Cordell Green, Kestrel Institute; Fumihiko Kamijo, Tokai University, Japan, Chung-Ta King, National Tsing Hua
University, Taiwan. Ming C. Leu, New Jersey Institute of Technology. Tok Wang Ling, National University of Singapore. Ming
T. Liu, Ohio State University, Yoshihiro Matsumoto, Kyoto University. Roland T. Mittermeir, Universitét Kiagenfurt, Erich J.
Neuhold, Geselischaft fur Mathematik and Datenverarbeitung, Luqi, Naval Postgraduate School. Azriel Rosenfeld,
University of Maryland, Krishnan K. Sabnani, AT&T Bell Laboratories; August-Withelm Scheer, Institut fir
Wirtschaftsinformatik an der Universitat des Saarlandes. Germany. Frank Y. Shih, New Jersey Institute of Technology. Fuad
Gattaz Sobrinho, Centro Technologico para Informatica. Brazil, iwao Toda, Fujitso Lid.. Jeftrey J.P. Tsai, University of
llinois at Chicago. Herbert Weber, Universitat Dortmund

The Journal of Systems Integration s a peer-reviewed publication containing original, survey, apphcation, and research papers
on all topics related to systems integration The intent 1s to encompass a collection of papers that have heretotore becn
dispersed throughout a wide body of literature involving the interaction of disciplines, technologies. methods and machines
necessary to integrate various constituent systems.

The scope of this journal generally parallels the definition of the integration of computer systems. However, it also deals with the
general integraton of processes and systems. and the development of mechanisms and tools enabling solutions to
multidisciplinary problems tound in the computer services and manutacturing industries. This journal focuses on the following
critical steps found in effective systems integration: .
- Process characterization, to understand current process capabilities. behaviors and interfaces,

- Re-engineering and simplification of processes from a system perspective.

- Convergence on a common system architecture with a unified language for data management. and .
- Automation of the processes and systems .
Since the succesful implementation ot these steps for systems integration requires diverse knowledge bases and expertise in a
variety of areas, the journal also emphasizes additional topics such as

- managing knowledge and information that are physically distributed in vanous databases.

- computer communications impact on the system process,

- dealing with heterogeneous computers and environments. and

- coordinating diverse computer communiciation networks with information networks.,

The aim of the journal is to provide an international and interdisciplinary forum for the dissemination of new theoretical and
applied research results, application information and the developments concerning management ot systems integration. For
instance, it disseminates research work which deals with the problems. 1ssues and solutions of integrated system design.
implementation and pertormance; and with integration technologies that apply to multidiscipinary areas such as
computer-aided software engineering. collaborative and distributed systems. and computer integrated manutacturing systems

Journal of Systems Integrationms indexed/abstracted in INSPEC. Engineerning Index: Compendex plus. Ei Page One

'v Kluwer Academic Publishers. 101 Philip Drive. Assinippi Park, Norwell, MA 02061, U.S A,

Journal of Systems Integration, 6, 135-150 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Software Merge: Combining Changes
to Decompositions

VALDIS BERZINS
Computer Science Department, Naval Postgraduate School, Monterey, California 93943

DAVID A. DAMPIER
Army Research Laboratory, 115 O’Keefe Building, Atlanta, Georgia 30332-0800

Received October 27, 1995

Abstract. Computer aid for software evolution is needed for more effective software development, particularly in
contexts where changes to large systems must be made rapidly. This paper addresses computer aid for the evolution
of requirements models and high level software designs. We present an improved method for automatically
merging changes to software designs expressed via annotated dataflow diagrams and hierarchical decomposition.
This improvement addresses the structure of the design as well as the system behavior the design implies. We also
present an improved method for automatically reporting and repairing conflicts between structural changes. These
methods can be applied to the informal dataflow diagrams commonly used in requirements modeling and software
design as well as to the more specific executable design representations used in the computer-aided prototyping
system CAPS.

Keywords:

1. Introduction

Our goal is to provide computer aid for software evolution, particularly in the critical early
stages of determining requirements and software architectures. Expected benefits include
automated assistance for combining different changes to a proposed design, assessing their
consistency and reconciling structural conflicts between changes. Reliable tool support for
change-merging would also facilitate distributing design tasks on a large software develop-
ment project to a group of engineers working concurrently.

The technology to achieve this is emerging [6, 8], and a significant amount of work has
been done on developing change-merging models and building automated change-merging
tools for imperative languages [3, 7, 17, 26}, as well as for data-flow languages [2, 9, 10,
11, 12] and specification languages [4, 5].

This paper presents an improved change merging method for hierarchies of annotated
dataflow diagrams. This method addresses design structure in addition to system behavior.
The results apply to arange of notations that have been widely used in requirements analysis,
design of software architectures, and computer-aided software prototyping. Ourresults have
a potential impact on tool support for evolution in all of these contexts.

Software evolution dominates many aspects of software development, and tools that sup-
port aspects of evolution such as change merging are useful in a variety of situations. Change
merging is needed to coordinate concurrent effects of teams of designers, particularly in the
contexts of developing large systems and rapid prototyping. Changes to several different

136 BERZINS AND DAMPIER

aspects of a large system are often developed concurrently, because it would take too long
develop the changes one after another. During iterative development of software prototypes,
alternative versions of a prototype are often developed, each of which contains a portion of
the desired capability. Because these prototypes can be large, tools that automatically deter-
mine the differences between the alternative versions and produce a new version exhibiting
the significant behavior modifications from each are desirable.

Software change-merging is also applicable to software maintenance activities [13]. If a
software system has been developed using the computer-aided prototyping system (CAPS)
or other languages and systems that provide a semantically safe change-merging capability,
different versions of that software can be automatically updated with changes made to the
base version via a change-merging tool.

Other potential uses of this technology are in the areas of software reuse and reengineer-
ing. In software reuse, complex reusable components that contain more functionality than
is required for the application can be retrieved from the software repository. The desired
functionality can be isolated using graph slicing by taking the slice of the complex compo-
nent with respect to the output streams desired. The resultant slice will contain all parts of
the complex component that affects those output streams.

In reengineering, if a program written in some high-level language can be translated into
the prototyping language PSDL, then the evolution support capabilities of CAPS [1, 20,
21] can be applied to update designs in which significant subsystems are realized by legacy
code. In addition to enabling parallel exploration of different enhancements to a legacy
system that exists in a single configuration, a change-merging capability could be useful
in propagating enhancements from a base version of a software family to all of the other
configurations in the family. For example, each configuration in the family could be tailored
to a different operating environment.

In [11], achange-merging method was defined that is semantics-based and guarantees that
if a conflict-free result is produced, it is semantically correct. This is significant because it
allows different pieces of a large prototype to be developed independently and integrated
with complete assurance of the correctness of the integration. An initial implementation of
this method is described in [12]. This tool uses dataflow graph slicing, analogous to program
slicing [25], to determine the affected parts of an enhanced version that are different from
the base version. It then combines the affected parts of the modified versions with the
preserved part of the base version to produce the change-merged version.

A drawback of the initial method is that it works only on flat graphs with no hierar-
chical decomposition. This was done to guarantee correct slicing. In practice, software
prototypes are designed using hierarchical decomposition to provide better understanding
and maintainability. The current implementation of the method can expand such designs
into equivalent flat graphs, but currently provides no automated way for aggregating the
change-merged graphs back into a hierarchical structure consistent with the designer’s orig-
inal intent. The result is executable, but not understandable, because the original design
structure is lost. This prevents the tool from being used on very large software projects, the
very projects it was intended to support.

An automated method for reconstructing the hierarchical design structure is needed to
make change-merging more attractive. Such a method is the main contribution of this

SOFTWARE MERGE: COMBINING CHANGES TO DECOMPOSITIONS 137

paper. We provide a model and algorithm for automatic reconstruction of decomposition
hierarchies for change-merged graphs. This extension to the previously developed method
increases automation support for the prototype designer, and makes the results more under-
standable.

The method was originally developed to support rapid prototyping, because the issues of
repeated changes and multiple versions are particularly pressing in that context. The method
is also applicable in other contexts, such as supporting the evolution of requirements models
and architectures for large software systems.

2. Motivating Context: Computer-Aided Prototyping

Computer-aided prototyping is an evolutionary software development paradigm that over-
comes the weaknesses of traditional software development methods by increasing customer
interaction during the requirements engineering phase of development. It provides exe-
cutable specifications that can be evaluated for conformance to real-time requirements, and
produces a production software system in a fraction of the time required using traditional
methods. Rapid prototyping allows the user to get a better understanding of requirements
early in the conceptual design phase of development. It relies on software tools to rapidly
create and demonstrate concrete executable models of selected aspects of a proposed sys-
tem to enable users to assess and validate the model early in the development process. The
prototype is rapidly reworked and redemonstrated to the user over several iterations until
the designer and users have confidence in a precise view of what the system should do. This
process produces a validated set of requirements which become the basis for designing the
final product [20].

The prototype can also be transformed into part of the final product. In prototyping meth-
ods like the one supported by CAPS, the prototype is an executable shell of the final system,
containing a subset of the system’s ultimate functionality and a high level representation of
the software architecture for the final product. After the design of the prototype is approved
by the customer, the missing functionality is added and the system is delivered. In this
approach to rapid prototyping, software systems can be delivered incrementally as parts of
the system become fully operational.

Change-merging is an integral part of the rapid prototyping method. In the prototype de-
sign part of the process, multiple variations of a large prototype are likely to be developed.
This can happen when different development teams are working on enhancing different as-
pects of a system, or when different possible solutions to a problem are explored in different
ways. In the first case, it will certainly be necessary for the separately developed pieces of
the prototype to be combined into a single system before execution for the customer. In
the second case, the customer may desire a system containing some or all of the aspects
contained in each solution. In this case, these different prototypes must be sliced to capture
the significant parts of each variation and then change-merged to materialize the desired
combination. Our change-merging method will allow these combinations to be done au-
tomatically, ensuring that the resultant prototype is semantically consistent with all of the
input variations. If the changes to the semantics of the prototype are not compatible, then
our method will identify the parts of the prototype containing the conflicts. This technology

138 BERZINS AND DAMPIER

encourages the designer to explore different solutions to a problem, and to spread the de-
velopment workload in a large project with more confidence in the subsequent integration
of these independent efforts.

3. Prototyping System Description Language

The change-merging method described in [12] and extended here has been implemented for
use in the CAPS development system. It is designed to operate on software prototypes writ-
ten in the Prototyping System Description Language (PSDL) associated with CAPS. PSDL
is a high level specification and design language which can be translated into executable
code.

PSDL represents software systems as generalized dataflow diagrams annotated with tim-
ing and control constraints [19]. The notation is executable and has a formal semantics
[18] that is a compatible refinement of informal dataflow diagrams traditionally used in
software design. A PSDL prototype is a hierarchical network of components. Each com-
ponent consists of two parts: a specification and an implementation. The specification of
a component defines its interface, and the implementation contains either a PSDL graph
implementation, or a reference to a programming language implementation. The PSDL
graph implementation contains a set of operators, a set of data streams through which the
operators communicate with one another, and a set of control and timing constraints which
specify restrictions on the execution of the operators or data streams. These graph imple-
mentations are constructed using a top-down approach, where each level of decomposition
refines a composite operator at the previous level. This decomposition provides under-
standability for complex designs. The programming language implementation is written in
any high-level programming language like Ada or C that is supported by the environment.
A more complete description of PSDL is available in [19], and computational models for
PSDL are available in [12, 18, 22].

4. Ancestor Chain Model of Design Structure

We would like to apply past approaches to software change-merging to the domain of
software decomposition structures. These approaches work on special kinds of lattices
that are also Brouwerian or Boolean algebras [7]. To apply these approaches, we need
a refinement ordering on the set of all possible designs. Several examples of refinement
relations are shown in Figure 1. Possible types of refinements include: (1) adding additional
operators to the prototype, (2) decomposing an atomic operator into a composite operator,
(3) grouping related atomic operators under a composite operator, and (4) providing a name
for a composite operator. A difficulty is that most of the intuitively acceptable refinement
orderings on software decomposition structures fail to qualify as lattices because they have
multiple minimal upper bounds, as shown in Figure 2. Nodes 3-6 are all minimal upper
bounds for nodes 1 and 2. Nodes 3 and 4 are proper and completely defined decomposition
structures whose existence and correspondence to reality are not in doubt. Their greatest
lower bound is node 7, which fails to be a common upper bound for nodes 1 and 2. This

SOFTWARE MERGE: COMBINING CHANGES TO DECOMPOSITIONS 139

5
5
Im
5
5
5
5
M
O)
5

Figure 1. Examples of possible refinements of program designs.

Figure 2. Multiple minimal upper bounds on program designs.

demonstrates that nodes 1 and 2 cannot have a least upper bound. Having no least upper
bound means a unique automated choice of the preferred design structure is not possible in
the general case.

This implies that the most obvious model of the problem is inadequate and that we need
to consider different points of view on the nature of the information contained in a software
decomposition. The key insight that leads to a solution is that the essential information
about a software decomposition is not an attribute of the substructure of a component, as

140 BERZINS AND DAMPIER

NN/ NS N/ N N

<PABE> <PACF> <PBAE> <PBCG> <PCAJ> <PCBH>

NI V20 N 74

<PAQ’AC> <PWBC> <PTA>/<PCB>
<PA>/\<PB>M<PC>

N4

< I»
Figure 3. Refinement ordering R over ancestor chains.

was assumed in developing the refinement ordering illustrated in Figure 3, but rather an
attribute of its context, namely the location of the component in the hierarchy.

This insight leads to the ancestor chain model of software structure which is the basis
for our change-merging method. In this model, the position of a component in a design
hierarchy is represented as a sequence of ancestor names, where the sequence (A, B, C, D)
means that the parent of the current node is D, D’s parentis C, C’s parent is B, and the top
level operator is A. We call these sequences ancestor chains.

We define the domain of proper ancestors to be the set of all finite sequences of com-
ponents, partially ordered by the prefix ordering. Formally this ordering is defined by
x C y & 3z[y = x — z], where — denotes concatenation of sequences. An example of
such a refinement ordering is shown in Figure 3. This ordering has the structure of a tree,
with its root at the empty sequence. The tree has infinite depth. Its branching factor at
each node is equal to the number of all possible module names; it is conventional to assume
that this is infinite as well. This partially ordered set is a meet semi-lattice that has greatest
lower bounds, but lacks least upper bounds for pairs of sequences where one is not a prefix
of the other. This incompleteness in the abstract model corresponds to concrete reality for
informal dataflow diagrams as well as for the CAPS system: since PSDL does not allow
an operator to have more than one parent, two ancestors in different ancestor chains cannot
have a least upper bound that is a legal program, or a proper element of the domain of
software decompositions.

We note that the bottom element of the semi-lattice has a double interpretation. The empty
sequence serves as a proper element when it is used to represent the ancestor chain of the
root component of the decomposition. It also has the more familiar purpose of representing
undefined/incomplete information in its role as the ancestor chain of all possible components
that are not yet included in a given design decomposition.

To do change-merging over this refinement ordering, we embed it in a lattice like the one
shown in Figure 4. We do this by adding improper data elements representing least upper

SOFTWARE MERGE: COMBINING CHANGES TO DECOMPOSITIONS 141
<PALIIPBC AB LI PBC <PBCLIPCA \/
> >\ / >
ﬁ%ﬁd’lw> | <PCA>
<PALIPC>
l /<PALIPB <PBLIPC> /
I iAe

<~

A4

<[>

Figure 4. Extended ancestor lattice.

bounds for all sets of incomparable proper elements and adding them to the set. These
improper elements (e.g. {(a) LI (b)) represent merging conflicts that can be considered to be
abstract representations of error messages.

Since our goal is to define a change-merging operation, we extend the domain of proper
ancestors in a way that makes it easy to add a pseudo-difference operation that makes the
resulting lattice into a Brouwerian algebra. The standard way to do this is to work with
downwards-closed sets in the partial ordering (i.e., sets S for which x € S&a C x =
a € §), where the ordering C denotes the sequence prefix ordering illustrated in Figure 3.
Figure 4 abbreviates the set representation by showing only the maximal elements of each
set with respect to the T ordering. ’

We define the domain of extended ancestors as follows. The elements of the extended
domain are downwards-closed sets of proper ancestor chains, where each set represents the
least upper bound of all the proper elements in the set. A proper element of the extended
domain represents a proper ancestor chain, and consists of a set containing that proper
ancestor chain and all of its prefixes. The ordering of the extended domain is the subset
relation. This ordering produces a full lattice structure. The corresponding least upper
bounds are set unions, and the corresponding greatest lower bounds are set intersections.
The lattice operations are well defined because the union and intersection of two downwards-
closed sets are both downwards closed.

We note that the ordering on extended ancestors agrees exactly with the sequence prefix
ordering on proper ancestors, and that the greatest lower bounds and the least upper bounds
also agree with those in the sequence prefix ordering in the cases where these bounds exist
in the sequence prefix ordering.! Thus this construction gives a consistent extension of the
sequence prefix ordering, and the proper ancestor domain can be embedded in the extended
ancestor domain.

The pseudo-difference operation - that comes with this construction is the downwards
closure DC of the set difference. The pseudo-difference and downwards closure operations
are defined as follows.

142 BERZINS AND DAMPIER

Data and Proper Improper
Operations Ancestor Chains Ancestor Chains
x (ab) {a) L {c)
Rx) {{ab), (@), ()} {{a), {c), ()}
y (a) {ab) U (d)
R®©») {{a), 1} {{ab), {a), (d), ()}
Rx)UR@Y) =Rxuy) {{ab), {a), ()} = R((ab)) {{ab), {a), (c), (d), (}}
: = R({ab) U {c) U (d))
RE)NR(y) =R(xny) {{a), ()} = R((a)) {{a), (0} = R({a))

Rx) — R(y) {{ab)} {{c)}
DC(R(x) — R(¥)) = R(x=y) {{ab}, (a), (}} = R({ab)) {{c), (}} =R(c)

Figure 5. Examples of lattice operations in the set representation.

x=y = DC(x —y)
DC(S) {a: Ancestor | Ix[x € S&a C x}}

It is well known that the downwards closed sets ordered by set inclusion form a Brouwe-
rian algebra with respect to a pseudo-difference operation defined in this way ([23], Theo-
rem 1.14). A definition of Browerian algebras is given in the appendix and a discussion of
some of the known properties of Brouwerian algebras and pseudo-difference operations can
be foundin [7,24]. Anexecutable specification of the lattice and change-merging operations
is given in Figures 6 and 7. These specifications are expressed in OBJ3 [14, 15, 16].

The domain Component_id contains unique names for components; its definition is not
shown because it has no interesting properties. The domain Component contains only proper
components, with a trivial ordering: all distinct components are incomparable. The domain
Ancestor contains only proper ancestor chains, which are finite séquences of components
ordered by the prefix ordering. These proper domains are extended with artificial elements
that are least upper bounds of finite sets of proper elements and represent merging conflicts.
The extended domains are denoted by Component! and Ancestor!. The OBJ3 keyword
prec declares the relative precedences of the infix operators; lower numbers indicate tighter
binding. The equations define the lattice ordering and the meet and join operations for the
extended domains.

The change-merging operation a[b]c represents the result of combining the change from
the base version b to the enhancement a with the change from b that results in a different
enhancement c. Some examples of software decomposition merges implied by these equa-
tions are shown in Figure 8. The ancestor chain merge for node d is not shown in the figure
because node d is not present in the merged implementation graph, so that its position in
the hierarchy does not have to be computed by the decomposition merging algorithm.

SOFTWARE MERGE: COMBINING CHANGES TO DECOMPOSITIONS 143

obj DECOMPOSITION_LATTICE is
protecting COMPONENT ID .
sorts Component Component! Ancestors Ancestors! .
subsort Component < Component! < Ancestors! .
subsort Component < Ancestors < Ancestors! .
op C : Component_id — Component .

*** Constructor for building components from component_ids
op L : — Ancestors .

*** An empty ancestor list, for root components and unused components.
op -, : Ancestors Ancestors — Ancestors [assoc id: L prec 1]. '
op _, _: Ancestors! Ancestors! — Ancestors! [assoc id: L prec 1].

*** Ancestor list.
op _C _: Ancestors! Ancestors! — Bool [prec 4] .

% L attice Ordering.
op _u _: Component Component — Component! [comm prec 2] . *** assoc
op _U _: Ancestors! Ancestors! — Ancestors! [comm prec 2] . *** assoc

*** | east Upper Bound.
op _N _: Ancestors! Ancestors! — Ancestors! [assoc comm prec 2] .

¥ Greatest Lower Bound.

vars C C' C” : Component. vars EC EC’ EC” : Component! .
vars A A’ A” : Ancestors . vars EA EA’ EA” . Ancestors! .

¥¥* Ordering
eqCEC=C==C".
. eqAC EAUEA =AC EAorAC EA'.
eq EAUEACEA"=EAC EA and EA'C EA”.
eq l T EA =true.
eqEAC |l =FA==1.
eq(EC,EA)C (EC',EA)=if ECC EC’then EA C EA’ else false fi .
*+% | east Upper Bounds ‘
eq (ECUEC),EA)=(EC,EA)U(EC',EA).
eq(EC,(EAVEA))=(EC,EA)uU(EC,EA").
cq EAULEA = EA ifEAC EA’.
*** Greatest Lower Bounds
eqCnNC' =if C==C"thenCelse Lfi.
eq EAN(EAULEA"Y=(EANEAYU(EANEA").
eq lLNEA=1.
eq(EC,EA)N(EC',EA") = (ECREC),(EANEA).

endo

Figure 6. OBJ3 equations for constructing ancestor lattice.

144 BERZINS AND DAMPIER

obj DECOMPOSITION_.CHANGE_MERGING is
protecting DECOMPOSITION_LATTICE .
op - ~ _: Ancestors! Ancestors! — Ancestors! [prec 3] . *** Pseudo-difference
op _[-] -: Ancestors! Ancestors! Ancestors! — Ancestors! [prec 4] . *** Merge

vars C C' C” : Component. vars EC EC' EC" : Component! .
vars A A" A” : Ancestors . vars EA EA’ EA” : Ancestors! .

*** Pseudo-Difference
eqA~EA=ifAC EAthen Lelse Afi.
eq(EALEAY~EA" = (EA~EA")LU(EA'-EA").

*** Merge
eqEA[EA'NEA" = (EA-EAYU(EANEA")U(EA"~EA)).

endo

Figure 7. OBJ3 equations for merging ancestor chains.

5. Change-Merging Algorithm

The initial algorithm for semantics-based change-merging of flattened PSDL prototypes
was described briefly in [11], and exhaustively in [12]. This algorithm takes three PSDL
prototypes as input; a base version and two modified versions. The change-merge operation
applied to the implementation graphs uses graph slicing to identify the preserved part of
the base and the affected parts of the modified versions. To do the graph slicing accurately
and guarantee that all dependencies are found, the hierarchically decomposed graphs are
expanded, yielding equivalent flat implementation graphs. The result of the change-merge
is a PSDL program with a completely expanded flat implementation graph. The initial
algorithm produced a correct merged graph whenever no conflicts were reported. This graph
was converted into a PSDL program that can be translated into an executable representation
of the merged version and is useful for demonstrating the behavior of the merged version.
However, the designer’s original decomposition was lost in the process, so the result of the
merge was not a suitable basis for human review or further enhancement.

This section presents an extension of the initial PSDL change-merging algorithm based on
the ancestor chain model of section 4. The extended algorithm does everything the initial
algorithm does, then separately determines the design structures of the three versions,
combines them, and uses the result to transform the merged flat graph back into a new
hierarchical design. The final step of the initial algorithm constructs a PSDL prototype from
the merged graph in a subprogram called build_prototype. In the extended algorithm, this
subprogram is replaced with the subprogram decompose.graph, shown in Figure 9. This
function operates on the change_mer ged program produced by the original algorithm along

SOFTWARE MERGE: COMBINING CHANGES TO DECOMPOSITIONS 145

merged version

base version

= OO0

2 {a)[{a)]O)
(ab)[(ab)){a)
{abc)[{abcd)]{ac)

()

0

(a)

({abc)={abcd)) L ({abc) 1 (ac)) U ({ac)+{abcd))
1 u{a) U {ac)

(ac)

({a}=(ab)) u ({a) N {ac)) u ({ac)=(ab}))
Lu{a)u{ac)

(ac)

N O O>e

[+ (a)[{ab){ac)

11 A T

Figure 8. Examples of change-merging ancestor chains.

with the three given versions of the implementation graphs as input and produces a new
psdl_program with a hierarchically decomposed graph.

The decompose_graph subprogram uses an array indexed by the nodes in the graph to
hold the ancestor chain for each node. Each element of the array is initialized by the function
merge_ancestor_chains, which calculates the merged ancestor chain for each node in the
merged flat graph according to the equations in Figure 7. The ancestor chain of each
node with respect to each of the three given versions of the PSDL program is determined
by the function find_ancestor_chain which recursively searches the tree of graphs in
each of the given decomposition structures until it finds the node, and then determines the
ancestor chain by retracing the path back up to the root of the tree, recording each parent
in the chain on the way. When the loop terminates, the array holds the merged ancestor

y

146 BERZINS AND DAMPIER

Algorithm decompose_graph(M ERGE: in psdl_program; A, BASE, B: in psdl_graph)
return psdl_program;
ANCESTORS: array(node_id) of extended.ancestor;

MERGE_CHAIN, A_CHAIN, B_.CHAIN, BASE_CHAIN: extended_ancestor;
NEW_PSDL: psdl_program;
begin

for every node N in M ERGE loop
A_CHAIN := find_ancestor_chain(A, N);
B_CHAIN := find_ancestor_chain(B, N);
BASE_CHAIN := find_ancestor_chain(BASE, N);
merge_ancestor_chains(A.CHAIN,BASE_CHAIN,B_CHAIN,MERGE_CHAIN);
ANCESTORS(N) := MERGE_CHAIN;
end loop;
report_conflicts(tANCESTORS);
ANCESTORS :=resolve_conflicts(tANCESTORS);
NEW_PSDL := reconstruct.prototype(MERGE, ANCESTORS);
return NEW_PSDL;
end decompose_graph;

Figure 9. Algorithm decompose_graph.

chains, which can be either proper sequences or improper ancestor chains that are least
upper bounds of two incompatible proper ancestor chains. The subprogram for reporting
conflicts report_conflicts scans the array of ancestor chains and reports and describes
a conflict for each of the improper chains in the array, if there are any. The subprogram
resolve_conflicts repairs any conflicts in the graph according to the methods described
in the next section, resulting in an array that contains only proper ancestor chains. The
last subprogram reconstruct_prototype builds the new graph according to the recreated
design structure and replaces the flat graph in the merged prototype with the new graph.

6. Conflict Resolution and Error Messages

Hierarchical decompositions provide grouping information. The grouping information aids
human understanding, but does not affect function. This implies that partial recovery of
the designer’s intent can be acceptable, as long as the recovered information is compatible
with all of the decisions that were made. Even in cases where changes to the grouping
information implicit in the decomposition structures conflict, sensible results can always
be produced by taking the maximal proper grouping that is consistent with the result of
the merge in the cases where it produces an improper element of the ancestor chain lattice
representing a merging conflict. This element can be computed conveniently from the

SOFTWARE MERGE: COMBINING CHANGES TO DECOMPOSITIONS 147

merged version with conflict

first enhancement second enhancement

base version

{acd)[{ac)lace} = ({acd)--{ac)) U ({acd) N {ace)) U ({ace)-{ac})
= {acd) U {ac) U {(ace)
= ({acd) U {ace) (***conflict***) = (ac(d U ¢))
{acd) N {ace) = ({ac). (***resolution of conflict***)

Figure 10. An example of a resolved conflict.

normal form for ancestor chains defined by the equations in Figure 6. In this normal form
each lattice element is represented as the least upper bound of a set of one or more proper
ancestor chains. For practical applications, the size of this set will be at most one more
than the number of merging operations that were used to construct the lattice element, and
if conflicts are resolved by each merging operation, the set will have at most two elements.
If the result of merging ancestor chains is a conflict term, compute the maximal compatible
proper ancestor chain by replacing all least upper bounds in the normal form with greatest
lower bounds and simplifying. The result is the strongest proper term consistent with both
changes. An example is shown in Figure 10.

The change-merging method for decomposition structures given in this paper is a total
operation that always produces a result. Sometimes the result is a proper element, which
represents a conflict-free merge, and sometimes it is an improper element, which represents

y

148 BERZINS AND DAMPIER

a conflict between incompatible changes. The equations given in Figure 6 can be used as
rewrite rules to transform all improper elements into a normal form that looks like the least
upper bound of a set of irredundant proper elements. This representation can be used to
produce informative error messages.

The basic structure of our ancestor chain model associates context descriptions with
each operator. Consequently, the error message can specify which operator has a design
structuring conflict. The normal form specifies exactly which decisions about the placement
of the operator in the hierarchy conflict, so that this information can be provided with the
error message. Finally, in some cases the nature of the conflict can be further localized, by
using the following equation to further transform conflict terms:

(C, EA)u(C, EA)=(C, (EALEA")

This transformation factors out common prefixes of improper ancestor chains, thus getting
rid of information that does not contribute to the conflict and producing a more specific
error diagnosis. The results of doing this are shown both algebraically and graphically in
Figure 10. The error message resulting from the transformed conflict term for the example
can be rendered in English as “structural conflict: both D and E are required to be direct
parents of operator F”.

7. Conclusion

Our main result is an extension to the change-merging algorithm of [11] that preserves
the significant design structure as well as the significant behavior of the given versions.
This is an improvement over the previous method because the automatically constructed
merge can be used as a basis for further analysis and prototype enhancement as well as for
execution and prototype demonstration. The previous algorithm produces a version that is
suitable only for execution and demonstration, because the structure of the design is lost by
the transformation it applies. This paper shows how that design structure can be recovered
after the behavioral transformation is applied.

Our change-merging method and algorithm are formulated in terms of PSDL, the proto-
typing language used by the CAPS system. Because the PSDL model is a generalization
and extension of the informal dataflow diagrams, the same change-merging method can
also be applied to the informal dataflow diagrams commonly used in software requirements
and software design. Our results can therefore be used to extend the degree of computer
support for many variations of this widely used notation, such as those of Yourdon and
DeMarco.

A supplementary result of the paper is an approach to error diagnosis and repair that
applies to change-merging conflicts. The approach exploits the improper data elements
introduced by the extension of the proper data domain to the Brouwerian algebra needed
to support the change-merging domain. The improper data elements are used both for
providing a specific description of the nature of the conflict, and for deriving the most
informative conflict-free design structure that is compatible with the overconstrained value
representing the conflict. We note that the Brouwerian algebra introduced in [24] to better

SOFTWARE MERGE: COMBINING CHANGES TO DECOMPOSITIONS 149

explain the algorithm for merging changes to while-programs. given in [17] also contains
analogous improper data elements, and conjecture that these elements can also be exploited
to support improved conflict diagnosis and possibly some form of conflict resolution.

Appendix—Definitions

This appendix contains formal definitions for some of the standard algebraic concepts used
in the body of the paper.

Definition 1. A lattice is an algebra (L, u, M) such that the set L is closed under the
operations U and 1 and the following properties are satisfied for all x, y, and z in L:

e xMNx=xandxUx=x

e xMNy=ynNxandxUy=yUx

e xN(ynNz)=@xny)nzandxu(yuz)=((xuUyUz

e xMNxuUy)=xandxU(xny)=x

Definition 2. The partial ordering & associated with a lattice is defined by x C y &
xNy=xforalx,yinL.

Definition 3. A Browerian algebra [23] is an algebra (L, U, 1, =, T) such that
e (L,u,m) is alattice with the greatest element T,
e The set L is closed under the operation -, and

e x~yCz&xCyuzforallx,y, zin L.

Notes

1. The least upper bound x U y with respect to the sequence prefix ordering exists if and only if x € y or y & x.
In the first case x U y = y and in the second x U y = x. The greatest lower bound x ' y always exists and is
the longest common prefix of the sequences x and y.

References

1. S. Badr, and Luqi, “Automation support for concurrent software engineering,” Proceedings of the 6th
International Conference on Software Engineering and Knowledge Engineering, Jurmala, Latvia, June
20-23, 1994, pp. 46-53.

2. V. Berzins, “On merging software extensions,” Acta Informatica, Springer-Verlag, pp. 607-619, 1986.

3. V.Berzins, “Software merge: Models and methods for combining changes to programs.” Journal of Systems
Integration 1(2), pp. 121-141, August 1991.

4. V.Berzins, and Luqi, Software Engineering With Abstractions. Addison-Wesley, 1991.

4

150 BERZINS AND DAMPIER

5. V.Berzins, Luqi, and A. Yehudai, “Using transformations in specification-based prototyping.” IEEE Trans-
actions on Software Engineering 19(5), pp. 436-452, May 1993.

6. V. Berzins, Proceedings of the ARO/AFOSR/ONR Workshop on Increasing the Practical Impact of Formal
Methods for Computer-Aided Software Development: Software Slicing, Merging and Integration. Monterey,
California, October 1993.

7. V. Berzins, “Software merge: Semantics of combining changes to programs.” ACM Transactions on Pro-
gramming Languages and Systems 16(6), pp. 1875-1903, November 1994.

8. V.Berzins, IEEE Computer Society Press Tutorial: Software Merging and Slicing. IEEE Computer Society
Press, 1995.

9. D. Dampier, “A mode! for merging different versions of a PSDL program,” Master’s Thesis, Naval Post-
graduate School, Monterey, California, June 1990. :

10. D. Dampier, and Lugi, “A model for merging software prototypes,” Naval Postgraduate School Technical
Report CS-92-014, 1992.

11. D. Dampier, Lugqi, and V. Berzins, “Automated merging of software prototypes.” Journal of Systems Inte-
gration 4(1), Kluwer, January 1994.

12. D. Dampier, “A formal method for semantics-based change-merging of software prototypes,” Ph.D. Disser-
tation, Naval Postgraduate School, Monterey, California, June 1994.

13. D. Dampier, R. Byrmnes, and M. Kindl, “Computer-aided maintenance for embedded real-time software,”
Proceedings of the 19th Army Science Conference, Orlando, Florida, June 1994.

14. K. Futatsugi, J. Goguen, J. Jouannaud, and J. Meseguer, “Principles of OBJ2”, Conference Record of the
Twelfth Annual ACM Symposium on Principles of Programming Languages, ACM, New Orleans, 1985,
pp. 52-66.

15. J. Goguen, and J. Meseguer, “Rapid prototyping in the OBJ executable specification language.” Software
Engineering Notes 1(5), pp. 75-84, December 1982.

16. J. Goguen, et al., Introducing OBJ, SRI Technical Report SRI-CSL-88-8, August 1988.

17. S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions of programs,” Conference Record
of the Fifteenth ACM Symposium on Principles of Programming Languages, Association for Computing
Machinery, New York, New York, January 13-15, 1988.

18. B. Kramer, Lugi, and V. Berzins, “Compositional semantics of a real-time prototyping language.” I[EEE
Transactions on Software Engineering 19(5), pp. 453-477, May 1993.

19. Luqi, V. Berzins, and R. Yeh, “A prototyping language for real time software.” IEEE Transactions on
Software Engineering, pp. 1409-1423, October 1988.

20. Lugqi, “Software evolution through rapid prototyping.” IEEE Computer, May 1989.

21. Lugi, “A graph model for software evolution.” IEEE Transaction on Software Engineering 16(8), August
1990.

22. Lugi, “Real-time constraints in a rapid prototyping language.” Journal of Computer Languages 18(2),
pp. 77-103, Spring 1993.

23. J.McKinsey, and A. Tarski, “On closed elements in closure algebras.” Annals of Mathematics 47(1), pp. 122~
162, January 1946.

24. T. Reps, “On the algebraic properties of program integration.” Science of Computer Programming 17(1-3),
pp. 139-215, December 1991.

25. M. Weiser, “Program slicing.” IEEE Transactions on Software Engineering, pp. 352-357, July 1984.

26. W. Yang, S. Horwitz, and T. Reps, “A program integration algorithm that accommodates semantics-
preserving transformations,” Proceedings of the 4th ACM SIGSOFT Symposium on Software Development
Environments, Irvine, California, December, 1990, pp. 133-143.

b i bl kaiadate et e e e L

For information about current subscription rates and prices for back volumes for
Journal of Systems Integration, ISSN 0925-4676

please contact one of the customer service departments of Kluwer Academic Publishers or
return the form overleaf to:

Kluwer Academic Publishers, Customer Service, P.O. Box 322, 3300 AH Dordrecht, the
Netherlands, Telephone (+31) 78 524 400, Fax (+31) 78 183 273, Email: services@wkap.nl

or

Kluwer Academic Publishers, Customer Service, P.O. Box 358, Accord Station, Hingham MA
02018-0358, USA, Telephone (1) 617 871 6600, Fax (1) 617 871 6528, Email:
kiuwer@world.std.com

\ _
Call for papers

Authors wishing to submit papers related to any of the themes or topics covered by Journal of-
Systems Integration are cordially invited to prepare their manuscript following the ‘Instructions
-for Authors’. Please request these instructions using the card below.

Author response card
Journal of Systems Integration

I intend to submit an article on the following topic:

Please send me detailed ‘Instructions for Authors’.
NAME
INSTITUTE
DEPARTMENT :
ADDRESS

Telephone

Telefax

Library Recommendation Form
Route via Interdepartmental Mail

To the Serials Librarian at: I
From: Dept./Faculty of:

Dear Librarian,

I would like to recommend our library to carry a subscription to
Journal of Systems Integration, ISSN 0925-4676
published by Kluwer Academic Publishers.

Signed: Date: B

...

Request for information about current subscription rates and prices for back volumes of

Journal of Systems Integration, ISSN 0925-4676

Please fillin and return to:

Kiuwer Academic Publishers, Customer Service, P.O. Box 322, 3300 AH Dordrecht, the
Netherlands

Kluwer Academic Publishers, Customer Service, P.O. Box 358, Accord Station, Hingham MA
02018-0358, USA

O Please send information about current program and prices
[0 Please send a free sample copy

NAME

INSTITUTE

DEPARTMENT :

ADDRESS

Telephone

Telefax

: hd
Email : " REF. OPC

Journal of Systems Integration

Kluwer Academic Publishers,
-101 Philip Drive

Assinippi Park

Norwell, MA 02061

U.S.A.

TO :ThelLibrary
FROM:

VIA INTERDEPARTMENTAL MAIL

e e e o e o o e e o A o o A v e i e e e e e o e s R e e e o

