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jdohn L, Lankford

ABSTRACT: An aerodynamic sensor has been developed which is
applicable to the measurement of the static pressure behind
weak blast waves, The sensor is a ventilated sphere suitable
for use with various types of electronic sensing units., A
method used for prediction of response characteristics,
ventilation coefficlents, and sizing parameters gave good
preliminary results in the range of 3 to 10 psi overpressures.
Preliminary test results indicate a considerable increase in
omnidirectional capabllity over previous gage types for this
application. The preliminary program was limited to design
of an experimental configuration and evaluation of concept
feasibility, ) :
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LIST OF SYMBOLS

Pressure coefficient, P

Qe

local ~ P,

Average or area weighted pressure coefficient
obtained from pressure distribution

Static or stream pressure, pounds per square inch

Pressure ratio across moving shock front

Dynamic pressure, 1/2 pv?

Reynolds number based on sphere diameter and free-
stream conditions behind shock

Absolute temperature, degrees Rankine

Free volume inside sphere, cubic inches

Free-stream conditions surrounding the gage

Internal (inside spherical sensor)
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INTRODUCTION

— .

- Formidable problems are encountered in the measurement
of strong blast waves associated with high overpressures,
three-dimensional and unsteady flow effects,’ Weak blast waves,
however, can be satisfactorily studied and simulated using
plane wave theory in which low overpressures, one-dimensional
quasi-steady flows, and relatively slow response times (1000
to 5000 cps) are characteristic,

Field studies of air blasts have led to the requirement
for a simple sensor that is relatively insensitive to the
direction from which a weak blast wave approaches, It is also
hlghly desirable in a field measurement gage that a reading of
the statlc pressure behind the wave front be obtained directly
(within a few percent error for low overpressures) without re-
course to complex or tedious calibration tests, charts, or
iterative procedures,

rih the past, the measurement of weak blast waves has been
accomplished in the most part by two approaches. One type of
gage used was the streamlined aerodynamic shape with pressure
orifices or electronic plckups located so that the measured
pressure was a value close to that of the static stream
pressure behind the blast front. Wind tunnel studles were used
to locate orifice position for uncorrected gages (satisfactory
for weak waves) and to calibrate the error at values equivalent
to moderate blast pressures,

The second approach employed Pitot type gages using tuned
cavities so that the resultant pressure in the cavity could be
calibrated against the static or total pressure behind a weak
blast wave,

These gages required critical orientation with the
directlion of wave travel and/or tedious and complex calibration
and manufacture /(reference (1)),

e ey D27

The small (<1MM) spherical plezoelectric gage (reference
(2)) has shown attractive omnidirectional characteristics for
blast wave measurement, In addition, for weak waves the local

- surface pressure on a sphere will differ from the static pres-

sure only by an amount roughly equal to the dynamic pressure.
Since for the flow behind weak waves this dynamic pressure 1s
small compared to the static pressure, the sphere appeared to
offer possibilities as a sensor housing requiring little or

no correction for the measurement of static pressure (references

(3) and (4)).
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FIG. 2 MODIFIED TRANSDUCER DESIGN FOR OMNIDIRECTIONAL SENSOR
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SPECIAL REQUIREMENTS

In addition to requirements for simplicity and omni-
directional characteristics, it was desirable to develop an
aerodynamic sensor that could be used with electronic sensing
and recording equipment already in use by the Navy in explosions
research, One unit presently in use employs a varlable reluc-
tance flat diaphragm gage in conjunction with an oscillator
to send a frequency modulated signal to a tape recorder in a
remote location. This FM system has an overall frequency
response to a step pressure pulse of from 1/2 to 1 millisecond.
Figure 1 shows the transducer-oscillator unit built by
Consolidated Controls Corporation,*

In order to obtaln a transducer employing the variable
reluctance gage that was compatible with the size limitations
(discussed later under Analysls of Sizing Parameters), it was
necessary to modify the gage shown in figure 1, The modifica-
tions specified by NOL were incorporated into the Consolldated
Controls Corporation* gage shown in figure 2,

This design permits encapsulation of the transducer in
a sphere of approximately two inches outside dlameter and
allows for remote location of the oscillator,

Figure 3 illustrates a field application employing the
combination of omnidirectional sensor, variable reluctance
transducer, FM transmission, and tape recorder, Although
this gage concept should eventually be appllicable to many
systems of measurement, the one 1llustrated was chosen as a
practical one for initial evaluation.

AERODYNAMIC CONSIDERATIONS

Although the sphere has been the object of extensive
analytical and experimental study by hydrodynamlcists and
aerodynamicists for many years, actual measured pressure
distributions over ranges of Reynolds number and with various
mounting configurations are surprisingly scarce, Results of
drag measurements and turbulence investigations are easily
found in experimental literature, but pressure distributions
are less plentiful (reference (53 and Bibliography).

*The use of company and trade names for instrumentatlon and
equipment in thls report does not constitute Government

endorsement or criticism of these products.

3
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FIG. 3 EXAMPLE OF FIELD APPLICATION FOR OMNIDIRECTIONAL SENSOR
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Reynolds number has a strong effect upon the location of
the separation line in the flow over a sphere, The effects of
subcritical flow (laminar separation), critical flow
(transitional separation), and supercritical flow (turbulent
separation) on the pressure distribution over a sphere are
indicated in figure U,

In this figure, the local pressure coefficient, Cp is
plotted versus the angle measured from the forward stagnation .
point on a sphere, The effect of this range of profiles on
the mean or area weighted surface pressure coefficient Cp, is
indicated in figure 5., For the representative profiles selected,
a maximum range of mean pressure coefficient from -,3 to -.5
i1s indicated.

The present sensor application was for blast overpressures
(pressures over atmospheric) from 3 psi to 10 psi. Appendix A
contains a discussion of the application of simple one-
dimensional unsteady flow theory to the use of shock wave
parameters for simulatlion of weak blast wave conditions. The
gange of conditions for this application is given in figures

and 70

Although the actual conditions after a blast wave change
from those indicated by simple one-dimensional theory
(references (3) and (4¥), the ratio of dynamic pressure to
static pressure becomes smaller, Errors based upon the value
of q/p static tend to become smaller after passage of the wave,

If the values of Cp are considered to lie somewhere between
the extremes of figure 5 and the effect of sting mounting and
ventilation are assumed small or negligible for the first
approximation, theoretically the characteristic curve of a
spherical sensor should lie in the shaded region of figure 8.

Even with no correction of any kind applied and with an
assumed Cp of -.5, the maximum error at 10 psi overpressure is
12 percent, A crude assumption of a value for CTp and a
theoretical correction for the error due to dynamic pressure
should greatly reduce this error, Calibration of an actual
gage through the range of operating conditions should reduce
the final error to a small value,

The very favorable characteristics indicated for the
uncalibrated sensor, based upon this simple analysis, are a
strong argument for a rapid preliminary evaluation of the
basic concept to confirm feasibility and establish design
procedures, This was the objective of the preliminary work
reported in thils paper,
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MAJOR PROBLEM AREAS

Although preliminary evaluation of the concept indicated
that an uncalibrated sensor should give good approximate
indications of static pressure behind weak blast waves,
several important questions remailn to be answered in evalua-
tion of the concept,

l. What methods wlll provide acceptable information
for sizing and ventlilation characteristics?

2. Will the flow about a ventilated sphere produce
similar pressure profiles to those assumed in the simple
analysis?

3. Will an equilibrium internal pressure be reached
inside the sphere which will result in characteristics
similar to those used in the preliminary analysis?

4, Will a ventilated, mounted sensor exhibit satisfactory
omnidirectional characteristics?

5. Can a simple method of estimating response
characteristics be developed?

Within the scope of this study, an affirmative answer
to the above questions would indicate the general feasibility
of the concept., Detailed analytical or experimental pro-
cedures or complex calibration methods were beyond the scope
of this program, A rough estimation of size and response
characteristics was made, therefore, based upon simplified
assumptions, and a configuration was designed for preliminary
evaluation in a conlical shocktube,

ANALYSIS OF SIZING PARAMETERS

Response consliderations involving the passage time
of the shock over the sensor indicate that a sensor size
of less than an inch or two is desirable, In this case,
practical considerations of the electronic sensing units that
must be encapsulated dlctated that the outer diameter of the
sphere be no smaller than two inches, Therefore, for preliminary
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analysis sphere diameters from two to four inches were
considered, Consideration of a 2-inch sphere impulsively
started from rest (reference (6)) indicated that flow would

be established in the order of 1/10 of a millisecond, approxi-
mately the time required for a weak wave to traverse the
surface of a 2-inch sphere,

A 2-inch diameter sphere with a thin wall could encapsulate
the electronic sensing element and leave a maximum internal
volume of approximately 3 cubic inches, Prelimlnary estimates
indicated thls volume to be of the correct order of magnitude
for the general response requirements, A machine program was
setup involving a numerical solution for the time required to
approach equilibrium internal pressure with various combinations
of internal volume and ventllation area for a 2-inch sphere,
This method 1s described in Appendix B, and the results of a
typical preliminary computation are presented in figures 9 and
10.

The initial application for this sensor was for use with
an undamped, flat dliaphragm, variable reluctance type pressure
transducer, and the response time of the system incorporating
this transducer was approximately one millisecond,

Since exciting the natural frequency of such diaphragm
gages 1s frequently a serious problem in their application,
it was considered advisable to utilize most of the one
milllisecond to fill the cavity. This approach would result in
an optimum slope of the pressure versus time curve and would
avoid "ringing" the gage with too rapid a pressure rise,

As indicated by the results presented in figures 9 and 10,
the optlimum sizing combination, based upon consideration of all
major requirements, appeared to be a 2-inch outside diameter
sphere with an internal cavity volume of 3 cubic inches and a
ventilation coefficient of 5 percent (percent of surface area
ventilated for air flow),

Theoretically, the response characteristics can be improved
(shortened) by decreasing cavity volume and increasing
ventilation area, This may prove harmful beyond a certain
point, however, since in addition to "ringing" diaphragm gages
this may cause secondary internal flows and disturb the external
flow patterns,

In order to accommodate a variety of electronic sensing

gages and to fulfill the requirements set forth by the
assumptions of the analysis, 1t 1s important that the interior

10
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of the sensor act as a plenum chamber. In order to insure this,
1t 1s necessary that the ratio of ventilation hole diameter to
sphere cavity diameter be very small, Extremely small holes
will make fabrication difficult, however, and some reasonable
compromise 1s necessary.

FABRICATION OF A VENTILATED SPHERE

The results shown in figures 9 and 10 are based upon the
assumption of certain values of ventilation coefficient and
upon the assumption that the flow through the ventilation "area"
obeys the laws of flow through small orifices (Appendix B).

By using the proper flow characteristics for some other
type of ventilation flow, however, other solutions could be
made. For the preliminary configuration used in this program
it was most feasible to machine a sphere and perforate it with
a large number of uniformly distributed, circular, drilled holes.

The use of porous metal or sintered wire mesh metal
products might be more satisfactory for productlon gages.
Some of these materials are available in wide ranges of
porosity, and air flow characteristics and can be fabricated
into reasonably strong, thin-walled spherilcal shapes.

Exact design computations should be made for these materials
in order to properly apply them; however, figure 11 roughly
compares the general air flow characteristics of three commerc¢ial
grades of sintered wire mesh with the air flow characterlstics
of the optimum sphere for this application. It appears feasible
to consider such materials for the fabrication of production
sensors.

Based upon the results of the sizing analysls modified
slightly by practical conslderations of fabrication and
mounting, the ventilated spherical sensor shown in flgure 12
was constructed for preliminary evaluation.

The configuration shown is a 2-inch outside diameter sphere
ventilated approximately uniformly (not an exact mathematical
distributiong with 258 radially directed holes of .055-inch
diameter except for the area taken up by the sting mount and
support.

The sphere 1s constructed of brass and 1is plated inslde
and out with nickel. A wall thickness of 1/10 inch (thicker
than desired) and a threaded joint were necessary in the
preliminary model. The model with an LC-70 transducer and a

12
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O —

FIG. 12a PRELIMINARY CONFIGURATION OF OMNIDIRECTIONAL BLAST GAGE
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NOTES:
1. 125 EXCEPT AS NOTED

2. NICKEL PLATE MIN, .0003 TO
.0005 THICK ALL OVER

NO. OF
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] 0 1
2 445 6
3 .868 3
4 1.247 18 =
5 1.564 24 g
6 1.802 27 S
7 1.950 29 < &=
8 2.000 29 (")’. o e
9 1.950 29
10 1.802 27 | %
1 1.564 24 07k
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8.C. DIA" X L
+.002

FIG. 12b  PRELIMINARY CONFIGURATION OF VENTILATED SPHERE (SPECIFICATIONS)
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teflon mount, as used in preliminary tests, had a ventilation
of 4,5 percent and a free internal volume of 2,70 cubic inches,
When Consolidated Controls Corporation variable reluctance
transducer was used the free internal volume was reduced to
approximately 2,45 cubic inches.

EXPERIMENTAL INVESTIGATIONS AND EVALUATION TESTS

It was not the objective of the present program to
thoroughly explore the characteristics of instrumentation
employing a ventilated sphere as an aerodynamic sensor, In
order to accomplish such an objective extensive tests and
calibrations of many configurations in wind tunnels, shock-
tubes and in the field will be necessary.

For precise quantitative evaluation and callbration,
large wind tunnels (capable of operation through a wide range
of pressures) and large well-instrumented shocktubes are
recommended (see Appendix A)., The time and expense involved
in such an evaluation were beyond the scope of this program,
In order to answer the basic questions discussed in the section
on Major Problem Areas and to provide a raplid semi-quantitative
evaluation of the concept and the preliminary configuration,
a short serles of wind tunnel and conlcal shocktube tests were
conceived and carrled out.

WIND TUNNEL TESTS

A brass mock-up of the modified transducer shown in figure
2 was constructed and fitted with two pressure tubes which could
be connected to a sensitive manometer, The large subsonic wind
tunnel of the University of Maryland was utilized to run pressure
tests on the actual ventilated spherical sensor containing the
simulated variable reluctance gage. A photograph of the test
setup is shown in figure 13, The support system could be
rotated 360 degrees around the center of the sphere to evaluate
omnidirectional characteristics. Comparison of the pressures
measured by the orifices in the face of the dummy gage with the
tunnel static pressure could be utilized in conjunction with
tunnel dynamic pressure to evaluate the pressure coefficient for
the sensor configuration at any chosen angle of attack,

The value of these simple tests was limited by several
factors., The tunnel test section could be operated only at
atmospheric static pressure. The Reynolds numbers and over-
pressures at which the sensor was belng tested were, therefore,

16
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FIG

- 13 VENTILATED, 2 INCH, SPHERICAL SENSOR INSTALLED
FOR WIND TUNNEL TESTS
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not representative of the actual field conditions for which the
gage was designed. The entire range of conditions tested, in
fact, was 1in the critical and subcritical range of Reynolds
numbers for a solid sphere as indicated in figures 5, 6 and 7.

The results also would indicate only steady state values
of pressure, and dynamic response characteristics would not be
indicated.

The tests were valuable, however, as a rough indication of
omnidirectional characteristics and to indicate whether or not
pressure coefficient and flows with the ventilated sphere
correlated even approximately with the assumptions of the
analysis.

The actual transducers to be used with the spherical sensor
indicate a pressure which is representative of a mean or average
of the local pressures distributed over the diaphragm or gage
face. Local effects such as persistence of jets from the
ventilation holes oriented along the flow axis would be averaged
out and cause only small or negligible error. With the tunnel
configuration, however, since pressure was measured by only
two very small orifices at specific locations, unreallstic
values could be obtained when the orifices were oriented
exactly with the stagnation or center line stream tube, To
eliminate errors from this source, loosely compressed steel
wool was placed inside the sphere housing between the dummy
gage face and the front of the sphere. Thls acted as a diffuser
or mixing zone and eliminated the effect of local jets on the
pressure orifices.

It is not expected that this effect is of significance
for an actual transducer. In the event that small gages or
small internal volumes are used in a design, however, baffles,
wire mesh or diffusion materials are recommended to prevent or
minimize such effects., Another provision which would reduce
this effect would be to decrease the hole diameter of the
ventilation holes. The results with and without diffusion
material are shown for typical runs in figure 14,

Typical results of the wind tunnel evaluation are
presented in figure 15. Although the pressure coefficients at
low angles of attack are somewhat smaller (closer to zero) than
might be expected based upon unventilated sphere pressure
distributions and theory, the values shown indicate that baslc
flow characteristics with ventilation must be close to those
assumed in the analysis of this concept.

18
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FIG. 15 TYPICAL RESULTS FROM WIND TUNNEL TESTS
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The differences shown and the exact nature of the angle of
attack effects are probably notlceably affected by the variable
and transient nature of flow phenomena in this critical regime
of flow.

Since this present sensor was designed to operate primarily
in regions of higher Reynolds number and overpressure, the
quantitative results of the wind tunnel tests should be given
less weight than results of dynamic tests under representative
conditions.

In general the wind tunnel results confirm the feaslbllity
of the concept. The results indicate that even in the critical
flow regime, which may be encountered at low values of overpressure,
an uncalibrated gage should give good results within a one or
two percent error for angles up to *90 degrees,

Referring back to figure 8 it can be seen that all the
differences shown in figures 14 and 15 would fall within the
thickness of a single line at these very low values of dynamic
pressure,

A similar evaluation for higher overpressures and Reynolds
numbers could be obtained from investigations in a large variable
pressure facility (Appendix A),

The expense and time involved were not Justified in a
preliminary evaluation, however, and it was decided to complete
preliminary evaluation of a ventilated configuration as described
in the next section,

CONICAL SHOCKTUBE TESTS

Analysis and preliminary wind tunnel results had indicated
that an unventilated sphere should exhibit good omnidirectional
characteristics even when sting mounted if measurement of static
pressure at low Mach numbers was its primary purpose.

Results of numerical solutions based upon simplifying
assumptions (Appendix B) had also indicated that reasonable
transient response could be expected with practical configurations,
A modified electronic gage had been designed which was compatible
with field measuring techniques for weak blast waves and which
could be integrated with the sensor configurations constructed.

It now remained to determine whether condifions with a
ventilated gage would approximate those predicted. Two possible
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deviations from theory seemed quite probable. First, the
ventilated gage could, because of the effect of ventilation
on the flow field, exhibit grossly different mean pressure
coefficients than those used for the design analysis., Wind
tunnel results in the critical regime were encouragling but
actual overpressures and flow conditions had not yet been
simulated. Second, the response characteristics could be
different from those indicated by such an approximate
analysis., If the first deviation were present to a large
extent, the basic concept would be of 1little practical value,
If the second occurred, long months of "cut and try" effort
might be necessary to arrive at the proper values of design
parameters for a given application,

In order to arrive at an early conclusion on the basic
unknowns, it was required that a rapid method of overall
evaluations be set up under conditions of transient response,
Testing the actual aerodynamic configuration with a represent-

atlve pulse shape appeared to be the only proper course of
action,

The conical shocktube (references (8) and (9)) was
employed as indicated in figure 16,

Because of the complexity and response limitations of
the variable reluctance type electronic sensor and its
recording system, it was more feasible to use pilezoelectric
gages for preliminary studies in the conical shocktube
facility., Utilization of a standard and well-lmown piezo-~
electric sensor inside the aerodynamic housing in conjunction
with similar gages in the tube wall would permit direct
comparison of recorded traces for evaluation of response
time, pulse magnitude, and pulse shape.

LC-70*gages supplied as stock items by Atlantic Research
Corporation were selected, Gages were calibrated in a static
test rig manufactured by the gage company and also in a test
apparatus developed at NOL for dynamic calibration of pressure
transducers (reference (10))., A sample of the calibration
results for a typical transducer in both types of equipment
is given below,

*The use of company and trade names for instrumentation and
equipment in this report does not constitute Government
endorsement or criticism of these products,
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TABLE I

BALLISTICS DEPARTMENT
CALIBRATION LC-70 GAGE #190

APPARATUS OF NOLTR 63-143 29 JAN 1965

Pressure PSI Charge uu Coulombs
> 535
10 1050
15 1590

Average sensitivity 106 puC/psi

EXPLOSIONS RESEARCH DEPARTMENT
CALIBRATION LC-70 GAGE #190

ARC CALIBRATION TEST RIG JAN 1965
Range PSI 5 to 14.7
Average sensitivity 106.4% yuuC/psi

Figure 17 shows some of the gage components used in
preliminary tests. The straight sting, simulated mount, and
clamp ring are shown with an LC-70 plezoelectric gage and
connector. The simulated mount represents the dimensions
and shape of the variable reluctance gage. The preliminary
sensor configuration was fabricated with a thicker wall than
was originally expected, This was necessary to provide
thickness for the threaded portion of the sphere which could
be disassembled for changing transducers. The increased
thickness reduced internal volume, however, and a smaller mount
was designed for the LC-70 gages. This mount was a teflon
cylinder threaded to fit the LC-T70 gage. Teflon spacers were
made so that the LC-70 transducer would have no direct metal
contact with the sting or sensor and mechanical noise and
vibration would not be transmitted to the transducer.
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PRELIMINARY RESULTS, RESPONSE TIME

The response times indicated on all preliminary results
in the NOL conical shocktube indicate that the predictions of
the preliminary analysis were successful in estimating the
response characteristics of the ventilated sphere.

The analysis indicated that conditions approaching
equilibrium should be present within 4/5 to 5/10 millisecond
and test results indicated response times of approximately
3/10 to 4/10 millisecond. Since the pulse in the shocktube
starts to decay immediately after reachlng peak pressure while
the analytical solutions should asymptotically approach some
equilibrium value of pressure, exact comparison of response
times is difficult. In general, however, the results indicate
that the response of the present sensor configuration is close
to optimum for this application.

The flat diaphragm gage was used as well as the LC-T70
gage in 1nltial evaluation of the sensor. The ringing or
resonance that has been exhibited with some previous sensors
was not experienced with the present sensor, This indicates
that sizing and ventilation are approximately correct for this
application and the cavity 1s acting as a plenum chamber,

The general results indicated are qualitatively represented
in figure 18, The drawlngs represent data from actual oscillo-
graph records of preliminary tests at 6 psl overpressure, The
upper two traces compare the record of an LC-70 gage in the
shocktube wall with an LC-70 located inside the sensor. The
response time and general pulse shape indicate that the sensor
is performing approximately as predicted,

The lower traces compare the CCC transducer (variable
reluctance gage) in the sensor with an LC-T70 pilezoelectric
gage in the wall of the shocktube, The lack of "ringing" or
diaphragm resonance is indicated by the smooth trace, Again
general response and pulse shape appear satisfactory., The
return to zero overpressure for the sensor appears to be
slightly late in preliminary test results. Since "ringing"
appears to be no problem with the present configuration, the
pulse slope might be improved by increasing the ventilation
slightly. Such trade offs should be investigated in future
designs,

Preliminary tests in the conical shocktube have demonstrated

the feasibility of the basic concept and of the design procedures
and sizing analysis, Quantitative evaluation of omnidirectional
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1 MILLISECOND

{(a) LC-70 TRANSDUCER IN
SPHERICAL SENSOR

10 MILLISECONDS
MWLy

(c) CCC TRANSDUCER IN
SPHERICAL SENSOR

NOLTR 65-172

(b) LC-70 TRANSDUCER IN
SHOCK TUBE WALL

(d) LC-70 TRANSDUCER IN
SHOCK TUBE WALL

FIG. 18 PRELIMINARY DATA TRACES SHOWING RESPONSE AND RESONANCE
CHARACTERISTICS OF THE OMNIDIRECTIONAL GAGE (~ 6 PSI OVERPRESSURE)
( VERTICAL DEFLECTIONS SCALED TO ELIMINATE CALIBRATION CONSTANTS)
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characteristics and gage accuracy will require more thorough
investigation in other facilities., Some semli-quantitative
results and general concluslons can be summarized from the
preliminary tests, however.,

The results shown in figure 19 are typical of the conical
shocktube evaluation at zero degrees angle of attack., Test
results have been plotted on the theoretical curves of figure 8,
Readings of the monitoring gage have been plotted as "actual
overpressures" and readings from the spherical sensor have been
plotted as "measured overpressures," As can be seen from this
figure, only a small error would be encountered if the
theoretical curve were used for the uncalibrated gage,

Bar symbols are shown to indicate the estimated mean scatter
in the data from the preliminary tests in the conical shocktube,
The quantity of data i1s not sufficient to permit a statistical
evaluation. Several factors contribute to the scatter shown
here, such as method of reading the record traces, difficulty
in repeating shot conditions and lack of an exact standard for
comparison of peak pressure rise (only one monitor gage was
used in each case),

The tests were not run for angles of attack between
0 degrees and 45 degrees, but experience has shown that when
the sting or mount 1s located in the wake region of the sphere
(140 degrees to 220 degrees) the effect of the sting on the
pressure distribution between 90 degrees and 270 degrees is
small, It appears justified to assume, therefore, that the
results indicated in figure 19 should be relatively insensitive
to flow direction or direction of oncoming shock wave between
approximately *30 degrees., Wind tunnel results also support
this assumption. This degree of omnidirectionality with such
a small error for an uncalibrated gage represents a significant
improvement over other gages.

At angles of attack from 45 degrees to 120 degrees the
error for the uncalibrated gage becomes much more severe as
indicated in figure 20, This 1is probably due to the effect of
the sting and results because the theoretical curve based on an
assumed value of Cp is now quite unrealistic. The data can be
considered to group (considering the scatter inherent in these
measurements) about a mean line such as the one faired in the
figure,

. Using such a curve as the gage characteristic, a reasonable
error would result for flow directions between 45 degrees and
120 degrees. The curve indicated is arbitrary and serves only
to indicate a typlcal experimental mean, Experimental scatter
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and other problems with the conlcal shocktube indicate that
the gage 1s more accurate than indicated by these preliminary

measurements,

—

| CONCLUSIONS

Preliminary results indicate that the concept of a venti-
lated spherical sensor is feasible and warrants further re-
finement and callbration.

Properly applied, an uncalibrated sensor should exhibit
good omnidirectional characteristics within a range of *30
degrees.

With rough calibration and properly oriented, a single
sensor should possess omnidirectional characteristics within a
range of approximately 70 degrees to an accuracy of approxi-

mately 4 percent,

Using a combination of two gages, the omnidirectional
range could be extended to approximately 180 degrees with small
error and to greater values wilth moderate error, Limitations
imposed by the preliminary test equipment indicate that gage
capabilities are greater than preliminary results indicate,
Simple modifications and calibration in selected facllities
could possibly result in greatly improved accuracies and
omnidirectional capabilities, /

(7
; 1/-‘\':/<
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APPENDIX A

The general case of a blast wave in air requires the
treatment of a three-dimensional wave or shock front traveling
outward from the source of explosion. A stationary pressure
sensor overtaken or passed by the wave front will experience a
discontinuous rise of pressure followed by a period of gradual
decay. Figure A-l represents the pressure time history that
might be indicated by a pressure sensor acted upon by an
explosion or blast wave,

In the case of the weak blast wave of interest in this
application, the blast wave front will have traveled a large
distance before encountering the gage. At the time of passage
over the gage, the wave front will have expanded in size until
the portion "seen" by the gage will exhibit initial charac-
teristics similar to a plane wave front traveling across the

gage followed by a slight pressure rise and a subsonic flow
field,

These conditions are simulated in a shocktube of uniform
cross section wnen the first shock front passes over a static
pressure gage mounted in the tube or flush with its wall.
Figures A-2 and A-3 indicate the sequence of events in a simple
shocktube during the passage of time after a diaphragm is
burst initiating moving shock fronts in the tube. Figure A-4
represents the static pressure time history recorded by a static
pressure sensor located slightly to the rignt of the diaphragm
location in the tube.

The pulse shape generated is dependent upon many factors
such as length of tube, location of diaphragm, etc., and
simulation of the exact pulse shape of Figure A-l is not feasible.

The portion a-b of the pulse can be closely predicted and
controlled, however, and response characteristics and
qualitative calibration to a step pulse in pressure can be
conveniently carried out in a one-dimensional shocktube. (Figure
A-4)

RELATIONS FOR A SHOCKTUBE
Consider the conditions represented by figures A-2 and

A-3 illustrating the conditions in a shocktube before and
aftér a diaphragm is burst between two regions of different
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pressure. Conditions of subscript 1 indicate ambient conditions
surrounding the sensor before initiation of the shock front.

Applying the equations of Rankine-Hugonlot to a moving
shock front, the following relations can be derived:

_3._&__4

Uz -Us —_ /=1 1P
a 2r [ret pa |
r_'/ r"'/ ,D]

The velocity change across a shock front can then be expressed

as s
a, 5[_"_’{ _ /l
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If the conditions on the high pressure side of the
diaphragm are denoted by subscript o and Wy, represents the
velocity of the plane shock wave after diaphragm burst (this
simulates the blast wave) and W; represents the velocity of

the reflected shock from the closed end of the tube, we can
write
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The parameters of interest for the range of overpressures
required on this project are roughly plotted in figure A-5,

Tne portion of the pulse in figure A-4 indicated as a-b
and a-b-c-d can be very useful for evaluating the dynamic
response of a gage. This is most easily done in a good one-
dimensional shocktube of adequate size.

A detailed study of the equilibrium pressures indicated
inside a ventilated sphere for each condition of pressure,
angle of attack and Mach number can best be made in a wind
tunnel. This would correspond to portion b-c of figure A-4,

Portion c-d of the pulse could be studied using the
expansion wave in a shocktube (equations a.l - a.5), but
other methods are more representative of the decay of blast
wave pressure time pulses.

References (8) and (9) of the main report describe the
use of conical shocktubes to simulate the pressure time
characteristics of explosion waves,

The simple theoretical treatment used above for a one-
dimensional shocktube is unfortunately not applicable to
the conical tube, and control of operating conditions has not
reached an equivalent state of the art. However, by using
monitoring gages of known characteristics a facility such as
that described in reference (9) can provide a rapid semi-
quantitative evaluation of a blast wave sensor. |
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APPENDIX B

SIZING AND RESPONSE TIME ANALYSIS AND COMPUT AT ION

The actual mechanism by which a flow will be established
and an equilibrium pressure reached inside the ventilated sphere
is quite complex, A rigorous and accurate analytical treatment
would probably require a large expenditure of time and effort
and appears difficult or impossible without more knowledge of
the actual conditions to be experienced in practice.

As a first approximation, however, a simplified analysis
was made and a numerical program written to evaluate the
characteristics of a configuration that would meet general
requirements and establish an essentially constant internal
pressure within approximately one millisecond. The following
assumptions were made:

1. A representative pressure distribution can be
assumed which is constant during the time period of interest,

2. This profile or distribution is established almost
instantaneously at time = 0, (This assumption is in error
only by the order of 1/10 of a millisecond, based upon
preliminary analysis,)

3. The sphere walls are reasonably thin, and the
ventilation holes are proportioned such that the flow into
and out of the sphere approaches the type of flow to be
expected through a thin plate orifice.

4. The internal cavity is large enough relative to
individual ventilation openings so that the cavity acts
essentially as a plenum chamber and secondary flows are not
established.

Immediately after the passage of the shock, the exterior
surface of the sensor is subjected to the pressures indicated
by the pressure profile selected. The interior of the sphere,
however, 1s essentially at the ambient pressure which existed
before the arrival of the shock.

For the first increment of time, the flow through each
orifice will be determined by the difference of the local
pressure outside (as indicated by value on the pressure
distribution curve at that location) and the pressure inside,

B-1
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The rate of flow through each opening can then be
expressed:

Flow rate = f (A, Cys AP, 8)

Wnere: A = open area
= flow coefficient

Cq
AP = pressure difference
8§ = density

This flow can be an influx from outside into the sphere
or an efflux from the interior outward depending upon the
relative values of the pressures or the sign of 4P,

By choosing small time increments and summating the
individual flows over the entire sphere surface, a value for
the net flow rate into the sphere during the time interval
can be approximated.

Assumption of the compression process in the sphere
(isothermal was used in this approximation) and use of the
perfect gas laws will give a new value of internal pressure.

This numerical procedure is repeated until the pressure
inside the sphere approaches an equilibrium or a value close
to the average external static pressure., The time required
for the pressure to reach the value indicated is considered
the approximate response time for the combination of internal
volume and ventilation used for the computation.

The program used for the preliminary configuration is
outlined below. Modification to the equation for flow rate

and new assumptions for the internal process will permit
adaption of this program to other modes of ventilation.

NUMERICAL SPHERE VENTILATION SOLUTION

Summation Process

The summation process is a means of adding the effects
of flow through seven chosen area increments (figure B-1)
over each of wnhich the local external pressure is considered
a constant,

These regions of constant pressure are spaced equally

from tne forward portion of the sphere, i. e.,
every 30° beginning at 8 = -18° Each increment

B-2
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of area is defined as: Ai = 2nRHi where Hi is the width of
the ith area.

Each incremental area has the same percentage of
ventilation, i.e., area through which the flow can pass. By
knowing the ventilation, incremental area, free-stream density,
discharge coefficient (orifice constant estimated at Cy = .65),
and the pressure difference between the local external pressure
and the internal sphere pressure, an equation for the incremental
weight flow may be written and evaluated:

G, = XA,C, /2g54P;

where = percent of area ventilated

incremental area (ft.2)

I

incremental flow rate (lb./sec.)

I

discharge coefficient

X
Ay
Gy
C
g gravitational acceleration
5

"free-stream density

oP; = P(local) - P(internal), (lb./ft.2)
If P, is negative, the sign of Gj is negative,
If P; is positive, the sign of G; is positive.

By evaluating the G;'s and summing them over the seven
increments, a net influx or efflux can be obtained. As the
internal pressure approaches the free-stream pressure, the
flow rate approaches zero and, therefore, equilibrium is
approached. ,

The quantity that controls the flow rate is the internal
pressure; therefore, a new internal pressure is determined for
each time increment for which the summation process takes place.

For conditions inside the sphere let:

W, = weight of gas in sphere before time incrementing (1b.)
W. = weight of gas in sphere after time incrementing (lb.)
8y = density of gas before time incrementing (lb./ft.3)

5; = density of gas after time incrementing (1b./ft.3)

oW = change of gas weight between any two time increments

(1lb.

G = net weight flow rate for any time increment

B-3
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At = time increment (seconds)
V = cavity volume (ft.3)

AW = G x At

Wo = 6o x V (the first 5, is given as S.S.L. air density)
leélXV

53y = Wi/V

from the equation of state for an isothermal process
Pi/si = Po/sO

Pi :-posi/go = the new value of the internal pressure to
be used in the next summation process.

The process is continued until the sum of the time
increments reaches an arbitrary preassigned value. This is
done rather than letting the program run for the long period
which may be necessary to let the net flow equal zero (attain
equilibrium). Upon looking at the program results (such as
in figures 9 and 10 of the main text), it can be determined
whether equilibrium has been obtained or, if not, approximately
how much more time would be required to reach an equilibrium
condition. Due to an initial requirement of the system
studied for this application, a limiting time of .7 millisecond
was chosen,

The above approximation for the internal equilibrium
pressure of a ventilated sphere was written as a FORTRAN
program for the IBM 7090 digital computer.
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FIG. B.1 MODEL USED FOR RESPONSE COMPUTATIONS
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