The Department of Defense

DoD DEPARTMENTS:

- Department of the Navy
- Department of the Air Force
- Defense Special Weapons Agency
- Special Operations Command
- Defense Advanced Research Projects Agency
- Ballistic Missile Defense Organization

PROGRAM SOLICITATION 97.1
CLOSING DATE: 08 JANUARY 1997

FY 1997 SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
PROGRAM SOLICITATION

Number 97.1

Small Business
Innovation
Research Program

IMPORTANT

The DoD updates its SBIR mailing list annually. To remain on the mailing list or to be added to the list, send in the Mailing List form (Reference E), found at the back of this solicitation, to DTIC or complete the electronic form at http://www.dtic.mil/dtic/sbir/mail_req.html. Failure to send the form annually will result in removal of your name from the mailing list.

For general questions about the Defense Department’s SBIR program, please call the SBIR/STTR Help Desk at (800) 382-4634.

U.S. Department of Defense
SBIR Program Office
Washington, DC 20301

Opening Date: Tues., October 1, 1996
Closing Date: Wed., January 8, 1997

Deadline for receipt of proposals at the DoD Component is 2:00 p.m. local time.
IMPORTANT NEW FEATURES OF THE DEFENSE DEPARTMENT’S SBIR PROGRAM

This solicitation reflects a number of important changes in the Defense Department’s SBIR program that have been implemented over the past year. The purpose of these changes is (1) to make the program more user-friendly to small firms and (2) to increase commercialization of SBIR research in military and/or private sector markets. The main changes are as follows:

1. Program assistance is as close as your telephone

- Phone: 800-382-4634 (8AM to 8PM EST)
- Fax: 800-462-4128
- Email: SBIRHELP@us.teltech.com

2. See our SBIR/STTR Home Page (http://www.acq.osd.mil/sadbu/sbir)

Our Home Page offers electronic access to model SBIR proposals and contracts, abstracts of ongoing SBIR projects, solicitations for the SBIR and Small Business Technology Transfer (STTR) programs, the latest updates on the DoD SBIR and STTR programs, hyperlinks to sources of business assistance and financing, other useful information.

3. New SBIR "Fast Track" for projects which obtain outside financing

The Department’s SBIR program now features a Fast Track SBIR process for companies which, during their Phase I projects, attract independent third-party investors that will match Phase II SBIR funding, in cash, at the matching rates described in Section 4.5. Companies that obtain such third-party investments and thereby qualify for the SBIR Fast Track will receive (subject to the qualifications in Section 4.5):

- interim SBIR funding between Phases I and II (which must also be matched by the third party);
- the Department’s highest priority for Phase II funding; and
- an expedited Phase II selection decision and award.

Thus far, of the Fast Track applications processed by the Department that have met the Fast Track requirements, a very high percentage have been selected for Phase II award. The Department’s processing of all Fast Track applications is reviewed by the Under Secretary of Defense for Acquisition and Technology, to ensure the policy’s effective implementation.

To enable potential third-party investors to identify Phase I projects in which to invest, the Department now electronically posts the abstracts of all selected Phase I awards on our SBIR Home Page, shortly after the awards are made.
4. Fewer delays in the SBIR process

All component SBIR programs within the Department are reducing the time interval between proposal receipt and award to an average of four months in Phase I and an average of six months in Phase II.

5. Opportunity to ask technical questions about solicitation topics

Approximately six weeks before each SBIR solicitation opens, the solicitation topics are pre-released electronically, on our Home Page, along with the names of topic authors or other technical experts and their phone numbers. This pre-release gives small companies an opportunity to ask technical questions about specific solicitation topics by telephone before the solicitation opens.

Once a solicitation opens, telephone questions will no longer be accepted, and companies may ask written questions through the SBIR Interactive Topic Information System (SITIS -- described in Section 7.2), in which the questioner and respondent remain anonymous and all questions and answers are posted electronically for general viewing. The SITIS service opens at the same time as the pre-release and closes to new questions approximately 30 days before the solicitation closes.

6. Other changes

- Each company submitting a Phase I or Phase II proposal must complete a Company Commercialization Report (Appendix E) -- a simplified listing of the commercialization status of the company's prior Phase II efforts.

- Companies are now asked to briefly explain their commercialization strategies in their Phase I and Phase II proposals (see Section 3.4(h)).

- Companies are no longer required to submit red copies of the forms in appendices A through E, and may instead submit photocopies of these forms. However, please do not submit copies of these forms that have been downloaded from the Internet or from a computer disk (other than Navy's solicitation on disk), because the formatting will be lost. If you are reading an electronic version of this solicitation, you can obtain hard copies of these forms by calling 800/DoD-SBIR.
TABLE OF CONTENTS

1.0 PROGRAM DESCRIPTION .. 1-2

1.1 Introduction ... 1
1.2 Three Phase Program ... 1
1.3 Follow-On Funding ... 2
1.4 Eligibility and Limitations .. 2
1.5 Conflicts of Interest ... 2
1.6 Contact with DoD ... 2

2.0 DEFINITIONS ... 3

2.1 Research or Research and Development 3
2.2 Small Business .. 3
2.3 Socially and Economically Disadvantaged Small Business 3
2.4 Women-Owned Business ... 3
2.5 Funding Agreement ... 3
2.6 Subcontract .. 3
2.7 Commercialization ... 3

3.0 PROPOSAL PREPARATION INSTRUCTIONS AND REQUIREMENTS 4-6

3.1 Proposal Requirements .. 4
3.2 Proprietary Information ... 4
3.3 Limitations on Length of Proposal ... 4
3.4 Phase I Proposal Format ... 4
3.5 Bindings ... 6
3.6 Phase II Proposal ... 6

4.0 METHOD OF SELECTION AND EVALUATION CRITERIA 6-8

4.1 Introduction .. 6
4.2 Evaluation Criteria - Phase I ... 6
4.3 Evaluation Criteria - Phase II .. 7
4.4 Assessing Commercial Potential of Proposals 7
4.5 SBIR Fast Track .. 7

5.0 CONTRACTUAL CONSIDERATION 9-12

5.1 Awards (Phase I) .. 9
5.2 Awards (Phase II) ... 9
5.3 Reports .. 9
5.4 Payment Schedule ... 10
5.5 Markings of Proprietary or Classified Proposal Information 10
5.6 Copyrights .. 11
5.7 Patents .. 11
5.8 Technical Data Rights .. 11
5.9 Cost Sharing .. 11
5.10 Joint Ventures or Limited Partnerships 11
5.11 Research and Analytical Works .. 11
5.12 Contractor Commitments .. 11
5.13 Additional Information .. 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>SUBMISSION OF PROPOSALS</td>
<td>13</td>
</tr>
<tr>
<td>6.1</td>
<td>Address</td>
<td>13</td>
</tr>
<tr>
<td>6.2</td>
<td>Deadline of Proposals</td>
<td>13</td>
</tr>
<tr>
<td>6.3</td>
<td>Notification of Proposal Receipt</td>
<td>13</td>
</tr>
<tr>
<td>6.4</td>
<td>Information on Proposal Status</td>
<td>13</td>
</tr>
<tr>
<td>6.5</td>
<td>Debriefing of Unsuccessful Offerors</td>
<td>13</td>
</tr>
<tr>
<td>6.6</td>
<td>Correspondence Relating to Proposals</td>
<td>13</td>
</tr>
<tr>
<td>7.0</td>
<td>SCIENTIFIC AND TECHNICAL INFORMATION ASSISTANCE</td>
<td>14-16</td>
</tr>
<tr>
<td>7.1</td>
<td>DoD Technical Information Services Available</td>
<td>14</td>
</tr>
<tr>
<td>7.2</td>
<td>SBIR Interactive Topic Information System (SITIS)</td>
<td>14</td>
</tr>
<tr>
<td>7.3</td>
<td>Other Technical Information Assistance Sources</td>
<td>15</td>
</tr>
<tr>
<td>7.4</td>
<td>Counseling Assistance Available</td>
<td>15</td>
</tr>
<tr>
<td>7.5</td>
<td>State Assistance Available</td>
<td>15</td>
</tr>
<tr>
<td>8.0</td>
<td>TECHNICAL TOPICS</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>DEPARTMENT OF THE NAVY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposal Submission</td>
<td>NAVY 1</td>
</tr>
<tr>
<td></td>
<td>Navy Topic Titles</td>
<td>NAVY 2</td>
</tr>
<tr>
<td></td>
<td>Subject/Word Index</td>
<td>NAVY 7</td>
</tr>
<tr>
<td></td>
<td>Topic Descriptions</td>
<td>NAVY 13</td>
</tr>
<tr>
<td></td>
<td>DEPARTMENT OF THE AIR FORCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposal Submission</td>
<td>AF 1</td>
</tr>
<tr>
<td></td>
<td>Proposal Submission Instructions</td>
<td>AF 2</td>
</tr>
<tr>
<td></td>
<td>Subject/Word Index</td>
<td>AF 5</td>
</tr>
<tr>
<td></td>
<td>Topic Index</td>
<td>AF 29</td>
</tr>
<tr>
<td></td>
<td>Topic Descriptions</td>
<td>AF 36</td>
</tr>
<tr>
<td></td>
<td>DEFENSE ADVANCED RESEARCH PROJECTS AGENCY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Submission of Proposals</td>
<td>DARPA 1</td>
</tr>
<tr>
<td></td>
<td>Checklist</td>
<td>DARPA 2</td>
</tr>
<tr>
<td></td>
<td>DARPA Topic Titles</td>
<td>DARPA 3</td>
</tr>
<tr>
<td></td>
<td>Subject/Word Index</td>
<td>DARPA 5</td>
</tr>
<tr>
<td></td>
<td>Topic Descriptions</td>
<td>DARPA 11</td>
</tr>
<tr>
<td></td>
<td>DEFENSE SPECIAL WEAPONS AGENCY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposal Submission</td>
<td>DSWA 1</td>
</tr>
<tr>
<td></td>
<td>DSWA Topic Index</td>
<td>DSWA 2</td>
</tr>
<tr>
<td></td>
<td>Subject/Word Index</td>
<td>DSWA 3</td>
</tr>
<tr>
<td></td>
<td>Topic Descriptions</td>
<td>DSWA 4</td>
</tr>
<tr>
<td></td>
<td>U.S. SPECIAL OPERATIONS COMMAND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposal Submission</td>
<td>SOCOM 1</td>
</tr>
<tr>
<td></td>
<td>SOCOM Topic Titles</td>
<td>SOCOM 2</td>
</tr>
<tr>
<td></td>
<td>Subject/Word Index</td>
<td>SOCOM 3</td>
</tr>
<tr>
<td></td>
<td>Topic Descriptions</td>
<td>SOCOM 4</td>
</tr>
</tbody>
</table>
BALLISTIC MISSILE DEFENSE AGENCY

Proposal Submission ... BMDO 1
BMDO Topic Titles .. BMDO 2
BMDO Topic Descriptions BMDO 3

9.0 SUBMISSION FORMS AND CERTIFICATIONS

Appendix A - Proposal Cover Sheet APPX A
Appendix B - Project Summary APPX B
Appendix C - Cost Proposal APPX C
Appendix D - Fast Track Application Form APPX D
Reference A - Notification of Proposal Receipt Request REF 1
Reference B - DTIC Information Request REF 3
Reference C - Directory of Small Business Specialists ... REF 5
Reference D - SF 298 Report Documentation Page REF 9
Reference E - DoD SBIR Mailing List REF 11
DoD PROGRAM SOLICITATION FOR SMALL BUSINESS INNOVATION RESEARCH

1.0 PROGRAM DESCRIPTION

1.1 Introduction

The Navy, Air Force, Defense Advanced Research Projects Agency (DARPA), Ballistic Missile Defense Organization (BMDO), Special Operations Command (SOCOM), and Defense Special Weapons Agency (DSWA), hereafter referred to as DoD Components, invite small business firms to submit proposals under this solicitation for the Small Business Innovation Research (SBIR) program. Firms with strong research and development capabilities in science or engineering in any of the topic areas described in Section 8.0 are encouraged to participate. Subject to availability of funds, DoD Components will support high quality research or research and development proposals of innovative concepts to solve the listed defense-related scientific or engineering problems, especially those concepts that also have high potential for commercialization in the private sector.

Objectives of the DoD SBIR Program include stimulating technological innovation, strengthening the role of small business in meeting DoD research and development needs, fostering and encouraging participation by minority and disadvantaged persons in technological innovation, and increasing the commercial application of DoD-supported research or research and development results.

The Federal SBIR Program is mandated by Public Laws PL 97-219, PL 99-443, and PL 102-564. The basic design of the DoD SBIR Program is in accordance with the Small Business Administration (SBA) SBIR Policy Directive, January 1993. The DoD Program presented in this solicitation strives to encourage scientific and technical innovation in areas specifically identified by DoD Components. The guidelines presented in this solicitation incorporate and exploit the flexibility of the SBA Policy Directive to encourage proposals based on scientific and technical approaches most likely to yield results important to DoD and the private sector.

1.2 Three Phase Program

This program solicitation is issued pursuant to the Small Business Innovation Development Act of 1982, PL 97-219, PL 99-443, and PL 102-564. Phase I is to determine, insofar as possible, the scientific, technical, and commercial merit and feasibility of ideas submitted under the SBIR Program. Phase I awards are typically up to $100,000 in size over a period not to exceed six months. Proposals should concentrate on that research or research and development which will significantly contribute to proving the scientific, technical, and commercial feasibility of the proposed effort, the successful completion of which is a prerequisite for further DoD support in Phase II. The measure of Phase I success includes evaluations of the extent to which Phase II results would have the potential to yield a product or process of continuing importance to DoD and the private sector. Proposers are encouraged to consider whether the research and development they are proposing to DoD Components also has private sector potential, either for the proposed application or as a base for other applications. If it appears to have such potential, proposers are encouraged, on an optional basis, to obtain a contingent commitment for private follow-on funding to pursue further development of the commercial potential after the government funded research and development phases.

Subsequent Phase II awards will be made to firms on the basis of results of their Phase I effort and the scientific, technical, and commercial merit of the Phase II proposal. Phase II awards are typically up to $750,000 in size over a period generally not to exceed 24 months (subject to negotiation). Phase II is the principal research or research and development effort and is expected to produce a well-defined deliverable product or process. A more comprehensive proposal will be required for Phase II.

Under Phase III, the small business is expected to use non-federal capital to pursue private sector applications of the research or development. Also, under Phase III, federal agencies may award non-SBIR funded follow-on contracts for products or processes which meet the mission needs of those agencies. This solicitation is designed, in part, to encourage the conversion of federally sponsored research and development innovation into private sector applications. The federal research and development can serve as both a technical and pre-venture capital base for ideas which may have commercial potential.

This solicitation is for Phase I proposals only. Only proposals submitted in response to this solicitation will be considered for Phase I award. Offerors who were not awarded a contract in response to a prior SBIR solicitation are free to update or modify and re-submit the same or modified proposal if it is responsive to any of the topics listed in Section 8.0.

For Phase II, no separate solicitation will be issued and no unsolicited proposals will be accepted. Only those firms that were awarded Phase I contracts will be considered (Section 4.3 and 5.2).

DoD is not obligated to make any awards under either
Phase I, II, or III. DoD is not responsible for any monies expended by the proposer before award of any contract.

1.3 Follow-On Funding

In addition to supporting scientific and engineering research and development, another important goal of the program is conversion of DoD-supported research or research and development into commercial products. Proposers are encouraged to obtain a contingent commitment for private follow-on funding prior to Phase II where it is felt that the research or research and development has commercial potential in the private sector.

Proposers who feel that their research or research and development have the potential to meet private sector market needs, in addition to meeting DoD objectives, are encouraged to obtain non-federal follow-on funding for Phase III to pursue private sector development. The commitment should be obtained during the course of Phase I performance. This commitment may be contingent upon the DoD supported research or development meeting some specific technical objectives in Phase II which if met, would justify non-federal funding to pursue further development for commercial purposes in Phase III. Note that when several Phase II proposals receive evaluations being of approximately equal merit, proposals that demonstrate such a commitment for follow-on funding will receive extra consideration during the evaluation process.

The recipient will be permitted to obtain commercial rights to any invention made in either Phase I or Phase II, subject to the patent policies as stated in Section 5.7.

1.4 Eligibility and Limitation

Each proposer must qualify as a small business for research or research and development purposes as defined in Section 2.0 and certify to this on the Cover Sheet (Appendix A) of the proposal. In addition, a minimum of two-thirds of each Phase I SBIR project must be carried out by the proposing firm. For Phase II, a minimum of one-half of the effort must be performed by the proposing firm. For both Phase I and II, the primary employment of the principal investigator must be with the small business firm at the time of the award and during the conduct of the proposed effort. Primary employment means that more than one-half of the principal investigator’s time is spent with the small business. Deviations from these requirements must be approved in writing by the contracting officer (during contract negotiations).

For both Phase I and Phase II, all research or research and development work must be performed by the small business concern in the United States. "United States" means the fifty states, the Territories and possessions of the United States, the Commonwealth of Puerto Rico, the Commonwealth of the Northern Mariana Islands, the Trust Territory of the Pacific Islands, and the District of Columbia.

Joint ventures and limited partnerships are permitted, provided that the entity created qualifies as a small business in accordance with the Small Business Act, 15 USC 631, and the definition included in Section 2.2.

1.5 Conflicts of Interest

Awards made to firms owned by or employing current or previous Federal Government employees could create conflicts of interest for those employees in violation of 18 USC and 10 USC 2397. Such proposers should contact the cognizant Ethics Counselor of the DoD Component for further guidance.

1.6 Contact with DoD

a. General Information. General information questions pertaining to proposal instructions contained in this solicitation should be directed to the SBIR/STTR Help Desk at (800) 382-4634.

Other non-technical questions pertaining to a specific DoD Component should be directed in accordance with instructions given at the beginning of that DoD Component's topics in Section 8.0 of this solicitation. Oral communications with DoD Components regarding the technical content of this solicitation during the Phase I proposal preparation periods are prohibited for reasons of competitive fairness.

b. Requests for Copies of DoD SBIR Solicitation. To remain on the DoD SBIR Mailing list, send in the Mailing List form (Reference E) to DTIC. Additional copies of this solicitation may be ordered from:

Defense Technical Information Center
Attn: DTIC/SBIR
8725 John J Kingman Rd, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)

This solicitation is also available on floppy diskette (in Word Perfect) from DTIC for a nominal processing fee. DoD SBIR and STTR solicitations can be accessed via Internet through the DoD SBIR/STTR Home Page, at http://www.acq.osd.mil/sadbu/sbir.

c. Outreach Program. The DoD holds three National SBIR Conferences a year and participates in many state-organized conferences for small business. We have a special outreach effort to socially and economically disadvantaged firms and to small companies that are negatively affected by the Defense down-sizing.
2.0 DEFINITIONS

The following definitions apply for the purposes of this solicitation:

2.1 Research or Research and Development

Basic Research - Scientific study and experimentation to provide fundamental knowledge required for the solution of problems.

Exploratory Development - A study, investigation or minor development effort directed toward specific problem areas with a view toward developing and evaluating the feasibility and practicability of proposed solutions.

Advanced Development - Proof of design efforts directed toward projects that have moved into the development of hardware for test.

Engineering Development - Full-scale engineering development projects for DoD use but which have not yet received approval for production.

2.2 Small Business

A small business concern is one that, at the time of award of a Phase I or Phase II contract:

a. Is independently owned and operated and organized for profit, is not dominant in the field of operation in which it is proposing, and has its principal place of business located in the United States;

b. Is at least 51% owned, or in the case of a publicly owned business, at least 51% of its voting stock is owned by United States citizens or lawfully admitted permanent resident aliens;

c. Has, including its affiliates, a number of employees not exceeding 500, and meets the other regulatory requirements found in 13 CFR Part 121. Business concerns, other than investment companies licensed, or state development companies qualifying under the Small Business Investment Act of 1958, 15 USC 661, et seq., are affiliates of one another when either directly or indirectly (1) one concern controls or has the power to control the other; or (2) a third party or parties controls or has the power to control both. Control can be exercised through common ownership, common management, and contractual relationships. The term "affiliates" is defined in greater detail in 13 CFR Sec. 121.103. The term "number of employees" is defined in 13 CFR Sec. 121.106. Business concerns include, but are not limited to, any individual, partnership, corporation, joint venture, association or cooperative.

2.3 Socially and Economically Disadvantaged Small Business

A small business that is at the time of award of a Phase I or Phase II contract:

a. At least 51% owned by an Indian tribe or a native Hawaiian organization, or one or more socially and economically disadvantaged individuals, and

b. Whose management and daily business operations are controlled by one or more socially and economically disadvantaged individuals.

A socially and economically disadvantaged individual is defined as a member of any of the following groups: Black Americans, Hispanic Americans, Native Americans, Asian-Pacific Americans, Subcontinent-Asian Americans, or other groups designated by SBA to be socially disadvantaged.

2.4 Women-Owned Small Business

A women-owned small business is one that is at least 51% owned by a woman or women who also control and operate it. "Control" in this context means exercising the power to make policy decisions. "Operate" in this context means being actively involved in the day-to-day management.

2.5 Funding Agreement

Any contract, grant, or cooperative agreement entered into between any federal agency and any small business concern for the performance of experimental, developmental, or research work funded in whole or in part by the federal government. Only the contract method will be used by DoD components for all SBIR awards.

2.6 Subcontract

A subcontract is any agreement, other than one involving an employer-employee relationship, entered into by a Federal Government contract awardee calling for supplies or services required solely for the performance of the original contract. This includes consultants.

2.7 Commercialization

The process of developing markets and producing and delivering products for sale (whether by the originating party or by others); as used here, commercialization includes both government and private sector markets.
3.0 PROPOSAL PREPARATION INSTRUCTIONS AND REQUIREMENTS

3.1 Proposal Requirements

A proposal to any DoD Component under the SBIR Program is to provide sufficient information to persuade the DoD Component that the proposed work represents an innovative approach to the investigation of an important scientific or engineering problem and is worthy of support under the stated criteria.

The quality of the scientific or technical content of the proposal will be the principal basis upon which proposals will be evaluated. The proposed research or research and development must be responsive to the chosen topic. Any small business contemplating a bid for work on any specific topic should determine that (a) the technical approach has a reasonable chance of meeting the topic objective, (b) this approach is innovative, not routine, and (c) the firm has the capability to implement the technical approach, i.e. has or can obtain people and equipment suitable to the task.

Those responding to this solicitation should note the proposal preparation tips listed below:

• Read and follow all instructions contained in this solicitation.
• Use the free technical information services from DTIC and other information assistance organizations (Section 7.1 - 7.4).
• Mark proprietary information as instructed in Section 5.5.
• Limit your proposal to 25 pages (excluding company commercialization report).
• Use a type size no smaller than 12 pitch or 11 point.
• Don't include proprietary or classified information in the project summary (Appendix B).
• Include a copy of Appendix A, Appendix B, and Appendix E as part of the original of each proposal.
• Do not use a proportionally spaced font on Appendix A and Appendix B.

3.2 Proprietary Information

If information is provided which constitutes a trade secret, proprietary, commercial or financial information, confidential personal information, or data affecting the national security, it will be treated in confidence to the extent permitted by law, provided it is clearly marked in accordance with Section 5.5.

3.3 Limitations on Length of Proposal

This solicitation is designed to reduce the investment of time and cost to small firms in preparing a formal proposal. Those who wish to respond must submit a direct, concise, and informative research or research and development proposal of no more than 25 pages, excluding Company Commercialization Report (Appendix E), (no type smaller than 11 point or 12 pitch on standard 8½" X 11" paper with one (1) inch margins, 6 lines per inch), including Proposal Cover Sheet (Appendix A), Project Summary (Appendix B), Cost Proposal (Appendix C), and any enclosures or attachments. Promotional and non-project related discussion is discouraged. Cover all items listed below in Section 3.4 in the order given. The space allocated to each will depend on the problem chosen and the principal investigator's approach. In the interest of equity, proposals in excess of the 25-page limitation (including attachments, appendices, or references, but excluding Company Commercialization Report (Appendix E)) will not be considered for review or award.

3.4 Phase I Proposal Format

All pages shall be consecutively numbered and the ORIGINAL of each proposal must contain a completed copy of Appendix A, Appendix B and Appendix E.

a. Cover Sheet. Complete Appendix A, photocopy the completed form, and use a copy as Page 1 of each additional copy of your proposal.

b. Project Summary. Complete Appendix B, photocopy the completed form, and use a copy as Page 2 of each additional copy of your proposal. The technical abstract should include a brief description of the project objectives and description of the effort. Anticipated benefits and commercial applications of the proposed research or research and development should also be summarized in the space provided. The Project Summaries of proposals selected for award will be publicly released on the Internet and, therefore, should not contain proprietary or classified information.

c. Identification and Significance of the Problem or Opportunity. Define the specific technical problem or opportunity addressed and its importance. (Begin on Page 3 of your proposal.)

d. Phase I Technical Objectives. Enumerate the specific objectives of the Phase I work, including the questions it will try to answer to determine the feasibility of the proposed approach.

e. Phase I Work Plan. Provide an explicit, detailed description of the Phase I approach. The plan should indicate what is planned, how and where the work will be carried out, a schedule of major events, and the final product to be delivered. Phase I effort should attempt to
determine the technical feasibility of the proposed concept. The methods planned to achieve each objective or task should be discussed explicitly and in detail. This section should be a substantial portion of the total proposal.

f. Related Work. Describe significant activities directly related to the proposed effort, including any conducted by the principal investigator, the proposing firm, consultants, or others. Describe how these activities interface with the proposed project and discuss any planned coordination with outside sources. The proposal must persuade reviewers of the proposer's awareness of the state-of-the-art in the specific topic.

Describe previous work not directly related to the proposed effort but similar. Provide the following: (1) short description, (2) client for which work was performed (including individual to be contacted and phone number), and (3) date of completion.

g. Relationship with Future Research or Research and Development. (1) State the anticipated results of the proposed approach if the project is successful. (2) Discuss the significance of the Phase I effort in providing a foundation for Phase II research or research and development effort.

h. Potential Post Applications. Describe, in approximately one page, your company's strategy for converting your proposed SBIR research into a product or products with widespread commercial use in private sector and/or military markets.

i. Key Personnel. Identify key personnel who will be involved in the Phase I effort including information on directly related education and experience. A concise resume of the principal investigator, including a list of relevant publications (if any), must be included.

j. Facilities/Equipment. Describe available instrumentation and physical facilities necessary to carry out the Phase I effort. Items of equipment to be purchased (as detailed in Appendix C) shall be justified under this section. Also state whether or not the facilities where the proposed work will be performed meet environmental laws and regulations of federal, state (name) and local governments for, but not limited to, the following groupings: airborne emissions, waterborne effluents, external radiation levels, outdoor noise, solid and bulk waste disposal practices, and handling and storage of toxic and hazardous materials.

k. Consultants. Involvement of university or other consultants in the project may be appropriate. If such involvement is intended, it should be described in detail and identified in Appendix C. A minimum of two-thirds of each Phase I SBIR project must be carried out by the proposing firm, unless otherwise approved in writing by the contracting officer.

l. Prior, Current, or Pending Support of Similar Proposals or Awards. Warning -- While it is permissible, with proposal notification, to submit identical proposals or proposals containing a significant amount of essentially equivalent work for consideration under numerous federal program solicitations, it is unlawful to enter into contracts or grants requiring essentially equivalent effort. If there is any question concerning this, it must be disclosed to the soliciting agency or agencies before award.

If a proposal submitted in response to this solicitation is substantially the same as another proposal that has been funded, is now being funded, or is pending with another federal agency or DoD Component or the same DoD Component, the proposer must indicate action on Appendix A and provide the following information: (1) Name and address of the federal agency(s) or DoD Component to which a proposal was submitted, will be submitted, or from which an award is expected or has been received. (2) Date of proposal submission or date of award. (3) Title of proposal. (4) Name and title of principal investigator for each proposal submitted or award received. (5) Title, number, and date of solicitation(s) under which the proposal was submitted, will be submitted, or under which award is expected or has been received. (6) If award was received, state contract number. (7) Specify the applicable topics for each SBIR proposal submitted or award received.

Note: If Section 3.4.1 does not apply, state in the proposal "No prior, current, or pending support for proposed work."

m. Cost Proposal. Complete the cost proposal in the form of Appendix C for the Phase I effort only. Some items of Appendix C may not apply to the proposed project. If such is the case, there is no need to provide information on each and every item. What matters is that enough information be provided to allow the DoD Component to understand how the proposer plans to use the requested funds if the contract is awarded.

(1) List all key personnel by name as well as by number of hours dedicated to the project as direct labor.

(2) Special tooling and test equipment and material cost may be included under Phases I and II. The inclusion of equipment and material will be carefully reviewed relative to need and appropriateness for the work proposed. The purchase of special tooling and test equipment must, in the opinion of the Contracting Officer, be advantageous to the government and should be related directly to the specific topic. These may include such items as innovative instrumentation
and/or automatic test equipment. Title to property furnished by the government or acquired with government funds will be vested with the DoD Component, unless it is determined that transfer of title to the contractor would be more cost effective than recovery of the equipment by the DoD Component.

3. Cost for travel funds must be justified and related to the needs of the project.

4. Cost sharing is permitted for proposals under this solicitation; however, cost sharing is not required nor will it be an evaluation factor in the consideration of a Phase I proposal.

n. Company Commercialization Report on Prior SBIR Awards. All small business concerns submitting a Phase I or Phase II proposal must complete Appendix E (Company Commercialization Report), listing the commercialization status of the concern’s prior Phase II efforts. (This required proposal information shall not be counted toward proposal pages count limitations.) A Report showing that a small business concern has received no prior Phase II awards will not affect the concern’s ability to obtain an SBIR award.

3.5 Bindings

Do not use special bindings or cover. Staple the pages in the upper left hand corner of each proposal.

3.6 Phase II Proposal

This solicitation is for Phase I only. A Phase II proposal can be submitted only by a Phase I awardee and only in response to a request from the agency; that is, Phase II is not initiated by a solicitation. Each proposal must contain a Cover Sheet (Appendix A), a Project Summary Sheet (Appendix B), and a Company Commercialization Report (Appendix E). Copies of Appendices along with instructions regarding Phase II proposal preparation and submission will be provided by the DoD Components to all Phase I winners at time of Phase I contract award.

4.0 METHOD OF SELECTION AND EVALUATION CRITERIA

4.1 Introduction

Phase I proposals will be evaluated on a competitive basis and will be considered to be binding for six (6) months from the date of closing of this solicitation unless offeror states otherwise. If selection has not been made prior to the proposal’s expiration date, offerors will be requested as to whether or not they want to extend their proposal for an additional period of time. Proposals meeting stated solicitation requirements will be evaluated by scientists or engineers knowledgeable in the topic area. Proposals will be evaluated first on their relevance to the chosen topic. Those found to be relevant will then be evaluated using the criteria listed in Section 4.2. Final decisions will be made by the DoD Component based upon these criteria and consideration of other factors including possible duplication of other work, and program balance. A DoD Component may elect to fund several or none of the proposed approaches to the same topic. In the evaluation and handling of proposals, every effort will be made to protect the confidentiality of the proposal and any evaluations. There is no commitment by the DoD Components to make any awards on any topic, to make a specific number of awards or to be responsible for any monies expended by the proposer before award of a contract.

For proposals that have been selected for contract award, a Government Contracting Officer will draw up an appropriate contract to be signed by both parties before work begins. Any negotiations that may be necessary will be conducted between the offeror and the Government Contracting Officer. It should be noted that only a duly appointed contracting officer has the authority to enter into a contract on behalf of the U.S. Government.

Phase II proposals will be subject to a technical review process similar to Phase I. Final decisions will be made by DoD Components based upon the scientific and technical evaluations and other factors, including a commitment for Phase III follow-on funding, the possible duplication with other research or research and development, program balance, budget limitations, and the potential of a successful Phase II effort leading to a product of continuing interest to DoD.

Upon written request and after final award decisions have been announced, a debriefing will be provided to unsuccessful offerors on their proposals.

4.2 Evaluation Criteria - Phase I

The DoD Components plan to select for award those proposals offering the best value to the government and the nation considering the following factors.

a. The soundness and technical merit of the proposed approach and its incremental progress toward topic or subtopic solution

b. The potential for commercial (government or private sector) application and the benefits expected to accrue from this commercialization

c. The adequacy of the proposed effort for the fulfillment of requirements of the research topic
d. The qualifications of the proposed principal/key investigators supporting staff and consultants. Qualifications include not only the ability to perform the research and development but also the ability to commercialize the results.

Where technical evaluations are essentially equal in merit, cost to the government will be considered in determining the successful offeror.

Technical reviewers will base their conclusions only on information contained in the proposal. It cannot be assumed that reviewers are acquainted with the firm or key individuals or any referenced experiments. Relevant supporting data such as journal articles, literature, including government publications, etc., should be contained or referenced in the proposal.

4.3 Evaluation Criteria - Phase II

The Phase II proposal will be reviewed for overall merit based upon the criteria below.

a. The soundness and technical merit of the proposed approach and its incremental progress toward topic or subtopic solution
b. The potential for commercial (government or private sector) application and the benefits expected to accrue from this commercialization
c. The adequacy of the proposed effort for the fulfillment of requirements of the research topic
d. The qualifications of the proposed principal/key investigators supporting staff and consultants. Qualifications include not only the ability to perform the research and development but also the ability to commercialize the results.

The reasonableness of the proposed costs of the effort to be performed will be examined to determine those proposals that offer the best value to the government. Where technical evaluations are essentially equal in merit, cost to the government will be considered in determining the successful offeror.

The follow-on funding commitment must provide that a specific amount of Phase III funds will be made available to or by the small business and indicate the dates the funds will be made available. It must also contain specific technical objectives which, if achieved in Phase II, will make the commitment exercisable by the small business. The terms cannot be contingent upon the obtaining of a patent due to the length of time this process requires. The funding commitment shall be submitted with the Phase II proposal.

Phase II proposal evaluation may include on-site evaluations of the Phase I effort by government personnel.

4.4 Assessing Commercial Potential of Proposals

A Phase I or Phase II proposal’s commercial potential can be evidenced by:
(1) the small business concern’s record of commercializing SBIR or other research
(2) the existence of second phase funding commitments from private sector or non-SBIR funding sources,
(3) the existence of third phase follow-on commitments for the subject of the research, or
(4) the presence of other indicators of commercial potential of the idea.

4.5 SBIR Fast Track

a. In General. On a two-year pilot basis, the DoD SBIR program will implement a fast-track SBIR process for companies which, during their Phase I projects, attract independent third-party investors that will match both phase II SBIR funding and interim SBIR funding (between Phases I and II). As discussed in detail below, companies which obtain such third-party matching funds and thereby qualify for the SBIR fast track will receive (subject to the qualifications described herein):

(1) Interim funding on the order of $40,000 (generally, $30,000 to $50,000) between Phases I and II;

(2) The Department’s highest priority for Phase II SBIR funding; and

(3) An expedited Phase II selection decision and, upon selection, an expedited Phase II award.

b. How To Qualify for the SBIR Fast Track. To qualify for the SBIR fast track, a company must submit the following items, within 120 days after the start of its Phase I project, to the same address the company would send its Phase II proposal (see back of Appendix D):

(1) A completed fast-track application form, found at Appendix D. (IMPORTANT: Please also send a copy to OSD SBIR -- see back of Appendix D.)

(2) A commitment letter from an independent third-party investor -- such as another company, a venture capital firm, an "angel" investor, or a non-SBIR government program -- indicating that the third-party investor will match both interim and Phase II SBIR funding, in cash, contingent upon the company's receipt of interim and Phase II SBIR funds. For guidance on what types of relationships between a small company and outside investors in the company meet the conditions for the Fast Track, see the DoD SBIR Home Page (http://www.acq.osd.mil/sadbu/sbir), or contact our Help Desk (tel. 800/382-4634).
The matching rates are as follows:

(a) For companies that have 10 or fewer employees and have never received a Phase II SBIR award from DoD or any other federal agency, the minimum matching rate is \(\frac{25}{100} \) cents for every SBIR dollar. (For example, if such a company receives an interim SBIR award of $40,000 and a Phase II award of $750,000, it must obtain matching funds of $10,000 and $187,500 respectively for the two awards.)

(b) For companies that have received 5 or more Phase II SBIR awards from the federal government (including DoD), the minimum matching rate is \(\frac{1}{10} \) dollar for every SBIR dollar. (For example, if such a company receives an interim SBIR award of $40,000 and a Phase II award of $750,000, it must obtain matching funds of $40,000 and $750,000 respectively for the two awards.)

(c) For all other companies, the minimum matching rate is \(\frac{50}{100} \) cents for every SBIR dollar. (For example, if such a company receives an interim SBIR award of $40,000 and a Phase II award of $750,000, it must obtain matching funds of $20,000 and $375,000 respectively for the two awards.)

The commitment letter should indicate that the third-party funds will pay for work that is connected to the particular SBIR project, and should describe the general nature of that work. The work funded by the third-party investor may be additional research and development on the project or, alternatively, it may be other activity related to the project (e.g., marketing) that is outside the scope of the SBIR contract.

(3) A concise statement of work for the interim SBIR effort (if an interim option was not previously negotiated on the Phase I contract). This statement of work should be under 4 pages in length.

(4) A concise report on the status of the Phase I project, if required by the DoD component that is funding the project. This report should be under 4 pages in length.

In addition:

(1) The company must submit its Phase II proposal no later than 30 days prior to completion of its Phase I project, unless a different deadline for fast-track Phase II proposals is specified in the Phase II proposal instructions of the sponsoring DoD component.

(2) If the company receives an interim and/or Phase II SBIR award from DoD, its matching funds must arrive before corresponding installments of SBIR funds are released. For example, a company whose matching rate is 50 cents to the dollar must certify, to the satisfaction of its DoD contracting officer, that it has received $20,000 in cash from the third-party investor before the contracting officer will release $40,000 in interim SBIR funds. Similarly, the company must certify that it has received $30,000 in third-party funds before the contracting officer will release a $60,000 installment of Phase II funds. (A simple letter stating that the third-party funds have arrived, with an attached copy of the bank statement, should generally suffice.)

Failure to meet these conditions in their entirety and within the time frames indicated will disqualify a company from participation in the SBIR fast track. The company will still be eligible to compete for a Phase II SBIR award through the regular procedures.

c. Benefits of Qualifying for the Fast Track. A company which qualifies for the fast track will:

(1) Receive interim SBIR funding on the order of $40,000 (generally, $30,000 to $50,000), commencing at the end of Phase I.

Note: It is DoD policy that the vast majority of Phase I contracts which qualify for the fast track will receive interim SBIR funding. However, the DoD contracting office has the discretion and authority, in any particular instance, to deny interim funding to a Phase I contractor when doing so is in the government's interest (e.g., when the project no longer meets a military need).

(2) Receive the Department's highest priority for Phase II award. Specifically, it is DoD policy that the percentage of fast-track Phase I projects which receive Phase II awards will be significantly higher than the overall percentage of Phase I projects which receive Phase II awards. (Historically, roughly one-third of Phase I projects at DoD receive Phase II awards.)

(3) Receive notification of whether it has been selected for a Phase II award, within an average of two months -- and, in all cases, no longer than ten weeks -- after the completion of its Phase I project.

(4) If selected, receive its Phase II award within an average of five months from the completion of its Phase I project.
5.0 CONTRACTUAL CONSIDERATIONS

Note: Eligibility and Limitation Requirements (Section 1.4) Will Be Enforced

5.1 Awards (Phase I)

a. Number of Phase I Awards. The number of Phase I awards will be consistent with the agency’s RDT&E budget, the number of anticipated awards for interim Phase I modifications, and the number of anticipated Phase II contracts. No Phase I contracts will be awarded until all qualified proposals (received in accordance with Section 6.2) on a specific topic have been evaluated. All proposers will be notified of selection/non-selection status for a Phase I award no later than May 8, 1997. The name of those firms selected for awards will be announced. \textit{The DoD Components anticipate making 460 Phase I awards from this solicitation.} On average, 1 in 8 Phase I proposals receive funding.

b. Type of Funding Agreement. All winning proposals will be funded under negotiated contracts and may include a fee or profit. The firm fixed price or cost plus fixed fee type contract will be used for all Phase I projects (see Section 5.4). \textit{Note: The firm fixed price contract is the preferred type for Phase I.}

c. Average Dollar Value of Awards. DoD Components will make Phase I awards to small businesses typically on a one-half person-year effort over a period generally not to exceed six months (subject to negotiation). PL 102-564 allows agencies to award Phase I contracts up to $100,000 without justification. Where applicable, specific funding instructions are contained in Section 8 for each DoD Component.

5.2 Awards (Phase II)

a. Number of Phase II Awards. The number of Phase II awards will depend upon the results of the Phase I efforts and the availability of funds. \textit{The DoD Components anticipate that approximately 40 percent of its Phase I awards will result in Phase II projects.}

b. Type of Funding Agreement. Each Phase II proposal selected for award will be funded under a negotiated contract and may include a fee or profit.

c. Project Continuity. Phase II proposers who wish to maintain project continuity must submit proposals no later than 30 days prior to the expiration date of the Phase I contract and must identify in their proposal the work to be performed for the first four months of the Phase II effort and the costs associated therewith. \textit{These Phase II proposers may be issued a modification to the Phase I contract, at the discretion of the government, covering an interim period not to exceed four months for preliminary Phase II work while the total Phase II proposal is being evaluated and a contract is negotiated. This modification would normally become effective at the completion of Phase I or as soon thereafter as possible. Funding, scope of work, and length of performance for this interim period will be subject to negotiations. Issuance of a contract modification for the interim period does not commit the government to award a Phase II contract. See special instructions for each DoD Component in Section 8. (For Phase I projects which qualify for the SBIR Fast Track, the instructions in Section 4.5 supersede those in this paragraph.)}

d. Average Dollar Value of Awards. Phase II awards will be made to small businesses based on results of the Phase I efforts and the scientific, technical, and commercial merit of the Phase II proposal. Average Phase II awards will typically cover 2 to 5 person-years of effort over a period generally not to exceed 24 months (subject to negotiation). PL 102-564 states that the Phase II awards may be up to $750,000 each without justification. \textit{See special instructions for each DoD Component in Section 8.}

5.3 Reports

a. Content. A final report is required for each Phase I project. The report must contain in detail the project objectives, work performed, results obtained, and estimates of technical feasibility. A completed SF 298, "Report Documentation Page", will be used as the first page of the report. In addition, Monthly status and progress reports may be required by the DoD agency. (A blank SF 298 is provided in Section 9.0, Reference D.)

b. Preparation.

(1) To avoid duplication of effort, language used to report Phase I progress in a Phase II proposal, if submitted, may be used verbatim in the final report with changes to accommodate results after Phase II proposal submission and modifications required to integrate the final report into a self-contained comprehensive and logically structured document.

(2) Block 12a (Distribution/Availability Statement) of the SF298, "Report Documentation Page" in each unclassified final report must contain one of the following statements:

(a) Approved for public release; distribution unlimited.

(b) Distribution authorized to U.S. Government Agencies only; contains proprietary information.

(3) Block 13 (Abstract) of the SF 298, "Report Documentation Page") must include as the first
sentence, "Report developed under SBIR contract". The abstract must identify the purpose of the work and briefly describe the work carried out, the finding or results and the potential applications of the effort. Since the abstract will be published by the DoD, it must not contain any proprietary or classified data.

(4) Block 14 (Subject Terms) of the SF 298 must include the term "SBIR Report".

c. Submission. SIX COPIES of the final report on each Phase I project shall be submitted to the DoD in accordance with the negotiated delivery schedule. Delivery will normally be within thirty days after completion of the Phase I technical effort. One copy of each unclassified report shall be delivered directly to the DTIC, ATTN: Document Acquisition, 8725 John J Kingman Road, Suite 0944, Ft. Belvoir, VA 22060-6218.

5.4 Payment Schedule

The specific payment schedule (including payment amounts) for each contract will be incorporated into the contract upon completion of negotiations between the DoD and the successful Phase I or Phase II offeror. Successful offerors may be paid periodically as work progresses in accordance with the negotiated price and payment schedule. Phase I contracts are primarily fixed price contracts, under which monthly progress payments may be made up to 90% of the contract price excluding fee or profit. The contract may include a separate provision for payment of a fee or profit. Final payment will follow completion of contract performance and acceptance of all work required under the contract. Other types of financial assistance may be available under the contract.

5.5 Markings of Proprietary or Classified Proposal Information

The proposal submitted in response to this solicitation may contain technical and other data which the proposer does not want disclosed to the public or used by the government for any purpose other than proposal evaluation.

Information contained in unsuccessful proposals will remain the property of the proposer except for Appendices A and B. The government may, however, retain copies of all proposals. Public release of information in any proposal submitted will be subject to existing statutory and regulatory requirements.

If proprietary information is provided by a proposer in a proposal which constitutes a trade secret, proprietary commercial or financial information, confidential personal information or data affecting the national security, it will be treated in confidence, to the extent permitted by law, provided this information is clearly marked by the proposer with the term "confidential proprietary information" and provided that the following legend which appears on the title page (Appendix A) of the proposal is completed:

"For any purpose other than to evaluate the proposal, this data except Appendix A and B shall not be disclosed outside the government and shall not be duplicated, used, or disclosed in whole or in part, provided that if a contract is awarded to the proposer as a result of or in connection with the submission of this data, the government shall have the right to duplicate, use or disclose the data to the extent provided in the contract. This restriction does not limit the government's right to use information contained in the data if it is obtained from another source without restriction. The data subject to this restriction is contained in page(s)_______ of this proposal."

Any other legend may be unacceptable to the government and may constitute grounds for removing the proposal from further consideration and without assuming any liability for inadvertent disclosure. The government will limit dissemination of properly marked information to within official channels.

In addition, each page of the proposal containing proprietary data which the proposer wishes to restrict must be marked with the following legend:

"Use or disclosure of the proposal data on lines specifically identified by an asterisk (•) are subject to the restriction on the cover page of this proposal."

The government assumes no liability for disclosure or use of unmarked data and may use or disclose such data for any purpose.

In the event properly marked data contained in a proposal in response to this solicitation is requested pursuant to the Freedom of Information Act, 5 USC 552, the proposer will be advised of such request and prior to such release of information will be requested to expeditiously submit to the DoD Component a detailed listing of all information in the proposal which the proposer believes to be exempt from disclosure under the Act. Such action and cooperation on the part of the proposer will ensure that any information released by the DoD Component pursuant to the Act is properly determined.

Those proposers that have a classified facility clearance may submit classified material with their proposal. Any classified material shall be marked and handled in accordance with applicable regulations. Arbitrary and unwarranted use of this restriction is discouraged. Offerors must follow the Industrial Security Manual for Safeguarding Classified Information (DoD 5220.22-M) procedures for marking and handling classified material.
5.6 Copyrights

To the extent permitted by statute, the awardee may copyright (consistent with appropriate national security considerations, if any) material developed with DoD support. DoD receives a royalty-free license for the Federal Government and requires that each publication contain an appropriate acknowledgement and disclaimer statement.

5.7 Patents

Small business firms normally may retain the principal worldwide patent rights to any invention developed with government support. The government receives a royalty-free license for its use, reserves the right to require the patent holder to license others in certain limited circumstances, and requires that anyone exclusively licensed to sell the invention in the United States must normally manufacture it domestically. To the extent authorized by 35 USC 205, the government will not make public any information disclosing a government-supported invention for a period of five years to allow the awardee to pursue a patent.

5.8 Technical Data Rights

Rights in technical data, including software, developed under the terms of any contract resulting from proposals submitted in response to this solicitation generally remain with the contractor, except that the government obtains a royalty-free license to use such technical data only for government purposes during the period commencing with contract award and ending five years after completion of the project under which the data were generated. Upon expiration of the five-year restrictive license, the government has unlimited rights in the SBIR data. During the license period, the government may not release or disclose SBIR data to any person other than its support services contractors except: (1) For evaluational purposes; (2) As expressly permitted by the contractor; or (3) A use, release, or disclosure that is necessary for emergency repair or overhaul of items operated by the government. See FAR clause 52.227-20, "Rights in Data - SBIR Program" and DFARS 252.227-7018, "Rights in Noncommercial Technical Data and Computer Software -- SBIR Program."

5.9 Cost Sharing

Cost sharing is permitted for proposals under this solicitation; however, cost sharing is not required nor will it be an evaluation factor in the consideration of any Phase I proposal.

5.10 Joint Ventures or Limited Partnerships

Joint ventures and limited partnerships are eligible provided the entity created qualifies as a small business as defined in Section 2.2 of this solicitation.

5.11 Research and Analytical Work

a. For Phase I a minimum of two-thirds of the research and/or analytical effort must be performed by the proposing firm unless otherwise approved in writing by the contracting officer.

b. For Phase II a minimum of one-half of the research and/or analytical effort must be performed by the proposing firm, unless otherwise approved in writing by the contracting officer.

5.12 Contractor Commitments

Upon award of a contract, the contractor will be required to make certain legal commitments through acceptance of government contract clauses in the Phase I contract. The outline that follows is illustrative of the types of provisions required by the Federal Acquisition Regulations that will be included in the Phase I contract. This is not a complete list of provisions to be included in Phase I contracts, nor does it contain specific wording of these clauses. Copies of complete general provisions will be made available prior to award.

a. Standards of Work. Work performed under the contract must conform to high professional standards.

b. Inspection. Work performed under the contract is subject to government inspection and evaluation at all reasonable times.

c. Examination of Records. The Comptroller General (or a fully authorized representative) shall have the right to examine any directly pertinent records of the contractor involving transactions related to this contract.

d. Default. The government may terminate the contract if the contractor fails to perform the work contracted.

e. Termination for Convenience. The contract may be terminated at any time by the government if it deems termination to be in its best interest, in which case the contractor will be compensated for work performed and for reasonable termination costs.

f. Disputes. Any dispute concerning the contract which cannot be resolved by agreement shall be decided by the contracting officer with right of appeal.
g. Contract Work Hours. The contractor may not require an employee to work more than eight hours a day or forty hours a week unless the employee is compensated accordingly (that is, receives overtime pay).

h. Equal Opportunity. The contractor will not discriminate against any employee or applicant for employment because of race, color, religion, sex, or national origin.

i. Affirmative Action for Veterans. The contractor will not discriminate against any employee or applicant for employment because he or she is a disabled veteran or veteran of the Vietnam era.

j. Affirmative Action for Handicapped. The contractor will not discriminate against any employee or applicant for employment because he or she is physically or mentally handicapped.

k. Officials Not to Benefit. No member of or delegate to Congress shall benefit from the contract.

l. Covenant Against Contingent Fees. No person or agency has been employed to solicit or secure the contract upon an understanding for compensation except bona fide employees or commercial agencies maintained by the contractor for the purpose of securing business.

m. Gratuities. The contract may be terminated by the government if any gratuities have been offered to any representative of the government to secure the contract.

n. Patent Infringement. The contractor shall report each notice or claim of patent infringement based on the performance of the contract.

o. Military Security Requirements. The contractor shall safeguard any classified information associated with the contracted work in accordance with applicable regulations.

p. American Made Equipment and Products. When purchasing equipment or a product under the SBIR funding agreement, purchase only American-made items whenever possible.

5.13 Additional Information

a. General. This Program Solicitation is intended for information purposes and reflects current planning. If there is any inconsistency between the information contained herein and the terms of any resulting SBIR contract, the terms of the contract are controlling.

b. Small Business Data. Before award of an SBIR contract, the government may request the proposer to submit certain organizational, management, personnel, and financial information to confirm responsibility of the proposer.

c. Proposal Preparation Costs. The government is not responsible for any monies expended by the proposer before award of any contract.

d. Government Obligations. This Program Solicitation is not an offer by the government and does not obligate the government to make any specific number of awards. Also, awards under this program are contingent upon the availability of funds.

e. Unsolicited Proposals. The SBIR Program is not a substitute for existing unsolicited proposal mechanisms. Unsolicited proposals will not be accepted under the SBIR Program in either Phase I or Phase II.

f. Duplication of Work. If an award is made pursuant to a proposal submitted under this Program Solicitation, the contractor will be required to certify that he or she has not previously been, nor is currently being, paid for essentially equivalent work by an agency of the Federal Government.

g. Classified Proposals. If classified work is proposed or classified information is involved, the offeror to the solicitation must have, or obtain, security clearance in accordance with the Industrial Security Manual for Safeguarding Classified Information (DoD 5220.22M).
6.0 SUBMISSION OF PROPOSALS

An original plus (4) copies of each proposal or modification will be submitted, in a single package, as described below, unless otherwise stated by specific instructions in Section 8.0.

NOTE: THE ORIGINAL OF EACH PROPOSAL MUST CONTAIN A COMPLETED APPENDIX A (COVER SHEET), APPENDIX B (PROJECT SUMMARY), AND APPENDIX E (COMPANY COMMERCIALIZATION REPORT).

6.1 Address

Each proposal or modification package must be addressed to that DoD Component address which is identified for the specific topic in that Component’s subsection of Section 8.0 to this solicitation.

The name and address of the offeror, the solicitation number and the topic number for the proposal must be clearly marked on the face of the envelope or wrapper.

Mailed or handcarried proposals must be delivered to the address indicated for each topic. Secured packaging is mandatory. The DoD Component cannot be responsible for the processing of proposals damaged in transit.

All copies of a proposal must be sent in the same package. Do not send separate information copies or several packages containing parts of the single proposal.

6.2 Deadline of Proposals

Deadline for receipt of proposals at the DoD Component is 2:00 p.m. local time, January 8, 1997. Any proposal received at the office designated in the solicitation after the exact time specified for receipt will not be considered unless it is received before an award is made, and: (a) it was sent by registered or certified mail not later than January 1, 1997 or (b) it was sent by mail and it is determined by the government that the late receipt was due solely to mishandling by the government after receipt at the government installation.

Note: There are no other provisions for late receipt of proposals under this solicitation.

The only acceptable evidence to establish (a) the date of mailing of a late-received proposal sent either by registered mail or certified mail is the U.S. Postal Service postmark on the wrapper or on the original receipt from the U.S. Postal Service. If neither postmark shows a legible date, the proposal shall be deemed to have been mailed late. The term postmark means a printed, stamped, or otherwise placed impression (exclusive of a postage meter machine impression) that is readily identifiable without further action as having been supplied and affixed on the date of mailing by employees of the U.S. Postal Service.

Therefore, offerors should request the postal clerk to place a hand cancellation bull’s-eye postmark on both the receipt and the envelope or wrapper; (b) the time of receipt at the government installation is the time-date stamp of such installation on the proposal wrapper or other documentary evidence of receipt maintained by the installation.

Proposals may be withdrawn by written notice or a telegram received at any time prior to award. Proposals may also be withdrawn in person by an offeror or his authorized representative, provided his identity is made known and he signs a receipt for the proposal. (NOTE: the term telegram includes mailgrams.)

Any modification or withdrawal of a proposal is subject to the same conditions outlined above. Any modification may not make the proposal longer than 25 pages (excluding Company Commercialization Report). Notwithstanding the above, a late modification of an otherwise successful proposal which makes its terms more favorable to the government will be considered at any time it is received and may be accepted.

6.3 Notification of Proposal Receipt

Proposers desiring notification of receipt of their proposal must complete and include a self-addressed stamped envelope and a copy of the notification form (Reference A) in the back of this brochure. If multiple proposals are submitted, a separate form and envelope is required for each. Notification of receipt of a proposal by the government does not by itself constitute a determination that the proposal was received on time or not. The determination of timeliness is solely governed by the criteria set forth in Section 6.2.

6.4 Information on Proposal Status

Evaluation of proposals and award of contracts will be expedited, but no information on proposal status will be available until the final selection is made. However, contracting officers may contact any and all qualified proposers prior to contract award.

6.5 Debriefing of Unsuccessful Offerors

Upon written request and after final award decisions have been announced, a debriefing will be provided to unsuccessful offerors for their proposals.

6.6 Correspondence Relating to Proposals

All correspondence relating to proposals should cite the SBIR solicitation number and specific topic number and should be addressed to the DoD Component whose address is associated with the specific topic number.
7.0 SCIENTIFIC AND TECHNICAL INFORMATION ASSISTANCE

7.1 DoD Technical Information Services Available

Recognizing that small businesses may not have strong technical information service support, the Defense Technical Information Center (DTIC) provides information access, much of it at no cost, to assist SBIR participants in bid-making decisions and in the preparation of proposals.

DTIC, a major component of the DoD Scientific and Technical Information Program, serves DoD as well as other federal agencies and their contractors by managing the technical information resulting from DoD-funded research and development.

DTIC also provides access to specialized reference services and subject matter expertise within the DoD-sponsored Centers for Analysis of Scientific and Technical Information (CAs) which are concerned with engineering, technical and scientific documents and databases worldwide.

For the majority of SBIR topics, DTIC prepares a Technical Information Package (TIP), a bibliographic listing of DoD-funded work in technical areas relating to the topic. TIPs also may include information provided by the topic author and references to other information sources.

Firms participating in SBIR are strongly encouraged to request the TIPs for their solicitation topic areas. Requests can be made online via the DTIC SBIR Home Page on Internet, by sending Reference B at the back of this solicitation, or by telephone, fax, or email.

DTIC will return requested material, along with a user code, good for the remainder of the fiscal year for use in obtaining additional information or technical reports. A firm may receive a total of ten technical reports at no cost from DTIC during a solicitation period. Additional reports, custom bibliographies, and services outside the solicitation period may be charged to a major credit card or an NTIS deposit account.

Internet services, accessed via the DTIC SBIR Home Page (http://www.dtic.mil/dtic/sbir), include TIPs as well as current DoD SBIR and STTR Solicitations and Award Abstracts publications. Solicitation and awards information is also accessible via gopher (gopher.dtic.mil) on port 70, or file transfer (asc.dtic.mil). The FTP login is "anonymous", password is your E-Mail address, SBIR files are in the /pub/sbir directory. Also on Internet is SITIS for technical questions and answers concerning DoD topic descriptions. See section 7.2 for a complete description of this important service.

Call, or visit (by prearrangement) DTIC at the location most convenient to you. Written communications must be made to the Ft. Belvoir, Va., address.

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
(703) 767-8228 (FAX)
EMail sbir@dtic.mil
WWW http://www.dtic.mil/dtic/sbir

DTIC Boston Regional Office
Building 1103, 5 Wright Street
Hanscom AFB
Bedford, MA 01731-5000
(617) 377-2413

DTIC Albuquerque Regional Office
PL/SUL
3550 Aberdeen Ave, SE
Kirtland AFB, NM 87117-6008
(505) 846-6797

DTIC Dayton Regional Office
2690 C Street, Suite 4
Wright-Patterson AFB, OH 45433-7552
(513) 255-7905

DTIC Los Angeles Regional Office
222 N. Sepulveda Blvd., Suite 906
El Segundo, CA 90245-4320
(310) 335-4170

7.2 SBIR Interactive Topic Information System (SITIS)

Small businesses may ask technical questions about the solicitation topics in Section 8 by using the DTIC/MATRIX
SBIR Interactive Topic Information System (SITIS), an anonymous electronic forum between participant small businesses and the DoD scientists and engineers assigned to SBIR topics. SITIS should NOT be used to ask general questions about the program or solicitation, which instead should be directed to (800) 382-4634 (SBIR Hotline).

SITIS is accessible through the DoD SBIR/STTR Home Page (http://www.acq.osd.mil/sadbu/sbir) -- see shortcut menu at the top of the page. Technical questions about solicitation topics can also be submitted via e-mail, fax, paper mail, or telephone by contacting the SBIR Coordinator at:
Defense Technical Information Center
MATRIS Office, DTIC-AM
ATTN: SBIR Coordinator
53355 Cole Rd.
San Diego, CA 92152-7213
Phone: (619) 553-7006
Fax: (619) 553-7053
Email: sbir@dticam.dtic.mil
WWW: http://dticam.dtic.mil

SITIS electronically posts all questions and answers by topic number, for general viewing, throughout the pre-solicitation and solicitation period. Answers are generally posted within seven working days of question submission. (Answers will also be emailed or faxed directly to the inquirer if the inquirer provides an email address or fax number.) NOTE: Questions will be accepted until 30 days before the solicitation closing date.

In addition to managing SITIS, the MATRIS Office also provides information services in the areas of manpower, personnel, training and simulation, human factors, and safety.

7.3 Other Technical Information Assistance Sources

Other sources provide technology search and/or document services and can be contacted directly for service and cost information. These include:

National Technical Information Services
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4600 (PH)/ (703) 321-8547 (FAX)

University of Southern California
Technology Transfer Center
3716 South Hope Street, Suite 200
Los Angeles, CA 90007-4344
(800) 872-7477 (outside CA)
(213) 743-6132
(213) 746-9043 (FAX)

Center for Technology Commercialization
Massachusetts Technology Park
100 North Drive
Westborough, MA 01581
(508) 870-0042
(508) 366-0101 (FAX)

Great Lakes Technology Transfer Center/Battelle
25000 Great Northern Corporate Center, Suite 260
Cleveland, OH 44070
(216) 734-0094
(216) 734-0686 (FAX)

Midcontinent Technology Transfer Center
Texas Engineering Experiment Station
The Texas A&M University System
301 Tarrow, Suite 119
College Station, TX 77843-8000
(409) 845-8762
(409) 845-3559 (FAX)

Mid-Atlantic Technology Applications Center
University of Pittsburgh
823 William Pitt Union
Pittsburgh, PA 15260
(800) 257-2725
(412) 648-7000
(412) 648-7003 (FAX)

Southern Technology Application Center
University of Florida, College of Engineering
Box 24, One Progress Boulevard
Alachua, FL 32615
(904) 462-3913
(800) 225-0308 (outside FL)
(904) 462-3898 (FAX)

Federal Information Exchange, Inc.
555 Quince Orchard Road, Suite 200
Gaithersburg, MD 20878
(301) 975-0103
(301) 975-0109 (FAX)

7.4 DoD Counseling Assistance Available

Small business firms interested in participating in the SBIR Program may seek general administrative guidance from small and disadvantaged business utilization specialists located in various Defense Contract Management activities throughout the continental United States. These specialists are available to discuss general administrative requirements to facilitate the submission of proposals and ease the entry of the small high technology business into the Department of Defense marketplace. The small and disadvantaged business utilization specialists are expressly prohibited from taking any action which would give an offeror an unfair advantage over others, such as discussing or explaining the technical requirements of the solicitation, writing or discussing technical or cost proposals, estimating cost or any other actions which are the offerors responsibility as outlined in this solicitation. (See Reference C at the end of this solicitation for a complete listing, with telephone numbers, of Small and Disadvantaged Business Utilization Specialists assigned to these activities.)

7.5 State Assistance Available

Many states have established programs to provide services to those small firms and individuals wishing to
participate in the Federal SBIR Program. These services vary from state to state, but may include:
- Information and technical assistance;
- Matching funds to SBIR recipients;
- Assistance in obtaining Phase III funding.
Contact your State Government Office of Economic Development for further information.

8.0 TECHNICAL TOPICS

Section 8 contains detailed topic descriptions outlining the technical problems for which DoD Components request proposals for innovative R&D solutions from small businesses. Topics for each participating DoD Component are listed and numbered separately. Each DoD Component Topic Section contains topic descriptions, addresses of organizations to which proposals are to be submitted, and special instructions for preparing and submitting proposals to organizations within the component. Read and follow these instructions carefully to help avoid administrative rejection of your proposal.

<table>
<thead>
<tr>
<th>Component Topic Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navy</td>
<td>NAVY 1-66</td>
</tr>
<tr>
<td>AF</td>
<td>AF 1-210</td>
</tr>
<tr>
<td>DARPA</td>
<td>DARPA 1-35</td>
</tr>
<tr>
<td>DSWA</td>
<td>DSWA 1-15</td>
</tr>
<tr>
<td>BMDO</td>
<td>BMDO 1-7</td>
</tr>
<tr>
<td>SOCOM</td>
<td>SOCOM 1-5</td>
</tr>
</tbody>
</table>

Appendices A, B, C, D and E follow the Component Topic Sections. Appendix A is a red-printed Proposal Cover Sheet, Appendix B is a red-printed Project Summary form, Appendix C is an outline for the Cost Proposal, Appendix D is the Fast Track Application Form, and Appendix E is the Company Commercialization Report. A completed copy of Appendix A, Appendix B, and Appendix E, as well as a completed Cost Proposal, must be included with each proposal submitted.

Many of the topics in Section 8 contain references to technical literature or military standards, which may be accessed as follows:

- References with "AD" numbers are available from DTIC, by calling 800/DoD-SBIR or sending an e-mail message to sbir@dtic.dla.mil
- References with "MIL-STD" numbers are available from the DoD Index of Specifications and Standards (DODISS) at Internet address http://www.dtic.mil/dps-phia/dodiss
- Other references can be found in your local library or at locations mentioned in the reference.
NAVY
Proposal Submission

The responsibility for the implementation, administration and management of the Navy SBIR program is with the Office of Naval Research (ONR). The Navy SBIR Program Manager is Mr. Vincent D. Schaper. Inquiries of a general nature may be brought to the Navy SBIR Program Manager’s attention and should be addressed to:

Office of Naval Research
ATTN: Mr. Vincent D. Schaper
ONR 362 SBIR
800 North Quincy Street
Arlington, VA 22217-5660
(703) 696-8528

The Navy’s SBIR program is a mission-oriented program which integrates the needs and requirements of the Navy primarily topics which are critical technologies and have science and technology dual-use potential. A total of 31 Science and Technology (S&T) areas have been identified (see Table 1). Navy topics will be funded from these areas according to a priority it has established to meet its mission goals and responsibilities.

PROPOSAL SUBMISSION:

There are two ways to submit your SBIR proposal to the Navy. The Navy WILL NOT accept the Red Forms in the rear of this book as valid proposal submission forms of the Appendix A and B. Instead proposers must do one of the following (but not both):

1) Generate the Appendix A and B from the Navy SBIR Appendix A and B program, available from the Navy SBIR Bulletin Board (through the Internet) or request a disk copy from the above address (please specify th platform PC, Mac or Unix); print and sign the Appendix A and B form; submit signed form along with one original proposal text and four copies of your entire proposal (Appendix A&B and proposal text) together with a diskette containing the .dat file generated from the Navy SBIR Appendix A and B program to the Navy SBIR Program Office at the above address. (Please note we do not want the entire proposal text on diskette, just the Appendix A and B.)

2) Submit the Appendix A and B via the Internet, print and sign the Appendix A and B form; and submit signed form along with one original and four copies of your entire proposal to the Navy SBIR Program Office at the above address. To accomplish this, click on Business Opportunities on the ONR Homepage (address -- http://www.onr.navy.mil) and then go to the Navy SBIR On Line Submission Interface, click on that sentence and Appendix A&B will open up. Make sure that you follow instructions to complete the electronic transfer of the appendcies.

Navy SBIR Bulletin Board
To gain access to the Navy SBIR Bulletin Board, click on Business Opportunities on the ONR Homepage (address -- http://www.onr.navy.mil) and then on Navy SBIR Bulletin Board. Once on the Bulletin Board go to the Current Navy SBIR Solicitation and download text, forms and compression files on your computer of the Navy Appendix A and B program, or submit your Appendix A and B via the Internet.

About Navy Submissions and This Solicitation:

This solicitation contains a mix of topics. When preparing your proposal keep in mind that Phase I should address the feasibility of the solution to the topic. Be sure that you clearly identify the topic your proposal is addressing. Phase II is the demonstration of the technology that was found feasible in Phase I. Only those Phase I awardees which have been invited to submit a Phase II proposal by the Navy technical point of contact (TPOC) during or at the end of a successful Phase I effort will be eligible to participate for a Phase II award. If you have been invited to submit a Phase II proposal to the Navy TP0C get a copy of the Phase II instructions from the Navy SBIR Bulletin Board on the Internet. All Phase I and Phase II proposals should be sent to the Navy SBIR Program Office (at the above address) for proper processing. Phase III efforts should also be reported to the SBIR program office noted above.

NAVY-1
The Navy will provide potential awardees the opportunity to reduce the gap between Phases I and II if they provide a $70,000 maximum feasibility Phase I proposal and a fully costed, well defined ($30,000 maximum) Phase I Option to the Phase I. The Navy will not award Phase I contracts in excess of $70,000 (exclusive of the Phase I option). The Phase I Option should be the initiation of the demonstration phase of the SBIR project (i.e. initial part of Phase II). The Navy will also offer a “fast track” into Phase II to those companies that successfully obtain third party cash partnership funds (“fast track” is described in Section 4.5 of this solicitation). When you submit a Phase II proposal it should consist of three elements: 1) a $600,000 maximum demonstration phase of the SBIR project (i.e. Phase II); 2) a transition or marketing plan (formally called a “commercialization plan”) describing how, to whom and at what stage you will market your technology to the government and private sector; 3) a Phase II Option ($150,000 maximum) which would be a fully costed and well defined section describing a test and evaluation plan for further R&D if the transition plan is evaluated as being successful. While Phase I proposals with the option will adhere to the 25 page limit (section 3.3), Phase II proposals together with the Phase II Option will be limited to 40 pages. The transition plan should be in a separate document.

The Navy will evaluate and select Phase I proposals using scientific review criteria based upon technical merit and other criteria as discussed in this solicitation document. Due to limited funding, the Navy reserves the right to limit awards under any topic and only proposals considered to be of superior quality will be funded.

TABLE 1. NAVY MISSION CRITICAL SCIENCE AND TECHNOLOGY AREAS

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Propulsion and Power</td>
<td>Computer Sciences</td>
</tr>
<tr>
<td>Aerospace Vehicles</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Chemical and Biological Defense</td>
<td>Cognitive and Neural Sciences</td>
</tr>
<tr>
<td>Command, Control, and Communications</td>
<td>Biology and Medicine</td>
</tr>
<tr>
<td>Computers</td>
<td>Terrestrial Sciences</td>
</tr>
<tr>
<td>Conventional Weapons</td>
<td>Atmospheric and Space Science</td>
</tr>
<tr>
<td>Electron Devices</td>
<td>Ocean Science</td>
</tr>
<tr>
<td>Electronic Warfare</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Environmental Quality and Civil Engineering</td>
<td>Physics</td>
</tr>
<tr>
<td>Human-System Interfaces</td>
<td>Electronics</td>
</tr>
<tr>
<td>Manpower and Personnel</td>
<td>Materials</td>
</tr>
<tr>
<td>Materials and Structures</td>
<td>Mechanics</td>
</tr>
<tr>
<td>Medical</td>
<td>Environmental Science</td>
</tr>
<tr>
<td>Sensors</td>
<td>Manufacturing Science</td>
</tr>
<tr>
<td>Surface/Undersurface Vehicles</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>Training Systems</td>
<td></td>
</tr>
</tbody>
</table>

NAVY-2
DEPARTMENT OF NAVY 97.1 SBIR TOPIC INDEX

MARINE CORPS SYSTEMS COMMAND

N97-001 Systems and Technologies for Future Amphibious Warfare
N97-002 COSITE Interference Mitigation Device
N97-003 Lightweight Expeditionary Engineering Materials
N97-004 Development of New Wheel/Tire Concepts for Medium (10T-25T)/Heavy (25T-40T) Ground Combat Vehicles
N97-005 JP8/Diesel Fueled Motorcycle

NAVAL AIR SYSTEMS COMMAND

N97-006 Development of a 532 nm Narrowband Optical Filter
N97-007 High Speed Optical Modulator for High Capacity Systems
N97-008 Development of Large Area Ultra-High Speed Photo Detectors with Wide Dynamic Range
N97-009 Improved Method of Measuring Ocean Water Characteristics
N97-010 Sensor Fusion Engine
N97-011 Mass Memory Device for Commercial Air Flight Corridors
N97-012 Fiber Optic Microchip Couplers for Ribbon Interconnect Systems
N97-013 Plastic Optics for Low Cost Optical Computer Motherboards
N97-014 Investigation of Optimum Logic and Algorithms for Airborne Use of Instantaneous Frequency Measurement (IFM) Receivers in the Look-through (LT) Mode of Operation
N97-015 Low Cost Silicon Based Color Displays
N97-016 Active Control of Vibration and Shock Loading for Rack Mounted Avionics Components
N97-017 Nondestructive Inspection of Tire Sidewalls
N97-018 Woven Hybrid Inserts for Lightweight Affordable Aircraft Structures.
N97-020 Integration of 3-D Woven Preforms into 2-D Laminates
N97-021 Low Cost/Light Weight Composite Structural Components
N97-022 Lightweight Non-Corroding Coupling Mechanisms
N97-023 Reduction of Noise and Vibration Stresses on Tactical Aircraft Flight Crews
N97-024 Tools for Measuring Training Effectiveness
N97-025 Aircrew Ejection Windblast Protection
N97-026 New Materials for Advanced Performance, Fireball Heat Resistant, Emergency Egress Parachute Systems
N97-027 Non-Explosive Emergency Parachute Automatic Actuating Device (AAD)
N97-028 Optimized Recovery Systems Control
N97-029 Gas Turbine High Cycle Fatigue (HCF) Detection, Measurement and Control
N97-030 In-Field Composite Damage Assessment
N97-031 Increase Aircraft Firefighter Visual Acuity
N97-032 NDE of Marcelling in Composites
N97-033 Composite Moisture Sensor
N97-034 Destruction of Hazardous Wastes using Solar Energy
N97-035 Spatial Light Modulation Technology for Training Applications
N97-036 Adjustable Collimation for Head-Mounted Displays.
N97-037 Stiff Micro Force Transducer with High Frequency Response
N97-038 Registration of Forward Looking Imagery
N97-039 Minimization of Hinge Moment for Missile Control Fin
N97-040 An Optimized Design and Coupling Analysis Tool for Conformal Antennas on Treated Platforms
N97-041 Next-Generation Real-Time Threat Simulator for Weapon and EW Systems Simulation
N97-042 Integrated Multi-Spectral Modeling For Surveillance, EW and Mission Planning Applications
N97-043 Automatic Battle Damage Assessment in Remotely Sensed Imagery
N97-044 High-Performance Microwave Imaging and Target Recognition Techniques
N97-045 Laser Interferometer for TCLE Measuring of Polymeric Material
N97-046 Local & Global Multiscale Feature Extraction Using A Library Of Wavelet Bases

NAVAL SEA SYSTEMS COMMAND

N97-047 Type 18 Periscope Heated Head Window
N97-049 Diagnostic Measures of Complex Cognitive Skills
N97-050 The Use of Virtual LANs (VLANs) for Multiple Level Security (MLS)
N97-051 Spherical Angular Function (SAF) Analysis Models for Integrated Antenna/Composite Structures
N97-052 Fiber Optic Sensor Multiplexer using Microelectromechanical Systems (MEMS) Technology

NAVY-4
N97-053 Distributed Integrated Data Interface & Management System
N97-054 Missile Fuel Leak Detection
N97-055 All Optical Shipboard Sensing System
N97-056 Detection of Corrosion Under Paint
N97-057 Advanced Display Techniques For Sonar Data Presentations
N97-058 Develop a Generic Structural Composite Material to Meet MIL-STD-2031
N97-059 Design of Optimal Outboard Electrical Cables
N97-060 Compression Filter
N97-061 Develop a Triaxial Gradiometer
N97-062 Improved Mid-Frequency Statistical Energy Analysis Modeling Procedures
N97-063 Dielectric Mix Ratio Sensor
N97-065 Improved Hull Form Patrol Combatant
N97-066 Engineering Models of Reactive Munitions and Damage Effects
N97-067 Low-Cost, High-Performance Propulsion Components for TMD Missiles
N97-068 Thin, Lightweight, Broad Band Microwave Absorbing Material
N97-069 Advanced Cable Connector Concepts
N97-070 Distributed EMCON and Frequency Plan Performance Monitor
N97-071 IR Countermeasures with Ultrabroadband Pulses
N97-072 Integrated Weapon Guidance
N97-073 Low Cost Compact Phased Array Radar
N97-074 Advanced Reactive Intermetallic Propellants for Dual Use
N97-075 Optical Delay Line Correlator
N97-076 High Resolution Atmospheric Data Retrieval
N97-077 Atmospheric Data Assimilation System
N97-079 Advance Signal Identification (ID) Device
N97-080 Multi-Resolution Feature Imager
N97-081 Photonic Crystals for Laser Applications
N97-082 Semi-Active or Active Highly Accurate Homing and Robust Tracking System for Agile Missile Guidance
N97-083 CANCELED

N97-084 Towed Array Technology Communication Link Bandwidth Expansion
N97-085 Low Power Long Wave Infrared Laser Sources
N97-086 Technology Insertion for Acoustic Countermeasures
N97-087 Covert Underwater Communications
N97-088 High-Frequency Brushless Motor Technology
N97-089 Submarine-Based System for Detecting Ocean-Penetrating Laser Radar
N97-090 Full Band Acoustic Localization Processing
N97-091 Towed Array Localization
N97-092 Fiber Optic Measurement of Towed Array Shape
N97-093 Doped PMN-PT Single Crystals
N97-094 SC 21 Ship Information Systems Virtual Prototyping
N97-095 Software for Automated Electronic Classroom Implementation

NAVAL MEDICAL RESEARCH and DEVELOPMENT COMMAND

N97-096 Process Improvement/Enhancement System For Critical Care Medicine

OFFICE OF NAVAL RESEARCH

N97-097 Sensors and Components for Underwater All-Optical Arrays
N97-098 Biologically Inspired Processor for Contact Data Association
N97-099 Reflective Liquid Crystal Display Utilizing Conducting Polymer Substrate
<table>
<thead>
<tr>
<th>KEYWORD</th>
<th>TOPIC NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>accelerometers</td>
<td>97</td>
</tr>
<tr>
<td>acoustic communications</td>
<td>87</td>
</tr>
<tr>
<td>acoustic signal processing</td>
<td>90</td>
</tr>
<tr>
<td>active signature control</td>
<td>70</td>
</tr>
<tr>
<td>affordability</td>
<td>15, 35, 84, 86, 88, 91, 94, 97</td>
</tr>
<tr>
<td>Airflow Stagnation</td>
<td>25</td>
</tr>
<tr>
<td>airways</td>
<td>11</td>
</tr>
<tr>
<td>algorithm</td>
<td>43, 77, 80, 98</td>
</tr>
<tr>
<td>All Terrain</td>
<td>5</td>
</tr>
<tr>
<td>Alogarithms</td>
<td>2</td>
</tr>
<tr>
<td>Alternate Fuel</td>
<td>5</td>
</tr>
<tr>
<td>Antenna Coupling</td>
<td>2, 51</td>
</tr>
<tr>
<td>Antenna Impedance</td>
<td>2</td>
</tr>
<tr>
<td>Antenna Isolation</td>
<td>2, 68</td>
</tr>
<tr>
<td>Antenna Pattern Degradation</td>
<td>51</td>
</tr>
<tr>
<td>antenna polarization</td>
<td>68</td>
</tr>
<tr>
<td>AOD</td>
<td>27</td>
</tr>
<tr>
<td>architecture</td>
<td>2, 53, 73, 86, 94, 95</td>
</tr>
<tr>
<td>assimilation</td>
<td>77, 98</td>
</tr>
<tr>
<td>atmosphere</td>
<td>77, 89</td>
</tr>
<tr>
<td>atmospheric data</td>
<td>76, 77</td>
</tr>
<tr>
<td>atmospheric measurement techniques</td>
<td>76</td>
</tr>
<tr>
<td>Automated Electronic Classroom</td>
<td>95</td>
</tr>
<tr>
<td>avionics reliability</td>
<td>16</td>
</tr>
<tr>
<td>Battle Damage Assessment</td>
<td>43</td>
</tr>
<tr>
<td>Beam Forming</td>
<td>73</td>
</tr>
<tr>
<td>Beam Steering</td>
<td>73</td>
</tr>
<tr>
<td>Bit Error Rate</td>
<td>2</td>
</tr>
<tr>
<td>blended control</td>
<td>72</td>
</tr>
<tr>
<td>Broadband Noise</td>
<td>2</td>
</tr>
<tr>
<td>cable</td>
<td>7, 9, 12, 55, 59, 69, 84</td>
</tr>
<tr>
<td>Cable Design</td>
<td>59</td>
</tr>
<tr>
<td>carbides</td>
<td>67</td>
</tr>
<tr>
<td>Change Detection</td>
<td>43, 46</td>
</tr>
<tr>
<td>classification</td>
<td>46, 79</td>
</tr>
<tr>
<td>coatings</td>
<td>56, 64</td>
</tr>
<tr>
<td>Cognitive Assessment</td>
<td>24, 49</td>
</tr>
<tr>
<td>Collimation</td>
<td>36</td>
</tr>
<tr>
<td>Combat Vehicles</td>
<td>2, 4</td>
</tr>
<tr>
<td>command and control</td>
<td>1, 53, 70</td>
</tr>
<tr>
<td>Commercial aircraft</td>
<td>11-13, 16, 17, 20, 21, 25, 28, 47</td>
</tr>
<tr>
<td>communication bandwidth</td>
<td>84</td>
</tr>
<tr>
<td>communications</td>
<td>7, 8, 11, 14, 42, 55, 68, 70, 81, 85, 87</td>
</tr>
<tr>
<td>components</td>
<td>16, 18, 21, 29, 35, 37, 44, 62-64, 67, 72, 73, 82, 97</td>
</tr>
<tr>
<td>composite material processing</td>
<td>32</td>
</tr>
<tr>
<td>Composite repair</td>
<td>33</td>
</tr>
<tr>
<td>composites</td>
<td>18, 20, 30, 32, 39, 58, 67</td>
</tr>
<tr>
<td>compressor</td>
<td>29</td>
</tr>
<tr>
<td>Computer Based Training</td>
<td>95</td>
</tr>
<tr>
<td>computer tools</td>
<td>53</td>
</tr>
<tr>
<td>computing</td>
<td>52, 55, 94</td>
</tr>
<tr>
<td>Conformal Antennas</td>
<td>40</td>
</tr>
</tbody>
</table>

NAVY-7
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>connector</td>
<td>13, 59, 69</td>
</tr>
<tr>
<td>Construction</td>
<td>3, 21, 23, 30, 34, 55, 67</td>
</tr>
<tr>
<td>control</td>
<td>1, 2, 13-16, 25, 28-30, 39, 44, 51, 53, 57, 63, 67, 69-75, 82, 95, 97, 98</td>
</tr>
<tr>
<td>Control Systems</td>
<td>2, 13, 15, 28, 29, 67, 74, 82</td>
</tr>
<tr>
<td>Correlators</td>
<td>75</td>
</tr>
<tr>
<td>corrosion</td>
<td>19, 21, 22, 56, 64, 69</td>
</tr>
<tr>
<td>COSITE</td>
<td>2</td>
</tr>
<tr>
<td>countermeasures</td>
<td>2</td>
</tr>
<tr>
<td>Coupling</td>
<td>71, 86</td>
</tr>
<tr>
<td>covert communications</td>
<td>2, 22, 40, 51, 93</td>
</tr>
<tr>
<td>curvature</td>
<td>87</td>
</tr>
<tr>
<td>dampening</td>
<td>21, 40, 92</td>
</tr>
<tr>
<td>data assimilation</td>
<td>16</td>
</tr>
<tr>
<td>Data Presentation</td>
<td>77, 98</td>
</tr>
<tr>
<td>Data Processing</td>
<td>57</td>
</tr>
<tr>
<td>Data Processing</td>
<td>44, 53, 72, 98</td>
</tr>
<tr>
<td>Decelerators</td>
<td>28</td>
</tr>
<tr>
<td>Deflectors</td>
<td>25</td>
</tr>
<tr>
<td>demodulators</td>
<td>97</td>
</tr>
<tr>
<td>Depth Perception</td>
<td>36</td>
</tr>
<tr>
<td>detection</td>
<td>14, 19, 29, 43, 46, 54, 56, 57, 60, 71, 85, 90, 97</td>
</tr>
<tr>
<td>dielectric</td>
<td>63, 93</td>
</tr>
<tr>
<td>Diesel Engines</td>
<td>5</td>
</tr>
<tr>
<td>Digital Filter</td>
<td>60</td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>79</td>
</tr>
<tr>
<td>Display</td>
<td>10, 15, 35, 36, 57, 89, 95, 99</td>
</tr>
<tr>
<td>distributed</td>
<td>50, 53, 70, 94</td>
</tr>
<tr>
<td>distributed database</td>
<td>53</td>
</tr>
<tr>
<td>Drive Shaft</td>
<td>22</td>
</tr>
<tr>
<td>Drying</td>
<td>33</td>
</tr>
<tr>
<td>EC Coating</td>
<td>47</td>
</tr>
<tr>
<td>ECM</td>
<td>41</td>
</tr>
<tr>
<td>effectiveness</td>
<td>16, 23, 24, 35, 36, 40-42, 51, 53, 66, 68, 72, 86, 88, 90</td>
</tr>
<tr>
<td>Egress</td>
<td>25, 26, 28</td>
</tr>
<tr>
<td>Ejection</td>
<td>25-28, 66</td>
</tr>
<tr>
<td>electrical</td>
<td>9, 13, 34, 54, 59, 69, 88, 97</td>
</tr>
<tr>
<td>Electrical Connector</td>
<td>59</td>
</tr>
<tr>
<td>Electronic Warfare</td>
<td>14, 40, 42, 68, 79</td>
</tr>
<tr>
<td>Electronic Warfare Support</td>
<td>79</td>
</tr>
<tr>
<td>electrostrictive ceramics</td>
<td>93</td>
</tr>
<tr>
<td>EMCON</td>
<td>70</td>
</tr>
<tr>
<td>EMI</td>
<td>2, 52, 55, 69</td>
</tr>
<tr>
<td>EMP</td>
<td>69</td>
</tr>
<tr>
<td>energy efficient motors</td>
<td>88</td>
</tr>
<tr>
<td>engine</td>
<td>5, 10, 22, 29, 41</td>
</tr>
<tr>
<td>environmental representations</td>
<td>76</td>
</tr>
<tr>
<td>equipment</td>
<td>4, 9, 14, 16, 17, 23, 25, 31, 35, 38, 52, 56, 59, 63, 69, 76, 81, 86, 95, 97</td>
</tr>
<tr>
<td>estimation</td>
<td>43, 82, 92, 98</td>
</tr>
<tr>
<td>Expeditionary</td>
<td>3</td>
</tr>
<tr>
<td>Far-Field</td>
<td>40, 44</td>
</tr>
<tr>
<td>Far/Near Field</td>
<td>41</td>
</tr>
<tr>
<td>Feeding Network</td>
<td>40</td>
</tr>
<tr>
<td>fiber</td>
<td>12, 18, 20, 32, 52, 55, 67, 69, 75, 81, 92, 97</td>
</tr>
<tr>
<td>Fiber Optic Delay Lines</td>
<td>75</td>
</tr>
<tr>
<td>fiber optics</td>
<td>55, 81, 92, 97</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>13, 21</td>
</tr>
<tr>
<td>filtering</td>
<td>82</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Fin Structure</td>
<td>39</td>
</tr>
<tr>
<td>fire</td>
<td>31, 58</td>
</tr>
<tr>
<td>Force</td>
<td>23, 25, 28, 37, 39, 70</td>
</tr>
<tr>
<td>Force Sensor</td>
<td>37</td>
</tr>
<tr>
<td>Frequency Hopping</td>
<td>2</td>
</tr>
<tr>
<td>frequency management</td>
<td>70</td>
</tr>
<tr>
<td>Frequency Selective Surface</td>
<td>51</td>
</tr>
<tr>
<td>Fuel Leak Detection</td>
<td>54</td>
</tr>
<tr>
<td>Fused Silica</td>
<td>47</td>
</tr>
<tr>
<td>fusion</td>
<td>10, 97, 98</td>
</tr>
<tr>
<td>gas</td>
<td>29, 34, 67, 74, 85</td>
</tr>
<tr>
<td>Gaussian</td>
<td>46, 61</td>
</tr>
<tr>
<td>guidance and control</td>
<td>72, 82</td>
</tr>
<tr>
<td>guidance laws</td>
<td>72, 82</td>
</tr>
<tr>
<td>Gun Weapon Systems</td>
<td>74</td>
</tr>
<tr>
<td>Harmonics</td>
<td>2</td>
</tr>
<tr>
<td>Hazardous Wastes</td>
<td>34</td>
</tr>
<tr>
<td>Head Window</td>
<td>47</td>
</tr>
<tr>
<td>Hearing Protection</td>
<td>23</td>
</tr>
<tr>
<td>HHW</td>
<td>47</td>
</tr>
<tr>
<td>high fidelity simulations</td>
<td>76</td>
</tr>
<tr>
<td>High Frequency</td>
<td>37, 40, 88</td>
</tr>
<tr>
<td>high frequency motors</td>
<td>88</td>
</tr>
<tr>
<td>high power modulator</td>
<td>7</td>
</tr>
<tr>
<td>high resolution</td>
<td>35, 76, 99</td>
</tr>
<tr>
<td>high speed modulator</td>
<td>7</td>
</tr>
<tr>
<td>Hinge Moment</td>
<td>39</td>
</tr>
<tr>
<td>Hopsets</td>
<td>2</td>
</tr>
<tr>
<td>Hybrid Inserts</td>
<td>18</td>
</tr>
<tr>
<td>hydrophones</td>
<td>37, 97</td>
</tr>
<tr>
<td>iatrogenic</td>
<td>96</td>
</tr>
<tr>
<td>IFM receiver</td>
<td>14</td>
</tr>
<tr>
<td>Image</td>
<td>35, 36, 38, 43, 44, 46, 57, 80, 93</td>
</tr>
<tr>
<td>Image Processing</td>
<td>38, 43, 57</td>
</tr>
<tr>
<td>Imaging</td>
<td>6, 30, 35, 43, 44, 57, 80</td>
</tr>
<tr>
<td>Impedance Mismatch</td>
<td>2</td>
</tr>
<tr>
<td>Incineration</td>
<td>34</td>
</tr>
<tr>
<td>Inflation</td>
<td>28</td>
</tr>
<tr>
<td>information</td>
<td>10, 23, 29, 39, 40, 42, 53, 55, 57, 62, 70, 71, 74, 77, 82, 94-96</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>2</td>
</tr>
<tr>
<td>Inspection</td>
<td>17, 19, 30, 32, 38, 91</td>
</tr>
<tr>
<td>integrated weapon guidance</td>
<td>72</td>
</tr>
<tr>
<td>Interactive Courseware</td>
<td>95</td>
</tr>
<tr>
<td>Interactive Electronic Technical Manual</td>
<td>95</td>
</tr>
<tr>
<td>Interferes</td>
<td>2</td>
</tr>
<tr>
<td>isolation</td>
<td>2, 16, 68, 96</td>
</tr>
<tr>
<td>IP8</td>
<td>5</td>
</tr>
<tr>
<td>LASER</td>
<td>6, 37, 45, 71, 81, 85, 89, 97</td>
</tr>
<tr>
<td>Laser Interferometer</td>
<td>45</td>
</tr>
<tr>
<td>Laser Radar</td>
<td>6, 89</td>
</tr>
<tr>
<td>Lasers</td>
<td>81, 85, 89</td>
</tr>
<tr>
<td>Learning Resource Center</td>
<td>95</td>
</tr>
<tr>
<td>lethality</td>
<td>66, 74</td>
</tr>
<tr>
<td>LIDAR</td>
<td>6, 8, 9</td>
</tr>
<tr>
<td>live simulations</td>
<td>76</td>
</tr>
<tr>
<td>localization</td>
<td>90, 91, 98</td>
</tr>
</tbody>
</table>

NAVY-9
long wave infrared .. 85
low cost manufacturing .. 64, 81
Magnetics .. 61, 88
Magnetometer .. 61
maintenance ... 15, 21, 22, 27, 29, 56, 64, 69, 73, 95
manning .. 49, 52
Marcelling .. 32
matching ... 38, 82
Materials ... 3, 13, 18, 26, 28, 30, 32, 34, 58, 59, 63, 64, 66-69, 74, 88, 96
materials processing ... 64
Microcracks .. 18
microwave absorber ... 68
Microwave Imaging .. 44
Missile Control Fin ... 39
missile guidance ... 72, 82
Missile Systems .. 30, 54, 74
Mobility ... 3-5
modeling ... 40-42, 44, 46, 57, 62, 66, 76, 94
Modeling & Simulation .. 41
Moisture .. 5
Motorcycles .. 5
Multi-Resolution Analysis 80
Multi-Scale Features ... 80
Multi-Spectral Modeling and Simulation 42
Multimedia Displays .. 95
multiplexing ... 2, 52, 97
multiscale .. 46
munitions .. 66
Near-Field .. 40, 41, 44
Near-Field Coupling network 40
Neural Image ... 7, 40, 50, 52, 53, 55, 70, 79
neural network ... 79
Noise Attenuation ... 23
Noise Reduction .. 23
Nondestructive ... 17, 19, 32, 56
nondestructive evaluation 19, 56
nondestructive testing ... 32
optical fibers .. 13, 92
Optical Filters .. 6
optical processing ... 97
Optical Properties ... 9, 81
Optical Pulse Generation 81
optical sensors ... 55, 92, 97
optics ... 13, 35, 36, 52, 55, 71, 79, 81, 92, 97
paint ... 19, 56
Parachute Opener ... 27
Parachutes .. 26-28
Pattern Recognition .. 46, 80
performance analysis ... 70
Periscope .. 47
Phased Array Radar ... 73
Photonic ... 81
piezoelectric properties 93
Platform ... 39, 40, 42, 43, 53, 57, 90, 95
polymers ... 45, 58, 63, 99

NAVY-10
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space propulsion</td>
<td>67</td>
</tr>
<tr>
<td>Space Systems</td>
<td>69, 74</td>
</tr>
<tr>
<td>Spatial Light Modulation</td>
<td>35</td>
</tr>
<tr>
<td>Specific Emitter Identification</td>
<td>79</td>
</tr>
<tr>
<td>Spherical Angular Function</td>
<td>51</td>
</tr>
<tr>
<td>Statistical energy analysis</td>
<td>62</td>
</tr>
<tr>
<td>Stereoscopic Imagery</td>
<td>35, 36</td>
</tr>
<tr>
<td>submarine communications</td>
<td>87</td>
</tr>
<tr>
<td>Synchronizer</td>
<td>60</td>
</tr>
<tr>
<td>System Integration</td>
<td>12, 13, 72</td>
</tr>
<tr>
<td>TAD</td>
<td>70</td>
</tr>
<tr>
<td>target damage</td>
<td>43, 66</td>
</tr>
<tr>
<td>target designation</td>
<td>11</td>
</tr>
<tr>
<td>TCLE measurements</td>
<td>45</td>
</tr>
<tr>
<td>technology insertion</td>
<td>86</td>
</tr>
<tr>
<td>temperature</td>
<td>9, 12, 33, 45, 67, 77, 93, 97</td>
</tr>
<tr>
<td>template</td>
<td>38, 82</td>
</tr>
<tr>
<td>Textiles</td>
<td>26, 28</td>
</tr>
<tr>
<td>Theater Missile Defense</td>
<td>67</td>
</tr>
<tr>
<td>Three Dimensional Displays</td>
<td>35</td>
</tr>
<tr>
<td>Tires</td>
<td>4, 17</td>
</tr>
<tr>
<td>towed array</td>
<td>84, 91, 92</td>
</tr>
<tr>
<td>toxicity</td>
<td>58</td>
</tr>
<tr>
<td>tracking</td>
<td>51, 82, 87, 90, 98</td>
</tr>
<tr>
<td>tracking systems</td>
<td>82</td>
</tr>
<tr>
<td>Tracks</td>
<td>4, 57, 98</td>
</tr>
<tr>
<td>Training effectiveness</td>
<td>24, 36</td>
</tr>
<tr>
<td>transducers</td>
<td>37, 93, 97</td>
</tr>
<tr>
<td>transduction</td>
<td>86</td>
</tr>
<tr>
<td>transparent protective face equipment</td>
<td>31</td>
</tr>
<tr>
<td>transponder</td>
<td>86</td>
</tr>
<tr>
<td>Triaxial</td>
<td>61</td>
</tr>
<tr>
<td>Ultrabroadband</td>
<td>71</td>
</tr>
<tr>
<td>undersea warfare</td>
<td>98</td>
</tr>
<tr>
<td>underwater communications</td>
<td>87</td>
</tr>
<tr>
<td>underwater vehicles</td>
<td>88</td>
</tr>
<tr>
<td>Universal Joints</td>
<td>22</td>
</tr>
<tr>
<td>validation</td>
<td>29, 40, 46, 59, 98</td>
</tr>
<tr>
<td>vapors</td>
<td>54, 58</td>
</tr>
<tr>
<td>vibration</td>
<td>12, 16, 23, 29, 62</td>
</tr>
<tr>
<td>Vibration damping</td>
<td>23</td>
</tr>
<tr>
<td>Vibration reduction</td>
<td>16</td>
</tr>
<tr>
<td>video browsing</td>
<td>46</td>
</tr>
<tr>
<td>Virtual Environments</td>
<td>42</td>
</tr>
<tr>
<td>virtual networks</td>
<td>50</td>
</tr>
<tr>
<td>Visualization</td>
<td>40, 41</td>
</tr>
<tr>
<td>VLF</td>
<td>87</td>
</tr>
<tr>
<td>warheads</td>
<td>66</td>
</tr>
<tr>
<td>wave packets</td>
<td>46</td>
</tr>
<tr>
<td>Wavelet Transforms</td>
<td>80</td>
</tr>
<tr>
<td>Wheels</td>
<td>4</td>
</tr>
<tr>
<td>wideband</td>
<td>90</td>
</tr>
<tr>
<td>Windblast Protection</td>
<td>25</td>
</tr>
<tr>
<td>Wireless</td>
<td>40, 42</td>
</tr>
<tr>
<td>Woven Preforms</td>
<td>18, 20</td>
</tr>
</tbody>
</table>
DEPARTMENT OF NAVY 97.1 SBIR SOLICITATION TOPICS

MARINE CORPS SYSTEMS COMMAND

N97-001 TITLE: Systems and Technologies for Future Amphibious Warfare

OBJECTIVE: To enhance the Marine Corps' future amphibious warfare capabilities the following Warfighting Imperatives need to be addressed: Command and Control, Maneuver, Firepower, Logistics and Training and Education.

DESCRIPTION: The Marine Corps is seeking new, innovative ideas in technologies or systems concepts that support the Marine Corps mission. This is an opportunity to submit ideas, which do not fit specific topics, but may change amphibious warfare and the supporting technology to new paradigms. Proposals should be titled to identify the following specific Warfighting Imperative addressed, as well as the context of the proposal:
1. Command and Control - Innovative technologies in electronics and information management processing to enhance and support Marine Force Command, Control, Communications, Computers and Intelligence to include revolutionary materials for advanced stored energy concepts.
2. Maneuver - Technologies which include Surface Mobility, Mine Countermeasures, Mine Detection and Survivability
3. Firepower - Technologies that focus on increasing the lethality and operational effectiveness of combat elements of the Marine Air Ground task force (MAGTF) in weaponry. Innovative targeting sensors that enhance engagement performance of direct and indirect fire weapons.
4. Logistics - Logistics technologies to enhance and support Operational Maneuver from the Sea (OMFSTS) concepts or improve or enhance all phases of logistics from 60 miles at sea up to 40 miles inland with no beach support established. Engineering technologies, bridging technologies, washdown technologies, and combat-load packaging technologies are present FY97 focus areas, though all areas of logistics and combat service support will be considered.
5. Training and Education - This topic includes all technologies, which enhance and automate training of amphibious forces, such as Modeling and Simulation for visualization, Decision Aids, Data Presentation, Virtual reality, Planning and Rehearsal, Wargaming and other training.

PHASE I: At the end of a six months effort, work should have demonstrated the feasibility of a systems concept or technology, identified critical issues required to transition into the Marine Corps acquisition system, identified goals for systems performance, outlined the current technology maturity, provide evidence that the scientific principles on which the technology is based are sound and justify further work, identify the work necessary in a Phase II effort necessary to demonstrate technical feasibility and increase the potential of the technology or systems concept to transition in Phase III to public and private applications with an exploration of dual use potential.

PHASE II: At the end of a two year effort, the technology or systems concept must have been developed enough to bring subsystems or technologies for transition to maturity, completed sufficient work to enable the technology to transition to an active development program, or become the basis for an operation requirement and acquisition of the technology or subsystem for Marine Corps applications and or other service applications as well as private sector commercialization. A Phase III Marketing Plan will be submitted with the Phase II proposal.

PHASE III: Phase III must include both public and private sector commercialization with a goal to reduce acquisition cost for Marine Corps through other service/government agency applications, as well as private sector commercialization. The ability to successfully transition in Phase III will be critical both in Phase I selection and Phase II approval.

COMMERCIAL POTENTIAL: All proposals must address the commercial potential required by the criteria in this solicitation.

N97-002 TITLE: COSITE Interference Mitigation Device

OBJECTIVE: Explore innovative approaches to minimize the COSITE interference "AS A SYSTEM SOLUTION" for combat survivable radio communication systems installed in military land combat and amphibious combat vehicles.

DESCRIPTION: Current command and communication control systems on the AAVC7A1 Amphibious Assault Vehicle are targeted to the COSITE interference when two or more radios are transmitting at the same time, causing a receiver degradation for voice and data. COSITE interference can be minimized, if new products can be effectively used in the combat environment. The current command communications systems in the AAVC7A1 consists of eight VHF (30 Mhz-88 Mhz, 50 watts each)
SINCgars radios, one HF (2 Mhz-30 Mhz, 20 watts), one UHF-AM (225 Mhz-400 Mhz, 10 watts), one SATCOM UHF-FM (225 Mhz to 400 Mhz, 18 watts), one PLGR (receiver only, 1565.19 Mhz-1585.65 Mhz) and one UHF PLRS (420 MHZ-450 Mhz, 0.4, 3, 20, and 100 watts) with a total of 13 antennas. Any proposed hardware/software interface must be based on current technology and must "interface" with radios identified above. Proposed hardware/software should meet the following requirements: Able to fit in the AAVC7A1; Ruggedized equipment; User friendly and fault tolerant; Run from unregulated 18-32 Volt DC power with 500 Hz ripple; Minimize antenna quantity; Able to survive land combat vehicle and amphibious vehicle environment.

PHASE I: The proposal shall address in detail an optimum solution to minimize the COSITE problem encountered on the AAVC7A1 as "a SYSTEM" and identify potential trade offs that may exist. The proposal shall address in detail a system architecture design for both hardware and software when multiple radios are in operation in the frequencies specified herein. The design shall be tailored to control radio inputs and outputs using algorithms indicating when and how radios can be transmitting and receiving simultaneously thus minimizing the COSITE problem without changing/affecting the performance characteristics of the radios. The proposals shall be of sufficient detail to allow for government review and selection.

PHASE II: Develop, test and integrate the hardware/software prototype for demonstration and validation in the AAVC7A1.

PHASE III: If successful, it is anticipated that such an approach will have immediate benefits for AAV, other combat vehicle platforms, and other fixed platforms within the Marine Corps as well as other Government agencies. Additionally, techniques developed under this study will have transferability to the commercial area.

COMMERCIAL POTENTIAL: The techniques explored here may have immediate use in commercial application for land and air vehicles.

N97-003 TITLE: Lightweight Expeditionary Engineering Materials

OBJECTIVE: Explore technologies for developing lightweight construction materials to be used for mobility, countermobility, and general engineering applications.

DESCRIPTION: There is a requirement to develop materials that are lightweight, high-strength, durable, easily transportable, reusable, easy to assemble, can readily replace existing construction materials, and with reduced storage footprint. Using the previously stated needs incorporate them into the following primary functional areas: 1) Investigate new design and material that can be used for mobility of vehicles across beaches and soft terrain. 2) develop materials that can be rapidly assembled to create expedient obstacles and barricades. 3) Develop construction materials that are lightweight and can be easily assembled to create bunkers, structures, etc.

PHASE I: Explore technologies for developing lightweight expeditionary construction materials that can be emplaced rapidly by combat engineers as well as develop functional specification. Develop system configuration, evaluate concepts and report on the results. The Phase I proposal must contain the Phase II effort in at least outline form.

PHASE II: Develop a proof of concept prototype, test and demonstrate the prototype, plan Phase III, and report.

PHASE III: Phase III will require military program sponsorship. For successful advance to this phase, a successful proof-of-concept must have been demonstrated, and the USMC sponsor for this SBIR effort will have coordinated transition to demonstration/validation. The contractor must support a successful Phase III transfer by maturing the product to a point for commercial consideration, including manufacturability and cost.

COMMERCIAL POTENTIAL: Lightweight high-strength construction material have wide scale potential throughout industry in the construction of roads, dams, buildings, and various other related tasks.

N97-004 TITLE: Development of New Wheel/Tire Concepts for Medium (10T-25T)/Heavy (25T-40T) Ground Combat Vehicles

OBJECTIVE: Develop and propose new wheel concepts for the future medium (10T-25T) and heavy (25T-40T) ground combat US Army vehicles. Demonstrate, and validate proposed concepts using available simulation computer programs. Develop necessary subroutines to use NATO Reference Mobility Model (NRMW) program for predicting mobility characteristics for new proposed wheeled concepts for medium and heavy ground combat and support vehicles.

NAVY-14
DESCRIPTION: The NATO Reference Mobility Model (NRMM) is an accepted tool for the mobility simulation of ground-combat vehicles in different terrain conditions. However, the program has certain limitations; it is based on experimental test data which is required as an input and it does not accept non-traditional wheel concepts for which no data exist. Therefore, experimental testing is required to generate mobility and soil performance data which is NRMM program to handle new wheel shapes.

PHASE I: New wheel/tire concepts will be developed based on the present and future technologies in materials, tires, electric drive and control systems for ground combat vehicles. A subroutine shall be developed to accommodate new input data for NRMM simulation for new wheel concepts. Analytical tools will be developed to extrapolate available experimental data, as a first approximation, to predict mobility performance of new wheel/tire concepts. A plan for small scale model testing of new wheel concepts will be developed to generate data on mobility and soil parameters which will be used in NRMM simulations for evaluating different wheel/tire concepts. Comparisons will be made, based on NRMM simulations, with similar tracked and conventional wheeled vehicles to select promising concepts for full scale testing in second phase.

PHASE II: (A) Small scale model testing will be done according to the plan developed in Phase I. (B) An extensive experimental full scale testing of promising concepts (based on small scale test data and down selected concepts in Phase I) will be conducted, preferably at Government facilities, for various combat terrain and obstacle conditions. Experimental data will be analyzed and input will be prepared in the format required for the NRMM simulation program. Detailed simulation studies will be conducted to determine mobility parameters for various combat conditions. The predicted performance comparisons will be made with similar tracked vehicles. Based on the evaluation of these results, down-selection will be made for an optimum wheel concept. (D) The selected concept will be tested in full scale at WES facilities to determine mobility performance.

PHASE III: If warranted, the selected and tested wheel/tire technology may transition to any number of new Marine Corps and Army ground combat vehicles currently under consideration. It is expected that the small business will participate substantially with all final design, fabrication, vehicle integration, and testing of the system.

COMMERCIAL POTENTIAL: The new wheel technology can be used for commercial applications (heavy transport/earth moving equipment). The NRMM modified code can be used to redesign new-concept wheels for particular commercial applications.

N97-005 TITLE: JP8/Diesel Fueled Motorcycle

DESCRIPTION: The objective of this topic is to provide a lightweight, powerful, highly mobile motorcycle capable of using JP8 as its primary fuel.

PHASE I: Motorcycles can provide unparalleled mobility in all terrain conditions due to their light weight, high power/weight ratio, and long travel suspension characteristics. The USMC utilizes motorcycles for scout and messenger functions. Current technology off-road motorcycles typically use gasoline powered two or four stroke engines which are not compatible with the future DoD mandated JP8 universal fuel requirement. This problem may be solved by the integration of a small, lightweight, power dense JP-8 fueled diesel engine onto a current state-of-the-art off road motorcycle chassis and drive train.

PHASE II: Identify suitable high performance diesel engines for integration into a commercially available 250 cc equivalent off-road motorcycle chassis. Mobility with the diesel engine installed shall be similar to the standard gasoline fueled model. A conceptual design study shall be performed to analyze engine characteristics, integration considerations, and performance predictions. A comprehensive final report shall be generated which shall include conceptual layout drawings in contractor format.

PHASE III: Using the Phase I conceptual design study, a detailed design shall be performed and detail fabrication drawings generated. Three diesel powered motorcycles shall be fabricated and evaluated under all terrain conditions.

COMMERCIAL POTENTIAL: This technology would transition into the commercial transportation industry as motorcycle fuel efficiency, safety, and emissions requirements become more strict.

NAVY-15
NAVAL AIR SYSTEMS COMMAND

N97-006 TITLE: Development of a 532 nm Narrowband Optical Filter

OBJECTIVE: To develop a narrow linewidth optical filter for use in a laser radar receiver. The linewidth must be less than 0.05 angstroms and have a transmission of greater that 20%. The filter must be able to be designed to operate within the tuning band of doubled Nd:YAG (532 nm). The filter must be able to be used in an imaging receiver system.

DESCRIPTION: Presently the Navy is exploring the use of laser radar for underwater detection of mines near the water surface and shore, where the acoustic techniques are limited. There are a number of programs that are developing systems to perform these tasks. One of the issues with these systems is the solar background, which limits the daytime performance. To achieve equal daytime/nighttime operation a narrow linewidth optical filter is needed to reject all light except within a narrow width centered at the transmitter wavelength. Presently a 2 nm interference filter with 70% transmission is being used as a baseline. If a filter is used with a transmission linewidth ratio greater than the baseline it will reduce the requirements for the laser transmitter or enhance the performance depth. The transmission can be smaller, however the ratio of the transmission per bandwidth must be greater than 16 %/angstrom. The field of view can be reduced or enlarged if the aperture is changed while holding the aperture-field of view product constant (100 degrees-cm).

PHASE I: Provide a report that addresses the design and critical technical issues associated with the production of these new filters and provide recommendations.

PHASE II: Provide a high quality prototype filter with a maximum bandwidth of 0.05 angstrom, field of view of 15 degrees full angle, clear aperture of 6.5 cm and at least a 20% transmission.

PHASE III: Transition technology into existing Navy programs.

COMMERCIAL POTENTIAL: Any filtering device developed can be used in any system hampered by the solar background, for example, remote sensing of chemical pollutants and astrological observing.

N97-007 TITLE: High Speed Optical Modulator for High Capacity Systems

OBJECTIVE: Develop a compact optical modulator to operate in the mm-wave range (40-80 GHz), and capable of handling high optical power (> 200mW) for communication system distribution.

DESCRIPTION: High performance communication links are required for high capacity distribution systems (like cable TV distribution). An integrated optical modulator can provide reasonable modulation speed, but they only operate at low optical powers, and are not suitable for distribution networks. For communication purposes, it is imperative to find an inexpensive source operating at high optical power and at high modulation frequencies in order to link the distribution center to the customer houses. With a high power modulator, services like cable TV, high speed network access, etc., integrated in only one link could be offered.

PHASE I: Provide a feasibility study for a compact, high speed, high optical power modulator. The device must operate at mm-wave frequencies, with optical power above 200mW (CW).

PHASE II: Develop, test, and operationally demonstrate the proposed modulator.

PHASE III: Produce a compact, high speed, high optical power modulator suitable for high capacity distribution systems and for high performance on-board links.

COMMERCIAL POTENTIAL: This modulator would be of great benefit to commercial industries involved in optical communications and phased array antennas development.

N97-008 TITLE: Development of Large Area Ultra-High Speed Photo Detectors with Wide Dynamic Range

OBJECTIVE: Develop a large area (diameter >2mm active area) photo-detector with ultra-high speed (>10Ghz) and very high dynamic range (>6 orders of magnitude).

DESCRIPTION: Ultra-high speed photo-detectors are used in a variety of technology fields, from communications to oceanographic LIDARs. Current ultra-high speed photo-detectors have very small active area (<.1mm diameter). In the field of communications the very small active area makes system alignment extremely difficult and time consuming. In a LIDAR
system the small active area severely reduces the available field of view of the system. Currently, the two parameters of ultra-high speed and large active area are mutually exclusive. A photo-detector that combines both parameters is needed.

PHASE I: Provide a feasibility study for a new type of photo-detector. The photo-detector must combine ultra-high speed (>4GHz) with large active area (diameter >2mm).

PHASE II: Develop, test, and operationally demonstrate the photo-detector developed under Phase I.

PHASE III: Produce an ultra-high speed large area photo-detector that can be used in a variety of technology fields such as modulated pulsed LIDARs.

COMMERCIAL POTENTIAL: This new photo-detector would be of great benefit to commercial industries involved in optical communications.

N97-009

TITLE: Improved Method of Measuring Ocean Water Characteristics

OBJECTIVE: Develop a more compact, more reliable technique for measuring the optical characteristics of ocean water such as reflection and total attenuation.

DESCRIPTION: Measurement of the optical properties of the ocean is critical to ocean water LIDAR programs. Currently, the Navy uses an optical transmissometer to measure the attenuation of the water at various depths and for various optical wavelengths. This is achieved by immersing a light source and detector into the water and measuring the electrical signals at the surface. There are several drawbacks of using this approach. First, submersion of the light source and detector tend to cause high power to be sent over long lengths of expensive and unreliable underwater armored cable. Further, an expensive underwater housing is required to protect the instrumentation. This results in the need of a large support winch and a compatible ocean vessel. Second the measurement of attenuation at different optical wavelengths is difficult. Most systems must be brought to the surface and manually changed to set the optical wavelength. A simpler, lighter, more reliable method of measuring these properties would allow them to be done on inexpensive platforms without the expense of specialized equipment.

PHASE I: Provide a feasibility study for a new type of measurement system for ocean water optical properties. The method must be able to measure the total attenuation and scattering of the water as a function of wavelength and depth. The method must also be able to measure depth and temperature simultaneously with the scattering and attenuation. Additionally, the method should be lighter, more compact and more modular than the current technology.

PHASE II: Develop, test and operationally demonstrate the measurement system developed under Phase I.

PHASE III: Produce the ocean water optical properties measurement system demonstrated in Phase II for use in determining the water quality for all active and passive ocean-based optical remote sensing programs.

COMMERCIAL POTENTIAL: This new technique would benefit commercial industries involved in bathymetry, fish-finding, and environmental cleanup.

N97-010

TITLE: Sensor Fusion Engine

OBJECTIVE: Explore hardware and software alternatives for the efficient, rapid, and accurate integration of current and planned electronic sensors.

DESCRIPTION: The emerging threat to Naval assets in the littoral zone is becoming increasingly critical with the deployment of inexpensive but very capable anti-ship cruise missiles employing low altitude flight profiles and advanced low Radar Cross Section (RCS) technology.

Investigate efficient methods of sensor fusion and integration that combine onboard and off-board sensor assets with real-time and non-real time information in an optimal fashion. Each sensor has specific advantages and disadvantages depending on the target size, aspect and range, the environment, and mission requirements.

PHASE I: Initial efforts should investigate the Human Machine Interface (HMI) efforts needed to gain situational awareness with sensor fusion of real time and non-real time sensor inputs for aircraft combat systems. Alternative design approaches shall be developed with the advantages and disadvantages of each approach documented. Select the optimum HMI design approach while taking into account the present UNIX/MOTIF based HMI being used in present systems. Review present computer hardware and software elements to determine the tradeoffs between cost and capability for the implementation of the selected approach. The Phase I effort shall be complete with the preliminary HMI design and hardware and software requirements for HMI display of sensor fusion data.

NAVY-17
PHASE II: Continue with the results of Phase I. Refine and finalize the preliminary design. Select and procure software and hardware elements. Fabricate and demonstrate a working prototype sufficient to demonstrate proof of principle.

PHASE III: Utilize the results of Phase II to determine the optimum method of incorporating and integrating the designed system into the E-2C weapon system for use in the E-2C fleet defense mission requirements.

COMMERCIAL POTENTIAL: Innovative approaches and solutions will have immediate applicability to complex manufacturing systems and processes. Modern refineries and power generation stations use multiple sensors to support a high level of system automation for streamlined operations and reduction of staff. New and advantageous methods of sensor fusion for improved operations and efficiencies are desirable and required in several industries.

N97-011

TITLE: Mass Memory Device for Commercial Air Flight Corridors

OBJECTIVE: Develop a method for storing, retrieving and displaying international commercial aircraft flight corridor data to allow for the improved target identification of unknown air targets that are potential threats to Naval assets.

DESCRIPTION: Tactical aircraft equipped with very capable sensor and communications systems, can detect, identify and track air targets for battle space management. Unknown air targets having flight paths presenting potential threats to Naval forces are engaged to the degree specified by the operative Rules of Engagement. The utilization of sensor assets in the prosecution of potential targets ties up operational aircraft and places commercial aircraft in a potentially hazardous situation. The graphical presentation of commercial flight corridors will allow aircrews to determine if unknown air target flight paths correlate with known flight corridors.

PHASE I: Investigate the several technologies available for mass storage of commercial flight corridor data. Generate design alternatives for the integration of selected technologies. Integration must be completely transparent to existing systems and must not impact any current operations. Investigate trade-offs of capability versus cost. Select the preferred alternative and develop preliminary design and integration strategy for fabrication in Phase II.

PHASE II: Refine preliminary design and fabricate mass memory system and required interfaces. Demonstrate ability to correlate unknown air targets with known commercial flight corridors in a lab environment.

PHASE III: Utilize the results of Phase II to determine the optimum method of incorporating and integrating the designed system into the E-2C weapon system for use in accordance with E-2C mission objectives while reducing potential threats to civilian aircraft.

COMMERCIAL POTENTIAL: This system will have potential utility with any agency or organization concerned with controlled airspace. Border enforcement and drug interdiction organizations will be able to utilize this technology.

N97-012

TITLE: Fiber Optic Microchip Couplers for Ribbon Interconnect Systems

OBJECTIVE: The objective of this program is to develop a family of microchip star and tree optical waveguide couplers suitably packaged to interface ribbon cable interconnect systems.

DESCRIPTION: Advanced ribbon fiber optic cable systems are being developed for military and commercial aircraft as well as for commercial telecommunications and computer interconnects. Current couplers used for distributing optical signals between a large number of users or terminals are bulk devices which are relatively large in size and high in cost. A new family of microchip couplers is being explored based on thermally grown silica or ion diffused waveguides which can be fabricated on a microchip and should be capable of meeting the environmental extremes of military users while being very low in cost to meet the requirements for commercial telecommunications and Cable TV.

This program will develop a family of low cost microchip couplers which are compatible with silicon V-Groove connectors and splices currently being developed for fiber optic ribbon cables.

PHASE I: The contractor shall analyze and design a family of microchip star and tree optical waveguide couplers which are compatible with ribbon cable interconnect systems. The analysis shall include a material loss analyses for the .63 micrometer, .85 micrometer, .98 micrometer, 1.06 micrometer, 1.3 micrometer and 1.5 micrometer optical wavelengths. The analysis shall also include stable operation over typical aircraft operating temperature, vibration, shock, etc. The coupler and package design shall be compatible with silicon V-Groove micro-machined and molded multichannel connectors and splices being developed for fiber optic ribbon cables and the package design shall provide suitable environmental protection for the microchip. Both lensed and physical contact designs for the interface shall be considered.

NAVY-18
PHASE II: The contractor shall apply the results of the Phase I effort to develop, fabricate and test a family of microchip star and tree optical waveguide couplers suitably packaged to interface ribbon cable interconnect systems and operate over military aircraft environmental extremes. Based on the Phase I design, the contractor shall fabricate and package five 1x2, 1x3, 1x4 tree couplers and five 2x2, 4x4 and 8x8 star couplers. Environmental testing and optical measurements will also be made over conditions typical of those experienced in military or commercial aircraft.

PHASE III: This technology will have transition potential to the DARPA Optical Micronet program, the Joint Strike Fighter (JSF) Program and the DARPA/NAVAIR Vehicle Management System Integration Technologies for Affordable Life Cycle Cost (VITAL) Program which will be concentrating on the use of commercial off-the-shelf hardware for fighter, rotary wing and transport aircraft.

COMMERCIAL POTENTIAL: Low cost, rugged couplers can be utilized for commercial telecommunications and Cable TV systems, industrial control applications, local area networks for office buildings and hospitals, and automotive applications.

REFERENCES:
1. IEEE STD 1596 for the Scaleable Coherent Interface (SCI)

N97-013

TITLE: Plastic Optics for Low Cost Optical Computer Motherboards

OBJECTIVE: The objective of this program is to investigate the application of plastic optical fibers, molded plastic optical lenses and novel molding techniques and materials to develop low cost computer motherboards or backplanes.

DESCRIPTION: Military and commercial computers currently utilize multi-layer printed circuit motherboards to interconnect computer cards or modules. These printed circuit boards consist of fiberglass laminates on which metallic interconnects have been lithographically defined. Via holes are used to provide the interconnect between layers of the laminate and high density connectors are attached to the board to allow electrical contact between the circuit board and computer cards or modules which contain the integrated circuit chips and multi-chip modules.

The use of optical waveguides can provide a high performance alternative to electrical circuit boards. Recent dramatic improvements have been made in plastic optical fibers which have reduced the losses, and increased the bandwidth and operating temperature range. Advances in molding techniques and plastic materials have produced lens arrays with very low cost and good optical performance which can be used for connectors with easy alignment. Advanced materials such as polycarbonate permit highly stable operation over environmental extremes. This program will investigate the use of plastic optical fibers, connectors, lenses, and thermoplastic and/or thermosetting materials and advanced molding and forming techniques to demonstrate low cost rugged computer boards to optically interconnect computer cards or modules. These monolithic plastic motherboards should exhibit high bandwidth and environmental stability, with ease of module insertion. Provision should also be made for power and ground distribution external or internal to the motherboard.

PHASE I: The contractor shall first perform a cost/performance analysis of plastic optical fiber and connector materials, molding and fabrication techniques; thermoplastic, thermosetting or alternate low cost materials and related mechanical and optical components required to mass produce low cost passive optical computer motherboards. This analysis shall include an optical power budget for motherboard transmission, methods of optical power splitting and/or combining within the backplane, and suitable backplane to module connector concepts. Both two and three dimensional concepts shall be explored.

PHASE II: The contractor shall apply the results of the Phase I effort to develop, fabricate and test optical motherboards to interconnect computer cards or modules. The contractor shall demonstrate both parallel and serial optical signal distribution within the module, and measure signal loss at all interfaces. Testing and measurements will also be made over environmental conditions typical of those experienced in military avionics enclosures.

PHASE III: This technology will have transition potential to the DARPA Optical Micronet program, the Joint Strike Fighter (JSF) Program and the DARPA/NAVAIR Vehicle Management System Integration Technologies for Affordable Life Cycle Cost (VITAL) Program which will be concentrating on the use of commercial off-the-shelf hardware for fixed wing and rotary wing military and commercial aircraft control systems.

COMMERCIAL POTENTIAL: Low cost optical motherboards can be utilized for high performance workstations and personal computers which incorporate the Scaleable Coherent Interface (SCI) or alternative high speed backplane protocols.
REFERENCES:
1. IEEE STD 1596 for the Scaleable Coherent Interface (SCI)

OBJECTIVE: Develop optimum logic and algorithms for airborne use of Instantaneous Frequency Measurement (IFM) receivers in the look-through (LT) mode of operation.

DESCRIPTION: The benefits of IFM receivers to intercept radar signals are well known: large dynamic range, high probability of intercept on single pulse, wide band width, etc. However, airborne use of IFMs has been limited, chiefly because IFMs have high sensitivity to own-ship interference caused by onboard radars, communications/navigation equipment and jammers. The known solution to the IFM interference problem is to have the receiver operate for short periods of time (less than 5%) while the interfering onboard transmitters are silenced. This mode of operation is known as LT and has not been successfully implemented nor documented for IFM airborne applications.

PHASE I: The proposed SBIR would develop the optimum LT algorithms, logic and processing speeds for using IFM receivers in airborne applications. The methodology would be to utilize an existing off-the-shelf IFM and laboratory generated tactical radar schemes that will establish the optimum manner in which to sample the radar environment with an IFM receiver. The probability of intercepting each generic type of radar emitter would be analyzed and tested in the laboratory.

PHASE II: Develop, test and demonstrate the derived IFM LT mode against actual emitters in an operational scenario on an electronic warfare (EW) Test Range.

PHASE III: Transition IFM LT technology/methodology into viable full scale development candidate for follow-on and upgrade of radar warning receiver (RWR), electronic support mission (ESM), tactical jamming (TJS) and electronic intelligence (ELINT) systems.

COMMERCIAL POTENTIAL: Radar signal processing improvement for FAA air control situations, FCC frequency deconfliction/surveillance and for Test Range frequency monitoring.

N97-015 TITLE: Low Cost Silicon Based Color Displays

OBJECTIVE: Increase the functionality and productivity of the human operator while decreasing the life cycle cost of associated display system, whether helmet mounted, in flat panel mosaic arrays, projection displays or conformal mounted.

DESCRIPTION: The Navy currently is investigating the use of color helmet mounted and flat panel multifunction displays for aircraft operations. To date much of this work has been based on either miniature cathode ray tubes or on use of liquid crystal display technology both of which have some drawbacks in terms of either cost or performance in tactical aircraft applications. Development work is also progressing in plasma display technology and field emission displays technology operating at high voltages. As a vital link between the operator and aircraft avionics or flight control systems, displays which offer both high brightness and high definition potential are required, especially with increasing demands for increased situational awareness, joint operations and crew workload reduction. Affordability of the display system and it’s ability to operate in the military environment are also key requirements. An approach which offers the potential to meet these needs is the use of silicon based displays which are fabricated using the same processes as are used for high volume semiconductor parts such as memory chips. Applications would ultimately include virtual displays for training systems, rehearsal systems, maintenance systems, hand held displays, and tactical aircraft helmets. Extendability to cockpit mounted flat panel displays, cockpit/simulator mounted conformal arrays, and situational displays (CRT replacements) based on arraying/projection are also of interest.

PHASE I: Provide a feasibility study which analyzes the ability of low cost highly repeatable silicon process technology to yield high-brightness/high-definition/low voltage and light efficient color displays for possible applications to naval airborne weapons systems and ground based support systems. If feasible, sample display items would be useful in conjunction with this analysis. Identify array size, array dimensions, pixel pitch, gap width, fill factor, frame update time, throughput, contrast ratio, rise/fall times, power conditions, power dissipation, projected battery life (if battery powered) and other important display parameters. Industry projections concerning the producibility, availability, affordability and extendability of the display media and associated electronics shall be included. Particular attention should be given to the at sea operational environment

NAVY-20
and tactical aircraft operations. If necessary, applications should distinguish between land and sea based operations. Applicability of the technology beyond display systems is also of interest.

PHASE II: Develop, test and operationally demonstrate a preliminary color tactical display system (which provides full color at each pixel) based on the technology identified during Phase I. Determine operational performance and projected cost for developmental and eventual production applications. Study and project any special maintenance, safety, or operational requirements for such systems.

PHASE III: Produce a helmet mounted full color low cost subsystem based on the technology demonstrated in the Phase II effort. This will include transition to other Navy programs such as training, mission planning, rehearsal, maintenance, operational systems, etc.

COMMERCIAL POTENTIAL: Low cost, high brightness, high definition, and high reliability flat panel color displays for helmet mounting or mosaic large area arrays would have a substantial commercial market including video games, commercial airlines, industrial use, medical and others.

REFERENCES: Commercial Standards Regarding Radiated Energy and Operator Safety

N97-016 TITLe: Active Control of Vibration and Shock Loading for Rack Mounted Avionics Components

OBJECTIVE: Reduce the “g” loading that rack-mounted avionics components experience as a result of vibrations and shock impact forces.

DESCRIPTION: The DOD makes extensive use of rack mounted avionics systems in many of its tactical aircraft. These racks are typically either hard mounted to the airframe or mounted on rubber vibration isolator (passive) mounts. The passive mounts provide some vibration reduction, but minimal shock impact reduction. With the DOD emphasis on commercial-off-the-shelf (COTS) equipment, a more benign vibration and shock environment must be fostered within these tactical aircraft. Given this environment, both new COTS avionics components and the current components should see improved reliability (i.e., higher MTBF). In order to reach this state though, an active system that is able to reduce both vibration levels and shock impact loading must be developed.

PHASE I: Develop and test a single actuator active system that is able to dampen both vibration levels and shock impact forces. Demonstrate how the prototype system can significantly reduce vibration levels in the 10 to 300 Hz range, while also reducing the “g” loading due to shock impact by at least 75 percent.

PHASE II: Take the prototype unit developed under Phase I and expand it to isolate a rack mounted avionics system from a tactical aircraft. Test and operationally demonstrate the effectiveness of this system through a series of ground and flight tests.

PHASE III: Show that the technology produced during Phase II can be effectively mass produced and incorporated efficiently into tactical aircraft.

COMMERCIAL POTENTIAL: New vibration/shock isolation system for rack mounted components may be used on many of the current commercial aircraft. The technology is applicable to the automotive and related manufacturing industries for components requiring extreme precision.

N97-017 TITLe: Nondestructive Inspection of Tire Sidewalls

OBJECTIVE: The development of a reliable means for inspecting tire sidewalls, specifically for breakage of cord plies and separations of cords.

DESCRIPTION: Aircraft tires are typically retreaded several times during their lifetimes. Currently, inspection of the tread area is performed, after completion of the process, using holography. The sidewall area is not inspected, as a consequence there is a higher percentage of tire sidewall failures in retreaded items than in non-retreaded items. The use of retreaded tires of aircraft is of great economic advantage to the Navy however the inspection of all areas of the tire is necessary to get the greatest use from these items while maintaining safe operating conditions.

PHASE I: The contractor is expected to demonstrate feasibility for (nondestructively) inspecting tire sidewalls for cord ply breakage, separation of cords and other defects that would limit the usefulness of the tire. The inspection method will, ideally, be suitable for the tread area of the tire as well.

NAVY-21
PHASE II: Inspection equipment and inspection technique should be production ready. This equipment will be used, primarily, at the tire retreading site. However, portability or the ability to use the equipment at alternate locations would be an advantage.

PHASE III: The contractor should be able to deliver the inspection equipment to tire manufacturers and train inspection personnel in the use of the technique.

COMMERCIAL POTENTIAL: The inspection of retreaded tire sidewalls will be applicable to commercial aircraft and trucks as well as improving the safety of retreaded tires purchased by the private sector.

N97-018 TITLE: Woven Hybrid Inserts for Lightweight Affordable Aircraft Structures.

OBJECTIVE: Develop three-dimensional solid and hollow inserts (woven preforms), fabricated of hybrid composite materials (carbon and glass fibers) for joining aircraft structural components, such as wing skins and spars.

DESCRIPTION: The benefits of weight, cost, and supportability savings for high performance air vehicles can be realized if the structural components are designed and fabricated with improved structural integrity and reduced part count. This can be accomplished by designing composite structural joints without utilizing fasteners, but by applying innovative cocured joining techniques. Exploratory work in recent years performed by domestic and foreign companies, has demonstrated the feasibility of increased load carrying capability of composite test specimens having joints, designed and fabricated with woven inserts (preforms). But mismatch in stiffnesses and coefficients of thermal expansion in the joints produce microcracks which limit their applications, specifically in primary structural joints. Therefore, it is expected that the utilization of solid three-dimensional hybrid inserts (woven preforms fabricated of carbon and glass fibers) with proper design configurations and fiber orientations could reduce or eliminate the undesirable stress concentrations, and microcracks generated by residual thermal stresses. It is envisioned that the application of hollow three-dimensional hybrid inserts could further reduce the undesirable stress concentrations and residual thermal stresses, resulting in superior structural joints with improved load carrying capability. The hollow three-dimensional woven inserts with appropriate design, shape, and size also have potential applications for naval surface weapons launcher systems.

PHASE I: Develop three-dimensional solid and hollow inserts (woven preforms) fabricated of hybrid composite materials (carbon and glass fibers) and fabricate specimens containing structural joints. Perform preliminary tests and analyses to determine joint strength, elastic properties of the inserts, and residual thermal stresses. A Preliminary photomicrographic examination shall also be performed to detect the presence of microcracks.

PHASE II: Improve the weaving pattern and fabrication techniques, perform detailed analyses and conduct comprehensive tests to determine joint strength, elastic properties, residual stresses and damage tolerance. Demonstrate applicability of the innovative joints through sub-scale and full-scale component testing. Develop appropriate repair methods for supportability.

PHASE III: Fabricate representative structural joints and qualify through ground and flight tests. Flight ready the hardware for incorporation into an aircraft program.

COMMERCIAL POTENTIAL: Development of the proposed structural joints has various applications in the transportation industry, specifically in highly loaded critical structural joints which result in improved reliability and safety.

OBJECTIVE: To develop a compact and portable corrosion detection system that would allow the inspector to quickly detect and quantify the amount of corrosion present in an aircraft structural component.

DESCRIPTION: Corrosion, if left uncontrolled, can lead to catastrophic failures by undermining the functional material properties of the weapon systems. The costs related to corrosion damage are astronomical. As a result an advanced portable NDE techniques capable of finding hidden corrosion, well before it can jeopardize the weapon systems, is critically needed. Corrosion under paint, between lap joints, under aircraft skins, under fasteners heads and in other hidden parts are some examples were corrosion needs to be detected.

PHASE I: In Phase I of the proposed effort the contractor will build a laboratory model that will demonstrate the feasibility of the device for detecting hidden corrosion. The contractor will determine the ultimate sensitivity of the technique on a simulated aircraft structure with varying amounts of corrosion.

NAVY-22
PHASE II: In Phase II of the proposed effort the contractor will develop a complete NDE system for the detection of hidden corrosion. The system should be rugged, reliable, portable, and easy to interpret. It is advised at this point that the contractor team up with a larger company who might be interested in transitioning the new technology.

PHASE III: Full manufacturing of the new NDE technique.

COMMERCIAL POTENTIAL: It is anticipated that a system of this nature will have significant benefits in the commercial aerospace industry as well as in the maritime and automotive.

N97-020 T I T L E: Integration of 3-D Woven Preforms into 2-D Laminates

OBJECTIVE: Investigate, develop and optimize manufacturing methodologies to combine 3-D woven preforms and 2-D laminates to fabricate efficient structural parts for aircraft applications.

DESCRIPTION: Numerous programs are underway investigating the use of 3-D woven and braided composite structure for aircraft applications in order to increase out-of-plane strength of traditional laminated structure. Some of these programs use dry fiber followed by RTM to fabricate the composite part, while others start with prepreg material in the weaving process. However, the overall use of 3-D configurations in a structural part is typically not cost or weight efficient for the majority of aircraft applications. The most desirable configuration is an integral combination of a 3-D preform into a 2-D laminate. To date, integration of 2-D and 3-D structures has only been addressed as a secondary issue with lap bond or core attachment methods investigated. The integration of these two material forms and technologies is needed to provide an efficient, quality aircraft part able to sustain the various loading configurations. This effort is to address this integration effort through the development of novel and structurally efficient design concepts.

PHASE I: Develop and evaluate design concepts to integrate 3-D material forms into a 2-D laminate. Perform structural trade studies to determine and predict cost and weight efficiencies of selected concept(s). Develop preliminary test verification procedure and perform small specimen testing to provide confidence in selected concept to proceed to Phase II.

PHASE II: Concept refinement and processing optimization through analytical and experimental investigations. Generation of a data base for preliminary design incorporating various loading and environmental conditions. Verification of the developed technique through sub-scale and full scale component testing.

PHASE III: Fabricate and qualify through ground and flight test, flight ready structural hardware for incorporation into an aircraft program.

COMMERCIAL POTENTIAL: The design and fabrication methods developed have application throughout the commercial aircraft industry as well as the automotive and truck industry.

N97-021 T I T L E: Low Cost/Light Weight Composite Structural Components

OBJECTIVE: To reduce acquisition and maintenance costs of doors and panels throughout the aircraft by the use of pultruded stiffening concepts to provide a durable, low weight, corrosion resistant structure with a repeatable manufacturing process.

DESCRIPTION: Numerous applications are found throughout the aircraft which incorporate stiffened composite panels. These panels consist of a minimum curvature laminate which is restrained from buckling through the use of core-cured stiffeners. Examples of this type of construction can be found in cargo floors, fuselage side panels and landing gear doors. An alternate design to this labor intensive hand lay-up process is the use of pultruded fiberglass or graphite stiffeners, which could be fabricated at a minimum cost, to replace the hand-laid-up stiffeners and achieve the same level of performance. For some applications, it may be possible to design multiple sections that would have the same configuration and thus would lend more easily to large production runs and interchangeability. Sections would be fabricated in one piece minimizing costs and would be such that they would interlock minimizing time consuming mechanical installations.

PHASE I: Perform feasibility and conceptual design study to identify potential designs. Define cost and weight savings. Fabricate coupon specimens to substantiate design properties.

PHASE II: Perform detail design for application in a selected baseline aircraft. Fabricate and test element and full scale components to confirm design projections.

PHASE III: Perform qualification testing including strength, durability and damage tolerance testing. Fabricate & install full size parts in flight aircraft. Evaluate performance testing.
COMMERCIAL POTENTIAL: The structural concepts could be applied to most flat and slightly curved parts in all commercial aircraft. Other vehicles such as trucks and rail cars with stiffened panels could also benefit from the technology developed.

N97-022 TITLE: Lightweight Non-Corroding Coupling Mechanisms

OBJECTIVE: To develop lightweight, non-corroding universal joints and coupling mechanisms for rotorcraft drive shafts.

DESCRIPTION: All rotorcraft/helicopters require drive shafts to transfer power from the engines to various rotors. These drive trains all make extensive use of couplings and universal joints to transfer the engine torque while accommodating the vehicle engine/rotor configuration. These joints and couplings add considerable weight to the drive train and require careful maintenance in corrosive environments. A need has been identified for lightweight, non-corroding universal joints and coupling mechanisms for application in rotorcraft drive systems which can operate in the Navy environment.

PHASE I: Identify preliminary design concepts for composite coupling mechanisms for transfer of torque and accommodation of shaft misalignments.

PHASE II: Develop, fabricate and test promising concepts identified during Phase I.

PHASE III: Transfer Phase II design into Navy weapons system.

COMMERCIAL POTENTIAL: Durable, lightweight coupling mechanisms have potential in both commercial and military rotorcraft systems, and are attractive for use in other industrial and automotive drive shaft applications.

N97-023 TITLE: Reduction of Noise and Vibration Stresses on Tactical Aircraft Flight Crews

OBJECTIVE: Develop a reliable, low cost, system to attenuate the high level of ambient energies, noise and vibrations, perceived by persons in a variety of environments, most specifically in the cockpits of tactical aircraft. The system shall reduce the deleterious effects on job/mission performance, caused by the physiological and psychological effects of exposure to stress producing levels of noise, and prevent short and long term hearing loss.

DESCRIPTION: The system developed will provide a means of significantly reducing the perceived level of stress producing noise within the crew compartment areas and shall enhance the reliable perception and understanding of the desired audio information and warnings associated with installed airframe and avionics systems. The noise reduction system shall have negligible impact on the weight and balance of the aircraft, preferably be worn as personal equipment without unduly encumbering the user, and shall be compatible and interoperable with the aircraft and, as well as, other operational environments.

PHASE I: Conduct a system engineering and analysis effort to define the design of a cost effective approach to attenuating the high noise and vibrations perceived by personnel operating military aircraft and exposed to other stressful environments (e.g., shipboard engineering spaces, flight deck and flight deck and flight line areas, mechanized infantry, etc...) and in commercial applications, such as manufacturing, agriculture and construction. Estimate the cost and schedules and technical risks associated with developing and implementing the approach. Assess the positive and negative impacts of the system on overall job/mission performance.

PHASE II: Develop working prototype system(s) to allow optimization of system design. Evaluate effectiveness in the laboratory and in the actual environments, at least in and around tactical aircraft. Analyze the performance and assess the production and installation costs and deliver a technical report and production data package for follow-on procurement. actual Plan and participate in applicable laboratory and field tests.

PHASE III Refine the design of and implement the system. Adapt the system for use by all potential armed force users, tailoring it as necessary to meet the mission-specific requirements. Transition to commercial users.

COMMERCIAL POTENTIAL: The system would be useful to operators of heavy equipment and other persons working in close proximity to noise producing machinery. The ultimate goal is to eliminate or greatly reduce high level ambient noise while still facilitating the perception and understanding of audio information.

NAVY-24
TITLE: Tools for Measuring Training Effectiveness

OBJECTIVE: Design and develop a tool to assess the extent to which each team member benefits from training as a team.

DESCRIPTION: An enormous development and implementation effort is necessary for large scale team-based training exercises, such as those planned for BFTT and JCTCS. These team exercises, among others, require performances from a number of different areas of specialized skill and knowledge. In order to maximize the training potential of these exercises, it is necessary to ascertain the extent to which individual team members benefit from training. This is to assure that feedback/remediation can be targeted to specific areas and to assure that effective training occurs as specific interventions may have differential benefit on individuals based on background knowledge and position/role within the team.

Recent theorizing has suggested that team members who hold similar mental models will be able to predict each others’ behavior, adapt, and coordinate with each other; team members who do not share similar mental models will not be as successful (Cannon-Bowers, Salas, & Converse, 1990). Therefore, measures that tap the extent to which individuals have overlapping mental models will aid in understanding the degree to which training has imparted appropriate cognitive representations. These measures, based in cognitive theory, should: (1) be sensitive to changes that occur as a function of learning; (2) characterize learning discrepancies between one individual and the next; and (3) identify specific areas where learning deficiencies exist.

PHASE I: Phase I will result in a functional description of a methodology for assessment of individual team member’s understanding that allows for comparisons between team members.

PHASE II: Phase II will result in a prototype assessment methodology for a current team training program.

PHASE III: Phase III will result in the production of an assessment device.

COMMERCIAL POTENTIAL: Within a number of communities (e.g., commercial aviation, nuclear power plant operators, firefighters) increased emphasis is being placed on the training of teams, not just individuals. This methodology will allow for the assessment of these training programs and provide feedback for their improvement.

TITLE: Aircrew Ejection Windblast Protection

OBJECTIVE: Develop lightweight, deployable aircrew windblast protection devices for use in tactical aircraft emergency egress systems.

DESCRIPTION: Major injuries and fatalities experienced in high-speed tactical aircraft ejections include disruption of aircrew extremity joints, fracture of the skull, arms, legs, neck, and spinal transection. Current approaches to limb-flail protection, consisting of arm- and leg-restraint straps, encumber the aircrew while operating the aircraft. In addition, current ejection seats have no provisions for airflow stagnation devices to reduce and control windblast forces on the torso, head and neck of ejecting aircrew. The successful development of new technology for windblast protection devices would provide the Navy with a pivotal technology solution toward reducing major aircrew injuries and fatalities.

PHASE I: Develop alternative concepts for deployable aircrew ejection windblast protection devices, and determine the technical merit and feasibility of the most promising concept(s). The proposed concept must be unobtrusive during normal aircraft flight and deployed only at ejection initiation.

PHASE II: Demonstrate the concept(s) chosen during Phase I by constructing, testing, and evaluating prototypes to establish predicted performance in open ejection seats.

PHASE III: Transition the development to the Navy and Air Force joint Advanced Technology Escape System for use in the Joint Advanced Strike Technology aircraft.

COMMERCIAL POTENTIAL: The technology developed through the SBIR will have potential for use in other lifesaving and/or restraint equipment applications in boating, commercial aircraft, recreational aircraft, and automobiles.

TITLE: New Materials for Advanced Performance, Fireball Heat Resistant, Emergency Egress Parachute Systems

OBJECTIVE: Develop new textiles with increased resistance to damage and improved parachute performance characteristics.

DESCRIPTION: A need exists for the development of high strength, low bulk, energy absorbing, heat resistant textiles to enhance the performance of emergency escape parachute systems used in tactical aircraft. Damage to these parachutes during
deployment or exposure to fireballs result in serious injuries and fatalities due to excessive descent rates. Current high strength, heat resistant materials have undesirable design characteristics such as high bulk and high parachute opening shock. Improvements are also needed in reducing the rate of descent of existing emergency escape parachute systems without increasing the size and bulk of the parachute system.

PHASE I Conduct a study to determine if it would be more effective to develop new energy absorbent high strength heat resistant materials, or modify potential existing materials.

PHASE II Perform the following tasks: (1) Based on Phase I, develop new high strength heat resistant materials or modify selected existing materials (2) Produce materials in developmental quantities (3) Construct, test and evaluate prototype test items.

PHASE III Scale up selected Phase II materials to commercial production. Design, build, and test new high strength emergency egress parachute systems for use in Navy tactical aircraft.

REFERENCES:

N97-027 TITLE: Non-Explosive Emergency Parachute Automatic Actuating Device (AAD)

OBJECTIVE: Explore development of a non-explosive Automatic Actuating Device (AAD) for use in Fixed-Wing Non-Ejection Aircraft Emergency Parachute Assemblies.

DESCRIPTION: Current naval Fixed-Wing Non-Ejection Aircraft use Emergency Parachutes that are automatically opened by a ballistic pack opening device. These ballistically timed and actuated devices restrict the repack (maintenance) cycles of the parachute assemblies to approximately two to three years because of the explosive charges used in them. Furthermore, if inadvertently activated, they require disposal or costly refurbishment. The repack of these parachute assemblies is also adverse to safe operation and keeps the operating costs of maintaining them high. Extending the repack cycle to a more acceptable logistics cost has been demonstrated in parachute assemblies without AADs, and is possible in the Fixed-Wing Non-Ejection Aircraft Community if a new Non-explosive AAD is developed. The new AAD would not require servicing or maintenance for a minimum of 10 years from when it is originally installed in the parachute assembly to realize the full logistics savings. Additionally extending the repack cycles of the parachute assemblies actually reduces the maintenance induced r rate caused during repacking; this is an additional benefit non-explosive AAD with a service life of at least 10 years.

PHASE I: Conduct a study to determine if the technology can be developed to produce a AAD with a minimum 10 year service life and is serviceable in the field if inadvertently activated.

PHASE II: Perform an effort to develop, fabricate, demonstrate, and validate a new AAD.

PHASE III: Qualification and retrofit of applicable naval parachute assemblies via a Class 1 Engineering Change Proposal (ECP).

COMMERCIAL POTENTIAL: Sport Parachuting, USDA Smoke Jumpers, and USAF Emergency Parachutes.

N97-028 TITLE: Optimized Recovery Systems Control

OBJECTIVE: Develop technologies to optimize the inflation of parachute systems over a wide velocity range without exceeding acceptable drag force limits.

DESCRIPTION: Recovery systems for tactical aircraft must safely recover the ejecting aircrewman over a wide escape envelope; from zero speed-zero altitude (zero-zero) to speeds in excess of 600 knots. These velocity extremes place conflicting performance requirements on the recovery parachute system. For zero-zero ejections, it is desirable to inflate the parachute as quickly as possible; however such rapid inflation at high speeds would result in catastrophic damage to the parachute and major injuries to the aircrewman. Conversely, delaying the inflation to meet high speed requirements would result in insufficient time to inflate the parachute for zero-zero ejections. The performance of current escape systems is compromised in the attempt to
meet the entire escape envelop with a single system. Technology needs to be developed to minimize the inflation time of parachute recovery systems for all speed/altitude conditions without exceeding human tolerance limits.

PHASE I. Develop recovery and control system concepts that meet the requirements stated above.

PHASE II. Perform the following tasks: (1) Develop Level 2 drawings of most promising concepts; (2) Fabricate prototype test items; and (3) Test and evaluate prototype sub-systems. Validated concepts define transition to Phase III.

PHASE III. Design and build recovery and control systems for use in Navy tactical aircraft. Evaluate these systems for emergency egress use (sled tests, in-flight ejection). Perform qualification testing with state-of the-art ejection seat technology. Scale up selected Phase II prototypes to commercial production.

COMMERCIAL POTENTIAL: Technology would be applicable for any application requiring regulated deployment of parachute recovery/retardation systems including delivery of emergency supplies, emergency recovery of private/commercial aircraft, deceleration of high speed vehicles, premeditated personnel jumping, recovery of test rockets or space delivery systems.

N97-029 TITLE: Gas Turbine High Cycle Fatigue (HCF) Detection, Measurement and Control

OBJECTIVE: Develop innovative high cycle fatigue measurement, detection and control techniques applied to gas turbine compressor components.

DESCRIPTION: The U.S. Navy desires to consider advanced innovative HCF detection, measurement and control techniques for the use in gas turbine compressor components including spacers, stator vanes, blades, and disks. The technology developed needs to be capable of:

1. Detecting high order compression system vibrations in an operating engine.
2. Quantifying the life impact of the detected vibrations.
3. Controlling the vibrations by controlling flow path instabilities that are exciting the vibratory modes.

It should be compatible with recent developments in active stability control for compression systems. The possibility of combining active stability control with active detection and control of HCF should be explored. It should also be capable of recording information necessary to quantify the severity of the phenomena in terms of component life impact.

PHASE I: Provide conceptual designs for actively measuring and controlling high cycle fatigue. The designs should be generated and validated through theory, analysis, simulation, and subscale testing.

PHASE II: Fabricate full scale designs for experimental verification of the concept.

PHASE III: Transition to DOD/NASA 6.2/6.3 exploratory component development and demonstration program(s). Produce limited numbers of HCF detection and control systems for field demonstrations and validation.

COMMERCIAL POTENTIAL: HCF is a characteristic problem in all types of gas turbine engines commercial and military alike. The commercial aerospace industry would benefit from the reduction of HCF related maintenance problems.

N97-030 TITLE: In-Field Composite Damage Assessment

OBJECTIVE: The objective of this sub task is to identify and address non-destructive technologies for assessing damage of in-fleet composite rocket motor cases/airframes. This type of damage assessment capability will provide a means for the fleet to verify damage to missile systems and composite aircraft structures incurred during anomalous service conditions.

DESCRIPTION: Due to their laminated construction, the most common mode of failure in composite materials is interlaminar fracture or delamination. This type of failure usually occurs within the laminate and is not normally obvious during general visual inspections. This type of failure, if left undetected, can have a significant effect on the engineering properties of the composites. This type of degradation can and will prove fatal if left undetected and poses a serious threat to ordnance personnel, aviators, aircraft and ships.

During manufacture and assembly composite cases/airframes are subjected to rigorous quality inspection in order to verify the integrity of the finished component. Once the system is placed onto the fleet this same level of product inspection is no longer available. Damage to composite cases/structures is not always visually obvious for the reasons pointed out in the previous section. As a result, non-destructive examination represents a critical step required to define both the extent and type of damage in composites.
Ideally, what is needed for the fleet is a portable non-destructive technique for damage assessment that can provide real time data and be employed under any circumstances whether the missile system is hung from wing of an aircraft or in its storage container.

One example is thermal imaging which is relatively new for non-destructive testing of composite materials. Thermography can be conducted through a variety of techniques, but the video-thermographic camera is the most efficient and provides the highest resolution. Thermography has been used by a number of investigators to detect and analyze damage in composites. Thermal gradients are generated using either passive or active method to delineate defects or damage.

PHASE I: This effort will first conduct a survey of current non-destructive technologies. Emphasis will be placed on the system that is most suitable for fielded operations. This technology must provide a means for in-fleet damage assessment of composite materials, eliminating guess work, speculation and costly NDT. The system will be readily portable.

PHASE II: Design and demonstrate shipboard portable NDI system identified under the Phase I SBIR effort. The system meeting the requirements for fielded operations will be evaluated first through Laboratory demonstration.

PHASE III: Produce and verify the shipboard portable NDI system by evaluation under real conditions (initial simulated environments) and finally under actual fleet operations.

COMMERCIAL POTENTIAL: A portable non-destructive technique for damage assessment that can provide real time data and be employed under any circumstances is ideal for commercial aircraft maintenance facilities as well as manufacturing assembly lines for on-the-spot component verification and quality control.

N97-031 TITLE: Increase Aircraft Firefighter Visual Acuity

OBJECTIVE: To develop wrap-around transparent face protective equipment that is more durable (less susceptible to abrasion) and meets or exceeds infrared protection testing requirements in accordance with NFPA 1976.

DESCRIPTION: Currently, Navy and Marine Corp Aircraft Rescue FireFighters (ARFFs) use transparent face protective equipment developed in the 1950s. The present visor is a transparent polycarbonate material: type I, grade A, clear, 0.007 (+/- 0.005) inch thick or equal and is coated with the anti-fog coating “Izonex”. It provides protection to the firefighter’s head, face, and neck areas against radiant, convective, and conductive heat. The present transparent protective face equipment is easily scratched and difficult to maintain, requiring frequent replacement.

PHASE I: Conduct a feasibility study which develops transparent material/face protective equipment that will increase visual acuity (safety) of ARFFs and facilitates maintainability. The material must be easily fitted to existing headgear.

PHASE II: Test and demonstrate the protective face equipment.

PHASE III: Produce the protective face equipment

COMMERCIAL POTENTIAL: New protective face equipment could be used in the civilian firefighting arena.

N97-032 TITLE: NDE of Marcelling in Composites

OBJECTIVE: Develop a method and system for identifying and quantifying marcelling (fiber waviness) in composite materials.

DESCRIPTION: Multiple failures in composite parts have been attributed to marcelling. The manufacturing processes (filament winding, fiber placement, and hand lay-up) for these parts often create “wrinkles” in some of the internal plies of the laminate. These marcel can cause localized redistribution of stresses resulting in failure of the part.

PHASE I: Manufacture reference panels containing out-of-plane marcells of varying severity. Previous efforts of characterizing these defects defined severity by the aspect ratio of the marcel. Design an NDT technology capable of detecting marcelling without the use of tracer fibers.

PHASE II: Develop Phase I technology and correlate NDT results to the geometry of the marcel. Determine the effects of varying degrees of marcelling on the ultimate strength of the composite.

PHASE III: Correlate the NDT results to design knockdown factors.

COMMERCIAL POTENTIAL: This nondestructive inspection technology would be a useful tool for evaluating marcelling in newly manufactured, fiber/matrix composite materials which are used in structural applications.
REFERENCES:
1. MIL-Q-9858
2. MIL-I-6870

N97-033

TITLE: Composite Moisture Sensor

OBJECTIVE: Develop a moisture sensor for quick “dry” or “not dry” decisions when repairing advanced composite parts using bonded techniques.

DESCRIPTION: Elevated temperature (above 250 degrees F) of the parent laminate or honeycomb structure require by cure/bonding/cobonding of advanced composite repair details (patches, adhesives) will usually result in blown skins (i.e., the skin separates from the core in large areas due to failure of the adhesive/core node bond caused by higher pressure of the heated moisture trapped in the core). Traditional methods for removing surface moisture require extended drying cycles (48 hours is typical) that are experience based and are not related to the actual moisture on the part or the maximum moisture acceptable before problems develop.

PHASE I: Identify preliminary design concept for Composite Moisture Sensor.
PHASE II: Perform detail design, fabricate and test a prototype system to confirm design projections.
PHASE III: Design and fabricate a full size, flight qualified Composite Moisture Sensor for installation in the V-22 aircraft. Provide installation and test support. Evaluate performance of system following test.

COMMERCIAL POTENTIAL: Commercial aviation has a major problem with moisture in honeycomb composite structures. Blown skins are common, resulting in excessive downtime to repair major damage that started out as a minor repair. The long drying times required to ensure dry structures before repair begins is also not acceptable

N97-034

TITLE: Destruction of Hazardous Wastes using Solar Energy

OBJECTIVE: To design, demonstrate, and construct a hazardous waste destruction facility that uses incident solar radiation to decompose organic wastes, which traps or destroys toxic byproducts in a manner which reduces the total quantity of hazardous material requiring disposal, and does so in a manner that meets all applicable environmental regulations for waste stream treatment.

DESCRIPTION: There is much concern over waste management practices which dispose of hazardous waste material in landfill areas. The dwindling availability of such landfills and their potential future hazards from toxic seepage into the environment make the reduction of landfill practices necessary. Incineration is a viable alternative to landfill disposal of organic waste, but is often inefficient and neither economically nor politically feasible to build and maintain.

Current hazardous waste incinerator technology requires the expenditure of large amounts of energy in order to attain and maintain the high temperatures (2000°F to 3000°F) required for the pyrolysis of organic matter. Conventional technology achieves these temperatures through the combustion of fossil fuels or the use of other non-renewable resources.

Recent DOE research has used solar furnaces to focus solar radiation and obtain temperatures in excess of those needed to pyrolyze organic matter. It has been demonstrated that this technique can destroy organic materials through both pyrolytic and photolytic mechanisms. The energy source for such a furnace is sunlight, a readily available and renewable resource.

This SBIR topic involves the evaluation of interfacing solar furnace designs to particle and toxic gas scrubbing technologies to achieve an efficient and inexpensive alternative to the destruction of organic hazardous wastes. Should such technology prove to be feasible both scientifically and economically, this work will continue with the construction of lab scale and finally a pilot scale facility.

PHASE I: Provide a feasibility study which examines the applicability of destroying a typical organic waste stream through absorption of concentrated solar radiation. This study will also examine available technologies for concentrating solar irradiance and cleaning up anticipated exhaust products. Limited laboratory scale tests may be needed to verify the dependability of the proposed techniques.

PHASE II: Construction and demonstration of a laboratory scale incinerator using information developed from the Phase I study.

PHASE III: Construction of a pilot plant scale solar combustion facility at a Navy shore facility.
COMMERCIAL POTENTIAL: Disposal options for hazardous wastes are becoming harder to find. The "cradle to grave" approach taken by environmental regulations and the increasing costs of hazardous materials disposal make total destruction of hazardous materials a viable option. Even non-hazardous wastes are taxing our current means of disposal. In 1992 it was reported that close to 130,000,000,000 tons of municipal waste is disposed of in landfills in the United States each year. Unfortunately, the most prevalent technique currently in use for destroying organic wastes, incineration, has acquired a poor reputation as a result of the production of PCB's, PAH's, and dioxins as byproducts of the process cool down. The ability of photolytic decomposition to occur at the lower temperatures where these compounds form from combustion products makes it unlikely that they would be found in the exhaust stream from a properly designed solar incinerator. It is envisioned that small units could be built that would allow transportation of the incinerator to remote contaminated sites to assist in the cleanup of spills. Such a device may also prove useful in the destruction of waste material in space, where electrical power is minimal and at a premium. Solar incineration could also play a role in processing inorganic wastes into a form more easily handled, such as the transformation of friable and highly hazardous asbestos fibers into non-hazardous glass-like globules that could be subsequently recycled into construction media such as concrete or asphalt replacement on roads.

REFERENCES:

N97-035 TITLES: Spatial Light Modulation Technology for Training Applications

OBJECTIVE: To design and develop a full color, 2K x 2K pixel resolution head-mounted display (HMD) based on spatial light modulation (SLM) technology. The HMD shall be capable of displaying conventional full color stereoscopic (2K x 2K pixels per eye) imagery at 60 Hz, and 1K x 1K pixel (per eye) full color three dimensional imagery at 1 KHz frame rates. The HMD shall include electronic circuitry suitable for interfacing to commercial image generation equipment.

DESCRIPTION: Spatial Light Modulation (SLM) technology has the potential for high resolution, high brightness, small size, light weight, and extremely high frame rates (up to 10,000 frames per second). However, existing SLM devices lack the supporting electronics to interface to sophisticated computer image generation equipment. Optical designs are also lacking to efficiently integrate reflective SLM devices into collimated head-mounted display systems. Furthermore, technology is needed which can take advantage of the high frame rate capability of SLM devices to create three dimensional images in HMD's.

PHASE I: Design analysis on existing and prospective optical components, three dimensional imaging technologies, and image generator interface methodologies.

PHASE II: Implement the chosen design, and demonstrate the HMD’s effectiveness by integrating it with an existing military simulation.

PHASE III: Commercialize the prototype system developed and evaluated in the Phase II effort.

COMMERCIAL POTENTIAL: The proposed technology development has the potential to enhance the fidelity and affordability of a broad range of head-mounted display applications including commercial simulation and training, remote handling, education, virtual reality and entertainment.

N97-036 TITLES: Adjustable Collimation for Head-Mounted Displays.

OBJECTIVE: To develop and implement technology to allow the collimation distance in stereoscopic head-mounted displays to be adjusted between approximately one meter and near infinity.

DESCRIPTION: A system is required to allow readjustment of image collimation distance for different training tasks and application using the same head-mounted display. Studies have shown that having the correct collimation distance setting can enhance the effectiveness of stereo imagery as much as one-hundred fold. The correct collimation for a specific task is the

NAVY-30
distance from the eyepoint at which the primary objects of interest in the simulated environment are located. By causing the perceived distance of the imagery to be at the same effective distance as critical simulated objects produces a significant increase in sensation of depth. Existing head-mounted displays have a fixed collimation distance, and therefore have limited effectiveness in a wide range of training tasks and applications. For example, a head-mounted display with a near infinity collimation distance is appropriate for far range flight simulation tasks, but is ineffective for close range tasks such as aerial refueling.

PHASE I: Identify alternative design approaches, and conduct cost/performance trade studies.

PHASE II: Implement the chosen design(s), and conduct extensive evaluation of training effectiveness and simulation sickness issues in one or more military simulation applications.

PHASE III: Commercialize the prototype system(s) developed and evaluated in the Phase II effort.

COMMERCIAL POTENTIAL: The proposed technology development has potential to enhance the fidelity of a broad range of head-mounted display applications, including commercial simulation and training, remote handling, education, virtual reality and entertainment.

N97-037

TITLE: Stiff Micro Force Transducer with High Frequency Response

OBJECTIVE: Develop a sensitive force transducer for use in measuring oscillating thrust of combusting propellant samples in the laser recoil experiment. Current transducers are too heat sensitive, too low resonant frequency or not sensitive enough to small force oscillations. Ideally, it would be insensitive to pressure oscillations.

DESCRIPTION: The purpose of this SBIR is to increase the basic understanding of ignition transients and combustion oscillations in solid propellant rocket motors, including experimental work on laser-augmented combustion of solid propellants. Specific experimental data is the propellant thrust response to laser power oscillations using a microform transducer at atmospheric and elevated pressures, up to 200 psi.

The ideal microforce transducer would be small (less than 3 inches in any direction), have low sensitivity to heat (from the burning propellant), be sensitive to 0.01 gram force, be insensitive to pressure oscillations and have a resonant frequency above 1000 Hz. The Kistler 9207 piezoelectric force transducer is fairly heat and pressure sensitive and not designed for elevated pressures. Although it has a resonant frequency above 10K Hz, when attaching the 1.0 gram sample pedestal and 0.6 gram sample it drops to 400 Hz.

There is a Russian inductive force transducers which has the required sensitivity, but the resonant frequency is only 160 Hz.

PHASE I: Design and produce 4 prototypes of the stiff microform transducer and associated electronics.

PHASE II: Refine the design and manufacture demonstration quantities (10) for other combustion research labs in government, universities, and industry for evaluation.

PHASE III: Refine the transducer for commercial use including operational manuals, and signal amplifiers, market at the Sensors Expo.

COMMERCIAL POTENTIAL: The transducer could have use throughout the propellant combustion community for both research and development by industry, government and universities. Also it could apply to biomedical, disk drive heads, robotic pick and place machines with tiny fragile components. The technology could be adapted for ultra high sensitivity hydrophones.

REFERENCES: Laser Recoil, Emission, and Flame Height Combustion Response of Oxidizers

N97-038

TITLE: Registration of Forward Looking Imagery

OBJECTIVE: A methodology is sought for performing single frame image registration and template matching, in real-time, of images captured with a forward looking camera or sensor.

DESCRIPTION: Develop a method and system of performing image registration and template matching of images taken with a forward looking camera or sensor. Issues that will need to be addressed include, but are not limited to, range/scale, heading/orientation, aspect. This should be considered as a discrete process, where individual images need to be processed. The matching will be performed with a set of pre-defined templates. Performance of this operation should be deterministic and in near-real-time. A prototype implementation would be developed in C or C++ (commercial requirement) and should be able to run on equipment consistent with Navy combatant computer architectures. A comparison between classic image registration techniques and new approaches should be performed as part of the project.
PHASE I: Conduct a feasibility study and establish the processing requirements for performing the task. Develop algorithms and demonstrate them in a proof-of-concept prototype implementation.

PHASE II: Expand the Phase I study and demonstrate the concept within a fully operation prototype performing in near-real-time, e.g., seconds.

PHASE III: Enhance the prototype to interface with camera/sensor equipment, operate in real-time, and integrate it with existing and under development military systems.

COMMERCIAL POTENTIAL: Signature authentication, security systems, automated product inspection, image database querying.

N97-039

TITLE: Minimization of Hinge Moment for Missile Control Fin

OBJECTIVE: The objective of this effort is to develop and implement new technology to minimize missile control fin hinge moment by tailoring fin structure and panform with passive and/or active fin profile control.

DESCRIPTION: Overall missile performance and range can be enhanced by minimizing control fin hinge moments while maintaining the aerodynamic normal force required for high "g" maneuvering. Recently, initial development of innovative technology has been conducted in the areas of flexible structure and platform optimization to satisfy specific aerodynamic objectives subject to geometric and other constraints. By combining and extending the existing technologies, it is now possible to perform parametric studies and conduct tests to explore new optimized structural concepts and platform shapes with passive and/or active profile control aimed at reducing actuator power requirements of missile control fins.

PHASE I: During the first portion of the program, for a given platform, parametric optimization studies will be conducted to define orthotropic or anisotropic (such as composites) fin structures with suitable spanwise to chordwise stiffness ratios for controlling center of pressure location. In this process, suitable aerodynamic models will be employed in the optimization scheme depending on the flow conditions. The main purpose of the Phase I effort will be to demonstrate the feasibility of controlling fin hinge moment by passive profile control of a realistic composite fin structure and platform subject to flutter, geometric and other constraints. In addition, a Phase II plan will be formulated to extend the fin structural model to include piezoelectric elements, effects of platform shape in the optimization scheme, and the design of fins to be tested in a systematic wind tunnel program.

PHASE II: During the second portion of this effort, the Phase I optimization scheme will be extended to include active control (such as piezoelectric) elements in the structural finite element model as well as effects of platform shape. The enhanced optimization scheme will be used to perform parametric studies aimed at designing realistic fin structure(s) with the aerodynamic objective of minimizing hinge moment. Detailed trade-off studies will be made of the control efficiency and power requirements of the actuators of rigid, fully deflectable control fins, flexible fins with passive profile control, partially deflectable fins with active profile control, and non-deflectable fins with passive profile control. On the basis of the information gained from the trade-off studies, fins will be designed using the enhanced optimization schemes. The claimed performance of the fins will be checked against CFD calculations.

PHASE III: During the third phase, wind tunnel models of the most promising designs will be built and tested.

COMMERCIAL POTENTIAL: A comprehensive design code capable of including effects of structure, platform, and passive and/or active profile control will be extremely useful to missile control fin and aircraft control surface designers. By incorporating suitable hydrodynamic flow model codes, the technology is equally useful to the design of control surfaces of submersibles. Likewise, the technology should be useful in the design of turbine blades and windmills. The multidisciplinary optimization design technology coupling aerodynamics, structures, and active controls has many "spin-off" applications.

REFERENCES:

NAVY-32

TITLE: An Optimized Design and Coupling Analysis Tool for Conformal Antennas on Treated Platforms

OBJECTIVE: Develop a CAD-based tool for design and performance evaluation of conformal antennas mounted on mobile or airborne platforms while taking into account nearby treatments (or non-metallic property) and coupling from other communication devices on-board the platforms for information and electronic warfare (IEW) applications.

DESCRIPTION: This effort addresses a need for conformal antennas design software which account for platforms curvature, material treatments, nearby discontinuities and coupling among various antennas for accurately assessing its radiation pattern, sidelobes, near-field characteristics. Of particular interest is also the modeling of the antenna feeding networks and array configurations which are important in optimizing received signal power over all incidence angles and the desired bandwidth. The proposed software should be interfaced with high-frequency methods for modeling the entire platform and with visualization software to permit an examination of the interactions and field strengths in the immediate antenna surroundings.

- **PHASE I** Develop prototype software capable of conformal antenna plus feeding network design in the presence of treated and highly curved platforms. Software should demonstrate capability with validation for accurate prediction of near-zone fields and far-field radiation patterns.
- **PHASE II** Full scale development and interface with high-frequency and visualization software for antenna system assessment onboard complex platforms. Deliver modeling software (with detailed manuals) which is fully validated and packaged in a user-friendly, menu-driven form.
- **PHASE III** Interface with government off-the-shelf (GOTS) software and demonstrate the operation of algorithms in an synthetic virtual environment for IEW effectiveness evaluation.

COMMERCIAL POTENTIAL: In wireless systems, there is a pressing need for designing new antenna systems which account for near field effects and provide pattern reconfiguration. An analysis and design tool which includes curvature effects, nearby obstructions and can permit antenna shape/radiation pattern optimization has tremendous commercial potential in the re-design of cellular phone and personal communication wireless systems.

TITLE: Next-Generation Real-Time Threat Simulator for Weapon and EW Systems Simulation

OBJECTIVE: Develop next-generation real-time threat simulators with high fidelity and accuracy in far- and near-field representations for design and effectiveness assessment of EW and weapon systems.

DESCRIPTION: This development focuses on innovative ideas and approaches in electromagnetic modeling and representation of complex radar targets which significantly improve the fidelity and accuracy of the current look-up table approach of threat simulator systems. The emphasis of this effort is to investigate and develop technology to produce new real-time radar threat simulator engine based on N-point scatterer models or any other novel comparable technologies. The technique developed should provide both far- and near-field (up to endgame scenarios) representations rapidly and continuously with very high fidelity and accuracy.

- **PHASE I:** Explore and identify the accuracy of N-point scatterer model extraction processes with measured and/or predicted data and demonstrate the robustness on selected complex target. Show the validity of the approach employed along with computational speed and accuracy improvements.
- **PHASE II:** Develop a visualization and computational engine based on the Phase I results to interface this capability into existing threat radar simulators. Demonstrate the computational speed and improved overall fidelity and flexibility of this new approach in a selected threat radar simulator.
- **PHASE III:** Interface with GOTS (government of the shelf) software and demonstrate the operation of algorithms in a synthetic 3-D virtual environment for EW and weapon effectiveness evaluation.

COMMERCIAL POTENTIAL: This research and development effort has potential commercial applications in the development of NASA, FAA and airline training simulator systems with significant flexibility and accuracy enhancements. Current
commercial radar simulators are also still utilizing 60's simulator technologies and this SBIR technology advancement would be a major improvement in commercial training and analysis simulators.

N97-042 TITLE: Integrated Multi-Spectral Modeling For Surveillance, EW and Mission Planning Applications

OBJECTIVE: Develop a computer-based multi-spectral (EO/IR and Radar) sensor modeling and simulation capability for information and electronic warfare (EW) applications.

DESCRIPTION: The EW, mission planning, precision-guided weapons, and information warfare communities require much higher fidelity modeling and simulation data for the development of tactics and targeting selections in support of the warfighter. Various computational methods in predicting the multi-spectral sensor returns are becoming very reliable to estimate multi-spectral scattering characteristics of a variety of targets, terrain, regions, and sites. This effort will address the integration of real-time high fidelity multi-spectral simulation capabilities for improvements in EW/weapon analyses and assessments of complex operational end-to-end sensor systems.

PHASE I Explore and evaluate high-fidelity near real-time modeling techniques and provide an innovative plan for enhancing the multi-spectral simulation tools for surveillance and EW applications. Show the validity of the plan by demonstrating a near real-time synthetic aperture radar (SAR) and IR system that emulates various clutter, terrain, and sensor conditions for an actual data collection platform.

PHASE II Extend the modeling approach with multi-spectral tools to perform near real-time modeling and simulation of a multi-spectral (EO/IR and radar) information warfare virtual environment. The tool-kit must be capable of providing in-situ multi-spectral sensor, platform terrain and elevation realism to support a full 3-D simulation environment.

PHASE III Interface with GOTS software and demonstrate the operation of algorithms in an synthetic virtual environment for EW/weapon effectiveness evaluation.

COMMERCIAL POTENTIAL: This research and development effort has commercial applications in the design of a general class of high fidelity 3D simulation technologies for interface to GIS systems. This high-fidelity data can be used by the USGS land management of office for environmental considerations, erosion analysis, land use analysis, environmental analysis and detailed modeling and simulation of urban microcell and macrocell wireless communications systems.

N97-043 TITLE: Automatic Battle Damage Assessment in Remotely Sensed Imagery

OBJECTIVE: Develop automatic algorithms to quantitatively assess battle damage by detecting changes in time sequenced surveillance imagery of the battlefield.

DESCRIPTION: Timely battle damage assessment is critical in the modern rapidly evolving battlefield. Near real-time independent verification of a previous strike's success would allow more optimal planning of subsequent sorties. It also would thaw enemy attempts in counter-measures such as painting holes on the runway. Automated method of quantitatively determining target damage by comparing imagery of the target area before and after a strike would allow the processing a large volume of imagery quickly.

PHASE I: Conduct a study of battle damage assessment techniques. Determine the achievable performance such as false alarm rate and accuracy of the estimation of the size of the damage etc. as a function of imagery parameters and quality. Determine the time-line of the automated processes given a standard workstation hardware environment. Determine scaling properties as a function of imagery size, volume, and spectrum.

PHASE II: Complete algorithm and software development. Demonstration and characterization of performance on sample imagery.

PHASE III: Field demonstration using real-time data link and a flying platform.

COMMERCIAL POTENTIAL: Potential application in medical imaging for tumor detection complete with size estimation. This will provide an aid to independently flag any potential tumors in a central processing site.
TITLE: High-Performance Microwave Imaging and Target Recognition Techniques

OBJECTIVE: Develop high-performance techniques for microwave image formation and recognition with flexibility for wide range of system operating configurations.

DESCRIPTION: Conventional microwave imaging algorithms and target identification techniques are developed based on different assumptions and approximations in various components of the modeling process which often translates into limitations of system capability and reduction of overall performance. Therefore, it is of great importance to develop high-performance microwave image formation and target identification techniques which are capable of operating effectively under various system configurations and parameters such as illumination waveforms, antenna beam patterns, and near- and far-field schemes.

PHASE I: To conduct a complete study for the development of high-performance microwave image formation and recognition techniques. The full-scale analysis includes resolution, sensitivity, and computation complexity corresponding to the various operating modes.

PHASE II: To complete the development and software integration of high-performance microwave imaging and recognition techniques, and full-scale performance evaluation.

PHASE III: Full-scale field tests or demonstration in an equivalent virtual environment and subsequent modifications for optimal performance.

COMMERCIAL POTENTIAL: In remote sensing applications, microwave imaging often plays a very important role in modern medical imaging as well as in predicting, surveying and management of hazardous material waste, agriculture crops, forest and other natural resources. The R&D effort will greatly benefit civilian remote sensing applications and resource control and management as well as medical imaging.

TITLE: Laser Interferometer for TCLE Measuring of Polymeric Material

OBJECTIVE: To develop a laser interferometer designed to measure thermal coefficient of linear expansion (TCLE) of highly-filled polymers.

DESCRIPTION: The propulsion community currently uses various methods to measure TCLE, resulting in an experimental variability as high as 80% between government and private laboratories. Such discrepancies can result in very large errors in structural integrity and service life analyses of various propulsion systems. Therefore, the JANNAF Structures and Mechanical Behavior Subcommittee (S&MBS) has begun an effort in FY 95 to provide the community with a research procedural document to perform consistent TCLE measurements. In FY 95-96, JANNAF S&MBS conducted a round-robin within the propulsion community and found that each laboratory performs the test slightly different, even when using the same type of thermal mechanical analyzer (TMA). The results of the JANNAF FY 95-96 TCLE Round Robin indicated a real need to standardize the method and to develop a more precise way of measuring TCLE to minimize experimental variability between laboratories. The Navy has recently developed a laser interferometer sensitive enough to measure cure shrinkage during polymerization and validated a theory that cure shrinkage was one of failure mechanisms responsible for the HARM's bondline failures. During the failure investigation, the Navy discovered that the technique may have the ability to measure TCLE within some measure of accuracy. Therefore, the Navy is proposing an SBIR for a contractor to research and develop the technique to include TCLE.

PHASE I: Provide a feasibility study which develops a laser interferometer capable of measuring TCLE within +/- 0.00000001 in/(in*F). The device must operate within a temperature regime of -250 to 250_F at variable rates; therefore, an environmental chamber must be designed and integrated into the system. The complete system must have the ability to interface with either a MAC or a PC controller and data acquisition system.

PHASE II: Develop, test and operationally demonstrate the TCLE Laser Interferometer designed under the Phase I effort described in this SBIR.

PHASE III: Produce the TCLE Laser Interferometer demonstrated in the Phase II effort. This device will be transitioned into the JANNAF's Service Life Technology Program (SLTP), scheduled for up-start in FY 98.

COMMERCIAL POTENTIAL: New technique to be used in the Rubber and Composite Industry, along with the Defense Industry, and to increase the SOTA of Laser Technology.

REFERENCES: (CPIA paper)
OBJECTIVE: A methodology and system is sought for feature extraction, signal analysis and exploratory analysis in the setting where the objects (signals/images) have many dimensions (samples/pixels) and there are relatively few training samples and in the video setting where the volume of data is great and storage, retrieval and browsing requires special methods to be feasible.

DESCRIPTION: Innovative methodology and software is needed for applications in infrared (IR) imagery and radar signal processing. Problems to be addressed include interference rejection, clutter suppression, signal de-noising and classification, change detection, image registration and video browsing. This project will utilize over complete waveform dictionaries like wavelet packets to develop novel algorithms for feature extraction, classification and statistical inference in signals and images. The basic idea is reduce the dimensionally of the problem by using the framework of associated data structures for analysis and discrimination at different spatial and temporal scales. Algorithms that unify and bridge the gap between the packet data structure and the rules that specify classes including tests to classify coherent and incoherent signals are especially important. Due to the intrinsic difficulty in modeling the complex relationship between the sensor and the signal feature selectivity nonparametric statistical prediction will be a key priority. In particular, the methods should be integrated with classical and modern statistical pattern recognition tools (e.g., discriminate analysis, projection pursuit, or regression trees). Methods addressing non-Gaussian noise conditions using re-sampling techniques (e.g., the bootstrap, cross validation) are of interest. Also of interest are novel strategies for optimization of objective functionals (e.g., robust cost functionals) for classification. Scalability of the algorithms to handle large amounts of data in real-time is important.

PHASE I: Investigate novel techniques for wavelet packet statistical inference. The optimization of robust objective functionals for discrimination using overcomplete multiscale dictionaries will also be investigated. The unifying bridge between the rules specifying a class and the packet data structure will be thoroughly discussed. A plan for integration of the proposed software with existing development environments such as Khoros*, MathLAB** and S-PLUS*** is desired and possible preliminary analysis using test images will be encouraged.

PHASE II: Extensive software development and testing with signals and imagery with both commercial and military interest will be undertaken. Dimensionally reduction and feature discrimination using overcomplete waveform dictionaries will be demonstrated. Feature selection strategies, statistical connections and other analysis to support the pattern and signal processing software development will be required. Scalability of the algorithms to handle large amounts of data in real-time will be addressed. The methods should be implemented in a high level object-oriented software language suitable for rapid prototyping of algorithms and exploratory signal analysis.

PHASE III: The technology has application in both the countermeasure arena as well as weapons seekers and rapid retargeting. A detailed description of the use is not appropriate in this format. To encourage commercial applications the software and the experimental results should be embedded in a hypermedia environment accessible from the world wide web.

*Registered Trademark of Khoros Research, Inc.
**Registered Trademark of Mathworks, Inc.
***Registered Trademark of Mathsoft, Inc.

COMMERCIAL POTENTIAL: Multiscale Analysis Has Application For Video Browsing & Image Classification In Digital Libraries. Time Frequency Analysis Is Applicable To Diverse Non-Stationary Signals Such As Speech, Medical And Mechanical Diagnosis.

NAVAL SEA SYSTEMS COMMAND

N97-047 TITTLE: Type 18 Periscope Heated Head Window

OBJECTIVE: Develop a Form-Fit-Function Replacement to the existing Type 18 Periscope Heated Head Window (HIW)

DESCRIPTION: The present Type 18 Submarine Periscope wire grid glass Heated Head Window was originally developed by Barr and Stroud and is now manufactured exclusively by Kollmorgen Corporation. It is extremely expensive to procure and has been the subject of a high number of failures over the last several years.
PHASE I: Design and develop an alternative to the existing HHW fabricated Head Window using Electro Conductive coating technology in lieu of the wire grid. Produce a prototype HHW for test and evaluation and design disclosure drawings.

PHASE II: Develop additional designs that (first) utilize externally laminated thin layer EC coated Sapphire on a fused silica head, and (secondly) a HHW fabricated from a boule of pure Sapphire and, (thirdly) a design incorporating acrylic or other optically superior composite with mechanical integrity equal to or superior to the existing HHW.

PHASE III: The contractor shall prototype and test the Phase 2 designs. This Phase should develop Production level, full design disclosure engineering drawings adequate to support competitive procurement.

COMMERCIAL POTENTIAL: This design concept is applicable to windshields for commercial aircraft, helicopters, and ocean going ships, and face/vision protectors for emergency personnel.

REFERENCES: NAVSEA Drawing 887F050034, Cage 34228, Heated Head Window Assembly

N97-049 TITLE: Diagnostic Measures of Complex Cognitive Skills

OBJECTIVE: Develop an assessment tool to support deficiency-based training.

DESCRIPTION: The future Navy surface combatant will likely take advantage of significant technological advances in order to enable reductions in on-board manning. This will produce increased cognitive demands and added responsibilities upon the members of the resident crew. In addition, future Navy training is less likely to rely on formal shore-based facilities and more on shipboard training and on skill remediation. Given this reduction in manning and change in training focus, it is imperative that personnel be accurately characterized in terms of the skill and knowledge they possess. In this anticipated shipboard manning and training environment, the Navy will maintain a specific set of skills in the resident crew because the redundancy currently available in personnel will no longer exist.

In order to assure high levels of readiness are also maintained in this environment, there is a need for the development of cognitively based measures of learning. These measures shall be based in cognitive theory and must be robust enough to demonstrate predictive validity in both terms of predicting learning retention and in terms of predicting trainee on-the-job performance immediately following training. Further, these measures must accurately diagnose performance deficiencies in order for shipboard remedial training efforts to be prescribed. Finally, the application of these measures must be user friendly to be used effectively by shipboard personnel.

These measures, based in cognitive theory, must demonstrate predictive validity in terms of trainee on-the-job performance immediately following training and be robust enough to predict learning retention. Further, these measures must accurately diagnose performance deficiencies in order for shipboard remedial training efforts to be prescribed. Finally, the application of this assessment tool must be user friendly to be employed effectively by shipboard personnel.

PHASE I: Develop cognitively based measures of learning applicable to training in the Naval shipboard environment including a functional description that provides (1) a methodology for assessment of higher order cognitive processes, and (2) the manner in which this methodology will be used to support training. Report the results.

PHASE II: Design, develop, demonstrate and test a readily reconfigurable brass-board model assessment tool that applies the Phase I learning measures to one or more specific shipboard position(s), and may be applied to other shipboard positions by reconfiguration in the shipboard environment.

PHASE III: Phase III will result in the production of an assessment device and corresponding guidelines and specifications for use.

COMMERCIAL POTENTIAL: This methodology will have applications to any organization in which high performance skill retention is a problem and remedial training is applicable.

N97-050 TITLE: The Use of Virtual LANs (VLANs) for Multiple Level Security (MLS)

OBJECTIVE: Develop a methodology of reliably separating and segregating multiple security levels within shipboard and shore-based Navy local area networks (LANs) using virtual LAN (VLAN) technology.

DESCRIPTION: Navy shipboard and shore-based systems are migrating from multiple, independent "stovepipe" subsystems that are point-to-point connected or connected via individual dedicated shared-media (Ethernet or FDDI) LANs, to shipwide (or basewide) backbone networks that use switched (vice shared-media) LAN technology, e.g., switched-Ethernet, switched-FDDI

NAVY-37
and cell-switched ATM. The fact that the individual subsystems that are now to be integrated via a common backbone network operate at different security levels is a major concern and an impediment to a smooth, cost-effective integration.

The analogous problem of separating and segregating different user groups (e.g., design, manufacturing, sales, payroll, etc.) within a commercial LAN application has led to the development of a number of proprietary methods of “virtual LANs” or VLANs. Early VLAN limitations, such as the need for all members of a given VLAN to be connected to the same LAN hub/switch, have given way to flexible architectures which propagate VLANs over FDDI and ATM backbones such that VLAN membership can be distributed throughout the entire network.

The use of the concept of VLANs to separate and segregate different security levels in a military LAN would be an ideal solution to the MLS problem if it could be done in a reliable and secure manner. In commercial applications of VLANs, the need for rapid and easy moving of people between different virtual LANs has led to network management concepts that emphasize ease of reconfiguration over the stability and security of mandatory separation of security levels. Also, the need for high-performance switching has lead to short-cuts such as examining only the first frame of a new session to determine VLAN membership and switching subsequent frames (or cells) without re-verification of VLAN membership. These factors result in the concern that accidental or malicious changes in addressing could result in an unclassified workstation being joined to a secret VLAN.

What is needed is a secure, reliable technique for assigning workstations (or, preferably, multiple persons who share a common workstation but who log in at different security levels) to their proper VLAN. Furthermore, the technique should use a secure, reliable technique for tagging all frames, and verifying the tags, to assure that VLAN members stay in their assigned VLAN. From the workstation user’s point-of-view, VLAN membership should be mandatory, and not discretionary, and moving between VLANs should be outside the control of any user who did not have the special access privileges of the security administrator.

PHASE I: Evaluate current proprietary and evolving standards for VLANs, and the means by which VLANs are defined in network management workstations and implemented in Ethernet/FDDI/ATM switches. Propose modifications or extensions to a COTS VLAN technique that improves the robustness of the VLAN definition and separation technique such that it could be used to separate security levels in Navy LANs. Document the results in a report that (a) describes the proposed secure VLAN concept, (b) analyzes potential techniques for accidental or malicious breakdown of the security separation, and (c) identifies means by which the proposed VLAN security extensions might be submitted to appropriate standardization committees.

PHASE II: Demonstrate the proposed secure VLAN concept via laboratory hardware/software, preferably via modified COTS switching products.

PHASE III: Transition the secure VLAN technology into the commercial marketplace, possibly as options or extensions to COTS switching products.

COMMERCIAL POTENTIAL: There are a number of commercial applications of VLANs wherein the need for secure separation transcends the desire for ease of “moves and changes” or the desire for maximum throughput. These applications, such as the protection of medical records, the security of fund transfers, etc. would welcome the improved security of VLAN separation that will be provided by this SBIR development.

REFERENCES:
(1) LAN Emulation Over ATM V1.0 Specification Document No. AF-LANE-0021.000
(2) LAN Emulation Client Management V1.0 Specification Document No. AF-LANE-0038.000
These documents may be ordered from the ATM Forum at URL HTTP://www.atmforum.com/atmforum/spec_order.html

N97-051 TITLE: Spherical Angular Function (SAF) Analysis Models for Integrated Antenna/Composite Structures

OBJECTIVE: Develop, validate, and demonstrate a synergistic suite of near-field computer codes based on the Spherical Angular Function (SAF) technique for efficient analysis and design of integrated electromagnetic sensor/composite mast performance and Radar Cross Section for advanced composite/metallic topsides of Naval surface vessels.

DESCRIPTION: The topside of future surface ships will increasingly utilize multilayer composite structures and antennas that are intimately integrated with the composite structures. In particular, the antennas will typically be either enclosed or embedded in the composite structures. Electromagnetic engineering tools are not useable for current EM design and analysis of the integrated topsides to insure that the total RCS of the antennas plus composite structures satisfies topside electromagnetic signature requirements while the antenna systems simultaneously meet the ship’s electromagnetic surveillance, compatibility, and radiation hazard (RADHAZ) specifications. A suite of computer codes based on the Spherical Angular Function (SAF)
technique has proven to be very effective for analyzing installed antenna electromagnetic effectiveness in today's mostly metallic topside environment. However, in its current form it is not suitable for progression toward composite/metallic structure integration. The SAF technique is capable of being adapted to aid in the design and analysis of future composite/metallic topside integration. The suite of SAF near-field codes to be developed for antennas operating on composite/metallic topsides should utilize adaptive asymptotic SAF near-field spectral analysis techniques to efficiently and accurately predict 1) far-field antenna pattern performance and antenna gain loss, 2) near-field radiated electromagnetic fields and antenna-antenna coupling, and 3) the monostatic and bistatic RCS contributions of the installed antennas and the associated composite/metallic structures. The composite structures that must be analyzed include both flat and curved multilayer dielectrics and frequency-selective surfaces (FSS's) configured as radomes or radar absorbing structures (RAS). The types of antennas to be analyzed include enclosed and embedded planar and curved arrays of printed-circuit antennas and waveguide arrays, as well as enclosed reflector, horn and traveling wave antennas.

PHASE I: Develop the adaptive asymptotic concept applied to the SAF scattering models to efficiently analyze scattering by polygonally-shaped and elliptically-shaped multilayer composite plates, and validate the computer model predictions for a) antenna pattern performance and gain loss, b) near-field radiation and antenna coupling, and c) monostatic and bistatic RCS against government-furnished measured data.

PHASE II: Develop the adaptive asymptotic SAF scattering models for both the interior and exterior scattering problems for the following scenarios for both enclosed antennas and embedded antennas of the types delineated above, as appropriate: 1) general "n-gon" cross-section composite masts comprised of polygonally-shaped multilayer composite plates; 2) cylindrical multilayer composite structures; 3) general curved multilayer composite structures. Validate the SAF computer model predictions against government-furnished measured data for a) antenna pattern performance and gain loss, b) near-field radiation and antenna coupling, and c) monostatic and bistatic RCS for shipboard integrated antenna/composite mast structures. Provide comprehensive "hands-on" training for using the SAF models for designing and analyzing integrated antenna/composite mast structures.

PHASE III: Develop, validate and demonstrate a Hybird SAF/Finite Difference Time Domain (FDTD) computer model for integrated antenna/composite mast structures to expedite detailed design and analysis of ultra-broadband CW and pulsed multifunction, shared-aperture, embedded antenna arrays. Transition the SAF and Hybrid SAF/FDTD models to commercial and government customers.

COMMERCIAL POTENTIAL: The computer models will have important applications for the design and analysis of integrated antenna/composite structures for the commercial telecommunications and remote sensing industries, satellite tracking installations, airport traffic control radars, and space station platforms.

REFERENCES:

N97-052 TITLE: Fiber Optic Sensor Multiplexer using Microelectromechanical Systems (MEMS) Technology

OBJECTIVE: Design and demonstrate a method of optically multiplexing at least 32 passive fiber optic sensors. The multiplexer shall be small, lightweight and will incorporate MEMS technology.

DESCRIPTION: The ships of the future will have an enormous number of sensors on board, perhaps as many as 250,000. A sensor system incorporating these sensors must be immune to electromagnetic interference (EMI) and possess the computing power to manipulate the data received from the sensors. One means of achieving this with an optically multiplexed passive fiber optic sensor system. With this system many passive fiber optic sensors can be tied optically to one source and one detector, thus reducing the cost of the system. At least 32 sensors must be multiplexed together and the resultant signal must be compatible with state of the art processing equipment.

NAVY-39
PHASE I: Determine the feasibility of designing a fiber optic sensor optical multiplexer using MEMS technology.

PHASE II: Demonstrate a small scale, optically multiplexed fiber optic sensor network.

PHASE III: Construct a medium scale optically multiplexed fiber optic sensor network suitable for test evaluation on board a Navy ship.

COMMERCIAL POTENTIAL: This system could be used to monitor power plants, industrial processes and systems on board civilian aircraft.

REFERENCES:
8. Web Site http://mems.isi.edu

N97-053 TITLE: Distributed Integrated Data Interface & Management System

OBJECTIVE: Develop a distributed integrated information data access system, in a application, operating system, and platform independent manner. The resulting system should provide a framework and method for integrating, managing, and controlling information resources in a secure and scaleable manner.

DESCRIPTION: Shipboard information systems, such as combat planning, power projection, navigation, and logistic systems, are deployed on a heterogeneous collection of platforms, operating systems, and data processing systems. Modern enterprise wide applications rely on combining information from these disparate systems into an integrated application fulfilling higher level shipboard missions. Regardless of shipboard mission there is a common need to manage and integrate these distributed heterogeneous information systems in a secure, and scaleable manner. In order to provide effective information management and access to this pool of information resources, it is necessary to establish an underlying management system architecture, and corresponding data access methods, focusing less on individual approaches to security, data distribution, and data interchange, and more on providing a generic framework that can be "plugged" into by COTS and GOTS products, and used to encapsulate individual management policy and data access functionality. The result of this development will be a deterministic, evolvable information architecture, and an open/standardized method of providing data interchange, as well as a rich set of developmental tools, and APIs useful for rapidly deploying this methodology to the information management field.

PHASE I: Investigation of proposed concept. Evaluate current and emerging system independent information management and integration technologies. Develop a simulation of this information management framework to establish the feasibility of the management architecture.

PHASE II: Demonstration of the proposed concept integrating several lab based networked applications. The demonstration should show the system/protocol/vendor independent management of these systems, as well as the ability to access data from these heterogeneous information sources.

PHASE III: Scale the lab based system into a larger shipboard application to demonstrate the data interchange between systems such as JMCIS, NTCSS, TAMPS, TSCM, TOP SCENE, or APPEX. Evaluate the effectiveness of this approach, as well as the realized developmental cost savings.

COMMERCIAL POTENTIAL: Modern Information Technology (IT) systems are developing integrated applications, that combine the functionality of various networked systems. The ability to develop higher level functionality on top of existing heterogeneous IT systems will provide the commercial sector with an opportunity to automate their workflow, and reduce the cost of doing business. For example, the healthcare industry can benefit, by developing applications that can integrate the processing steps associated with a patient visit, including patient records, treatment history, insurance information, and scheduling. This type of system will provide a common interface that will enable enterprise applications to access data regardless.
of the type of database engine the data resides in, and to manage that information in a similarly system independent manner. This common interface approach will reduce future developmental efforts by eliminating the requirement of having a single fully integrated database to cover all data elements, and allows organizations to recover some of the costs used to deploy legacy systems.

N97-054 TITLE: Missile Fuel Leak Detection

OBJECTIVE: This concept is to develop, through new research and development, a missile fuel leak detector for use with current and future missile types.

DESCRIPTION: Current required capability (see ref. 1.) to detect liquid fuel resulting from a leak in a missile canister by missile systems such as the Vertical Launching System is lacking. Normal methods used to connect a fuel leak sensor inside a missile canister are inadequate and un-safe. Most electronic sensors are fundamentally electro-mechanical devices requiring voltage and current to function. The introduction of voltage and current into the volatile fuel vapors, no matter how small, can be catastrophic in that it can ignite the very liquid it is attempting to detect. New research and development to establish an advanced type of sensor to perform this necessary function in a safe manner is required. This sensor must not be capable of introducing electrical discharge when performing the missile fuel detection function.

PHASE I: Explore new research and development sensor technology capable of producing a sensing device as described which safely detects missile fuel and vapors.

PHASE II: New innovative methods identified from Phase I must then be developed into a prototype sensor. Test are to be run which proves that the new sensing technique is both safe and capable of detecting current and newly developed liquid fuels for missiles and torpedoes.

PHASE III: Integrate the prototype sensor into the existing Vertical Launching System for both the MK46 (S) Vertical Launch ASROC and the Tomahawk missile types.

COMMERCIAL POTENTIAL: A commercial application for this technology is in the Commercial Space Launch Industry, increasing safety during vehicular launch. Research and Development efforts in developing new fuels for commercial jets is another potential commercial area. This detector is applicable to any commercial industry using, storing, or handling highly volatile fuels.

REFERENCES:
2. “Vertical Launching System Prime Item Development Specifications,” WS20260A par. 3.2.1.2.1e

N97-055 TITLE: All Optical Shipboard Sensing System

OBJECTIVE: Design and demonstrate a small scale model of an all optical sensing system for use in new ship construction

DESCRIPTION: The ships of the future will have an enormous number of sensors on board, perhaps as many as 250,000. A sensor system incorporating these sensors must be immune to electromagnetic interference (EMI) and possess the computing power to manipulate the data received from the sensors. One means of achieving this is an all optical sensing system. With this system, the sensing element, the connecting cable and the information processing unit will all be optical. This will require a merging of three technologies: optical sensors, optical computing and integrated optics. The goal is to have a sensing system entirely optical in nature and possessing extraordinary computing power.

PHASE I: Determine the feasibility of designing an all-optical sensing system. Demonstrate a system consisting of one sensor and the signal processing hardware.

PHASE II: Demonstrate a small scale all optical sensor network.

PHASE III: Construct a medium scale all optical sensor network suitable for test evaluation on board a Navy ship.

COMMERCIAL POTENTIAL: This system could be used to monitor power plants, industrial processes and systems on board civilian aircraft.
REFERENCES:

N97-056 TITLE: Detection of Corrosion Under Paint

OBJECTIVE: Develop a reliable, portable means of detecting corrosion under paint in shipboard applications.

DESCRIPTION: Chipping and painting of shipboard structure is a routine maintenance function whose cost is minimized by accurate determination of need. A number of nondestructive (NDE) technologies have been tried over the years to detect corrosion under paint, including paints which discolor in the presence of corrosion, electrochemical detection, and ultrasonic surface wave approaches. A significant requirement exists to ensure that the NDE method for detecting corrosion under paint is sufficiently user friendly that it can be used reliably by enlisted petty officers. The NDE method must also be portable and retain good detection capability in corners and tight spaces. Cost and training must be kept to a minimum while maintaining high probabilities of corrosion detection. The method should be robust for steel and aluminum substrates and a wide variety of common Navy paints and coatings. Surface preparation requirements should be kept to a moist towel wipe if possible. Battery operation is preferable, but if not the unit should be able to withstand common shipboard power fluctuations.

PHASE I: Demonstrate an NDE technology concept for detection of corrosion under paint. Conduct a notional design study with a goal of predicting NDE instrument size and detection probability in the final product.

PHASE II: Develop an operational prototype of the NDE of corrosion under paint system, and demonstrate in field trials aboard a ship of opportunity.

PHASE III: Utilize this equipment and techniques at Naval refurbishing centers and shipyards to lower costs associated repairing damage caused by corrosion on ships.

COMMERCIAL POTENTIAL: Automobiles, commercial vessels, near shore metal structures, and bridges all need a reliable means of detecting corrosion under paint. Millions of dollars in maintenance costs and in retaining structural integrity could be saved with a reliable NDE method for detecting corrosion under paint.

N97-057 TITLE: Advanced Display Techniques For Sonar Data Presentations

OBJECTIVE: Develop new techniques for the presentation of submarine sonar system information and acoustic data.

DESCRIPTION: Recent advances in commercially available signal processing hardware have provided submarines the ability to greatly expand the amount of sonar information processed at sea. Operator controls and displays have not evolved in a similar fashion. Managing this information has become a formidable challenge to the operator. In high contact density scenarios, operators can easily become overloaded which can result in missed detection opportunities at nominal detection ranges. Innovative data presentation techniques which provide intuitive and clear representations of the acoustic data are needed to reduce information overload to the operators. The target display platform for this application is capable of three dimensional display data rendering using the X-windows MOTIF Graphical User Interface Standard.
PHASE I: Develop innovative Sonar Data Presentation concept(s) founded on the GUI MOTIF Standard and the control and display methodologies of available Submarine Sonars. The performance capabilities of the innovative display must be superior to existing Sonar Data Presentations, permitting the operator to achieve better identification of targets and target tracks in less time and with less fatigue.

PHASE II: Design and fabricate a 'brass-board' prototype, and perform a proof of concept demonstration on selected display candidates developed in Phase I of this effort.

PHASE III: Based upon a successful Phase II effort, develop a prototype model for qualification, test, and evaluation and production purposes, including supporting software and documentation, for a control and display system which can be integrated into an existing submarine sonar system.

COMMERCIAL POTENTIAL: The potential for transferring this technology to commercial industry is high. Related applications include medical imaging, air traffic control radar systems, and potentially digital photographic image processing.

REFERENCES: None

N97-058 TITLE: Develop a Generic Structural Composite Material to Meet MIL-STD-2031

OBJECTIVE: Develop a polymer matrix composite material that complies with MIL-STD-2031 and is suitable for all submarine non-pressure-holding structural applications.

DESCRIPTION: While it is generally accepted that polymer matrix composites represent an unlikely fuel source for initiating a fire; concern persists that in a fully involved fire, these materials will contribute to the available fuel load. Additionally, these materials typically outgas toxins during combustion. MIL-STD-2031 was developed as a means to provide guidance for addressing these issues.

The wide range of polymeric materials available suggest that it might be possible to design a plastic that offers flammability and smoke toxicity performance complying with MIL-STD-2031, while maintaining the strength required for structural applications.

PHASE I: Develop or identify those candidate chemistries that have the potential of providing products with the low smoke/vapor toxicities required. Include composite matrix materials and identify the toxic and non-toxic smoke/vapor by-products from literature search or direct experimentation. Identify the composite properties expected and possible synthetic routes to the product.

PHASE II: Synthesis of the candidate matrix compounds and lab-scale test and evaluation of their physical and fire performances.

PHASE III: This phase will consist of scale-up of the matrix material synthesis to pilot-plant or larger scale to provide materials for large scale evaluation of fire performance.

COMMERCIAL POTENTIAL: The most immediate commercial beneficiary of this development will be the aircraft industry. Smoke toxicity in aircraft fire is a hazard equal to impact hazard.

REFERENCES:

N97-059 TITLE: Design of Optimal Outboard Electrical Cables

OBJECTIVE: Develop and demonstrate an innovative electrical cabling or electrical power routing system which provides extreme high reliability in an outboard rugged marine environment capable of withstanding damage from sharp metal objects.

DESCRIPTION: The need for a longer life (12 years minimum), high performance outboard cable or power routing system is required to assure the continued reliable operation of key mission area systems and support advanced technologies. These cables or power routing concept may require armored coating as they are exposed to mechanical damage and heat, and are passed through the Main ballast Tanks or some form of hull penetrators. Consideration of dual jacket system is desired to

NAVY-43
benefit from the properties of the individual materials including mechanical damage toughness, water permeability, cable flexibility, water-block characteristics, manufacturability, shipboard installation, etc. Note, the cable system consists of cable lengths and connectors of various pin configurations and sizes including 3 to 85 pins and voltages which range from moderately high DC to moderately high AC.

PHASE I: Develop detailed recommendations and alternative preliminary designs for an innovative electrical cabling or electrical power routing system. The designs, should include technical, cost and schedule estimates and associated risks, and detailed plans to support the design, development and test of a prototype system are required.

PHASE II: Design, develop, fabricate and test a prototype outboard electrical system(s) based on results and plans delivered in Phase I.

PHASE III: Fully integrate the successfully demonstrated outboard electrical cabling or power routing system. Liaison with SBIR TPOC for land-based verification and validation and eventual at-sea testing.

REFERENCES: EBDiv Specification 2983J and others

COMMERCIAL POTENTIAL: Application is generic to the design and development of industrial equipment cabling used in marine structures and vehicles electrical systems exposed to liquid or spray and/or pressurized environments. In addition, design can be applied to any cabling application requiring high performance in an hostile environment.

N97-060 TITLE: Compression Filter

OBJECTIVE: Develop a replacement for a mechanical (analog-electronic) compression filter. A mechanical design Compression Filter currently in use has demonstrated service for 20 years with a good technical performance, but a high failure rate and increasing repair costs. The compression filter is used to narrow the band pass in the IF (Intermediate Frequency) channel of a detection receiver. The basic principal of the mechanical filter is to delay the signal as the receiver sweeps proportionally to the rate the receiver tunes. This slows down signals as they enter the band pass and speed up signals as they exit, causing the signal to accumulate at the center band pass.

The awardee must obtain (or currently hold) a secret level facility clearance prior to contract execution.

PHASE I: Design, and develop a digital filter as a replacement for the mechanical compression filter in order to reduce cost and increase reliability. The replacement filter will digitally capture the IF and create an equivalent narrow band pass output.

PHASE II: Fabricate and test a prototype digital Compression Filter. The prototype will be subject to all current technical repair standard performance test (CW gain, System threshold & gain, Swept gain or loss, HF video pulse shape, Video dynamic range and CFP dynamic range) and a system performance test (HF acquisition, and CFP dynamic range).

PHASE III: Following successful completion of phase II, fabricate additional units of the Digital Compression Filter for fleet introduction. A purchase specification will be developed for Government purchase of Digital Compression Filter kits for fleet backfit.

COMMERCIAL POTENTIAL: All commercial radio receiving systems

REFERENCES: Lockheed/Martin’ Sanders DWG. 1098105G2

N97-061 TITLE: Develop a Triaxial Gradiometer

OBJECTIVE: This program will research and develop a Triaxial Gradiometer.

DESCRIPTION: Develop a new triaxial gradiometer to surpass existing gradiometers’ performance limits and that will meet the future requirements for sensors in Closed Loop Degaussing. The X axis of the new gradiometer will be in the first Gaussian position (dHx/dx) with Y and Z axes in the second Gaussian position (dHx/dx and dHz/dx). Measurement of the gradients will support the capability to changing currents in coils and compensate for permanent magnetic fields as well as compensating for any inducing fields in a subject test specimen. Future needs exceed the current capabilities of this gradiometer. This work will extend the state of the art in gradiometers. Performance requirements (thresholds) for Phases I through III are as follows:
LINEARITY:
Each magnetometer is tested by increasing a collinear aligned field from -100 μT to +100 μT. A straight line is run through the data points. The points are not to deviate by more than 7 nT from this line. Electronic or alternate methods of achieving linearity will be considered.

CROSS FIELD SUSCEPTIBILITY:
Each magnetometer is tested by increasing an orthogonally aligned field from -100 μT to +100 μT. A straight line is run through the data points. The points are not to deviate by more than 0.9 nT from this line. Also the cross field rejection must be better than -54dB (20*log(400/200,000)). Electronic or alternate methods of achieving cross field susceptibility will be considered.

PERFORMANCE:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Error</td>
<td>< 10 nT</td>
</tr>
<tr>
<td>Offset Temp Coef</td>
<td><0.1nT/ °C</td>
</tr>
<tr>
<td>Scaling Temp Coef</td>
<td>< 5 ppm/ °C</td>
</tr>
<tr>
<td>Spherical Turnaround Error</td>
<td><10nT gradient per meter rotated in 3 orthogonal planes</td>
</tr>
<tr>
<td>Perm Offset Max</td>
<td>2 nT per 20 Gauss Exposure</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>0-50 Hz Flat</td>
</tr>
<tr>
<td>Calibration -</td>
<td></td>
</tr>
<tr>
<td>Scaling</td>
<td>10V/G (100 μV/nT) for magnetometer</td>
</tr>
<tr>
<td></td>
<td>10V/G/baseline (100 μV/nT/baseline) for gradient</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.6%</td>
</tr>
<tr>
<td>Initial Orthogonality</td>
<td>±.1°</td>
</tr>
<tr>
<td>Overall Range</td>
<td>±100,000 nT (10V)</td>
</tr>
<tr>
<td>Internal Noise (0-10Hz)</td>
<td>25pT/ root Hz</td>
</tr>
</tbody>
</table>

Environmental requirements (both goals and thresholds) are as follows:

ENVIRONMENTAL:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temp</td>
<td>-10 C to 60 C</td>
</tr>
<tr>
<td>Humidity</td>
<td>0 - 100%</td>
</tr>
</tbody>
</table>

ELECTRICAL:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±15VDC (±14V to ±18VDC) Will not be harmed by reverse voltage</td>
</tr>
<tr>
<td>Total Current</td>
<td>< ±100mA</td>
</tr>
<tr>
<td>Power Supply Rejection</td>
<td>< 10 μV/V</td>
</tr>
<tr>
<td>Output impedance</td>
<td>< 50Ω</td>
</tr>
<tr>
<td>Load tolerance</td>
<td>10MΩ // 10 μF</td>
</tr>
<tr>
<td>EMI Susceptibility</td>
<td>Insensitive to e-Fields over 59 Hz</td>
</tr>
</tbody>
</table>

MECHANICAL:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Vibration</td>
<td>Each core not move more than .005° when exposed 5 minutes to 20G RMS 20 Hz to 2 KHz</td>
</tr>
<tr>
<td>-Drop Test</td>
<td>3 feet all axes. Gradient alignment not to change more than 0.01 degrees.</td>
</tr>
<tr>
<td>-spacing</td>
<td>Two triaxial magnetometers are to be spaced 12° to 14° from each other. Each core, in the triaxial magnetometer, to be within 0.5° of each other. Develop technology so that it is applicable to additional gradient baselines.</td>
</tr>
<tr>
<td>-case</td>
<td>Cores and associated electronics in one case not to exceed 152 cubic inches (The smaller, the better). This aids in shipboard mounting and cabling.</td>
</tr>
</tbody>
</table>

PHASE I: Design, develop, and provide a brass-board model of an innovative gradiometer design and indicate its feasibility in laboratory prototype tests and with theoretical analysis. Examine existing magnetic gradiometers to identify new materials and electronics technology to improve performance of the brass-board model.

PHASE II: Produce six prototype gradiometers for testing at sea, using the most promising technology as defined in Phase I. Performance parameters are to be optimized with low intrinsic noise, and low power consumption, low cost and ruggedness considered secondary considerations at this time. Rigorous testing will be performed and the devices will be characterized for production and studied for ruggedization and production cost reduction.

PHASE III: Produce gradiometers for production to Navy sensor requirements.
COMMERCIAL POTENTIAL: An advanced gradiometer will open new commercial markets in the areas of vehicle surveillance, traffic road sensors, and non-destructive testing applications. Low cost magnetic gradiometer sensors would also be used for intrusion detection and surveillance systems.

REFERENCES:

N97-062 TITILE: Improved Mid-Frequency Statistical Energy Analysis Modeling Procedures

OBJECTIVE: Abatement of Airborne and Structureborne noise, through Development of improvements to statistical energy analysis (SEA) modeling procedures at mid-frequencies where high modal densities may not be present, and/or where individual modes of one or more components dominate the frequency response of a system or structure.

DESCRIPTION: Prediction accuracy in mid-frequency ranges from statistical energy analysis approaches has been noted as an area for needed improvement and accuracy. A possible solution to this problem may lie in combination of statistical energy analysis with deterministic modeling techniques (such as finite elements) applied to components, and/or component modal testing. If successful, these methods will offer an opportunity to greatly improve capabilities for prediction of vibration and structural acoustic responses of systems and structures. Prediction of mid-frequency behavior of a system by deterministic approaches alone is very expensive in terms of modeling effort and computation requirements. Full-structure testing requires costly setup effort and testing time, as well as the added possibility of limitations on quantity and quality of data. Modeling and/or testing of individual components greatly simplifies the process but does not provide information on the full system. By combining results from deterministic approaches on components with the statistical energy analysis approach for modeling of the full system, useful and more accurate predictions will be able to be obtained for the frequency response of systems and structures.

This is a new area of endeavor which will provide for a great advancement in the technical field of vibration and acoustics. The proposed program is one which will require carefully considered methods of research and development, and which will necessarily include strong foundation in theory, analysis methodologies, and experimentation.

A major purpose of the SBIR includes technological innovation by the small business and an associated increase in the commercial application of the technology. This is in addition to improved naval products and processes. To accomplish this, a three phase program is established, and each phase should be addressed in proposals.

PHASE I: Develop an improved SEA method for mid-frequency analysis involving deterministic computational approaches, and/or experimental procedures, which are applied to an example structure or system. The results must allow for determination of the scientific merit and feasibility of the prediction method and its technological approach. The program of research, including theory, methodology, analysis, results, and conclusions will be documented and discussed in a formal deliverable, as well as in appropriate peer-reviewed journal articles.

PHASE II: Apply the Phase I prediction method(s) to additional example structures for verification and confidence in the technology. The progress in work is also expected to lead to a well-defined deliverable product, procedure, or process for improved mid-frequency statistical energy modeling and analysis. Possible products include publication of fully documented technical procedures and approaches, and/or direct incorporation of techniques into commercially available products such as computer software.

PHASE III: Transition to direct Government (non-SBIR) applications and support or direct commercial application and private sector support. However, the resulting products and services must be able to be directly applied to vibration and acoustics problems in Naval ships and submarines and related structures, for further Naval support.

COMMERCIAL POTENTIAL: In addition to Naval applications, aircraft and aerospace systems have also been served by the SEA approach. More recently, SEA methods have been applied to vibration and acoustic problems in the automobile and truck industries. The problem of predictions in the mid-frequency regime have been a source of concern for all these application areas. Manufacturers of armored personnel vehicles and other equipment for the Army and Marine Corps would also share in the benefits of the above noted technology advances. Presently there is a great lack of well-established modeling practices for the SEA approach. This is mostly due to the fact that it is a relatively new technology, but it also pertains to the matter of SEA not having been exposed to wide use and extensive development. Refinement of modeling procedures and improvement of

NAVY-46
accuracy will be eagerly accepted by modelers/analysts working with SEA in industry, and will allow for an important step in the effort to establish more standardized practice.

REFERENCES:

N97-063 TITLE: Dielectric Mix Ratio Sensor

OBJECTIVE: Develop a dielectric sensor for in-line, real time, monitoring of the chemical mix ratio during manufacture of Advanced Special Hull Treatment materials.

DESCRIPTION: In the application of Advanced Special Hull Treatment on submarines, two chemical components are mixed in a certain ratio to obtain the desired polymer. The problem is to develop an in-line, real time dielectric sensor whose output can be correlated with the mix ratio of the two components.

PHASE I: Demonstrate that some combination of the dielectric constant and loss factor is correlated with mix ratio. Do this by comparing the dielectric properties of known mix ratios.

PHASE II: Optimize the frequency of operation, method of data reduction, and any requirements for sensor location and determine the sensitivity of the technique. The final outcome should be an instrument compatible with processing equipment and the supporting computer software and calibration curves.

PHASE III: This technique would transition directly into the Advanced Special Hull Treatment applied to submarines.

COMMERCIAL POTENTIAL: There is potential for use in the chemical industry for either Quality Control or process control in the manufacture of polymer parts.

N97-065 TITLE: Improved Hull Form Patrol Combatant

OBJECTIVE: Develop the design for conversion of a PG hull to a Hydrofoil Small Waterplane Area Ship (HYSWAS) hull form, with high speed, and long range, large payload capability, and excellent motion characteristics.

DESCRIPTION: HYSWAS consists of an upper hull, connected by a single slender strut to a lower hull where buoyant lift is augmented by dynamic lift from a controllable foil system. It is desired to conduct a preliminary design for conversion of PG ship (from inactive fleet) and integrate it to a HYSWAS underbody. Requirements are for continuous speed in SS-5 of about 40 kts, and range at 35 to 40 knots of 3,000 nautical miles or greater. Armament and combat system weight will be comparable to the PHM Class (Patrol Hydrofoil Missile Class) or heavier (30 L. Ton).

PHASE I: Develop a HYSWAS design concept and assess the feasibility to meet the described performance levels. Estimate performance characteristics through analysis or simulation, and provide ROM cost estimates and conceptual arrangements to retain/replace/relocate existing and new PG machinery as necessary.

PHASE II: Develop a preliminary HYSWAS Patrol Combatant design to meet the prescribed performance levels. Complete drawings suitable for detail design of the HYSWAS Patrol Combatant in Phase III. Provide a preliminary design package and specifications suitable for Phase III utilization based upon motion simulations to be conducted by the contractor and approved by the Government using the NSWC/CD ship motion program or equivalent.

PHASE III: Conduct a detail design for a HYSWAS Patrol Combatant and recover one or more PG hulls from inactive status for conversion to HYSWAS Patrol Combatant, in support of an ATD proposal effort focused on HYSWAS implementation.
COMMERCIAL POTENTIAL: HYSWAS design can be applied to large passenger ferries, small cargo carriers, and fast logistics deployment ships.

N97-066 TITLE: Engineering Models of Reactive Munitions and Damage Effects

OBJECTIVE: Develop engineering models, based on first principles, and computer code that predict the damaging effects of reactive munitions on various types of missile and aircraft targets.

DESCRIPTION: The Navy is striving to develop more effective anti-air ordnance systems. Munitions that utilize reactive materials offer the potential of enhanced effectiveness over conventional munitions. Accordingly, the Navy is interested in developing such weapons and munitions. Analytical methodologies are required to evaluate new ordnance concepts, optimize weapon designs, and evaluate system effectiveness. Reactive munition concept testing is underway but is expensive and results cannot be extrapolated. The utility of hydrocodes to optimize designs and evaluate effectiveness is limited because of run-time and costs. Furthermore, present knowledge of the reaction chemistry is very limited. New concepts in modeling are needed to predict the behavior of reactive munitions and the associated target responses and damage in a fast-running, yet sufficiently accurate way.

PHASE I: Develop a simple lumped-parameter model that gives a better understanding of the important parameters involved in governing energy release rates and effects on targets. Model a simplified system involving one munition and one target. Determine the munition and target parameters that govern the outcome. Compare the model with key data as available. Conceptualize a more detailed model.

PHASE II: Expand the results of Phase I into more detailed models that include energy release rates, pressures, forces, stresses, and a range of realistic target geometries. Develop a fast running computer code that gives quick answers in lethality assessment and weapon development studies. Plan experiments to validate the models. Validate the code by comparison with experimental data and selected numerical simulations.

PHASE III: Improve and extend the model and implement it into lethality assessment and system effectiveness simulations used by the weapon development community.

COMMERCIAL POTENTIAL: This modeling capability could find potential dual use applications in the commercial sector in areas such as explosive forming of metals and pyrotechnique devices. The latter include air bags in automobiles, explosive release bolts, ejection seats and demolition industry.

N97-067 TITLE: Low-Cost, High-Performance Propulsion Components for TMD Missiles

OBJECTIVE: Develop a low-cost fabrication technique for ceramic-matrix-composite tactical rocket nozzles and propulsion components.

DESCRIPTION: Costly and heavy rhenium-based alloys are projected to be primary construction materials for critical propulsion components in divert and attitude control systems (DACS) for Theater Missile Defense (TMD) concepts. It is believed that continuous fiber ceramic composites (CFCCs) could provide higher performance at lower cost and weight. A potential composite system includes carbon fiber reinforcement (for elevated temperature strength and thermal stress resistance) with a refractory, oxidation-resistant matrix (such as HfC, HfB2, or possibly HfN). At this time, such composites require lengthy processing times. A shorter time (and lower cost) fabrication approach is desired. The proposed fabrication cycle must allow high control of matrix composition, fiber/matrix interfaces, and processing stresses (fiber-matrix).

PHASE I: Identify a controllable, rapid, and low-cost processing/fabrication approach for a nozzle shell geometry, and identify critical technology issues required to demonstrate the approach. Fabricate simple geometry components, such as cylinders, and provide mechanical property characterization sufficient to affirm the fabrication approach. Perform other critical analytical predictions and/or experiments to provide high confidence of satisfactory demonstration of a representative component in phase II. The proposed fabrication approach should reflect a strong understanding of the material requirements (eg., thermal, chemical, mechanical) imposed by the rocket nozzle or propulsion environment. The phase I effort should also show how the fabrication approach is sufficiently flexible to tailor the material properties for the application.

PHASE II: Technologies required to demonstrate the fabrication/processing approach shall be developed in phase II and representative nozzle components shall be produced. A component demonstration plan shall be prepared which identifies a suitable demonstrator motor, identifies critical material properties, and fabricates/characterizes sufficient material to confirm the material capability for the demonstration. A component demonstration test shall be performed.
PHASE III: The developed CFCC material shall be qualified for the selected TMD/DACS propulsion component(s). The advanced material may potentially transition into all Navy (and Army) TMD missile concepts.

COMMERCIAL POTENTIAL: The developed material fabrication approach would have broad application to the manufacturing of low-cost, high-temperature structural materials. The technology could be applicable to advanced commercial gas turbine engines for aircraft or for power generation. In addition, the materials technology could significantly reduce the cost of advanced composites for satellite propulsion and earth-to-orbit vehicle applications.

REFERENCES:

N97-068 TITLE: Thin, Lightweight, Broad Band Microwave Absorbing Material

OBJECTIVE: The objective of this effort is to create a lightweight, broad band microwave absorbing material that covers the X and Ku frequency bands and is thinner and lighter than the materials that are currently available on the open market. The absorber must be pliable and have the capability to adhere to metallic or composite surfaces. It must maintain good absorbing characteristics for high angles of incidence relative to the surface's normal and also perform well for all antenna polarization's relative to the absorber surface (perpendicular linear, parallel linear, elliptical, etc.). Finally, it must also have the capability to reduce surface waves.

DESCRIPTION: The effectiveness of Electronic Warfare Systems (EWS) and active electronic airborne decoys that simultaneously transmit and receive at the same frequency require some degree of antenna isolation. The type of microwave absorbing material required to isolate the antennas on these systems is constrained by several inherent properties. The absorber must be thin, and light weight so it does not impede the performance of the system being treated. The absorber must be pliable for applications around various edges. Since most EWS's and active decoy vehicles have both transmit and receive antennas in close vicinity of each other the absorber must maintain good absorbing characteristics across the band for large off normal angles of incidence for all types of antenna polarization. Most surfaces on EWS's and active decoy vehicles are conductive requiring the absorber to also have the capability to reduce surface waves.

PHASE I: Through the use of computer codes and empirical data determine the physical characteristics and design concepts of the microwave absorber backed by pertinent theoretical and analytical data. Provide the performance objectives of the material. Develop a Phase II plan that demonstrates the technical feasibility of the proposed design.

PHASE II: Using the chosen design from the trade-off analysis of Phase I, prototype material will be developed and tested to ensure it meets or exceeds all specifications spelled out in the Description. A demonstration of the concept will be provided with the prototype material.

PHASE III: The material will be implemented onto specific government furnished decoy models to be tested and evaluated in either a government or contractor furnished isolation chamber.

COMMERCIAL POTENTIAL: The largest commercial potential for this technology will be in the communications industry where unwanted noise or cross talk between antenna systems can be isolated to produce clearer and stronger signals. It also useful for commercial anechoic chambers.

N97-069 TITLE: Advanced Cable Connector Concepts

OBJECTIVE: Provide efficient topside electrical/fiber optic cable connection while minimizing corrosion damage and crew maintenance. Reduce cost and acquisition lead time for cable connectors.

DESCRIPTION: Topsid cable connection is a chronic problem from the perspective of corrosion control, protection against Electro-Magnetic Interference (EMI) and Electro-Magnetic Pulse (EMP), burdensome crew labor requirements, and high unit cost. Cable connectors must be weather resistant, provide grounding for EMI/EMP currents, provide stress relief for cables,
and resist corrosion. Specification requirements for weather exposed cable connectors is for stainless steel materials. Historically, the high unit cost for stainless has forced the program managers for combat system equipment to resort to anodized aluminum. These rapidly corrode in marine environment unless costly and labor intensive weather barriers are applied. Conductive polymer/composite cable connections will alleviate this problem.

PHASE I: Develop the materials and geometry that will result in low cost, EMI/EMP resistant, corrosion resistant cable connectors or cable connector families. Develop cost model for anticipated production of connector families.

PHASE II: Construct test sets of connectors and conduct life expectancy tests in accelerated marine environment, and verify EMI/EMP requirements are satisfied. Perform a ship test of the product.

PHASE III: Initiate standardized inter-service application of the connector families. Verify that production unit cost models are accurate. Incorporate design in appropriate ship/combat system specifications. Prepare industrial processes for full scale production.

COMMERCIAL POTENTIAL: Weather resistant, low cost cable connections are applicable to a wide spectrum of industrial/commercial products. Among these are petro-chemical operations, maritime operations, space systems, robotic systems.

REFERENCES: Military Standard Mil-C- 24758.

N97-070
TITLE: Distributed EMCON and Frequency Plan Performance Monitor

OBJECTIVE: Design and develop new techniques for implementing and analyzing the performance of ship and task force elements in adhering to the prescribed EMCON and frequency management plans.

DESCRIPTION: Current real time analysis tools do not adequately support the ship commander or task force Command and Control Warfare Commander (C2WC) in assessing the level of adherence to the currently prescribed EMCON and radar/communication frequency management plans. Because of the large dynamic complexities associated with distributed communications / combat systems, new advanced techniques and automated systems are required. These automated systems should provide some form of independent emissions monitoring as well as the capability to compare this feedback with the forward-fed information from the distributed network and make a recommendation as to how to eliminate observed violations.

PHASE I: Develop design information for an automated EMCON management system, and select and recommend modifications to current EMCON techniques that best meet PEO (TAD) requirements. Design information shall include evaluation of current techniques for assessing the EMCON performance and frequency plan adherence in today’s naval battle groups and new techniques for an automated EMCON Management system.

PHASE II: Build and deliver a brass-board (pre-prototype) system that demonstrates the feasibility of an automated EMCON management system in a simulated environment.

PHASE III: Build a full scale prototype automated EMCON management system, integrated with actual naval hardware and software (ISDS, CEC, etc.), capable of providing the ship’s CO or BG C2WC with detailed performance and problem resolution information.

COMMERCIAL POTENTIAL: Advanced distributed communication systems are not unique to the DOD. This type of frequency management and emissions control tool would be directly transferable to industry and scientific institutions that use large distributed communication systems, including Television Stations, News services (mobile vans), and emergency communications and rescue systems.

N97-071
TITLE: IR Countermeasures with Ultrabroadband Pulses

OBJECTIVE: Develop ultrabroadband sources of radiation in the 3-5 um and the 8-13 um windows.

DESCRIPTION: Cruise missiles pose a significant potential danger to the U.S. Navy. Ship defense against cruise missiles (and IR countermeasures in general) are therefore of particular interest to the Navy. Ultrabroadband radiation has the potential to enhance countermeasure capabilities through the generation of intense radiation over a broad spectrum covering the IR atmospheric transmission windows. Supercontinuum generation employing short laser pulses that develop self-phase modulation has been demonstrated in some experiments; for example Ref 1, the issues of interest here are pulse-to-pulse reproducibility, spatial uniformity, and repetition rate. For ship defense the wavelength range of interest lies in the atmospheric windows at 3-5

NAVY-50
um or 8-13 um. Improvements are sought in time resolution and time sweep, as well as, efficiency of generation and directional properties.

PHASE I: Develop and report design information and design concepts for compact 3-5 um and 8-13 um ultrabroadband radiation sources, to function as a supercontinuum source of radiation for IR countermeasures. Issues to be addressed include efficiency and resolution.

PHASE II: Design and develop a brass-board model of a supercontinuum source of radiation for IR countermeasures based on the design concepts of Phase I. Conduct tests and operationally demonstrate IR countermeasures capabilities.

PHASE III: In partnership with industry, produce a prototype ship defense system employing ultrabroadband radiation to defend and protect own ship against cruise missiles.

COMMERCIAL POTENTIAL: Ultrabroadband radiation sources have a multitude of civilian applications, including active remote sensing for environmental monitoring and the detection and control of pollutants.

N97-072 TITLE: Integrated Weapon Guidance

OBJECTIVE: Develop new methods for integrating the major functional components of guided weapon systems to improve overall effectiveness

DESCRIPTION: Traditionally, the major components of a guided missile such as the autopilot, guidance, fuze and warhead have been designed separately with only minor attempts at overall system integration. What integration is done usually involves trial and error adjustment of component parameters after the fact to arrive at some reasonable balance in the total design and a satisfactory level of performance. This is a costly and time-consuming process at best. In system flow diagrams, the guidance function is represented as an element wedged between the autopilot and seeker. In terms of total design optimization, a more integrated approach is desired. The guidance is the central decision and control function of the missile, and to maximize performance and effectiveness, it should be closely integrated with other functional areas of the missile involving sensors, data processing, control and damage mechanisms.

PHASE I: Develop methods for integrating the missile guidance and autopilot functions in a unified design approach. Include the use of blended control of non-collocated sensors and actuators, such as aerodynamic surfaces and jet-side thrusters. Show direct design integration between the multi-variable autopilot and advanced guidance laws. Demonstrate the feasibility of the integration method by simulating closed-loop guidance against highly agile targets.

PHASE II: Extend the work of Phase I to develop an integrated approach to design of the guidance/control and fuze/warhead subsystems. Optimize the interactions among the functional elements to achieve performance superior to that now available, including lighter weight. Using a detailed, nonlinear 6-DOF missile simulation, demonstrate the ability of the integrated weapon guidance to achieve direct hit accuracy on selected parts of the target body at favorable geometries. Address real time implementation of the algorithms in a missile borne computer.

PHASE III: Fully develop and transition flight-worthy integrated guidance designs to an Advanced Technology Demonstration (ATD) or a Pre-Planned Product Improvement of an existing weapon system such as the STANDARD Missile Block IV.

COMMERCIAL POTENTIAL: A unified system design methodology combined with new software tools would find use in a variety of commercial applications, including the aerospace and transportation industries. Applications involving multiple sensors and control effectors, managed by a central decision system, can achieve tightly regulated or controlled outputs.

N97-073 TITLE: Low Cost Compact Phased Array Radar

OBJECTIVE: Develop a novel low-cost phased array radar to equip platforms heretofore un-equipped due to cost, size and weight constraints.

DESCRIPTION: New radar technologies will be applied to develop a low cost compact phased array radar. These technologies may include but are not restricted to: 1) Transmit Receive (TR) Elements; 2) Radiant type diode lenses; 3) ferro-electric element arrays; 4) optical beam forming techniques.
PHASE I: Develop Innovative architecture for a low cost compact phased array radar. The system must be able to generate a new beam every 0.1 micro seconds. Every beam must be randomly accessible from every other beam within 0.1 micro seconds. The beam’s angular spread and side lobe characteristics must be competitive with current generation phased array radars. The beams must be isolated from each other to at least 100 dB. The size of the design must be within the following limits: 1) The phased array elements must be fully integrated with the antenna; 2) All components other than the TR element array and associated cabling must fit within one standard Navy 19 "AB" rack. The system must have 30 Km range or better. The signal must be of the quality to support MTI type processing. The radar must be able to detect both air targets and surface targets against clutter.

Phase II: Produce demonstrator of the above system containing having a one dimensional array of 64 elements. Provide a limited design disclosure package and other documentation of the demonstrator.

PHASE III: Produce a 64 x 64 element prototype system suitable for further Navy testing. Include supporting documentation, such as a design disclosure package, operational and maintenance documents, etc.

COMMERCIAL POTENTIAL: Low cost highly effective radar for air traffic control, coastal & boarder control, drug interdiction and security & law enforcement.

N97-074 TITLE: Advanced Reactive Intermetallic Propellants for Dual Use

OBJECTIVE: Development of High Energy/Weight Ratio reactive Intermetallic Materials (RIMM) for various weapons and space system propulsion.

DESCRIPTION: High energy/weight propellants will allow the Navy to develop weapon systems with longer ranges, greater lethality, and greater reliability, and space systems with longer service lives, lower costs, and greater flexibility. This development will also allow commercial space systems to increase performance and economy.

PHASE I: Develop RIMM design information. Identify at least three materials / processes / mechanisms suitable for developing RIMM technology to the demonstration stage and the systems potentially suited for application of the technology. Identify areas and techniques for retro-fitting RIMM technology to current systems, analyze the technology risks, and develop statements of work for Phases II and III. Deliver a final report describing the state of RIMM propellant technology as applied to propulsion mechanisms for guns, military and civilian missiles, and attitude control systems for space platforms.

PHASE II: Hardware implementation and testing of at least two of the materials / processes / mechanisms described in Phase I. At least one of these would be applicable to civilian space technology and both to naval weapons technology. Deliverables are to include a final report on performance advantages of the materials / processes / mechanisms over the current materials.

PHASE III: Navy funding -- Optimize the RIMM materials for cost, performance, safety, and producibility, and retrofit into current systems or place in emerging systems as applicable.

COMMERCIAL POTENTIAL: Commercial potential exists in the fields of air-independent propulsion and space vehicle launch/control.

REFERENCES: U.S. Patent # 5,010,804 (dated 4/30/91), "Launching Projectiles With Hydrogen Gas Generated From Titanium-Water Reactions"

N97-075 TITLE: Optical Delay Line Correlator

OBJECTIVE: Develop a fiber optic delay line correlator for application to radar.

DESCRIPTION: This system would sample and store the transmitted signal of a radar system. This signal would circulate though a fiber optical loop and be extracted periodically to be correlated against an incoming signal. The delay line might have the ability to amplify the stored signal to compensate for attenuation due to repeated tapping out of the signal. The delay line is in effect a very high fidelity memory in which the delayed signal becomes the reference signal for the radar echo.

PHASE I: Design optical delay line memory system and associated correlator. This system must optically encode an RF signal with minimal noise and distortion. It must store a signal for at least one millisecond. The system will have to deal with loss associated with tapping out the signal in a manner that minimizes noise. It must be able to correlate over the

NAVY-52
instantaneous input signal without ambiguity. The correlators might utilize but are not restricted to acousto-optic technology. They must work with minimal noise and signal distortion.

PHASE II: Build demonstrator of the system described in Phase I.
PHASE III: Transition to Naval radar program.

COMMERCIAL POTENTIAL: Improved radar for air traffic control, border control, drug interdiction.

N97-076 TITLE: High Resolution Atmospheric Data Retrieval

OBJECTIVE: Translate general atmospheric predictions and conditions (cold fronts, humidity, precipitation, barometric conditions, prevailing winds, etc) into small-scale high resolution conditions present in the scale of combat operations or flight deck operations. This will enable the modeling and simulation community to transfer atmospheric data from a live simulation for use with simultaneous virtual and constructive simulations.

DESCRIPTION: For high fidelity simulations it is imperative that the simulated environments are correlated with the live-play environments at a resolution sufficient enough to allow correlated environmental effects. The behavior of the natural environment is very difficult to describe and predict at the very small scale. Yet, this is the very resolution that equipment and personnel interact with the environment. The wind field in rugged terrain or around the superstructure of a ship hardly resembles even the highest resolution operational numerical weather models. Current methods used to build high resolution atmospheric databases primarily rely on conventional measurement techniques. Methods are needed that will allow visualization schemes in simulations to remain faithful to that which exists in the real world. This is to support the desire for live-play simulations. This requires, for instance, that the clouds in the simulation and those in the real world be the same, not just statistically similar.

PHASE I: Develop the principles by which high resolution atmospheric data can be gathered remotely to support simulations incorporating live play.

PHASE II: Develop and validate, a prototype system that can extract near real-time atmospheric data for use in correlating atmospheric conditions to live simulations with the simulated environments in virtual and constructive simulations.

PHASE III: Develop an operational system to extract near real-time atmospheric data that can be used with civilian and military simulations.

COMMERCIAL POTENTIAL: This system could be used in any applications where the recording of actual atmospheric conditions at high resolution are required, but not readily available from other sources. The techniques developed here would supplement atmospheric observations at weather-sensitive locations.

REFERENCES:

N97-077 TITLE: Atmospheric Data Assimilation System

OBJECTIVE: To develop a data assimilation system which merges satellite data of a specific geophysical parameter (wind speed, temperature, ozone content, etc.), obtained from several satellite instruments, with a large range of horizontal and vertical resolutions in order to produce a gridded global data set.

DESCRIPTION: Many geophysical parameters of importance to both military and civilian scientific applications are now obtained with several instruments at a variety of horizontal and vertical resolutions. However, a general data assimilation system, which combines all this input data in order to produce an instrument independent global data set, does not currently exist. Using recent advances in retrieval and information content theory, this problem can be cast as a retrieval problem in which the retrieved parameter is an estimate of the global distribution of a geophysical parameter, consistent with both the input measurements (in which the resolutions and errors are taken into account) and other related information about the state of the atmosphere. This system could be used as both a data assimilation tool for research and operational purposes, and a tool for developing measurement strategy for future missions.

NAVY-53
PHASE I: Develop the framework for casting this particular problem as a retrieval problem. Test the algorithms developed in this effort by application to simple simulated data sets.

PHASE II: Extend the retrieval algorithms to handle real data and include treatment of retrieval errors. Test the algorithms by application to real measurements. Apply information content theory to the retrieval to determine the horizontal, vertical, and temporal resolution of the retrieved global data products. Apply the software package to the Ozone and Aerosol Monitor (OAM) series of solar occultation sensors being flown by the Navy. Produce a software package sufficiently robust to be used operationally with real data sets.

PHASE III: Generalize the software package to be used for any measurement parameter, and make it sufficiently user friendly to be readily used by other research and operational groups as both a data analysis system and an experiment planning tool.

COMMERCIAL POTENTIAL: A robust global data assimilation system would have applications in many areas of space-based remote sensing, in both the defense and civilian arenas. With the large increase in satellite systems, both operational and research oriented, devoted to measuring a variety of important geophysical parameters during the past 10 to 20 years, there now exist significant numbers of independent data sets. This data frequently overlaps in time and space, and contains the same geophysical parameters. The ability to assimilate them in a rigorous, quantitative way into global data sets would create new understanding in scientific pursuits, while satisfying operational accuracy and utility requirements. There is also an obvious potential for application of this algorithm in both mission planning, as well as subsequent data reduction and analysis, for large, multi-platform systems such as the planned converged NPOESS system, and for commercial space-based remote sensing satellites which generate global imaging data.

N97-078 TITLE: Advanced Signal Processing Applied to Electronic Warfare (EW)

OBJECTIVE: Investigate the feasibility and benefits of using advanced signal processing techniques in the EW areas of EW Support (ES) and Active Electronic Attack AEA. In ES the goal will be to determine the real improvements and principle limitations in the detection, classification, and identification of RF signals by the implementation advanced signal processing techniques. In AEA the aim will be to determine the practicality of tailoring active EA emissions to maximize AEA effectiveness.

DESCRIPTION: Advanced signal processing is the application of the more recently discovered techniques to exploiting of the mathematical relationships between measurable physical events in the electromagnetic spectrum. These techniques have been used effectively in other areas, particularly in the acoustic and communication fields. The task will be to determine weather or not these processing techniques or algorithms can be effectively and practically utilized for EW. The approach will be straightforward. A list on candidate techniques will be tested using simulated video output of a typical EW receiver, e.g., the AN/SLQ-32. These simulated signals will include normal useable formats, e.g., a regular pulse train with good signal-to-noise ratio, as well as normally unusable formats such as noise-like signals with low signal-to-noise ratios, overlapping signals, and signals which represent particular environmentally generated conditions such as long and short-path-difference multipath.

There are a number existing onboard AEA techniques that range from the generic, such as wide-band noise, to the threat-specific, i.e., varying a transmitted modulation to match that used in the guidance and control logic of the threat. However, all are based on the premise that by providing the threat radar (fire control or seeker) with another signal, the threat radar will either see and/or lock on to this signal rather that the actual target return, or behave in an erratic way. The job of the radar designer is to give the system the ability to distinguish between the two; the job of the AEA designer is to make the generated signal resist such discrimination. The application of signal processing to AE could begin with the identification of differences in the jammer's signal and that of the target's return. The problem with this approach is that even if the generated signal can be made to look exactly like the target return, this does not guarantee that the radar will always accept it instead of the return. And even if it did, how would it lead the radar (seeker) away from the target? The approach that should be taken is to enhance the procedure that is already in use, which is to stimulate the victim receiver with various waveforms to get the masking or brake-lock that is desired. What is proposed here is that the repertoire of waveforms be extended to those that have more subtle variations, i.e., the use of non-stationary, non-gaussian noise or signal with tailored high-order statistical properties. For example, a signal which contains echoes or multipath will also have a periodic cepstrum (see reference 1) component related to the time delay of the echoes. The manipulation of this component in a AEA waveform may generate false targets which may be very resistant to echo cancellation techniques.
The ES results will be evaluated using two principal criteria: (1) That the output provide significantly useful information about the signal, (2) that these outputs be obtained in a tactically useful time frame using technology projected to be available in the year 2000 time period. The AEA results would be evaluated by simulation on available receiver and missile models. A plan to incorporate the useful techniques into the Advanced Integrated Electronic Warfare System (AIEWS) Program would then be developed.

PHASE I: Develop AEA design and process information, including a list of candidate techniques, ordered with respect to potential usefulness. Each process will be described in detail, including the limits of applicability, e.g., "will only work if noise is gaussian". For the ES techniques the amount and type of computations required to process a given amount of data must also be listed. For example, given N data points, a particular technique may take N^2 multiplies and N additions to get a result. The information content of the expected output must, of course, be described. Similarly, the requirement for the AEA technique must also be given, e.g., "must be implemented with Master Oscillator Power Amplifier".

PHASE II: Examine, test, evaluate the Phase I processes to identify the useful processes. Conduct extensive modeling; simulation, and where available use real, data. Perform field testing as necessary. A commercially available signal processor for the ES tests would very likely be necessary for the Phase II effort; AEA hardware would not. Delivered items shall include (but are not limited to) algorithms for each useful process, and the process test conditions, procedures, and results.

PHASE III: Integrate the selected processes into the AIEWS Program.

COMMERCIAL POTENTIAL: The information generated by this program would give new insight into the behavior of receiving systems to complex data input streams; input streams that have controllable discriminants that are not readily observable. These kinds of inputs may have the potential of enhancing the performance of commercial communication, control, and navigational systems.

REFERENCES:
(2) "Acousto-Optical Processing for the AN/SLQ-32", NSWCDD TR-95/173.
(3) "Improving The DF Accuracy and Sensitivity of the AN/SLQ-32 by Using DSP with Application for LPI Detection and Interference Rejection," NSWC TR 90-293.

N97-079 TITLE: Advanced Signal Identification (ID) Device

OBJECTIVE: Develop a state-of-the-art emitter identifier.

DESCRIPTION: Electronic Warfare (EW) Systems capable of Specific Emitter Identification (SEI) currently rely upon the standard Electronic Warfare discriminants of Pulse Repetition Interval (PRI), Angle of Arrival (AOA), and pulse width (PW). An additional discriminant will soon be available. The Naval Surface Warfare Center, Dahlgren Division (NSWCDD) is constructing a prototype Advanced Signal Waveform Classifier, ASWC, for the measurement, identification, and classification of received radar signals. This device, to be completed in 4th Quarter 1997, is based on a state-of-the-art acousto-optic (AO) spectrum analyzer (acting as a channelized receiver) and provides 1-MHZ frequency resolution as well as the Frequency Modulation On Pulse (FMOP). This new discriminant (FMOP) will be added to the set of standard signal parameters; i.e., PRI, Angle of Arrival (AOA), pulse width (PW), from a standard EW Support (ES) receiver. An ES receiver provides the standard discriminants, and the new AO analyzer provides the new FMOP discriminant. Further, improved ES technology exists to obtain much more precise measurements of the standard discriminants; possibly precise enough to perform SEI through a neural network in combination with the FMOP discriminant. It is desired to capitalize upon a combination of the new and standard EW discriminant set and to develop a new state-of-art Specific Emitter Identifier, preferably based upon a neural network, that will perform the parameter association and emitter classification necessary to obtain an ID. In short, we desire a system combining the AO spectrum analyzer, an ES receiver, and a neural network for purposes of Specific Emitter Identification.

Phase I: Develop a Neural Network to perform the integration of the AO system with the Time-of-arrival technology (standard discriminants), derived from either a standard or an improved ES receiver.

Phase II: Construct and deliver prototype units comprising an SEI device for test and evaluation in laboratory and field environments. Complete integration with a current EW system, eg, the Advanced Integrated Electronic Warfare System, AIEWS, is not part of the Phase II effort.

Phase III: Perform Integration with Advanced Integrated Electronic Warfare System, AIEWS.

COMMERCIAL POTENTIAL: This Topic proposes development of a 'passive transponder', an advanced signal classifier applicable to civil aviation, commercial shipping, law enforcement, and military operations both open and covert. By utilizing
advanced processing algorithms and acousto-optical hardware, signals input from any RF and video signal source (eg, radar receiver) will be accepted. The AN/SLQ-32 or its future replacement, AEW, are specific military signal sources whose functionality would benefit if such a device were to be integrated with these systems. Civil/commercial aviation will likewise be able to identify specific emitters and alerted to the presence of other aircraft, ground radars, and airborne threats. The device is a passive transponder, capable of classifying emitting platforms that transmit false, incorrect or no Transponder Codes. Transponders are now required on all commercial aviation and most commercial shipping, and can be incorrectly operated or silenced deliberately. This Topic proposes a passive Transponder not subject to such practices. (Remember that the 747 was shot down by USS Vincennes because it squawked a Transponder code that was reserved by the Iranian Air Force.)

REFERENCE: "Acousto-Optical Processing for the AN/SLQ-32", NSWCDD/TR 95/173

N97-080 TITLE: Multi-Resolution Feature Imager

OBJECTIVE: Develop a novel optical imaging system that produces a "brain-like" representation of image features over multiple spatial scales.

DESCRIPTION: A major misconception is that the eye is equivalent to a camera. The eye is much more than a camera, it is a sophisticated feature encoder. The power of biological vision systems lies in how they encode features over multiple spatial scales. This representation is referred to in some fields as the "neural image"[1]. Recently, Multi-Resolution Analysis (MRA) Techniques such as the Wavelet Transform (WT) have revolutionized the way images are represented for pattern recognition applications. Newer types of wavelet transforms represent edge features over multiple scales [2]. These approaches have a profound underlying similarity to biological vision systems. Wavelet transforms require digital electronics for implementation. Though fast, for high data rate imaging systems, digital electronics may not have sufficient speed. It should be possible to integrate the imaging system and MRA processing so that the immediate output of the imager is in the MRA representation. Already there has been outstanding work in combining imaging and eye-like processing known as the "silicon retina"[3]. This topic would generalize this device to a Multi-scale feature encoder.

PHASE I: Develop design for a real time imaging system that outputs a MRA feature space representation of an image. This device must be able to represent salient features of an image over multiple spatial scales. Associated with the imager should be an algorithm for performing pattern recognition on the MRA feature space representation of the imagery.

PHASE II: Hardware implementation of the above system.

PHASE III: Transition above system to a weapons program in support of Automatic Target Recognition (ATR) functions.

COMMERCIAL POTENTIAL: Real time pattern recognition systems would have application to law enforcement and security, e.g., aspect independent face recognition systems. Another application area might be automatic recognition of motor vehicles for traffic monitoring & automotive safety systems. Industrial applications would include automatic pick-and-place machinery that deals with complex objects in random orientations.

REFERENCES:

N97-081 TITLE: Photonic Crystals for Laser Applications

OBJECTIVE: Development of Photonic Crystals for low-cost/high energy efficiency lasers.

DESCRIPTION: Lasers have been used in industry for medical applications such as eye and organ surgery as well as plastic surgery. They are also used extensively in the telecommunications industry. Furthermore, current military applications of lasers include weapon guidance systems. Future applications of high energy density output lasers include protective systems for Navy ships for destroying hostile enemy equipment (i.e., missiles, aircraft), and secure line of sight communications. The output of such high energy density lasers can be more than 10 kilojoules per square centimeter (10kJ/cm²). Such systems could overcome

NAVY-56
the limitations of (and could replace or be used in conjunction with) the PHALANX systems currently used to defend Naval vessels from incoming missiles.

Theoretical studies have indicated that the most energy efficient laser crystals yielding the highest energy density outputs are photonic crystals. However, until recently, the only photonic crystals that were capable of being produced were severely limited in thickness, having been produced by manufacturing methods employing the use of colloidal suspensions. Recently, however, large three-dimensional photonic crystals were produced using the Navy-owned and government-licensed Electroset Technology. Production of these large photonic crystals has been determined to be extremely low in cost. This effort will use this low cost manufacturing process to produce photonic crystals for use in all of the aforementioned applications, including the high energy density output lasers for weapons systems.

PHASE I: Produce large three-dimensional photonic crystals and test and evaluate them for their optical properties to determine appropriate photonic band structure. Provide a final report describing the production of the photonic crystals together with the investigated and evaluated optical properties. Verify the optical properties necessary for commercialization.

PHASE II: Adapt the optical properties of the photonic crystals for use in a laser system. Construct and test this laser system and characterize its capabilities for use in both military and commercial applications.

PHASE III: Navy funding -- Optimize the laser systems for performance, cost, and producibility and adapt it for use on the SC21 to replace less efficient and more costly laser systems used in Navy communication and weapon systems. Adapt the laser system to replace (or, at the very least, to be used in conjunction with) the shipboard defense PHALANX system.

COMMERCIAL POTENTIAL: Commercial potential exists in the telecommunications industry (fiber optics), the CD industry, the medical equipment industry (diagnostic and surgical equipment), in the survey and ranging equipment industry, and in the scientific equipment industry.

REFERENCES:
U.S. Patent # 5,190,624 Electrothermal Fluid Chemical Processing
U.S. Patent Pending Navy Case #75,833 Programmable Electroset Materials and Processes

N97-082 TITLE: Semi-Active or Active Highly Accurate Homing and Robust Tracking System for Agile Missile Guidance

OBJECTIVE: To develop agile and robust missile tracking systems, guidance filters and guidance/control laws to track the missile-target line-of-sight (LOS) in highly dynamic and stressing intercept engagements. To develop real-time moving target recognition and identification via template generation.

DESCRIPTION: Future missiles will fly in operational flight regions in which current missiles have never been exposed. Depending on the mission and tactical requirements, it is expected that guidance commands responding to highly dynamic line-of-sight (LOS) geometries may require a missile to perform very rapid, high angle-of-attack (alpha), high-g maneuvers in order to intercept the threat. As a result, large LOS error signals can arise, resulting in excessive guidance commands that saturate the actuators and control surfaces. The problem gets even more severe when environmental disturbances and sensor noises influence the system. Existing tracking and guidance systems often produce unsatisfactory dynamic responses due to misalignments of the sensors, noisy track information and inadequate LOS processing and tracking performance. Another shortfall is the task of target search, acquisition, identification, and lock-on operations in a noisy environment (i.e., jamming).

Modern robust control design techniques such as H-Infinity, Mu-Synthesis and Multiplier methods have proven to be the most efficient design tools to handle systems with various external or internal dynamic uncertainties. These techniques can allow multi-channel guidance and control systems to meet the missile design requirements. External disturbances, sensor noises, and massive gain-scheduling can no longer threaten system stability and performance. These methods have been applied to supermaneuverable fighter aircraft flight control and flight testing is currently underway. To minimize the LOS tracking error and near misses or errors in closing operations, a target can be identified in real-time through a three-dimensional pattern matching technique. The missile can then track and lock-on the moving object more effectively.

PHASE I: The phase I effort will develop concepts for missile guidance laws and target filtering algorithms and analyze the performance payoff achievable. Concepts will include guidance law and target filtering algorithms that may include the following: (a) using target recognition to tune guidance laws and target filters based on a defined target set, (b) using target
measurements to detect target maneuvers and adjust guidance law response, and (c) using target measurements to achieve guidance hits at preferred target components. Analysis will be conducted to define seeker range and doppler resolution required to robustly identify target type and to detect target maneuvers and also determine the time window available for data collection. Since real time processing is an absolute requirement for eventual use of the algorithms, a survey of applicable RF and IR processing techniques will be conducted and analyzed relative to guidance requirements and signal processing hardware requirements. The study will then down select among the algorithms based on computational and seeker burdens. The resulting algorithms will then be analyzed and customized to the guidance application. A simulation of the guidance process will be developed and used to analyze resulting performance and robustness to sensor measurement and alignment errors, target maneuver profiles, target geometry and sensitivity to processing throughput.

PHASE II: In Phase II, real time implementations of the guidance/filtering algorithms will be developed and demonstrated via hardware-in-the-loop simulation, using a separate computer (not form fit to the guidance unit) to process target data. In Phase II, the demonstrations will involve only a limited number of target types and will demonstrate the capability to achieve actual hits at critical locations on the target body.

PHASE III: In Phase III, flight-ready algorithms will be demonstrated via hardware-in-the-loop simulation and/or flight test demonstration. Algorithm performance will be assessed using a flight worthy form factored guidance and control computer. Targets to be modeled and simulated will cover the complete range of expected threat types, and the demonstration will include recognition of the target type from among the complete spectrum of targets.

COMMERCIAL POTENTIAL: Commercial applications of these approaches would benefit Yhe aerospace and transportation industries. In particular, these modern robust control techniques could be applied to aircraft, satellites, missiles, launch vehicles, intelligent transportation vehicles and systems, and other tracking systems.

N97-084 TITLE: Towed Array Technology Communication Link Bandwidth Expansion

OBJECTIVE: Develop an increased bandwidth for the existing uplink and downlink communication/connection path between a towed array and the tow ship.

Description The acoustic towed line arrays of interest are towed between one and two kilometers behind the ship. The existing communication bandwidth between the tow ship and towed array is presently limited by a single coaxial cable link to 6 Mbits/sec to 12 Mbits/sec. The objective is to provide an uplink and downlink bandwidth of 25.6 Mbits/sec with a goal of 155 Mbits/sec over the existing single coaxial cable and slip ring connection path presently deployed on Navy submarine and surface ships. (Offerors should not propose optical cables because of the expense of development and deployment of new optical tow cables and slip rings on existing ships.) Maximum use of commercial communication technologies such as Digital Subscriber Line (xDSL) technology development and telecommunication bandwidth expansion is highly desired. Most of the towed arrays for demonstrating the required technology are 1.5 or 3.0 inches outside diameter. The towed array DC power is usually sent over the same coaxial cable link used for communication. It is essential to draw power from the existing array power source. The towed array end of the communication link has to survive 2500 psi pressure exposure. Affordability and coverage of the proposed approach are highly desirable.

PHASE I: Develop and define and describe the concept for a prototype high bandwidth communication link. Develop a preliminary subsystem design which will demonstrate the proposed subsystem. For the Phase I option, provide a laboratory demonstration of the technology.

PHASE II: Design, fabricate and demonstrate a complete high bandwidth communication link prototype subsystem compatible with existing Navy acoustic towed line array(s) to be selected by the Government.

PHASE III: Fabricate, test, and evaluate additional high bandwidth communication link subsystems, and provide these subsystems under a towed array common telemetry program.

COMMERCIAL POTENTIAL: Commercial potential includes acoustic towed arrays used in oceanographic and oil exploration. The technology may be applicable to telecommunications. BISDN, Coaxial Cable upgrades, and related developments are potential markets for this technology.
DESCRIPTION: Develop a new solid state and/or gas laser sources to generate high repetition rate (> 1 MHz) or cw output powers of 5 - 10 watts on laser lines that operate in the 7.5 - 9 micron spectral band. The laser lines shall be tunable and have good atmospheric transmission. The laser mode quality shall not exceed 2 times diffraction limited.

Phase I: Explore concepts from analytical and experimental perspectives to determine the feasibility of a pulsed or cw LWIR laser meeting the average power, wavelength and beam quality requirements. The study shall address the design and performance of a system to be fabricated in Phase II as well as power scaling issues in achieving 5- 10 w/line output power.

PHASE II: Design, fabricate, test, and deliver a laboratory brassboard, pulsed or cw, 5-10w, LWIR laser system. The laser shall also meet wavelength and beam quality requirements.

PHASE III: Transition technology to develop compact and ruggedized systems for military and commercial applications.

COMMERCIAL POTENTIAL: Refrigerant leakage detection and air pollution monitoring.

REFERENCES:
(1) 2ND NATO/IRIS Joint Symposium, 1996.
(2) IRIS IRCM Symposium, 1996.

N97-086 TITLE: Technology Insertion for Acoustic Countermeasures

OBJECTIVE: Develop innovative countermeasure capability(s) for insertion into current submarine countermeasures (CMS)

DESCRIPTION: The current generation of submarine countermeasures consists of the ADC Mk 2 Mod 0/1, the ADC Mk 3, and the ADC Mk 4. Some of these devices were designed to counter targeting by a threat acoustic sonar. Others were designed to defeat a threat torpedo. Additionally, there are other devices used for training that are deployed from countermeasure launchers. The original designs for each of these devices assumed they were truly “throw away.” Consequently, the designs do not include any provision for refurbishment to extend shelf life of a device that is Not Ready for Issue (NRI). Moreover, as threats become more sophisticated, maintaining the effectiveness of the countermeasures will require capability enhancement or redesign. Additionally, component obsolescence becomes a supportability and producibility issue.

Phase I: Develop a modular architecture that facilitates capability insertion and/or resolution of device obsolescence. Breadboard where appropriate to demonstrate feasibility.

Phase II: Fabricate, test and demonstrate brassboard countermeasure modules and countermeasures modifications to incorporate the architecture of Phase I.

Phase III: Produce prototype model countermeasures embodying the modular architecture and modifications of Phases I and II. Test and evaluate and qualify the prototypes for full scale production in conjunction with prime (original equipment manufacturer) contractor.

COMMERCIAL POTENTIAL: The technologies developed under this effort could be adapted to provide a variety of capabilities applicable to the disciplines of ocean exploration, marine biology and oil exploration.

N97-087 TITLE: Covert Underwater Communications

OBJECTIVE: Develop Adaptive Channel Characterization algorithms to support very low frequency (VLF) covert acoustic communications between submarines and other platforms.

DESCRIPTION: Application of Adaptive Channel Characterization algorithms to processing of acoustic communication signals offers performance gains in underwater communications over previous designs. An Advanced Technology Demonstration (ATD) is in progress to demonstrate these techniques using medium and high audio frequencies. While useful for many applications, these modes are not acoustically covert. Certain tactical scenarios require covert signaling. Past experience indicates that, only by utilizing extremely low frequencies for communication, can absolute covertness be achieved. Use of such frequencies has the following advantages. Extremely long towed arrays or SOSUS-like receivers detect such signals due to the extremely long wavelengths. Such signals are within significant self-noise regions of typical intercept units. There is very low propagation loss; therefore, relatively long ranges are achievable with existing transmitting sources to the appropriately equipped receivers.
PHASE I: Determine the propagation characteristics of the VLF acoustic (sub-audio) region that are critical to covert VLF communications. Develop a simulated VLF acoustic propagation process, and determine the optimum propagation conditions. Demonstrate feasibility of the concept by inserting candidate VLF communication signal formats through the model.

PHASE II: Develop optimized real-time adaptive channel characterization algorithms for VLF covert communications. Deliver laboratory tested and evaluated real-time algorithms for initial at sea testing and analysis by the 'Advanced Technology Acoustic Communications' ATD Program aboard a submerged submarine.

Phase III. Develop final algorithms including self initialization and tracking for turn-key inclusion into the 'Advanced Technology Acoustic Communications' ATD program.

COMMERCIAL POTENTIAL: Applicable to needs wherever very long range (>10 NMI) remote underwater is required.

REFERENCES:

N97-088

TITLE: High-Frequency Brushless Motor Technology

OBJECTIVE: Develop high frequency brushless motor technologies for application in Navy designed and maintained underwater systems.

DESCRIPTION: The Navy uses high frequency motors in a variety of systems including lightweight torpedoes, heavyweight torpedoes, Unmanned Underwater Vehicles (UUV), and surface and submerged combatant platforms. In many cases, the motors that are in service were designed prior to the development of efficient brushless motor technologies. Applications of high-frequency motors include the actuator assembly on Navy lightweight torpedoes, attitude positioning impellers on UUVs, and, in general, applications aboard surface and submerged platforms. Such applications are suitable for commercially available brushless high frequency motor technologies with their potential: to provide additional supply sources; to improve system efficiency and performance at low cost; to improve efficiency in power-use-critical and battery systems; and to operate quietly. Commercial motors would be required to meet the Navy environmental and dimensional requirements for any given application. Proposals should show offeror’s knowledge of and intention to design for specific application(s) rather than simply describing the potentials of the offeror’s technology.

PHASE I: For specific Navy application(s), design to operational requirements, develop, and demonstrate proof of concept hardware, taking into account such factors as system power requirements, noise, gearing, activation timing, overall accuracy, short and long term cost effectiveness (affordability).

PHASE II: Fabricate and test (bench level and in water or in service) prototype fully integrated high frequency brushless motor system. Do so with a sufficient number to verify size and performance characteristics.

PHASE III: Fully transition prototype designs into production. Scheduling of actual production will depend on the specific application(s) worked under Phases I and II. Specific influences could include: existing inventory of spares, funding for and priority of system retrofits.

COMMERCIAL POTENTIAL: Development of brushless motor technologies for Navy applications will broaden the range of usable non military applications. Advances in the special materials and magnetics technologies required to manufacture efficient brushless motors will result in more energy efficient motors and allow the commercial industry to conduct further miniaturization efforts on present motor designs.

N97-089

TITLE: Submarine-Based System for Detecting Ocean-Penetrating Laser Radar

OBJECTIVE: Develop a submarine-based advanced warning system against airborne laser radar

DESCRIPTION: Ocean-penetrating laser radars are being developed to map coastal water bottoms in littoral areas. Such laser radar systems employ pulsed lasers and sensitive receivers that exploit the propagation properties of seawater by operating in the blue-green wavelength transmittance window. Such laser radars could, in principle, be refined to detect submarines operating in these environments. The Navy has a need to recognize the operation of such laser radar systems and provide situation alerts.
to the submarine commander, and to detect the presence of such systems at maximum possible range consistent with a low false alarm rate. The objective of the program is to develop a submarine-based sensor to provide these functions.

PHASE I: Determine the limits, from a submerged submarine, for detecting the operation and signature of an airborne ocean-penetrating laser radar. Predict the performance dependence implied by these approaches and generate a preliminary design of a submarine-based threat warning system.

PHASE II: Design and develop a (brass board) prototype sensor system (to include hardware and software necessary for data collection, analysis, display, and interfaces), and provide for submarine installation, test and demonstration of this system to validate sensor performance. Sufficient on-board real time processing will be performed to ensure that good data is being collected and to support the functioning of the system.

PHASE III: The Phase III program will develop and test an operational sensor.

COMMERCIAL POTENTIAL: The research and development efforts needed to quantify the optical propagation characteristics of light through the atmosphere, the air-water interface, and the water column are important for understanding ocean-penetrating laser radars, optical communication systems, and sensors that exploit the blue-green optical transmission channel. Two-way optical communication between submerged and atmospheric terminals, the latter including aircraft and surface ships, is one application. Navy and commercial divers could potentially find their way back to surface support vessels using optical communication systems developed based on an understanding of this propagation path.

N97-090
TITLE: Full Band Acoustic Localization Processing

OBJECTIVE: Develop a capability for automated localization and tracking of multiple wideband acoustic signals. (intentional and unintentional)

DESCRIPTION: Develop signal processing algorithms that provide multi-track and localization capabilities for extended-frequency man-made acoustic emissions and support operations in shallow and littoral waters. The ability to further exploit detection events within the limitations of the platform profile is required for improved tactical effectiveness.

PHASE I: Develop, describe, and implement automated track/localization algorithms for application to an acoustic intercept system. Achieve proof-of-concept within the constraints of platform resources and operational environments.

PHASE II: Complete and test a full prototype implementation of the Phase I algorithms for at sea demonstration and evaluation. Demonstrate feasibility via a rapid prototype system for the host platform and process Navy provided tactical data.

PHASE III: fabricate and deliver additional systems for test and integration into existing US Navy platforms.

COMMERCIAL POTENTIAL: Surveying, mining, oil exploration and marine biological research.

N97-091
TITLE: Towed Array Localization

OBJECTIVE: Develop an acoustic towed array subsystem to precisely determine the location, distance and direction of a towed line array relative to the array tow ship.

DESCRIPTION: Acoustic towed line array position relative to the tow ship is essential to allow target range determination by using both the tow ship's hull mounted acoustic array and the tow ship's own acoustic towed line array. Existing towed array sensors provide precise heading, depth and pitch of a towed line array, but towed location relative to a towed array and own ship is not known with sufficient precision to implement an accurate range determination by triangulation with the ship's sonar and the towed array sonar sensors. The approximately three inch diameter towed array technology, employed by many submarines and surface ships, would be the likely target for demonstrating the SBIR technology. Such arrays are towed up to two kilometers behind the tow ship. Affordability is a significant issue. Consequently, localization techniques which are easily backfit into existing towed array assets are more desirable than techniques which require extensive modification of existing assets and/or significant shipboard modifications. Moreover, sharing power and telemetry with an existing array is highly desirable. Coverness of the localization technology is also highly desirable.

PHASE I: Develop sufficient concept definition and description to demonstrate the accuracy of the localization subsystem. Develop a preliminary subsystem design which will demonstrate feasibility of the proposed subsystem.

PHASE II: Design, fabricate, and demonstrate prototype subsystem.

PHASE III: Transition into existing submarine and/or surface ship towed arrays.
COMMERCIAL POTENTIAL: Commercial potential includes activities where a tow ship desires to accurately know the location of the something being towed—for example, ocean mapping and underwater inspection.

N97-092 TITLE: Fiber Optic Measurement of Towed Array Shape

OBJECTIVE: Measure towed array shape using optical fibers and optical sensors.

DESCRIPTION: Measuring towed array shape by use of optical fibers and sensors has the potential of significantly improving the accuracy of the estimation. This topic involves selecting an optical fiber and sensor method for measuring array shape and developing the technology to make the implemented method practical and affordable.

PHASE I: Develop proposed approach for measuring array shape and conduct breadboard tests to establish rms shape error. In an array hose at least 100 feet long, conduct tension and simulated handling tests to demonstrate survivability of fibers and sensors.

PHASE II: Develop fabrication process, fabricate a prototype array, test at sea.

PHASE III: Transition to fleet towed array system(s).

COMMERCIAL POTENTIAL: The same technology, once developed, can be applied to towed arrays used for oil exploration.

N97-093 TITLE: Doped PMN-PT Single Crystals

OBJECTIVE: Develop and scale up process(es) for manufacturing single crystals of doped lead magnesium niobate-lead titanate (PMN-PT) for use in transducers.

DESCRIPTION: Lead magnesium niobate-lead titanate (PMN-PT) doped with lanthanum or barium is an attractive transducer material for a variety of reasons, including its very high energy density and its capacity to undergo large electrostrictive strains. The main problem with doped compositions of PMN-PT is that the currently achievable coupling coefficient is less than optimal. Recent research suggests that the reason for the lower coupling coefficient is linked to microstructural details in the polycrystalline PMN-PT. One way to circumvent the problems of the polycrystalline microstructure and to realize improved coupling coefficients is to use single crystals. However, while the technology for growing a wide variety of single crystal oxide ceramics exists, the technology for fabricating doped PMN-PT single crystals has not yet been developed.

PHASE I: Develop a process for fabricating electrostrictive single crystals of the doped lead magnesium niobate-lead titanate (PMN-PT). The developed process must be amenable to scale up for producing 1) large quantities of crystals and 2) crystals large enough to use in Navy transducer applications. Deliver five electroded crystals of suitable geometry for measuring the material's dielectric and piezoelectric properties.

PHASE II: Refine the Curie temperature, dielectric and electromechanical properties of the doped lead magnesium niobate-lead titanate (PMN-PT) electrostrictive single crystals to match the targeted properties designated by transducer designers. Scale up the process for manufacturing PMN-PT and maintain targeted properties. The scale up should increase the capabilities of the operation in at least two areas: 1) the quantity of crystals which can be produced in a given time and @) the size of the crystals which can be produced. Produce and deliver a sufficient number and size of electroded crystals to glue up and test as a stack.

PHASE III: Qualify doped lead magnesium niobate-lead titanate (PMN-PT) single crystals as a transducer material. Partner with transducer manufacturers to produce transducers using single crystal PMN as the active material. Produce doped PMN single crystals for use in transducers.

COMMERCIAL POTENTIAL: A wide array of industries will benefit from advances in the area of electrostrictive ceramics. The application areas for PMN include optical (deformable mirrors, bistable optical devices and swing CCD image sensors), mechanical (ultra-precision guide mechanisms, VTR heads, oil pressure servo-valves and ink jets) energy transfer (ultrasonic surgical knife, piezoelectric pump), and optical/mechanical (ultrasonic motors and robotics). This list is by no means complete.

REFERENCES:

NAVY-62

N97-094 TITILE: SC 21 Ship Information Systems Virtual Prototyping

OBJECTIVE: Develop a modeling and simulation (M&S) system to characterize, model and optimize performance and reduce the technical risk of initial design of and future upgrades to the SC 21 ship information system (SIS) architecture.

DESCRIPTION: M&S capabilities are required to significantly reduce lifecycle costs of the SC 21 program. This effort would adapt M&S tools and techniques to help ensure the affordability, capability, scalability, upgradeability, and flexibility of the SC 21 architecture. Additionally, it would facilitate the development of a real-time distributed virtual system to support SC 21 test and evaluation requirements.

PHASE I: Determine feasibility and optimum approach for an M&S system design that supports virtual prototyping of SC 21 architecture options including real-time distributed emulation using remotely located Navy facilities, models, and simulations.

PHASE II: Develop and demonstrate ability of SIS architecture virtual prototyping system to accurately simulate SIS designs.

PHASE III: Utilize virtual prototyping system to identify required SIS architecture design specifications in support of SC 21 Phase I contract award.

COMMERCIAL POTENTIAL: Similar techniques have been applied in both aircraft and microchip manufacturing industries. An expansion of these techniques will assist DARPA implementation of their Nationwide Heterogeneous Distributed Computing Vision.

REFERENCES: Briefings to SC 21 Program Manager on modeling and simulation support to SIS architecture design.

N97-095 TITILE: Software for Automated Electronic Classroom Implementation

OBJECTIVE: Enable managers to make decisions and commitments regarding the most appropriate implementation strategies related to software for automated electronic classrooms. Access information regarding current capabilities of software products able to control the operation of all envisioned functions of media to be installed in military automated electronic classrooms and other forms of learning laboratories.

DESCRIPTION: A variety of installations with diverse configurations have been installed or are planned in a number of DOD training facilities which may be loosely described as automated electronic classrooms. To provide multimedia presentation software tools that offer the instructor the capability to create, present, modify, and update instructional material in a PC based classroom, controlling and integrating software is required. No single reliable multi-platform software suite has been developed which is capable of driving the equipment necessary to implement fully what has been installed or is proposed for military automated electronic classrooms. Without the required technical standards for software in operating system open architecture protocols, specific CPU and bus architectures, multimedia co-processors, multimedia interfaces and file formats etc., there is significant danger that what will evolve is a hybrid of incompatible new and obsolete technology requiring too much maintenance.

PHASE I: Develop a Data Base of Training technology resources, including related software, multimedia and networking technologies architectures, systems, applications standards and specifications including functional descriptions, industry standardization issues and compliance with DOD procurement directives. Perform surveys, and conduct liaison and evaluation of available commercial and Government training resources, and provide the results in a common database file format, such as Access. This should display for decision makers, capabilities, license arrangements, costs and the like.

PHASE II: Develop an integration strategy which will give DOD a robust future proof enterprise system that will fully integrate and implement a coherent technology based on computer-based training.

PHASE III: Based on the findings of Phase II, design a system to provide fully capable, instructionally sound classroom installations.

NAVY-63
COMMERCIAL POTENTIAL: Such a comprehensive system has applications in both industrial training settings and the academic environment.

NAVAL MEDICAL RESEARCH and DEVELOPMENT COMMAND

N97-098 TITLE: Process Improvement/Enhancement System For Critical Care Medicine

OBJECTIVE: Establish a system using optimal techniques for the determination of root cause events producing iatrogenic illness.

DESCRIPTION: Iatrogenic complications during the course of patient treatment are extremely costly both monetarily and in terms of patient well-being. Because the complexity of modern health care requires the application of emerging technologies and coordination among highly skilled professionals, isolation of iatrogenic causal factors is extremely difficult. Process enhancement and improvement programs must be modified to effectively minimize costs and maximize efficiency and military medical readiness.

PHASE I: Human-systems methodologies and technologies will be applied to the critical care environment to develop a system that aids in the determination of root cause events producing iatrogenic illnesses. The system should be employable at every echelon of DON medical care, summarize information and unburden care providers from report generation, and demonstrate significant improvements in terms of information quantity and quality over existing process improvement and enhancement procedures. Plan for collection of baseline data and changes in illness rate resulting from interventions should be proposed.

PHASE II: Evaluate the proposed system for sensitivity and validity. Baseline data collection and system implementation will be conducted at a Navy medical facility. The impact on medical costs and readiness are to be determined during this phase. Resulting system databases would require configuration for use in developing process improvement strategies, procedural remedies, and training materials.

PHASE III: Implementation and transition into medical information systems.

COMMERCIAL POTENTIAL: Iatrogenic complications are inherent in all health care delivery systems, as are requirements to improve existing quality assurance/process enhancement programs. Thus, the proposed system would have significant potential within civilian hospitals and clinics.

REFERENCES:

OFFICE OF NAVAL RESEARCH

N97-097 TITLE: Sensors and Components for Underwater All-Optical Arrays

OBJECTIVE: Enable the development of affordable, high performance underwater surveillance arrays which use acoustic and non-acoustic sensors. These arrays are towed by surface ships and submarines or mounted on the ocean floor.

DESCRIPTION: All optical arrays are arrays of underwater sensors that do not have any electrical components in the wet end. They generally include the following components: a laser light source which powers the array; transducers which produce optical output in response to the influence of physical phenomena of interest; components for optically multiplexing the output signals of a number of sensors; a photodetector which converts the multiplexed optical signal into an electrical signal; and a method or demultiplexing, beamforming and signal processing the resultant electrical signal. Methods for optical demultiplexing, beamforming, signal processing, and fusing the output of different sensors are also under investigation. The focus of this SBIR topic is to stimulate bold new concepts for significantly improved sensors and components for optical arrays, with emphasis on affordability and improved performance, New sensing or multiplexing concepts which reduce the number of discrete optical components or the amount of hand labor involved in array assembly are also desired.

PHASE I: Develop a conceptual design of the proposed sensor or component. This design and supporting documentation should be sufficient to convince qualified engineers that the proposed concept is technically feasible.
PHASE II: Produce and demonstrate performance of an “eXploratory Development Model” (XDM) of the proposed sensor or component. Construct the XDM to demonstrate performance in the most cost effective manner. Demonstrate performance in such a way as to convince qualified engineers that the proposed sensor or component is capable of meeting requirements in an operational environment.

PHASE III: Team with the manufacturer of one of the Navy’s underwater surveillance arrays to integrate the sensor or component into future generations of the array. Team with manufacturers of commercial communication, control, or surveillance networks to integrate the sensor or component into these products.

COMMERCIAL POTENTIAL: The commercial market for improved optical systems is large and is driven by the need for low cost, high bandwidth communication networks. Improved multiplexing and array assembly techniques may be applicable to the commercial fiber optic industry. Low cost optical sensors also have commercial applications in perimeter security, equipment monitoring, pipeline leak detection, oil exploration, and the emerging market for “smart” buildings.

REFERENCES:

N97-098 TITLE: Biologically Inspired Processor for Contact Data Association

OBJECTIVE: Development of commercially available biologically inspired data processing methods, techniques, or algorithms, such as artificial neural networks, for the contact association function of the Navy’s submarine combat control system.

DESCRIPTION: Future undersea warfare, in the littoral environment, will present much shorter engagement ranges, new threats, environmentally imposed uncertainties, and the higher likelihood of melee encounters. Such factors combine to make the task of target track estimation and evaluation much more important and difficult than for deep water. The Navy has adapted, on a science and technology level, a biologically based system as a tracking component of a contact management subsystem within the submarine combat control system. The component, Neurally Inspired Contact Estimation (NICE), enhances current capabilities for multi-source, real-time data assimilation, fusion, and correlation. The goal of this topic is to provide a natural and needed extension to NICE—the association of acoustic and non-acoustic data with individual contact tracks.

PHASE I: Demonstrate, using synthesized data and directly interfacing with NICE, the feasibility of a biologically based system for accomplishing contact data association for two or more contacts with constant motion.

PHASE II: Full algorithm development and validation with assessment of system performance against synthetic and data from at sea exercises. The latter includes intermittent and uncertain data and data on maneuvering contacts. Deliver software module(s) that can be added to the current prototyped NICE system.

PHASE III: Transition to production as part of the NICE component of the contact management system.

COMMERCIAL POTENTIAL: The techniques, methods, algorithms will have direct relevance to any application requiring real-time data association, assimilation, fusion, and correlation—for example, military and Federal Aviation Administration (FAA) tracking of aircraft, National Oceanic and Atmospheric Administration (NOAA) localization and tracking of fish schools, Department of Transportation (DOT) systems for localization, tracking, and directing traffic.

REFERENCES:

NAVY-65
TITLE: Reflective Liquid Crystal Display Utilizing Conducting Polymer Substrate

OBJECTIVE: Develop and demonstrate the working of a prototype ultra high resolution cholesteric liquid crystal display on plastic substrates with conducting polymer as the conducting material.

DESCRIPTION: Liquid crystal displays often are insufficiently ruggard, have high power requirements due to back lighting, have restricted viewing angles, and are hard to read in bright ambient light. In this project these deficiencies will be addressed with a program aimed at the development and demonstration of a prototype ultra high resolution cholesteric liquid crystal display on plastic substrates with conducting polymer as the conducting material. It is anticipated that the displays be at least 6" x 4", have 160 dpi resolution, multicolor capability, and 0.1 second page refresh rate. In addition, the displays will be portable, ruggard, light weight, sun light readable, and will consume low power.

PHASE I: Develop innovative methods to fabricate 6" x 4" cholesteric liquid crystal displays on conducting polymer with a resolution of 80 dpi. Design and develop driver and packaging electronics capable of page refresh rates of 0.1 seconds. Evaluate the electro optic properties of the display using this drive circuit.

PHASE II: Improve refresh rate to 0.1 second and enhance resolution to 160 dpi; demonstrate multicolor capability; reduce effort to engineering practice.

PHASE III: Scale up fabrication/processing to pre-production level; evaluate feasibility for manufacturing for commercial and military applications.

COMMERCIAL POTENTIAL: Applications of this technology would be found in hand held displays, electronic billboards, portable map/text/graphic readout displays, and games.
AIR FORCE
PROPOSAL PREPARATION INSTRUCTIONS

The responsibility for the implementation and management of the Air Force SBIR Program is with the Air Force Materiel Command, Wright-Patterson Air Force Base, Ohio. The Air Force SBIR Program Executive is R. Jill Dickman, (800) 222-0336. DO NOT submit SBIR proposals to the AF SBIR Program Executive under any circumstances. Addresses for proposal submission and numbers for administrative and contracting questions are listed on the following pages, AF-2 through 4.

Technical questions may be requested using the DTIC SBIR Interactive Technical Information System (SITIS). For a full description of this system and other technical information assistance available from DTIC, please refer to section 7.1 on page 15 of this solicitation.

Air Force Nine-Month Phase I Contract

For the Air Force, the technical period of performance for Phase I will be nine (9) months, and the price will not exceed $100,000.

The primary research must be accomplished during the first six months of the contract. It is the bulk of the research for the Phase I effort. The primary research effort, alone, is used to determine whether the AF will request a Phase II proposal. The proposal, alone, will decide who will be selected for Phase II.

Our evaluation of the primary research effort and the proposal will be based on the factors listed in the solicitation, and efforts that attract matching funds under the Fast Track will receive our highest priority in determining which proposals are requested and selected for Phase II.

Phase II proposals are by invitation only. If requested, the Phase II proposal must be submitted within six months from the start of Phase I to ensure that the proposal will be evaluated and is eligible for award. After the first six months, additional related research must be conducted that furthers the Phase I effort and puts the small business in a better position to start Phase II, if awarded. The last three months of the nine-month technical effort will not be considered in the evaluation process leading to Phase II awards.

Air Force Cost Proposal

Although proposals, including costs, are limited to 25 pages, be prepared to submit further documentation to substantiate costs if selected for award; the contracting officer may request further information to facilitate the contracting process.

AF-1
PROPOSAL SUBMISSION INSTRUCTIONS

For each Phase I proposal, send one original and four (4) copies to the office designated below. Be advised that any overnight delivery may not reach the appropriate desk within one day. Be sure to read the Air Force instructions on the previous page for the nine-month Phase I contract to avoid the rejection of your proposal. To request notification of proposal receipt, send request (Ref A on page Ref 1) with a self-addressed stamped envelope. Do not call to ask whether your proposal has been received; due to time constraints, we will not be able to answer such telephone calls.

<table>
<thead>
<tr>
<th>TOPIC NUMBER</th>
<th>ACTIVITY/MAILING ADDRESS</th>
<th>CONTRACTING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF97-001 thru AF97-006</td>
<td>(Name and number for mailing proposals and for administrative questions)</td>
<td>(For contract questions only)</td>
</tr>
<tr>
<td></td>
<td>Air Force Office of Scientific Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFOSR/NI (Dr Jerome Franck)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110 Duncan Ave, Ste B115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolling AFB DC 20332-0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Dr Jerome Franck, (202) 767-4970)</td>
<td></td>
</tr>
<tr>
<td>AF97-007 thru AF97-042</td>
<td>Armstrong Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AL/XPTT (Belva Williams)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2509 Kennedy Circle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brooks AFB TX 78235-5118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Belva Williams, (210) 536-6393)</td>
<td></td>
</tr>
<tr>
<td>AF97-043 thru AF97-069</td>
<td>Rome Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RL/XPD (Margot Ashcroft)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 Electronic Parkway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rome NY 13441-4514</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Margot Ashcroft, (315) 330-2308)</td>
<td></td>
</tr>
<tr>
<td>AF97-070 thru AF97-081</td>
<td>Space & Missiles Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phillips Laboratory/XPI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SBIR Program (R. Hancock)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3650 Aberdeen Ave SE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kirtland AFB NM 87117-5776</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Mr. Robert Hancock, (505) 846-4418)</td>
<td></td>
</tr>
<tr>
<td>AF97-082 thru AF97-086</td>
<td>Advanced Weapons & Survivability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phillips Laboratory/XPI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SBIR Program (R. Hancock)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3650 Aberdeen Ave SE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kirtland AFB NM 87117-5776</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Mr. Robert Hancock, (505) 846-4418)</td>
<td></td>
</tr>
<tr>
<td>TOPIC NUMBER</td>
<td>ACTIVITY/MAILING ADDRESS</td>
<td>CONTRACTING AUTHORITY</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| AF97-088 thru AF97-096 | Propulsion
OL-AC Phillips Laboratory/RKTC
SBIR Program (S. Borowiak)
4 Pollux Dr
Edwards AFB CA 93524-7760
(Ms Sandra Borowiak, (805) 275-5617) | Ms. Liliana Milhaleski
(805) 277-3900 |
| AF97-097 thru AF97-100 | Geophysics
OL-AA Phillips Laboratory/XPG
SBIR Program (N.Dimond)
29 Randolph Rd, Bldg 1107, Rm 240
Hanscom AFB MA 01731-3010
(Ms Noreen Dimond, (617) 377-3608) | Mr. John Flaherty
(617) 377-2529 |
| AF97-101 thru AF97-111 | Lasers & Imaging
SBIR Program (R. Hancock)
3650 Aberdeen Ave SE
Kirtland AFB NM 87117-5776
(Mr. Robert Hancock, (505) 846-4418) | Mr. Francisco Tapia
(505) 846-5021 |
| AF97-112 | Space Experiments
SBIR Program (R. Hancock)
3650 Aberdeen Ave SE
Kirtland AFB NM 87117-5776
(Mr. Robert Hancock, (505) 846-4418) | Mr. Francisco Tapia
(505) 846-5021 |
| AF97-113 | Plans & Programs
SBIR Program (R. Hancock)
3650 Aberdeen Ave SE
Kirtland AFB NM 87117-5776
(Mr. Robert Hancock, (505) 846-4418) | Mr. Francisco Tapia
(505) 846-5021 |
| AF97-114 thru AF97-139 | Avionics Directorate
WL/AAOP
2011 8th St, Rm N2G21
Wright-Patterson AFB OH 45433-7623
(Sharon Gibbons, (513) 255-5285) | Terry Rogers
(513) 255-5830
Bruce Miller
(513) 255-7143 |
| AF97-140 thru AF97-154 | Flight Dynamics Directorate
WL/FIO, Bldg 45
Wright-Patterson AFB OH
(Madie Tillman, (513) 255-5066) | Terry Rogers
(513) 255-5830
Bruce Miller
(513) 255-7143 |
| AF97-155 thru AF97-173 | Materials Directorate
WL/MLIP
2977 P St, Ste 13
Wright-Patterson AFB OH 45433-6523
(Sharon Starr, (513) 255-7175) | Terry Rogers
(513) 255-5830
Bruce Miller
(513) 255-7143 |
<table>
<thead>
<tr>
<th>TOPIC NUMBER</th>
<th>ACTIVITY/MAILING ADDRESS</th>
<th>CONTRACTING AUTHORITY</th>
</tr>
</thead>
</table>
| AF97-174 thru AF97-191 | Aero Propulsion & Power Directorate
WL/POM
1950 Fifth St, Bldg 18, Rm 105A
Wright-Patterson AFB OH 45433-7251
(Betty Siferd, (513) 255-2131) | Terry Rogers
(513) 255-5830
Bruce Miller
(513) 255-7143 |
| AF97-192 thru AF97-198 | Manufacturing Technology Directorate
2977 P St, Ste 6, Bldg 653
Wright-Patterson AFB OH 45433-7739
(Marvin Gale, (513) 255-4623) | Terry Rogers
(513) 255-5830
Bruce Miller
(513) 255-7143 |
| AF97-199 thru AF97-218 | Armament Directorate
WL/MNPB
101 W Eglin Blvd, Ste 143
Eglin AFB FL 32542
(Richard Bixby, (904) 882-8591) | Lyle Crews, Jr.
(904) 882-4284 |
| AF97-219 thru AF97-250 | Technology Transition Office
AFMC-TTO/TTP, Bldg 262
4375 Chidlaw Rd, Ste 6
Wright Patterson AFB OH 45433-5006
(Rebecca Holbrook, (513) 257-4439) | Arnette Long
(513) 255-6632 |
| AF97-252 thru AF97-254 | Aeronautical Systems Center
ASC/XRPA (LtCol Azeez Shamiyeh)
2275 D St, Ste 10, Bldg 16
Wright-Patterson AFB OH 45433-7227
(LtC Azeez Shamiyeh, (513) 255-2630, x3079) | Arnette Long
(513) 255-6632 |
| AF97-255 thru AF97-257 | Electronic Systems Center
ESC/XR (Rod Young)
50 Griffiss St
Hanscom AFB MA 01731-1624
(Rod Young, (617) 271-4718) | Iris Durden
(617) 377-2907 |
| AF97-258 thru AF97-260 | Space & Missile Center
SMC/XR (Jun Rosca)
2430 E El Segundo Blvd, Ste 1611
Los Angeles AFB CA 90245-4687
(Jun Rosca, (310) 363-2613) | Norman E. Harrison
(310) 363-6871 |
<table>
<thead>
<tr>
<th>Keywords</th>
<th>Topic Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D Packaging</td>
<td>123</td>
</tr>
<tr>
<td>3-dimensional audio</td>
<td>012</td>
</tr>
<tr>
<td>3D visualization</td>
<td>231</td>
</tr>
<tr>
<td>ablative</td>
<td>089</td>
</tr>
<tr>
<td>accelerometer calibration</td>
<td>230</td>
</tr>
<tr>
<td>accelerometers</td>
<td>100, 202</td>
</tr>
<tr>
<td>accurate measurements</td>
<td>090</td>
</tr>
<tr>
<td>Acoustic Instabilities</td>
<td>190</td>
</tr>
<tr>
<td>acoustic interactions</td>
<td>005</td>
</tr>
<tr>
<td>Acoustic Sensors</td>
<td>214</td>
</tr>
<tr>
<td>acoustic</td>
<td>071</td>
</tr>
<tr>
<td>Acousto-Optical Devices</td>
<td>205</td>
</tr>
<tr>
<td>Acousto-optics</td>
<td>135</td>
</tr>
<tr>
<td>Acquisition</td>
<td>135, 256</td>
</tr>
<tr>
<td>Active Noise Reduction</td>
<td>009</td>
</tr>
<tr>
<td>actuator</td>
<td>095</td>
</tr>
<tr>
<td>actuators</td>
<td>071, 074</td>
</tr>
<tr>
<td>Adaptive Interface</td>
<td>015</td>
</tr>
<tr>
<td>adaptive optics</td>
<td>110</td>
</tr>
<tr>
<td>Adaptive Systems</td>
<td>049</td>
</tr>
<tr>
<td>Adaptive Training Systems</td>
<td>038</td>
</tr>
<tr>
<td>Adaptive</td>
<td>125</td>
</tr>
<tr>
<td>additives</td>
<td>159</td>
</tr>
<tr>
<td>Advanced Aircraft</td>
<td>147</td>
</tr>
<tr>
<td>advanced components</td>
<td>088</td>
</tr>
<tr>
<td>advanced concepts</td>
<td>088</td>
</tr>
<tr>
<td>Advanced Modeling</td>
<td>190</td>
</tr>
<tr>
<td>advanced propellants</td>
<td>088</td>
</tr>
<tr>
<td>Advanced Science and Technology</td>
<td>147</td>
</tr>
<tr>
<td>Advanced signal/image processing</td>
<td>207</td>
</tr>
<tr>
<td>Aerodynamic</td>
<td>134, 146, 148, 187, 199, 200</td>
</tr>
<tr>
<td>Aeroservoelasticity</td>
<td>143</td>
</tr>
<tr>
<td>Aerospace Medicine</td>
<td>007</td>
</tr>
<tr>
<td>aerospace propulsion</td>
<td>088</td>
</tr>
<tr>
<td>affordable</td>
<td>157</td>
</tr>
<tr>
<td>Agent Oriented Architectures</td>
<td>038</td>
</tr>
<tr>
<td>Air Data Sensors</td>
<td>143</td>
</tr>
<tr>
<td>Air Intake Systems</td>
<td>180</td>
</tr>
<tr>
<td>air quality</td>
<td>247</td>
</tr>
<tr>
<td>airborne</td>
<td>229</td>
</tr>
<tr>
<td>Aircraft coatings</td>
<td>160</td>
</tr>
<tr>
<td>aircraft deicing</td>
<td>173</td>
</tr>
<tr>
<td>Aircraft Design</td>
<td>148</td>
</tr>
<tr>
<td>Aircraft Gas Turbine Engines</td>
<td>188</td>
</tr>
<tr>
<td>Aircraft High Voltage</td>
<td>179</td>
</tr>
<tr>
<td>Aircraft Noise</td>
<td>030</td>
</tr>
<tr>
<td>Aircraft Subsystem Cooling</td>
<td>150</td>
</tr>
<tr>
<td>Aircraft</td>
<td>134, 153, 155</td>
</tr>
<tr>
<td>Airfoils</td>
<td>187</td>
</tr>
<tr>
<td>Airframe</td>
<td>199</td>
</tr>
<tr>
<td>Alignment</td>
<td>128</td>
</tr>
<tr>
<td>alternative energy storage</td>
<td>222</td>
</tr>
<tr>
<td>Ambiguity Resolution</td>
<td>201</td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>AMTEC</td>
<td>178</td>
</tr>
<tr>
<td>Analog-‐to-‐Digital Conversion</td>
<td>206</td>
</tr>
<tr>
<td>Analog</td>
<td>137</td>
</tr>
<tr>
<td>Analysis</td>
<td>028, 142</td>
</tr>
<tr>
<td>analytical</td>
<td>219</td>
</tr>
<tr>
<td>Analytical Chemistry</td>
<td>186</td>
</tr>
<tr>
<td>anechoic chamber equipment</td>
<td>235</td>
</tr>
<tr>
<td>anomaly resolution</td>
<td>077</td>
</tr>
<tr>
<td>Antennas</td>
<td>059</td>
</tr>
<tr>
<td>Antenna</td>
<td>131</td>
</tr>
<tr>
<td>antennas</td>
<td>085</td>
</tr>
<tr>
<td>Anthropometry</td>
<td>007</td>
</tr>
<tr>
<td>anti-noise</td>
<td>071, 074</td>
</tr>
<tr>
<td>artificial intelligence</td>
<td>189, 254</td>
</tr>
<tr>
<td>Assessment</td>
<td>215</td>
</tr>
<tr>
<td>astrodynamics</td>
<td>070</td>
</tr>
<tr>
<td>atmospheres</td>
<td>110</td>
</tr>
<tr>
<td>atmospheric motions</td>
<td>098</td>
</tr>
<tr>
<td>atmospheric turbulence</td>
<td>097</td>
</tr>
<tr>
<td>Attenuated Total Reflectance (ATR) Sensor</td>
<td>027</td>
</tr>
<tr>
<td>audio technology</td>
<td>012</td>
</tr>
<tr>
<td>Audiometry</td>
<td>009, 011</td>
</tr>
<tr>
<td>Auditory Brainstem Response</td>
<td>011</td>
</tr>
<tr>
<td>Auditory displays</td>
<td>017</td>
</tr>
<tr>
<td>auditory models</td>
<td>012</td>
</tr>
<tr>
<td>authoring systems</td>
<td>035</td>
</tr>
<tr>
<td>Automated Engine Controls</td>
<td>189</td>
</tr>
<tr>
<td>automated forces</td>
<td>034</td>
</tr>
<tr>
<td>automated instruction</td>
<td>035</td>
</tr>
<tr>
<td>Automatic Picture Transmission</td>
<td>258</td>
</tr>
<tr>
<td>automatic program generation</td>
<td>237</td>
</tr>
<tr>
<td>Automatic Target Recognition</td>
<td>115, 203</td>
</tr>
<tr>
<td>automatic test equipment</td>
<td>244</td>
</tr>
<tr>
<td>automatic test systems</td>
<td>239</td>
</tr>
<tr>
<td>Autonomous Guidance</td>
<td>203</td>
</tr>
<tr>
<td>Autopilots</td>
<td>199</td>
</tr>
<tr>
<td>Autostereographic Displays</td>
<td>145</td>
</tr>
<tr>
<td>Avalanche Photodiode Detector</td>
<td>206</td>
</tr>
<tr>
<td>average power</td>
<td>029</td>
</tr>
<tr>
<td>aviation</td>
<td>098</td>
</tr>
<tr>
<td>Avionics Cooling</td>
<td>150</td>
</tr>
<tr>
<td>Avionics Prototypes</td>
<td>136</td>
</tr>
<tr>
<td>Avionics</td>
<td>117, 118, 172</td>
</tr>
<tr>
<td>Azimuth</td>
<td>259</td>
</tr>
<tr>
<td>Background Clutter</td>
<td>252</td>
</tr>
<tr>
<td>Bare Base</td>
<td>154</td>
</tr>
<tr>
<td>barrier bags</td>
<td>245</td>
</tr>
<tr>
<td>batteries</td>
<td>001, 081, 177</td>
</tr>
<tr>
<td>beam divergence</td>
<td>029</td>
</tr>
<tr>
<td>bearings</td>
<td>094, 174</td>
</tr>
<tr>
<td>Bench Solder Technology</td>
<td>260</td>
</tr>
<tr>
<td>bichromophore</td>
<td>168</td>
</tr>
<tr>
<td>Biofilm</td>
<td>008</td>
</tr>
<tr>
<td>Biological Defense</td>
<td>014</td>
</tr>
<tr>
<td>Biological Product</td>
<td>010</td>
</tr>
<tr>
<td>Biological/Cognitive Sensor/Data Fusion</td>
<td>119</td>
</tr>
</tbody>
</table>

AF-6
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>014</td>
</tr>
<tr>
<td>biomedical</td>
<td>104</td>
</tr>
<tr>
<td>Bioremediation</td>
<td>007</td>
</tr>
<tr>
<td>Biosensor</td>
<td>014</td>
</tr>
<tr>
<td>blades</td>
<td>093</td>
</tr>
<tr>
<td>Blast & Shock</td>
<td>217</td>
</tr>
<tr>
<td>Blast/Fragment Synergism</td>
<td>217</td>
</tr>
<tr>
<td>Blisters Agents</td>
<td>014</td>
</tr>
<tr>
<td>bore diameter</td>
<td>250</td>
</tr>
<tr>
<td>breath analysis</td>
<td>033</td>
</tr>
<tr>
<td>C4I</td>
<td>255, 256</td>
</tr>
<tr>
<td>CAD</td>
<td>054</td>
</tr>
<tr>
<td>CAE</td>
<td>137</td>
</tr>
<tr>
<td>calibration</td>
<td>229</td>
</tr>
<tr>
<td>capacitive energy storage</td>
<td>222</td>
</tr>
<tr>
<td>Capacitor</td>
<td>176</td>
</tr>
<tr>
<td>capacity gauge</td>
<td>096</td>
</tr>
<tr>
<td>carbon fiber</td>
<td>157</td>
</tr>
<tr>
<td>carbon steel</td>
<td>246</td>
</tr>
<tr>
<td>carboxyl-terminated</td>
<td>243</td>
</tr>
<tr>
<td>Card-Edge</td>
<td>138</td>
</tr>
<tr>
<td>Carriage & Release</td>
<td>199</td>
</tr>
<tr>
<td>Carrier Phase</td>
<td>201</td>
</tr>
<tr>
<td>Case-Based Reasoning</td>
<td>019, 077</td>
</tr>
<tr>
<td>cathode</td>
<td>091</td>
</tr>
<tr>
<td>Ceramics</td>
<td>025, 167</td>
</tr>
<tr>
<td>CFD</td>
<td>181</td>
</tr>
<tr>
<td>Chaff</td>
<td>134</td>
</tr>
<tr>
<td>Characterization</td>
<td>166, 167</td>
</tr>
<tr>
<td>characterizing</td>
<td>219</td>
</tr>
<tr>
<td>Charged Coupled Device</td>
<td>216</td>
</tr>
<tr>
<td>Chemical Agent Detection</td>
<td>014</td>
</tr>
<tr>
<td>Chemical Contaminants</td>
<td>218</td>
</tr>
<tr>
<td>chemical detection</td>
<td>108</td>
</tr>
<tr>
<td>chemical oxygen laser (COIL)</td>
<td>107</td>
</tr>
<tr>
<td>Chemical Stripping</td>
<td>160</td>
</tr>
<tr>
<td>Chemical</td>
<td>014</td>
</tr>
<tr>
<td>Chemometrics</td>
<td>026, 027, 028</td>
</tr>
<tr>
<td>Chlorinated solvents</td>
<td>024</td>
</tr>
<tr>
<td>chromophore</td>
<td>168</td>
</tr>
<tr>
<td>circuit breaker</td>
<td>080</td>
</tr>
<tr>
<td>circuit card interlayer imaging</td>
<td>242</td>
</tr>
<tr>
<td>Circulators</td>
<td>210</td>
</tr>
<tr>
<td>Classification</td>
<td>028</td>
</tr>
<tr>
<td>Clearance Flow</td>
<td>188</td>
</tr>
<tr>
<td>CO</td>
<td>025</td>
</tr>
<tr>
<td>coagulation</td>
<td>106</td>
</tr>
<tr>
<td>Coating System</td>
<td>155</td>
</tr>
<tr>
<td>Coatings</td>
<td>156, 159</td>
</tr>
<tr>
<td>Code Generation</td>
<td>045</td>
</tr>
<tr>
<td>cognition</td>
<td>004</td>
</tr>
<tr>
<td>cognitive assessment</td>
<td>042</td>
</tr>
<tr>
<td>Cognitive Engineering</td>
<td>019</td>
</tr>
<tr>
<td>Cognitive processes</td>
<td>017</td>
</tr>
<tr>
<td>cognitive task analysis</td>
<td>042</td>
</tr>
<tr>
<td>Coherent countermeasures</td>
<td>132</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Coherent Laser Radar</td>
<td>204</td>
</tr>
<tr>
<td>Cold Gas Generators</td>
<td>149</td>
</tr>
<tr>
<td>Collaborative Computing</td>
<td>019</td>
</tr>
<tr>
<td>Collaborative Environments</td>
<td>046</td>
</tr>
<tr>
<td>Collaborative Interaction</td>
<td>047</td>
</tr>
<tr>
<td>Collaborative Tools</td>
<td>046</td>
</tr>
<tr>
<td>Collaborative Virtual Prototyping</td>
<td>136</td>
</tr>
<tr>
<td>Combined Cycle Engines</td>
<td>180</td>
</tr>
<tr>
<td>Combustion exhausts</td>
<td>025</td>
</tr>
<tr>
<td>combustion research</td>
<td>248</td>
</tr>
<tr>
<td>Command</td>
<td>090, 182, 183</td>
</tr>
<tr>
<td>Command and Control</td>
<td>015, 066</td>
</tr>
<tr>
<td>Command</td>
<td>007, 043, 255</td>
</tr>
<tr>
<td>commercial-off-the-shelf (COTS)</td>
<td>241</td>
</tr>
<tr>
<td>commercial</td>
<td>086</td>
</tr>
<tr>
<td>Communication</td>
<td>059</td>
</tr>
<tr>
<td>Communications Signal Processing</td>
<td>049</td>
</tr>
<tr>
<td>Communications</td>
<td>043, 055, 056, 113, 194, 234</td>
</tr>
<tr>
<td>compact medical lasers</td>
<td>102, 106</td>
</tr>
<tr>
<td>compensation</td>
<td>110</td>
</tr>
<tr>
<td>complementary devices</td>
<td>002</td>
</tr>
<tr>
<td>Compliance</td>
<td>156</td>
</tr>
<tr>
<td>Component</td>
<td>120</td>
</tr>
<tr>
<td>Composite Materials</td>
<td>140</td>
</tr>
<tr>
<td>composite</td>
<td>072, 151</td>
</tr>
<tr>
<td>Composites Processing</td>
<td>198</td>
</tr>
<tr>
<td>Composites</td>
<td>166, 167</td>
</tr>
<tr>
<td>compression</td>
<td>220</td>
</tr>
<tr>
<td>Compressors</td>
<td>188</td>
</tr>
<tr>
<td>Computational Fluid Dynamics</td>
<td>149, 187</td>
</tr>
<tr>
<td>Computational Mechanics</td>
<td>209</td>
</tr>
<tr>
<td>Computer Aided Design</td>
<td>137</td>
</tr>
<tr>
<td>Computer Aided Modeling and Simulation</td>
<td>049</td>
</tr>
<tr>
<td>Computer Science</td>
<td>043</td>
</tr>
<tr>
<td>computer workstation</td>
<td>098</td>
</tr>
<tr>
<td>Computer-Aided Design</td>
<td>162</td>
</tr>
<tr>
<td>Computer</td>
<td>037, 048, 194, 255, 257</td>
</tr>
<tr>
<td>Computerized multimedia</td>
<td>037</td>
</tr>
<tr>
<td>computerized simulations</td>
<td>039</td>
</tr>
<tr>
<td>concentrator</td>
<td>092</td>
</tr>
<tr>
<td>Conceptual Design</td>
<td>147</td>
</tr>
<tr>
<td>Concrete Penetration</td>
<td>217</td>
</tr>
<tr>
<td>Concurrent Engineering</td>
<td>193</td>
</tr>
<tr>
<td>Concurrent Simulation</td>
<td>136</td>
</tr>
<tr>
<td>Conductive Adhesives</td>
<td>260</td>
</tr>
<tr>
<td>conductive caulk</td>
<td>161</td>
</tr>
<tr>
<td>Cone Penetrometer</td>
<td>026, 027</td>
</tr>
<tr>
<td>conformal geometries</td>
<td>027</td>
</tr>
<tr>
<td>Conformal</td>
<td>169</td>
</tr>
<tr>
<td>Connector</td>
<td>131</td>
</tr>
<tr>
<td>Constant Fraction Threshold Detection</td>
<td>138</td>
</tr>
<tr>
<td>Contaminated groundwater</td>
<td>206</td>
</tr>
<tr>
<td>Continuum Modeling</td>
<td>024</td>
</tr>
<tr>
<td>Control and Communications</td>
<td>162, 163</td>
</tr>
<tr>
<td>Control System</td>
<td>007</td>
</tr>
<tr>
<td>Control Systems</td>
<td>152</td>
</tr>
<tr>
<td>154</td>
<td></td>
</tr>
</tbody>
</table>
control .. 005, 043, 074, 255
Controls and Accessories 191
Conventional Weapons 209
Convergence Acceleration 181
cooling ... 078, 093
Copper .. 194
Corona ... 179
Correlation .. 060
corrosion prevention ... 246
Corrosion-Protection ... 155
Corrosion .. 172
Cost Estimating .. 147
Cost Modeling ... 147
Coupled GFS/INS .. 201
Creep ... 153
Crew Systems .. 007
criterion measurement .. 042
cryocoolers .. 078
Cryogenic Power .. 179
cryogenic .. 095, 096
Crystallography .. 163
current limiting .. 080
Cycle Slips .. 201
cylinders ... 071
Dampers ... 184
Damping .. 153
dark current .. 079
data analysis .. 231
data cycle map ... 237
data distribution ... 112
Data Fusion .. 061, 116
Data Manipulation ... 047
data recorder ... 021
data transfer .. 112
Data ... 048, 257
Decision Aiding .. 018
Decision Making ... 047
Decision Support Systems 018
Decontamination ... 014
Defense Meteorological Satellite Program 258
Defense .. 014
Defensive Information Warfare 067
Dehumidification .. 172
Delivery Systems .. 149
Dental Unit Waterlines .. 008
Design Automation ... 137
Design for Assembly .. 193
design life ... 246
Design ... 054
Detection ... 014, 064
detectors ... 078, 210
Deterministic .. 142
Device Modeling .. 124
DF-8 ... 232
Diagnostic Specimen .. 010
Diagnostic ... 146

AF-9
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics</td>
<td>183</td>
</tr>
<tr>
<td>Dielectric Materials</td>
<td>176</td>
</tr>
<tr>
<td>diesel</td>
<td>232</td>
</tr>
<tr>
<td>Differential Absorption Laser Radar</td>
<td>204</td>
</tr>
<tr>
<td>differential absorption lidar (DIAL)</td>
<td>108</td>
</tr>
<tr>
<td>Digital signal processing</td>
<td>132</td>
</tr>
<tr>
<td>Digital System Models</td>
<td>136</td>
</tr>
<tr>
<td>Digital</td>
<td>131</td>
</tr>
<tr>
<td>Dim Targets</td>
<td>118</td>
</tr>
<tr>
<td>diode-pumped lasers</td>
<td>103</td>
</tr>
<tr>
<td>Direct Connect Testing</td>
<td>182</td>
</tr>
<tr>
<td>Direct Detection</td>
<td>204</td>
</tr>
<tr>
<td>Direct Y-Code</td>
<td>135</td>
</tr>
<tr>
<td>Directed Energy</td>
<td>007</td>
</tr>
<tr>
<td>Directional couplers</td>
<td>210</td>
</tr>
<tr>
<td>Disinfection</td>
<td>008</td>
</tr>
<tr>
<td>Dispenser</td>
<td>134</td>
</tr>
<tr>
<td>Dispersion Filters</td>
<td>205</td>
</tr>
<tr>
<td>Displacement</td>
<td>151</td>
</tr>
<tr>
<td>Display Technology</td>
<td>144</td>
</tr>
<tr>
<td>displays</td>
<td>003, 041</td>
</tr>
<tr>
<td>Distributed Actuation</td>
<td>141</td>
</tr>
<tr>
<td>Distributed Fusion</td>
<td>061</td>
</tr>
<tr>
<td>Distributed Interactive Simulation (DIS)</td>
<td>152</td>
</tr>
<tr>
<td>distributed interactive simulation</td>
<td>034</td>
</tr>
<tr>
<td>distributed parameter systems</td>
<td>005</td>
</tr>
<tr>
<td>Distributed Training Synthetic Environments</td>
<td>038</td>
</tr>
<tr>
<td>DNAPL</td>
<td>026, 027</td>
</tr>
<tr>
<td>Doppler Global Velocimetry</td>
<td>146</td>
</tr>
<tr>
<td>downlinks</td>
<td>112</td>
</tr>
<tr>
<td>ducting</td>
<td>089</td>
</tr>
<tr>
<td>Dynamic Kinematic Algorithms</td>
<td>201</td>
</tr>
<tr>
<td>EHF</td>
<td>059</td>
</tr>
<tr>
<td>ejection seat</td>
<td>021</td>
</tr>
<tr>
<td>electric propulsion</td>
<td>006, 091</td>
</tr>
<tr>
<td>Electrical machine cooling</td>
<td>175</td>
</tr>
<tr>
<td>Electro Magnetic</td>
<td>259</td>
</tr>
<tr>
<td>Electro Optics</td>
<td>145</td>
</tr>
<tr>
<td>electro-mechanical</td>
<td>095</td>
</tr>
<tr>
<td>Electro-Optic Devices</td>
<td>057, 122</td>
</tr>
<tr>
<td>electro-optic materials</td>
<td>171</td>
</tr>
<tr>
<td>electro-optics</td>
<td>223</td>
</tr>
<tr>
<td>Electro-plating</td>
<td>194</td>
</tr>
<tr>
<td>Electrochemical Biosensors</td>
<td>022</td>
</tr>
<tr>
<td>Electrochemical Sensors</td>
<td>022</td>
</tr>
<tr>
<td>Electrochemiluminescence</td>
<td>022</td>
</tr>
<tr>
<td>Electrochemistry</td>
<td>177</td>
</tr>
<tr>
<td>electrode</td>
<td>001</td>
</tr>
<tr>
<td>Electroexplosive device</td>
<td>213</td>
</tr>
<tr>
<td>Electromagnetic Effects</td>
<td>179</td>
</tr>
<tr>
<td>Electromagnetic Field Sensor</td>
<td>051</td>
</tr>
<tr>
<td>electromagnetic fields and waves</td>
<td>085</td>
</tr>
<tr>
<td>electromagnetic propagation</td>
<td>032</td>
</tr>
<tr>
<td>electromagnetic propulsion</td>
<td>091</td>
</tr>
<tr>
<td>Electromagnetic radiation</td>
<td>032</td>
</tr>
<tr>
<td>electromagnetic</td>
<td>084, 086</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Electromagnetics</td>
<td>043, 082</td>
</tr>
<tr>
<td>Electron Beam Cure</td>
<td>140</td>
</tr>
<tr>
<td>Electronic attach</td>
<td>132</td>
</tr>
<tr>
<td>electronic circuit card imaging</td>
<td>242</td>
</tr>
<tr>
<td>electronic classrooms</td>
<td>037</td>
</tr>
<tr>
<td>Electronic Devices</td>
<td>124</td>
</tr>
<tr>
<td>Electronic Equipment #901</td>
<td>137</td>
</tr>
<tr>
<td>Electronic Fabrication</td>
<td>260</td>
</tr>
<tr>
<td>Electronic Image Sensors</td>
<td>216</td>
</tr>
<tr>
<td>Electronic Imaging</td>
<td>216</td>
</tr>
<tr>
<td>Electronic Nose</td>
<td>028</td>
</tr>
<tr>
<td>Electronic Prognostics</td>
<td>052</td>
</tr>
<tr>
<td>Electronic warfare</td>
<td>132</td>
</tr>
<tr>
<td>Electronics cooling</td>
<td>175</td>
</tr>
<tr>
<td>electronics packaging</td>
<td>075</td>
</tr>
<tr>
<td>electronics</td>
<td>086, 110, 120, 124, 125, 194</td>
</tr>
<tr>
<td>electrothermal engines</td>
<td>091</td>
</tr>
<tr>
<td>Elevated Temperatures</td>
<td>153</td>
</tr>
<tr>
<td>Elevation</td>
<td>259</td>
</tr>
<tr>
<td>emerging software tech</td>
<td>244</td>
</tr>
<tr>
<td>Emissions</td>
<td>183</td>
</tr>
<tr>
<td>Emplacement</td>
<td>024</td>
</tr>
<tr>
<td>enclosures</td>
<td>071</td>
</tr>
<tr>
<td>Endothermic Fuels</td>
<td>180</td>
</tr>
<tr>
<td>Energetic Materials</td>
<td>209</td>
</tr>
<tr>
<td>Energy Conversion</td>
<td>178</td>
</tr>
<tr>
<td>energy density</td>
<td>081, 177</td>
</tr>
<tr>
<td>energy storage</td>
<td>081</td>
</tr>
<tr>
<td>Engine Trend Monitoring</td>
<td>189</td>
</tr>
<tr>
<td>Engineering Systems</td>
<td>198</td>
</tr>
<tr>
<td>Engines</td>
<td>153</td>
</tr>
<tr>
<td>Enhanced Heat Transfer</td>
<td>150</td>
</tr>
<tr>
<td>Environics</td>
<td>007</td>
</tr>
<tr>
<td>Environmental Contaminants</td>
<td>218</td>
</tr>
<tr>
<td>Environmental Law</td>
<td>253</td>
</tr>
<tr>
<td>Environmental Monitoring</td>
<td>130</td>
</tr>
<tr>
<td>Environmental Protection</td>
<td>166, 167</td>
</tr>
<tr>
<td>environmental sensing</td>
<td>099, 130</td>
</tr>
<tr>
<td>Environmental</td>
<td>156</td>
</tr>
<tr>
<td>environmentally safe</td>
<td>246</td>
</tr>
<tr>
<td>EO</td>
<td>139</td>
</tr>
<tr>
<td>Epitaxy</td>
<td>056, 057</td>
</tr>
<tr>
<td>Estimation</td>
<td>064</td>
</tr>
<tr>
<td>Etiologic agents/Biomedical Material Labeling</td>
<td>010</td>
</tr>
<tr>
<td>evaluation</td>
<td>234</td>
</tr>
<tr>
<td>evidence collection</td>
<td>113</td>
</tr>
<tr>
<td>Evolutionary Computing</td>
<td>115</td>
</tr>
<tr>
<td>exhaust emissions</td>
<td>090</td>
</tr>
<tr>
<td>exhaust plume</td>
<td>248</td>
</tr>
<tr>
<td>Exit Nozzles</td>
<td>180</td>
</tr>
<tr>
<td>Expert System</td>
<td>189</td>
</tr>
<tr>
<td>expert systems</td>
<td>077, 237</td>
</tr>
<tr>
<td>Expert</td>
<td>061</td>
</tr>
<tr>
<td>Exploding foil</td>
<td>213</td>
</tr>
<tr>
<td>Exploitation</td>
<td>060</td>
</tr>
<tr>
<td>Explosive initiation</td>
<td>213</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>High Power Semiconductors</td>
<td>057</td>
</tr>
<tr>
<td>High Power Switches</td>
<td>178</td>
</tr>
<tr>
<td>high pressure</td>
<td>090</td>
</tr>
<tr>
<td>High Speed Generators</td>
<td>175</td>
</tr>
<tr>
<td>High Speed Motors</td>
<td>175</td>
</tr>
<tr>
<td>High Speed Photography</td>
<td>216</td>
</tr>
<tr>
<td>High Speed Propulsion</td>
<td>174</td>
</tr>
<tr>
<td>High Speed Video</td>
<td>216</td>
</tr>
<tr>
<td>High Speed</td>
<td>184</td>
</tr>
<tr>
<td>high temperature materials</td>
<td>158, 182</td>
</tr>
<tr>
<td>High Temperature Switches</td>
<td>178</td>
</tr>
<tr>
<td>High Temperature</td>
<td>176, 184</td>
</tr>
<tr>
<td>High-Bandwidth Amplifiers</td>
<td>206</td>
</tr>
<tr>
<td>high-speed</td>
<td>169</td>
</tr>
<tr>
<td>High-temperature catalysts</td>
<td>025</td>
</tr>
<tr>
<td>Holistic Sensor/Data Fusion</td>
<td>119</td>
</tr>
<tr>
<td>Holographic Displays</td>
<td>145</td>
</tr>
<tr>
<td>Holographic Optics</td>
<td>205</td>
</tr>
<tr>
<td>honing taper</td>
<td>250</td>
</tr>
<tr>
<td>hot particles</td>
<td>249</td>
</tr>
<tr>
<td>HTML</td>
<td>035</td>
</tr>
<tr>
<td>Human Computer Interaction</td>
<td>015</td>
</tr>
<tr>
<td>human performance</td>
<td>004</td>
</tr>
<tr>
<td>Human Resources</td>
<td>007</td>
</tr>
<tr>
<td>Human/computer interface</td>
<td>034</td>
</tr>
<tr>
<td>hydrostatic</td>
<td>094</td>
</tr>
<tr>
<td>Hyperbaric Medicine</td>
<td>007</td>
</tr>
<tr>
<td>hypersonic speeds</td>
<td>219</td>
</tr>
<tr>
<td>ice crystal inhibitor</td>
<td>173</td>
</tr>
<tr>
<td>Identification</td>
<td>060, 084, 208</td>
</tr>
<tr>
<td>Ignitor</td>
<td>213</td>
</tr>
<tr>
<td>III-N Nitride Material</td>
<td>124</td>
</tr>
<tr>
<td>III-V Compound</td>
<td>121</td>
</tr>
<tr>
<td>III-V semiconductor</td>
<td>192</td>
</tr>
<tr>
<td>illuminators</td>
<td>109</td>
</tr>
<tr>
<td>Image Exploitation</td>
<td>066</td>
</tr>
<tr>
<td>Image Generator</td>
<td>152</td>
</tr>
<tr>
<td>Image Reconstruction Algorithms</td>
<td>207</td>
</tr>
<tr>
<td>Imaging at eye-safe wavelengths</td>
<td>126</td>
</tr>
<tr>
<td>imaging</td>
<td>032, 104</td>
</tr>
<tr>
<td>Impact</td>
<td>151</td>
</tr>
<tr>
<td>Implicit Relaxation</td>
<td>181</td>
</tr>
<tr>
<td>IMU</td>
<td>202</td>
</tr>
<tr>
<td>in situ sensing</td>
<td>097</td>
</tr>
<tr>
<td>In situ</td>
<td>024</td>
</tr>
<tr>
<td>in-situ sensor</td>
<td>192</td>
</tr>
<tr>
<td>Indications and Warning</td>
<td>067</td>
</tr>
<tr>
<td>Individual Protective Equipment</td>
<td>007</td>
</tr>
<tr>
<td>Inertial Guidance</td>
<td>199</td>
</tr>
<tr>
<td>inertial measurement unit (IMU)</td>
<td>230</td>
</tr>
<tr>
<td>Inertial Navigation</td>
<td>114</td>
</tr>
<tr>
<td>Infectious Substance</td>
<td>010</td>
</tr>
<tr>
<td>inflatable reflectors</td>
<td>073</td>
</tr>
<tr>
<td>inflatable structures</td>
<td>073</td>
</tr>
<tr>
<td>inflatable</td>
<td>092</td>
</tr>
<tr>
<td>Influence Fuzing</td>
<td>214</td>
</tr>
<tr>
<td>Microbial</td>
<td>014</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Microelectronic semiconductor</td>
<td>052</td>
</tr>
<tr>
<td>Microelectronics</td>
<td>053</td>
</tr>
<tr>
<td>micromachined</td>
<td>003</td>
</tr>
<tr>
<td>Microstructure</td>
<td>162, 163</td>
</tr>
<tr>
<td>microthusters</td>
<td>006</td>
</tr>
<tr>
<td>Microwave Dielectrics</td>
<td>123</td>
</tr>
<tr>
<td>Microwave</td>
<td>068, 120, 125, 170</td>
</tr>
<tr>
<td>mid-infrared lasers</td>
<td>103</td>
</tr>
<tr>
<td>mid-infrared sensors</td>
<td>103</td>
</tr>
<tr>
<td>military</td>
<td>086</td>
</tr>
<tr>
<td>Millimeter-Wave Transistors</td>
<td>057</td>
</tr>
<tr>
<td>Millimeterwave</td>
<td>068</td>
</tr>
<tr>
<td>MILOs</td>
<td>083</td>
</tr>
<tr>
<td>MILSATCOM</td>
<td>059</td>
</tr>
<tr>
<td>Mine fuzing</td>
<td>214</td>
</tr>
<tr>
<td>miniature</td>
<td>228</td>
</tr>
<tr>
<td>miniaturization</td>
<td>227</td>
</tr>
<tr>
<td>minimally-invasive diagnosis</td>
<td>106</td>
</tr>
<tr>
<td>minimally-invasive procedures</td>
<td>102</td>
</tr>
<tr>
<td>missile detection and tracking</td>
<td>076</td>
</tr>
<tr>
<td>Missile Warning</td>
<td>139</td>
</tr>
<tr>
<td>Mixed Mode Assemblies</td>
<td>123</td>
</tr>
<tr>
<td>Mixed-Signal Simulation</td>
<td>050</td>
</tr>
<tr>
<td>Mixers</td>
<td>210</td>
</tr>
<tr>
<td>Mixing</td>
<td>182</td>
</tr>
<tr>
<td>mode converters</td>
<td>085</td>
</tr>
<tr>
<td>mode locking</td>
<td>107</td>
</tr>
<tr>
<td>Mode-locked diode lasers</td>
<td>129</td>
</tr>
<tr>
<td>Mode-locked fiber lasers</td>
<td>129</td>
</tr>
<tr>
<td>Mode-locked solid-state lasers</td>
<td>129</td>
</tr>
<tr>
<td>Model Based Controls</td>
<td>191</td>
</tr>
<tr>
<td>Model Based Vision</td>
<td>115</td>
</tr>
<tr>
<td>model-based reasoning</td>
<td>077</td>
</tr>
<tr>
<td>Model</td>
<td>134</td>
</tr>
<tr>
<td>Modeling and Simulation</td>
<td>136</td>
</tr>
<tr>
<td>Modeling</td>
<td>125, 166, 195, 256</td>
</tr>
<tr>
<td>Modulation Techniques</td>
<td>204</td>
</tr>
<tr>
<td>Module</td>
<td>138</td>
</tr>
<tr>
<td>Moisture</td>
<td>172</td>
</tr>
<tr>
<td>molding</td>
<td>089</td>
</tr>
<tr>
<td>Molecular Beam Epitaxy</td>
<td>121</td>
</tr>
<tr>
<td>Molecular Dynamic Simulations</td>
<td>163</td>
</tr>
<tr>
<td>momentum wheel</td>
<td>081</td>
</tr>
<tr>
<td>Moving Target Indicator Radar</td>
<td>252</td>
</tr>
<tr>
<td>multi-chip modules</td>
<td>075</td>
</tr>
<tr>
<td>Multi-media Interface</td>
<td>015</td>
</tr>
<tr>
<td>Multi-operator</td>
<td>017</td>
</tr>
<tr>
<td>Multi-Platform</td>
<td>114, 116</td>
</tr>
<tr>
<td>Multi-Source Distributed Databases</td>
<td>046</td>
</tr>
<tr>
<td>multi-spectral</td>
<td>229</td>
</tr>
<tr>
<td>Multiband Transceivers</td>
<td>049</td>
</tr>
<tr>
<td>Multichip Modules</td>
<td>123</td>
</tr>
<tr>
<td>Multifunction Electro-Optical Systems</td>
<td>127</td>
</tr>
<tr>
<td>Multifunction</td>
<td>128, 131</td>
</tr>
<tr>
<td>Multilayered Structures</td>
<td>170</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>multimedia</td>
<td>035</td>
</tr>
<tr>
<td>Multiple Sensor</td>
<td>118</td>
</tr>
<tr>
<td>Multiple Sensors</td>
<td>202</td>
</tr>
<tr>
<td>Multiple Site Damage</td>
<td>142</td>
</tr>
<tr>
<td>Multiple Target Tracking</td>
<td>118</td>
</tr>
<tr>
<td>multiquantum wells</td>
<td>079</td>
</tr>
<tr>
<td>Multisource Integration</td>
<td>118</td>
</tr>
<tr>
<td>multispectral</td>
<td>104</td>
</tr>
<tr>
<td>Multivariable Controls</td>
<td>191</td>
</tr>
<tr>
<td>Munition</td>
<td>215</td>
</tr>
<tr>
<td>MWIR</td>
<td>108</td>
</tr>
<tr>
<td>nanocomposite</td>
<td>158</td>
</tr>
<tr>
<td>nanohybrid</td>
<td>158</td>
</tr>
<tr>
<td>nanostructure</td>
<td>001</td>
</tr>
<tr>
<td>Natural Language Processing (NLP)</td>
<td>065</td>
</tr>
<tr>
<td>Natural Language Understanding (NLU)</td>
<td>065</td>
</tr>
<tr>
<td>Navigation</td>
<td>202</td>
</tr>
<tr>
<td>near infrared</td>
<td>168</td>
</tr>
<tr>
<td>Nerve Agent</td>
<td>014</td>
</tr>
<tr>
<td>net-shape processing</td>
<td>157</td>
</tr>
<tr>
<td>Networking</td>
<td>152</td>
</tr>
<tr>
<td>Networks</td>
<td>055, 257</td>
</tr>
<tr>
<td>neural networks</td>
<td>012, 114, 125, 244</td>
</tr>
<tr>
<td>neutral density</td>
<td>100</td>
</tr>
<tr>
<td>neutral winds</td>
<td>100</td>
</tr>
<tr>
<td>neutron</td>
<td>223</td>
</tr>
<tr>
<td>night vision enhancement</td>
<td>109</td>
</tr>
<tr>
<td>nist traceable</td>
<td>229</td>
</tr>
<tr>
<td>Nitrides</td>
<td>056</td>
</tr>
<tr>
<td>Nitrogen Generators</td>
<td>149</td>
</tr>
<tr>
<td>NLO materials</td>
<td>171</td>
</tr>
<tr>
<td>Noise Contour</td>
<td>030</td>
</tr>
<tr>
<td>Noise Modeling</td>
<td>030</td>
</tr>
<tr>
<td>Noise Monitors</td>
<td>030</td>
</tr>
<tr>
<td>noise reduction</td>
<td>012</td>
</tr>
<tr>
<td>Nomarski</td>
<td>111</td>
</tr>
<tr>
<td>Non-Intrusive Detection</td>
<td>218</td>
</tr>
<tr>
<td>Nondestructive Characterization</td>
<td>121</td>
</tr>
<tr>
<td>Nondestructive Evaluation (NDE)</td>
<td>164, 165</td>
</tr>
<tr>
<td>Nondestructive Inspection (NDI)</td>
<td>164, 165</td>
</tr>
<tr>
<td>nondestructive</td>
<td>220</td>
</tr>
<tr>
<td>nonintrusive diagnostics</td>
<td>248</td>
</tr>
<tr>
<td>nonintrusive imaging</td>
<td>242</td>
</tr>
<tr>
<td>Nonintrusive</td>
<td>146</td>
</tr>
<tr>
<td>nonlinear dye</td>
<td>168</td>
</tr>
<tr>
<td>nonlinear optical materials</td>
<td>168, 171</td>
</tr>
<tr>
<td>Nonlinear Optics</td>
<td>129, 130</td>
</tr>
<tr>
<td>nonmetallic materials</td>
<td>158</td>
</tr>
<tr>
<td>Notional Design</td>
<td>147</td>
</tr>
<tr>
<td>Novel</td>
<td>120</td>
</tr>
<tr>
<td>Nox</td>
<td>025</td>
</tr>
<tr>
<td>nozzles</td>
<td>089, 153</td>
</tr>
<tr>
<td>Numerical Modeling</td>
<td>183</td>
</tr>
<tr>
<td>numerical</td>
<td>023</td>
</tr>
<tr>
<td>Objective Function</td>
<td>254</td>
</tr>
<tr>
<td>occupant restraint</td>
<td>021</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Pavement Parking Surfaces</td>
<td>154</td>
</tr>
<tr>
<td>Payload</td>
<td>259</td>
</tr>
<tr>
<td>peacekeeping operations</td>
<td>113</td>
</tr>
<tr>
<td>perfluoropolyalkylether</td>
<td>159</td>
</tr>
<tr>
<td>Performance aiding</td>
<td>017</td>
</tr>
<tr>
<td>performance measures</td>
<td>039</td>
</tr>
<tr>
<td>performance modeling</td>
<td>195</td>
</tr>
<tr>
<td>performance tests</td>
<td>091</td>
</tr>
<tr>
<td>Performance-based assessment</td>
<td>042</td>
</tr>
<tr>
<td>personality assessment</td>
<td>039</td>
</tr>
<tr>
<td>personnel selection</td>
<td>039</td>
</tr>
<tr>
<td>Personnel</td>
<td>007</td>
</tr>
<tr>
<td>Phase modulators</td>
<td>210</td>
</tr>
<tr>
<td>Phased Array</td>
<td>057, 059</td>
</tr>
<tr>
<td>phenomena</td>
<td>219</td>
</tr>
<tr>
<td>photocaloric spectroscopy</td>
<td>111</td>
</tr>
<tr>
<td>photocaloric therapy</td>
<td>102</td>
</tr>
<tr>
<td>Photonics Processing</td>
<td>069</td>
</tr>
<tr>
<td>Photonics</td>
<td>057, 062</td>
</tr>
<tr>
<td>photothermal deflection</td>
<td>111</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>178</td>
</tr>
<tr>
<td>Physics-Based Visitation</td>
<td>115</td>
</tr>
<tr>
<td>physiology</td>
<td>004</td>
</tr>
<tr>
<td>Pilot Workload Assessment Methods</td>
<td>143</td>
</tr>
<tr>
<td>Planar</td>
<td>146</td>
</tr>
<tr>
<td>Plastic Media Blast</td>
<td>160</td>
</tr>
<tr>
<td>plastics</td>
<td>158</td>
</tr>
<tr>
<td>plates</td>
<td>071</td>
</tr>
<tr>
<td>Pockels effect</td>
<td>171</td>
</tr>
<tr>
<td>polyalphaoelefin</td>
<td>159</td>
</tr>
<tr>
<td>polybutadiene</td>
<td>243</td>
</tr>
<tr>
<td>Polymer Solders</td>
<td>260</td>
</tr>
<tr>
<td>polymer-liquid-crystal composites</td>
<td>169</td>
</tr>
<tr>
<td>polymers</td>
<td>089, 158, 243</td>
</tr>
<tr>
<td>portable medical lasers</td>
<td>102, 106</td>
</tr>
<tr>
<td>Portable Weather Tactical Terminal</td>
<td>258</td>
</tr>
<tr>
<td>Power amplifiers</td>
<td>210</td>
</tr>
<tr>
<td>power electronics</td>
<td>080</td>
</tr>
<tr>
<td>power quality</td>
<td>222</td>
</tr>
<tr>
<td>Power Semiconductors</td>
<td>178</td>
</tr>
<tr>
<td>power system</td>
<td>081</td>
</tr>
<tr>
<td>Power Systems</td>
<td>174, 178, 222</td>
</tr>
<tr>
<td>power</td>
<td>001</td>
</tr>
<tr>
<td>Precision Guided Munitions</td>
<td>203</td>
</tr>
<tr>
<td>preservation</td>
<td>245</td>
</tr>
<tr>
<td>Pressure Relaxation</td>
<td>181</td>
</tr>
<tr>
<td>Pressure</td>
<td>146</td>
</tr>
<tr>
<td>Primary</td>
<td>177</td>
</tr>
<tr>
<td>Primer</td>
<td>155</td>
</tr>
<tr>
<td>Printed Wiring Boards</td>
<td>194</td>
</tr>
<tr>
<td>Probabilistic</td>
<td>142</td>
</tr>
<tr>
<td>Process Modeling</td>
<td>162, 163</td>
</tr>
<tr>
<td>Processes</td>
<td>164, 165</td>
</tr>
<tr>
<td>Processing Modeling</td>
<td>167</td>
</tr>
<tr>
<td>processing</td>
<td>158, 196</td>
</tr>
<tr>
<td>Product Development</td>
<td>193</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Projectiles</td>
<td>209</td>
</tr>
<tr>
<td>propellant binders</td>
<td>243</td>
</tr>
<tr>
<td>propellant</td>
<td>096</td>
</tr>
<tr>
<td>propulsion</td>
<td>005, 090, 092, 191</td>
</tr>
<tr>
<td>Propulsive Control</td>
<td>200</td>
</tr>
<tr>
<td>protection</td>
<td>086</td>
</tr>
<tr>
<td>proton</td>
<td>223</td>
</tr>
<tr>
<td>psychology</td>
<td>004</td>
</tr>
<tr>
<td>Psychophysiological state assessment</td>
<td>020</td>
</tr>
<tr>
<td>Pulse Correlation Techniques</td>
<td>204, 206</td>
</tr>
<tr>
<td>Pulse Detonation Engines</td>
<td>180</td>
</tr>
<tr>
<td>pulse length</td>
<td>029</td>
</tr>
<tr>
<td>pulse shortening</td>
<td>083</td>
</tr>
<tr>
<td>pulse tearing</td>
<td>083</td>
</tr>
<tr>
<td>pyrometer</td>
<td>192</td>
</tr>
<tr>
<td>Pyrotechnics</td>
<td>213</td>
</tr>
<tr>
<td>Q-switching</td>
<td>107</td>
</tr>
<tr>
<td>Quality of Service (QoS)</td>
<td>049</td>
</tr>
<tr>
<td>Quality</td>
<td>053</td>
</tr>
<tr>
<td>Quantum Mechanics</td>
<td>163</td>
</tr>
<tr>
<td>Quasi-Optics</td>
<td>057</td>
</tr>
<tr>
<td>Radar</td>
<td>059, 131</td>
</tr>
<tr>
<td>Radiation Cure</td>
<td>140</td>
</tr>
<tr>
<td>radiation effects</td>
<td>223</td>
</tr>
<tr>
<td>radiation</td>
<td>032</td>
</tr>
<tr>
<td>Radio Network</td>
<td>049</td>
</tr>
<tr>
<td>radio</td>
<td>234</td>
</tr>
<tr>
<td>Ramburner Cooling</td>
<td>180</td>
</tr>
<tr>
<td>Ramjet</td>
<td>182</td>
</tr>
<tr>
<td>Ramjets and Scramjets</td>
<td>181</td>
</tr>
<tr>
<td>Ramjets</td>
<td>174</td>
</tr>
<tr>
<td>range safety</td>
<td>227</td>
</tr>
<tr>
<td>rangefinder</td>
<td>221</td>
</tr>
<tr>
<td>rapid wound stabilization</td>
<td>106</td>
</tr>
<tr>
<td>Reaction Control</td>
<td>200</td>
</tr>
<tr>
<td>Real Time Neural Networks</td>
<td>189</td>
</tr>
<tr>
<td>Real-Time Mechanisms</td>
<td>046</td>
</tr>
<tr>
<td>Real-Time Simulation</td>
<td>136</td>
</tr>
<tr>
<td>Real-Time Systems</td>
<td>045</td>
</tr>
<tr>
<td>real-time</td>
<td>228</td>
</tr>
<tr>
<td>receiver-transmitter</td>
<td>234</td>
</tr>
<tr>
<td>recognition</td>
<td>012</td>
</tr>
<tr>
<td>Reconfigurable RF Photonic Interconnects</td>
<td>068</td>
</tr>
<tr>
<td>recyclable</td>
<td>245</td>
</tr>
<tr>
<td>Reduced Navier Stokes</td>
<td>181</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td>117</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>172</td>
</tr>
<tr>
<td>relativistic klystron amplifiers</td>
<td>083</td>
</tr>
<tr>
<td>relativistic klystron oscillators</td>
<td>083</td>
</tr>
<tr>
<td>relays and fuses</td>
<td>080</td>
</tr>
<tr>
<td>Reliability Sciences</td>
<td>045</td>
</tr>
<tr>
<td>Reliability</td>
<td>053, 172</td>
</tr>
<tr>
<td>Reliable</td>
<td>138</td>
</tr>
<tr>
<td>remanufacture</td>
<td>224</td>
</tr>
<tr>
<td>remediation</td>
<td>023, 024</td>
</tr>
<tr>
<td>remote communications</td>
<td>227</td>
</tr>
</tbody>
</table>

AF-22
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote sensing</td>
<td></td>
</tr>
<tr>
<td>Remotely Piloted Vehicles</td>
<td>097, 099, 218, 247, 248</td>
</tr>
<tr>
<td>repair</td>
<td>144</td>
</tr>
<tr>
<td>Resin</td>
<td>224</td>
</tr>
<tr>
<td>Resolution restoration and enhancement</td>
<td>155</td>
</tr>
<tr>
<td>Resonance</td>
<td>207</td>
</tr>
<tr>
<td>Respiratory Pathogens</td>
<td>190</td>
</tr>
<tr>
<td>retention</td>
<td>008</td>
</tr>
<tr>
<td>retro flexion</td>
<td>220</td>
</tr>
<tr>
<td>RF Beamforming</td>
<td>249</td>
</tr>
<tr>
<td>RF Communication Through Solid Media</td>
<td>068</td>
</tr>
<tr>
<td>RF Photonics Optics</td>
<td>068</td>
</tr>
<tr>
<td>RF Signal Processing</td>
<td>073</td>
</tr>
<tr>
<td>rigidization</td>
<td>092</td>
</tr>
<tr>
<td>rigidized</td>
<td>073</td>
</tr>
<tr>
<td>rigidizing structures</td>
<td>023</td>
</tr>
<tr>
<td>Risk modeling</td>
<td>142</td>
</tr>
<tr>
<td>robotic</td>
<td>241</td>
</tr>
<tr>
<td>Robust</td>
<td>128</td>
</tr>
<tr>
<td>rocket and missile propellants</td>
<td>088</td>
</tr>
<tr>
<td>rocket engine</td>
<td>095</td>
</tr>
<tr>
<td>rockets</td>
<td>093, 094</td>
</tr>
<tr>
<td>rotary connectors</td>
<td>238</td>
</tr>
<tr>
<td>Rotating Components</td>
<td>153</td>
</tr>
<tr>
<td>Rotor Dynamics</td>
<td>184</td>
</tr>
<tr>
<td>Safe, Arm, Fire</td>
<td>209</td>
</tr>
<tr>
<td>satellite communication</td>
<td>112</td>
</tr>
<tr>
<td>Satellite Data</td>
<td>258</td>
</tr>
<tr>
<td>satellite diagnostics</td>
<td>077</td>
</tr>
<tr>
<td>satellite drag</td>
<td>100</td>
</tr>
<tr>
<td>Satellite Link Quality</td>
<td>058</td>
</tr>
<tr>
<td>satellite protection</td>
<td>082</td>
</tr>
<tr>
<td>Satellite</td>
<td>257</td>
</tr>
<tr>
<td>Scene Generation</td>
<td>139</td>
</tr>
<tr>
<td>Scene Projection Technology</td>
<td>139</td>
</tr>
<tr>
<td>Scheduling</td>
<td>063</td>
</tr>
<tr>
<td>scintillation</td>
<td>110</td>
</tr>
<tr>
<td>Scramjet</td>
<td>180, 182</td>
</tr>
<tr>
<td>Scramjets</td>
<td>174</td>
</tr>
<tr>
<td>sealable</td>
<td>245</td>
</tr>
<tr>
<td>Seals</td>
<td>188</td>
</tr>
<tr>
<td>second harmonic generation</td>
<td>171</td>
</tr>
<tr>
<td>Secondary Gas Path Systems</td>
<td>188</td>
</tr>
<tr>
<td>Secondary</td>
<td>177</td>
</tr>
<tr>
<td>security</td>
<td>113</td>
</tr>
<tr>
<td>Seeker Technology</td>
<td>203</td>
</tr>
<tr>
<td>Segmentation</td>
<td>208</td>
</tr>
<tr>
<td>Selection and Training</td>
<td>007</td>
</tr>
<tr>
<td>self-deployable structures</td>
<td>073</td>
</tr>
<tr>
<td>Semiconductor bridge</td>
<td>213</td>
</tr>
<tr>
<td>Semiconductor Devices</td>
<td>057</td>
</tr>
<tr>
<td>semiconductor laser diodes</td>
<td>109</td>
</tr>
<tr>
<td>semiconductor medical laser diodes</td>
<td>102, 106</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>052, 124</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>121</td>
</tr>
</tbody>
</table>

AF-23
<table>
<thead>
<tr>
<th>topic</th>
<th>page numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Fusion Architecture</td>
<td>119</td>
</tr>
<tr>
<td>Sensor Fusion</td>
<td>116, 117</td>
</tr>
<tr>
<td>Sensor Management</td>
<td>116, 117</td>
</tr>
<tr>
<td>Sensor Technology</td>
<td>203</td>
</tr>
<tr>
<td>sensor-fusion</td>
<td>244</td>
</tr>
<tr>
<td>Sensor/Data Fusion</td>
<td>119</td>
</tr>
<tr>
<td>Sensors</td>
<td>014, 028, 070, 084, 097, 103</td>
</tr>
<tr>
<td>Sensory Integration</td>
<td>119</td>
</tr>
<tr>
<td>Separate water reservoirs</td>
<td>008</td>
</tr>
<tr>
<td>service life</td>
<td>091, 142</td>
</tr>
<tr>
<td>Shared Resources</td>
<td>114, 116</td>
</tr>
<tr>
<td>Shelters</td>
<td>154</td>
</tr>
<tr>
<td>Shipment of etiologic agents</td>
<td>010</td>
</tr>
<tr>
<td>Shock Survivable Communication</td>
<td>212</td>
</tr>
<tr>
<td>Shock Survivable Real Time Data</td>
<td>212</td>
</tr>
<tr>
<td>Shock Survivable Telemetry</td>
<td>212</td>
</tr>
<tr>
<td>shoulder belt</td>
<td>021</td>
</tr>
<tr>
<td>signal integrity</td>
<td>075</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>043</td>
</tr>
<tr>
<td>Signal/Noise Improvement</td>
<td>207</td>
</tr>
<tr>
<td>Signal</td>
<td>064</td>
</tr>
<tr>
<td>Signature</td>
<td>156</td>
</tr>
<tr>
<td>silahydrocarbon</td>
<td>159</td>
</tr>
<tr>
<td>Silicon on Insulator</td>
<td>196</td>
</tr>
<tr>
<td>silicon retina</td>
<td>104</td>
</tr>
<tr>
<td>Silicon simulation</td>
<td>192, 196</td>
</tr>
<tr>
<td>Single sideband modulation</td>
<td>041, 120, 125, 152, 195, 223</td>
</tr>
<tr>
<td>Single-Mode</td>
<td>132</td>
</tr>
<tr>
<td>situational assessment</td>
<td>138</td>
</tr>
<tr>
<td>Skin Friction</td>
<td>113</td>
</tr>
<tr>
<td>sleeves</td>
<td>182</td>
</tr>
<tr>
<td>slew Rate</td>
<td>245</td>
</tr>
<tr>
<td>slip-rings</td>
<td>259</td>
</tr>
<tr>
<td>slipper gouging</td>
<td>238</td>
</tr>
<tr>
<td>slipper wear</td>
<td>219</td>
</tr>
<tr>
<td>small eddy simulations</td>
<td>219</td>
</tr>
<tr>
<td>small satellites</td>
<td>098</td>
</tr>
<tr>
<td>Smart Power</td>
<td>006, 112</td>
</tr>
<tr>
<td>smart sensors</td>
<td>178</td>
</tr>
<tr>
<td>Smart Structures</td>
<td>105</td>
</tr>
<tr>
<td>sensor</td>
<td>141</td>
</tr>
<tr>
<td>Software</td>
<td>229</td>
</tr>
<tr>
<td>solar concentrators</td>
<td>048</td>
</tr>
<tr>
<td>solar thermal propulsion</td>
<td>073</td>
</tr>
<tr>
<td>solar</td>
<td>075</td>
</tr>
<tr>
<td>Solid State Devices</td>
<td>092</td>
</tr>
<tr>
<td>solid-state lasers</td>
<td>209</td>
</tr>
<tr>
<td>solid-state</td>
<td>101, 103</td>
</tr>
<tr>
<td>sonic Boom</td>
<td>080</td>
</tr>
<tr>
<td>Soot</td>
<td>030</td>
</tr>
<tr>
<td>space electronics</td>
<td>023</td>
</tr>
<tr>
<td>space environments</td>
<td>070</td>
</tr>
<tr>
<td>Space Marching</td>
<td>078</td>
</tr>
<tr>
<td>space optics</td>
<td>181</td>
</tr>
</tbody>
</table>

AF-24
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>space power systems</td>
<td>070</td>
</tr>
<tr>
<td>space structures</td>
<td>070</td>
</tr>
<tr>
<td>space systems software</td>
<td>070</td>
</tr>
<tr>
<td>space-based surveillance</td>
<td>076</td>
</tr>
<tr>
<td>spacecraft stability</td>
<td>081</td>
</tr>
<tr>
<td>spacecraft</td>
<td>078, 159</td>
</tr>
<tr>
<td>Spall</td>
<td>151</td>
</tr>
<tr>
<td>specific impulse</td>
<td>091</td>
</tr>
<tr>
<td>Spectroellipsometer</td>
<td>130</td>
</tr>
<tr>
<td>Spectrophotometer</td>
<td>031, 130</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>026, 027, 130, 183</td>
</tr>
<tr>
<td>Speech Audiometry</td>
<td>011</td>
</tr>
<tr>
<td>speech</td>
<td>012</td>
</tr>
<tr>
<td>Speed of Service (SoS)</td>
<td>049</td>
</tr>
<tr>
<td>SPICE</td>
<td>050</td>
</tr>
<tr>
<td>Spread Spectrum</td>
<td>049, 133</td>
</tr>
<tr>
<td>Squeeze Film Dampers</td>
<td>184</td>
</tr>
<tr>
<td>Stability</td>
<td>200</td>
</tr>
<tr>
<td>Staring Laser Receivers</td>
<td>126</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>208</td>
</tr>
<tr>
<td>Stirling</td>
<td>178</td>
</tr>
<tr>
<td>stratosphere</td>
<td>097</td>
</tr>
<tr>
<td>Structural Damping</td>
<td>153</td>
</tr>
<tr>
<td>Structural Response</td>
<td>217</td>
</tr>
<tr>
<td>Structures</td>
<td>140</td>
</tr>
<tr>
<td>Structures</td>
<td>174</td>
</tr>
<tr>
<td>Submunitions</td>
<td>209</td>
</tr>
<tr>
<td>Substrates</td>
<td>196</td>
</tr>
<tr>
<td>Subsystems</td>
<td>255</td>
</tr>
<tr>
<td>Superconductivity</td>
<td>154, 170, 179</td>
</tr>
<tr>
<td>superlattice detectors</td>
<td>079</td>
</tr>
<tr>
<td>Superresolution</td>
<td>207</td>
</tr>
<tr>
<td>Suppression</td>
<td>190</td>
</tr>
<tr>
<td>Surface Kinetics</td>
<td>121</td>
</tr>
<tr>
<td>surface protection</td>
<td>246</td>
</tr>
<tr>
<td>Surface Stabilization Techniques</td>
<td>169</td>
</tr>
<tr>
<td>Surface</td>
<td>053</td>
</tr>
<tr>
<td>switches & relays</td>
<td>075</td>
</tr>
<tr>
<td>switching device</td>
<td>080</td>
</tr>
<tr>
<td>synthesized speech</td>
<td>012</td>
</tr>
<tr>
<td>synthetic environments</td>
<td>016</td>
</tr>
<tr>
<td>Synthetic Aperture Radar</td>
<td>252</td>
</tr>
<tr>
<td>Systems and Information Integration</td>
<td>044</td>
</tr>
<tr>
<td>Systems Design</td>
<td>019</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>193</td>
</tr>
<tr>
<td>Systems</td>
<td>019, 086, 139</td>
</tr>
<tr>
<td>tank ullage</td>
<td>096</td>
</tr>
<tr>
<td>tank</td>
<td>096</td>
</tr>
<tr>
<td>tanks</td>
<td>089</td>
</tr>
<tr>
<td>Target Detection</td>
<td>208</td>
</tr>
<tr>
<td>Targeting</td>
<td>066</td>
</tr>
<tr>
<td>Team Decision</td>
<td>018</td>
</tr>
<tr>
<td>Team Performance</td>
<td>018</td>
</tr>
<tr>
<td>Technology</td>
<td>198</td>
</tr>
<tr>
<td>Tele-operation</td>
<td>015</td>
</tr>
<tr>
<td>telemetry data format</td>
<td>237</td>
</tr>
</tbody>
</table>
telemetry .. 112, 228
Teleoperations .. 144
temperature fluctuations 097
temperature .. 192
tension .. 220
Terminal Guidance .. 203
test program .. 195
test ... 234
testing asset positioning ... 235
thermal management .. 070, 123, 150, 175, 186
thermal processes .. 005
Thermal Stability ... 185, 186
thermally conductive ... 074
Thermionics .. 178
thermocouple .. 192
Thermodynamics ... 162, 163
Thermoelectrics ... 178
Thermophotovoltaics .. 178
thermoplastics ... 158
Thin Films ... 170
threaded joint .. 250
Three-Dimensional (3D) Displays 145
Thrust Control ... 200
Time Correlation .. 051
Topcoat .. 155
total integrated scatter ... 249
toxicity ... 023
Toxicology ... 033
Tracking Dish Antenna ... 258
Tracking Filters ... 191
Training .. 113, 256
transient ... 085
Transimpedance Amplifier 206
transport ... 023
Treatment ... 024
tribology .. 159
TSPI ... 231
tubing ... 245
Tunable filters ... 170
tunable laser .. 247
Tunnel Attack ... 214
Turbine Engines ... 183
Turbine .. 187
turbines ... 093, 153
turbomachinery .. 093, 094
turbopumps .. 093, 094
turbulence ... 097, 098
Tympanometry ... 011
UAV control center ... 016
UAVs ... 016
UHF ... 234
Ultra-High Speed Photography 216
Ultrafast Lasers ... 129
Ultraviolet Detectors .. 122
ultrawide band ... 085
Ultrawideband radar .. 133
AIR FORCE 97.1 TOPIC INDEX

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH, BOLLING AFB DC

AF97-001 Development of Nanostructured Electrode Materials for an Advanced Rechargeable Aerospace Battery
AF97-002 Low Power Electronics
AF97-003 Micromachined Optical Devices and Systems
AF97-004 Human Cognitive Overload
AF97-005 Computational Tools for Modeling, Control Design and Analysis of Distributed Parameter Systems
AF97-006 Electric Propulsion for Small Satellites

ARMSTRONG LABORATORY, BROOKS AFB TX

AF97-007 Human Systems/Subsystems Research
AF97-008 Control of Microbial Biofilms in Dental Unit Waterlines
AF97-009 Active Noise Reduction Headphones
AF97-010 Transport and Shipping of Diagnostic Specimen and Etiologic Agents
AF97-011 Portable Auditory Diagnostic System
AF97-012 Advanced Audio Interfaces
AF97-014 Chemical/Biological Warfare Defense Detection and Decontamination Technologies
AF97-015 Multi-modal User-Interface for Remote System Operation
AF97-016 Virtual Reality (VR) Control Centers for Unmanned Aerial Vehicles (UAV)
AF97-017 Multi-Operator Performance Aiding by Information Sharing
AF97-018 Decision Support System to Enhance Performance in Decision-Making Teams
AF97-019 Intelligent Cognitive Engineering Suite for Information Warfare Domains
AF97-020 Universal Operator State Classifier
AF97-021 Advanced Escape Technologies and Ejection Data Recording for Aircrew Members
AF97-022 In Situ Electrochemical Sensor Technology for Detection and Long Term Monitoring of Organic Pollutants
AF97-023 Risk Based Remediation Modeling
AF97-024 Emplacement Technology for In Situ Treatment Zones
AF97-025 High-Temperature Redox Catalysts
AF97-026 Evanescent Wave Fiber-Optic Sensor
AF97-027 Attenuated Total Reflectance (ATR) Sensor
AF97-028 Environmental Gas-Phase Sensor Array
AF97-029 Laser Output Field Test Measurement System
AF97-030 Environmental Noise Modeling and Measurement Projects
AF97-031 Laser Spectrophotometer
AF97-032 Development of Electromagnetic (EM) Dosimetric Evaluation Software
AF97-033 Toxin and Metabolite Analyzer: Breath
AF97-034 Automated Player Control Station
AF97-035 Development of Authoring Tools for Advanced Internet Multimedia Training Delivery
AF97-037 Electronically-Assisted Ground-based Learning Environments (EAGLE)
AF97-038 Intelligent Agents for Education and Training Applications
AF97-039 Virtual Reality for Embedded Assessment of Personnel Characteristics
AF97-041 Full-Color, High-Definition Head Mounted Display for Pilot Training
AF97-042 Design of Scenario-Based Test Technology for Job Measurement

ROME LABORATORY, GRIFFISS AFB NY

AF97-043 Innovative C3I Technologies
AF97-044 Large-Scale Knowledge-Base Technology
AF97-045 Automatic Code Generation for Real-Time Parallel Systems
AF97-046 Multi-Source Collaborative Distributed Information Systems
AF97-047 Futuristic C51 (Collaborative C4I) Technologies
AF97-048 Active Intelligence Information Environments
AF97-049 Smart Networking Radio Technology
AF97-050 CAD Conversion Tools for VHDL-A Library Generation
AF97-051 Electromagnetic Environment Sensing/Recording System
AF97-052 Prognostic Assessment Technique/Tool for Electronic Equipment and Systems
AF97-053 New Diagnostic Tool for Evaluation of Material Surfaces
AF97-054 Design Tools for Minimizing Electronic Failure
AF97-055 Ultra-High Speed Bit Error Rate Tester
AF97-056 Large Area Nitride Substrates
AF97-057 InP-based Power Transistors for Optically Controlled Millimeterwave Transmitters
AF97-058 Ka-Band Satellite Link Quality Short-Term Forecasting Tool
AF97-059 Multifunction Phased Arrays
AF97-060 Information Exploitation for Identification
AF97-061 Advanced Data Fusion Technology
AF97-062 Information Storage & Retrieval: Optical Memories
AF97-063 Intelligent Desktop Assistant
AF97-064 Single-Channel Spectral Characterization
AF97-065 Automated Information Extraction Tools
AF97-066 Exploitation of GPS Controlled Imagery
AF97-067 Defensive Information Warfare Technology
AF97-068 RF Photonics Technology
AF97-069 Photonic Signal Processing

PHILLIPS LABORATORY - SPACE & MISSILES TECHNOLOGY, KIRTLAND AFB NM

AF97-070 Space Systems Technology Development
AF97-071 Attenuation of Acoustic Disturbances in Containerized Payload Systems for Reusable Launch Vehicle Systems
AF97-072 Ultra-Lightweight "Meter" Class Optics
AF97-073 Rigid Inflatable Structures
AF97-074 Advanced Isolation for Launch Vehicle Avionics
AF97-075 Microelectromechanical Systems (MEMS) Microrelays and Microswitches for Space
AF97-076 Substrate Improvement for LWIR Mercury Cadmium Telluride
AF97-077 Anomaly Resolution Using Case-Based and/or Model-Based Reasoning
AF97-078 Cryogenic Coolers for Space Applications
AF97-079 High Performance Quantum-Well/Superlattice Infrared Detector Development
AF97-080 Intelligent Solid State Switching
AF97-081 Momentum Wheel Energy Storage

PHILLIPS LABORATORY - ADVANCED WEAPONS & SURVIVABILITY, KIRTLAND AFB NM

AF97-082 Electromagnetic Effects, Measurements, Protection, Sources, and Satellite Protection
AF97-083 Elimination of Pulse Shortening in High Power Microwave Tubes
AF97-084 Automated Vehicle Identification
AF97-085 Wideband Sources, Antennas and Mode Converters
AF97-086 Electromagnetic Integration of Commercial-Off-The-Shelf (COTS) Equipment Into Military Systems

PHILLIPS LABORATORY - PROPULSION, EDWARDS AFB CA

AF97-088 Advanced Rocket Propulsion Technologies
AF97-089 Molded Polymeric Components for Combustion Systems and Extreme Temperature Applications
AF97-090 Innovative, Remote, Laser-Based Diagnostic Techniques for High-Pressure Combustion Applications
AF97-091 Electric Propulsion (EP) Thruster for Low Power Small Satellites
AF97-092 Solar Thermal Rocket Propulsion
AF97-093 Turbine Blade Cooling
AF97-094 Magnetic Bearing for Rocket Engine Turbopumps
AF97-095 Flight Weight Electro-mechanically Actuated Cryogenic Ball Valve
AF97-096 Cryogenic Liquid Level Indicator #20

AF-30
PHILLIPS LABORATORY - GEOPHYSICS, HANSCOM AFB MA

AF97-097 Next Generation Atmospheric Turbulence Sensors
AF97-098 Flight Track Clear Air Turbulence (CAT) Model
AF97-099 Optical Sensors for Geophysical Remote Sensing, Environmental Monitoring and Target Characterization
AF97-100 Precision Orbital Microaccelerometer (POM)

PHILLIPS LABORATORY - LASERS & IMAGING, KIRTLAND AFB NM

AF97-101 High-Power, Doped Fiber Laser Amplifiers
AF97-102 Semiconductor Laser Technologies for Photodynamic Therapy (PDT) or Minimally-Invasive Surgery (MIS)
AF97-103 Direct Generation of Mid-IR Laser Wavelengths and Sensor Effects
AF97-104 Applications of Smart Vision Systems
AF97-105 On-Chip Real-Time Wavefront Sensor Array Development
AF97-106 Semiconductor Laser Technologies for Fieldable, Diagnostic and/or General Medical Applications
AF97-107 High Average Power Frequency Agile COIL (Chemical Oxygen Iodine Laser)
AF97-108 High Sensitivity Detection of Pulsed Laser Radiation for Differential Aborption Lidar (DIAL) Applications
AF97-109 Hand-Held Visible Diode Laser Illuminator/Designator
AF97-110 Scintillation Control for Imaging and Laser Propagation Systems
AF97-111 Optics Health Monitoring

PHILLIPS LABORATORY - SPACE EXPERIMENTS, KIRTLAND AFB NM

AF97-112 New Methods for Distributing Satellite Data to Users

PHILLIPS LABORATORY - PLANS & PROGRAMS, KIRTLAND AFB NM

AF97-113 Broad Area Technology Applications for Military Police Operations

WRIGHT LABORATORY - AVIONICS DIRECTORATE - WRIGHT PATTERSON AFB OH

AF97-114 Precision Reference Information State Error Measurement
AF97-115 Automatic Target Recognition (ATR) Technology Components
AF97-116 Sensor Management Across Multiple Platforms (SMAMPS)
AF97-117 Avionics Applications of Reinforcement Learning Systems
AF97-118 Multiple-Target Tracking for Avionics Platforms
AF97-119 Biological and Cognitive Foundations of Holistic Information Fusion
AF97-120 Solid State RF Electronics Applied Research
AF97-121 Innovative MBE Growth and Semiconductor Characterization Components and Techniques
AF97-122 Innovative Electro-Optic Device Technology
AF97-123 Support Technologies for Multi-chip Modules
AF97-124 Innovative Microelectronics Device Development
AF97-125 Adaptive Computing for RF Device and Component Modeling
AF97-126 Highly Sensitive Imaging Detectors for Laser Radar Systems
AF97-127 Architectures and Components for Modular, Multi-function Electro-Optical Avionics Systems
AF97-128 Robust Multi-Function Laser Sources
AF97-129 Nonlinear Optical Frequency Conversion of Ultra-fast Sources
AF97-130 Coherent Spectroscopic Instrumentation
AF97-131 Digital Multi-Function Sensor
AF97-132 Digital Frequency Modulation
AF97-133 Combined Ultra Wideband Radar/Communications Avionics
AF97-134 Chaff Dispenser Location Computer Model
AF97-135 Global Positioning System (GPS) P(Y)-Code Acquisition
AF97-136 Avionics Modeling and Simulation Technology
AF97-137 Electronic Design Automation
AF97-138 Single-Mode Reliable Optical Card-Edge Connector
AF97-139 Missile Warning System Scene Projection

WRIGHT LABORATORY - FLIGHT DYNAMICS DIRECTORATE, WRIGHT-PATTERSON AFB OH

AF97-140 Innovation Electron Beam (EB) Cured Structures
AF97-141 Distributed Actuation for Aircraft Maneuver and Performance Enhancement
AF97-142 Structural Integrity of Aging Aircraft
AF97-143 Flight Control Technology
AF97-144 Tactical-Uninhabited Air Vehicle (T-UAV) Operator Station Simulator
AF97-145 Full Color Autostereographic True Three Dimensional Displays
AF97-146 Global Diagnostic System for Unsteady Flow Fields
AF97-147 Cost Estimating Methodology for Advanced Air Vehicles
AF97-148 Aeromechanics for Future Aircraft Technology Enhancement
AF97-149 Fire Detection/Suppression Systems
AF97-150 Innovative, Localized, Autonomous Cooling Systems
AF97-151 Spall Fragment Field and Surface Deformation Characterization System
AF97-152 Engineering Research Flight Simulation Technologies
AF97-153 Innovative Damping Concepts for Extreme Environments
AF97-154 Bare Base Operations

WRIGHT LABORATORY - MATERIALS DIRECTORATE, WRIGHT-PATTERSON AFB OH

AF97-155 Advanced Aircraft Coatings Systems
AF97-156 Environmentally Compliant Signature Control Coatings
AF97-157 Affordable Composites
AF97-158 Polymer/Inorganic Nanocomposites for Substructure Applications in USAF Rockets and Aircraft
AF97-159 Improved Tribological Systems for Spacecraft
AF97-160 Paint Stripping Methods
AF97-161 Gap Treatment Materials for Low Observable Aircraft
AF97-162 Affordable Multi-material System Alternatives
AF97-163 Gradient Materials Interface Design
AF97-164 Advanced Materials and Processes for Aging Aerospace Systems
AF97-165 Novel Nondestructive Evaluation Technology for Aerospace Components and Systems
AF97-166 Metallic Structural Materials for Air Force Systems
AF97-167 High Temperature Structural Materials for Advanced Air Force Systems
AF97-168 Design and Synthesis of New Bichromophore Laser Protective Materials
AF97-169 Advanced Liquid-Crystal Materials Development
AF97-170 High Temperature Superconducting Thin Films
AF97-171 Nonlinear Optical Materials
AF97-172 Failure Mechanism in Avionics Equipment Preventable by Dehumidification
AF97-173 Environmentally Benign Aircraft/Anti-icing Technology

WRIGHT LABORATORY - AERO PROPULSION & POWER DIRECTORATE, WRIGHT-PATTERSON AFB OH

AF97-174 Aero Propulsion and Power Technology
AF97-175 Power Generation and Thermal Management
AF97-176 Advanced Capacitors for Power Electronic Systems
AF97-177 Advanced Battery Development
AF97-178 Special Purpose Power and Power Components
AF97-179 Advanced Power Technology Concepts
AF97-180 High Mach, Advanced Air-Breathing, Storable-Fueled Engine Technology
AF97-181 Accelerated Convergence Rate for Numerical Analysis of Ramjets and Scramjets
AF97-182 Advanced Instrumentation for Ramjet/Scramjet Combustors
AF97-183 Novel Sources of Electromagnetic Radiation for Advanced Combustion Diagnostics
AF97-184 Self Contained Dampers for Gas Turbine Engines

AF-32
AF97-185 Thermally Stable Jet Fuels, Additives, and Test Methods
AF97-186 Advanced Techniques for Ultra Trace Analysis of Aviation Fuel
AF97-187 Aircraft Turbine Component Technology - Aerodynamics and Cooling
AF97-188 Compression System Design Methodology
AF97-189 Real Time Ontogenetic Engine Health Monitoring (EHM) of Gas Turbine Engines
AF97-190 Combustor Acoustics Modeling Technology Research
AF97-191 Adaptive Filtering for Improved Turbine Engine Performance and Component Estimation

WRIGHT LABORATORY - MANUFACTURING TECHNOLOGY DIRECTORATE, WRIGHT-PATTERSON AFB OH

AF97-192 Whole Wafer Thermal Measurement
AF97-193 Systems Engineering Using Key Characteristics
AF97-194 New Methods for Copper Electro-Plating Advanced Printed Wiring Boards
AF97-195 Manufacturing Information for Electronics System Upgrades
AF97-196 Three Dimensional Semiconductor Substrate Inspection
AF97-198 Innovative Manufacturing Technology Concepts

WRIGHT LABORATORY - ARMAMENT DIRECTORATE, EGLIN AFB FL

AF97-199 Weapon Flight Mechanics Research
AF97-200 Advanced Flight Controls for Small Airframes
AF97-201 Tactical Kinematic GPS/IMU Algorithms
AF97-202 Multiple Sensor Inertial Measurement Unit
AF97-203 Guidance Research
AF97-204 Optical Detection and Discrimination Techniques for Laser Radar
AF97-205 Narrow Bandwidth Near-Infrared Tunable Optic Filter
AF97-210 High Performance Pulse Capture Circuitry for Near-Infrared Optical Receivers
AF97-207 Advanced Processing Techniques for Restoration and Super-resolution of Imaging Sensors
AF97-208 Data Fusion Using the Wavelet Transform, Fractal Theory, and Statistics
AF97-209 Armament Research
AF97-210 Expendable, Low Cost, Solid State Millimeter Wave Components
AF97-211 Infrared Fisheye Optics
AF97-212 Penetrator Communication Link
AF97-213 Pyrotechnic Initiator
AF97-214 Hard Target Influence Fuzing Technology
AF97-215 Munition Instrumentation and Performance Assessment Technology
AF97-216 Electronic Imaging Transient Stereo Photogrammetry
AF97-217 Blast and Ballistic Loading of Structures
AF97-218 Non-Intrusive, Remote Identification of Chemical Contaminants

TECHNOLOGY TRANSITION OFFICE, WRIGHT-PATTERSON AFB OH

AF97-219 Slipper Wear/Gouging Phenomena
AF97-220 Rail Tension/Compression Phenomena
AF97-221 Low Cost Laser Range Finder
AF97-222 Storing Energy Delivering Power Using Capacitors
AF97-223 Modeling the Effects of Gamma Irradiation on Electro-Optics Components
AF97-224 Sustainment Science and Technologies
AF97-227 Miniaturized/Universal Flight Termination System (FTS)
AF97-228 Miniature Munitions Aerodynamic Global Positioning System (GPS) Receiver/Transmitter (MMAGRET)
AF97-229 Multi-Spectral Airborne Common Calibration Source (MACCS)
AF97-230 Inertial Measurement Simulation for Global Positioning System (GPS) Guidance Receivers
AF97-231 Time-Space-Position-Information (TSP) and Terrain Three Dimensional (3-D) Visualization (TT3DV)
AF97-232 Operation of Diesel Engines on Low Lubricity/Low Viscosity Fuels
AF97-234 On-Aircraft Radio Test Set

AF-33
AF97-235 Remote Positioning Capability for Accurate Placement of Test Assets
AF97-237 Automatic Telemetry Stream Data Format Generation
AF97-238 Optical Slip-Ring Connector (OSRC)
AF97-239 Standard Automatic Test System (ATS) Interface
AF97-241 Robotic Test Probe
AF97-242 Non-Intrusive System for Replication of Interlayer Printed Electronic Circuit Patterns
AF97-243 Carboxyl-Terminated Polybutadiene (CTPB) Process for ANB-3066 Solid Rocket Propellant
AF97-244 Advanced Test Software Technologies
AF97-245 Adhesive-sealable Barrier Material
AF97-246 Environmentally Safe, In Situ Surface-Protection of Carbon Steel Structures
AF97-247 Tunable IR Laser for Spectroscopic
AF97-248 Non-intrusive Smoke Measurement
AF97-249 Combined Total Integrated Scatter (TIS) and Retro-Reflectance Instrument for Hyperspectral and Laser Line Sources
AF97-250 Long Taper Hone

AERONAUTICAL SYSTEMS CENTER, WRIGHT-PATTERSON AFB OH

AF97-252 Airborne Monitoring of Ground Vehicle Motion
AF97-253 Assessing Environmental Impacts on the Life Cycle of a System
AF97-254 Application of Genetic Algorithm to Optimization Problems

ELECTRONIC SYSTEMS CENTER, HANSCOM AFB MA

AF97-255 C41 Systems/Subsystems
AF97-256 Advanced Distributed C41 Simulation Capabilities
AF97-257 Improved Satellite Data Communications

SPACE & MISSILE SYSTEMS CENTER, LOS ANGELES AFB CA

AF97-258 Lightweight, Portable Tactical Weather Terminal
AF97-259 Electro Magnetic Suspension Two-Axis Gimbal Satellite Antenna System
AF97-260 Environmentally Conscious Solder Replacement for Surface Mount/Bench Applications
DEPARTMENT OF THE AIR FORCE SBIR 97.1 TOPIC DESCRIPTIONS

AF97-001 TITLE: Development of Nanostructured Electrode Materials for an Advanced Rechargeable Aerospace Battery

Category: Basic Research

OBJECTIVE: Improve the conductivity of the intercalation process, in compact power sources, by increasing the rate of diffusion of ions to liquid-like rates.

DESCRIPTION: The Air Force currently uses rechargeable Ni-Cd batteries for main aircraft batteries and other applications. Since these batteries contain cadmium, disposal is costly due to its’ reactivity and the hazardous/toxic nature of the material. There have been a number of battery systems which have been in development and the focus of this solicitation will be intercalative battery systems. The approach would be development of an alternate intercalative rechargeable battery system without cadmium, thereby, limiting the pollution problem. One of the limitations of the intercalative rechargeable battery system has been achieving a higher storage capacity for the intercalate and approaching the diffusion rates of liquids within the electrodes limiting transport. With graphite in particular, exfoliation is a tremendous restriction to high loading and cyclic life. By designing nanostructured electrode materials with solid layer separations, ion mobility and storage capacity may be improved, and, due to cathode protection from phase change, higher cycle life may be realized.

PHASE I: Concentrate on the development of a way to construct and assemble these nanostructured electrodes and electrochemically and physically characterize them.

PHASE II: Concentrate on the assembling of the battery system with a deliverable battery prototype as the goal.

POTENTIAL COMMERCIAL MARKET: Besides possible space based applications both military and civilian, successful development could result in improvements over a number of existing battery designs for a wide range of industrial and consumer uses for small power batteries.

REFERENCES:

AF97-002 TITLE: Low Power Electronics via Native III-V Oxides

Category: Basic Research

OBJECTIVE: Develop novel approaches to low power electronic devices exploiting the recently demonstrated native Al-oxides on GaAs.

DESCRIPTION: One of the strongest features of the unusually robust and flexible silicon-based electronics technology is the excellent native oxide, SiO2. This oxide and its superior interface with silicon underpins the pervasive CMOS technology. In addition to supporting very high levels of integration, CMOS enables low power circuits. Emerging AF and DOD electronic systems require ever lower levels of power dissipation. At the same time, many of these military applications simultaneously require advanced performance through higher speed/frequency of operation of wider bandwidth. Silicon circuits are unable to supply leading edge requirements of this type.

Devices and circuits based upon GaAs and related compound semiconductors are capable of meeting the high speed and bandwidth requirements. However, they dissipate more power than corresponding CMOS circuits. A stable, high quality native oxide (or equivalent insulator) has long been sought that would lead to a GaAs CMOS technology. There is evidence that such an oxide is formed by the wet oxidation of AlAs. Several successful demonstrations have been made of the use of these oxides in optoelectronic devices such as laser diodes and Bragg reflectors. What is sought here are convincing demonstrations of the use of these Al-oxides in electronic devices suitable for low power electronic circuits. Examples of device demonstrations are MOSFETs where the Al-oxide forms the gate insulator or other novel uses of buried oxide layers. The potential for low power applications is essential.

PHASE I: Design, fabricate and characterize a suitable electronic device incorporating Al-oxides.

PHASE II: Optimize the device design and processing; design prototype low power electronic circuits with these
devices. It is essential to demonstrate the ability (or the potential) to complete with Si CMOS for power consumption while maintaining superior speed.

POTENTIAL COMMERCIAL MARKET: An appropriate commercial application for demonstration is front-end circuitry for portable, personal communications.

REFERENCES:

AF97-003 TITLE: Micromachined Optical Devices and Systems

Category: Basic Research

OBJECTIVE: Develop optical devices and/or systems taking advantage of the emerging science and technology of micromachining.

DESCRIPTION: The science, technology, and application of micromachining is rapidly developing in numerous directions. A wide variety of extremely promising applications to optical devices and systems have been demonstrated. These include the fabrication of micro lenses and lens arrays, refractive, diffractive, and combined, scanning devices, and various forms of light modulators and displays (projection and helmet mounted).

PHASE I: Research will be performed in any chosen promising aspect of the application of micromachining to new performance or greatly reduced cost optical components or systems.

PHASE II: Prototype devices and systems will be devised and demonstrated.

POTENTIAL COMMERCIAL MARKET: Numerous important commercial products to include: Imaging products, lighting products using lens arrays, small and large displays, and spatial light modulators and wavefront correctors.

AF97-004 TITLE: Human Cognitive Overload

Category: Basic Research

OBJECTIVE: Develop techniques for measuring individual cognitive load.

DESCRIPTION: Human cognitive overload causes errors when human decision-makers fail to consider all available evidence when forming rapid decisions. The problem of cognitive overload perhaps can largely be ameliorated by control of the decision-maker's environment using new technologies that remove decisions to a second operator or to a system for automated decision making. The proper allocation of decisions among decision-making elements, however, cannot be accomplished without an accurate measure of residual cognitive capacity of individual human operators. This topic seeks proposals to develop an understanding of the limits to human decision-making capacity through advanced techniques for measuring cognitive capacity. All approaches to objective measurement of cognitive workload are encouraged. For example, monitoring physiological state or overt behaviors and responses can both be considered. Proposed work should address research issues in the context of console operations tasks, and identify a research path toward a long-term goal of devices for measuring cognitive capacity in that domain. Proposals are especially encouraged for techniques offering a non-invasive near real-time index of cognitive capacity and a sensitivity to the set of putative dimensions of cognitive work.

PHASE I: Experimental demonstration of cognitive workload assessment technique.

PHASE II: Demonstration of device for closed loop control of decision-maker workload.

POTENTIAL COMMERCIAL MARKET: Impact technologies of education and training, by revealing when training had yielded expertise, and technologies of occupational safety, by indicating periods of marginal operator cognitive capacity.
TITLE: Computational Tools for Modeling, Control Design and Analysis of Distributed Parameter Systems

Category: Basic Research

OBJECTIVE: Develop algorithms and software to construct mathematical models for designing and controlling distributed parameter systems.

DESCRIPTION: Innovative techniques are solicited to develop a workstation based computational tool to facilitate the development of control design models for various aerospace applications including boundary control of fluid/structure interactions, thermal processes, and propulsion. The product shall calculate the basic system matrices; provide tools for model reduction; include an effective control design and analysis capability; contain error analysis modules for standard parabolic, hyperbolic, elliptic and hybrid systems; and interface with current commercial control and design software.

The primary objective of the computational tool is to support the design and assessment of controllers for aerospace systems governed by partial differential equations. The tool must facilitate fast modeling of large complex systems and allow for quick design of low order controllers. The tool must contain standard control design methodologies such as LQG, Hoo, H2/Hoo, u-synthesis and feedback linearization.

PHASE I: This part of the investigation will include the development of a basic structure to generate finite dimensional models from standard partial differential equations control systems and the resulting models must be in a form useable by existing industrial control design tool boxes.

PHASE II: Produce a viable system and demonstrate its ability to construct low order models, practical controllers and to perform analysis of the control system. The tool should help determine locations of sensors and actuators for optimal performance. This system should be object oriented and contain either stand-alone design tools or interfaces with existing control design software.

POTENTIAL COMMERCIAL MARKET: A new modeling and design tool that can be used by large and small engineering firms, DOD laboratories, and research groups.

REFERENCES:

TITLE: Electric Propulsion for Small Satellites

Category: Basic Research

OBJECTIVE: Develop methods to improve life and efficiency of electric thrusters at sub-kW level through predictive capability.

DESCRIPTION: A national trend toward reducing the size of satellites is in progress, and is based on the belief that small satellites are significantly cheaper and quicker to produce, deploy and operate. However, small satellites (500 lbs. or less) are extremely mass and power limited, and thus impose new constraints on propulsion system designs. To keep the propulsion system wet mass fraction to a minimum, high specific impulse options like electric propulsion are being strongly considered. Current demands of the military use of space, smaller satellites with high mobility, requires highly accurate low thrust/low mass/high specific impulse electric propulsion systems for satellite station keeping, pointing and on-orbit maneuvering missions. Few devices look promising for power levels below 500 W if their performance can be improved. The objectives of this topic are: to investigate the principal energy loss mechanisms for sub-kW arcjets which have much different physical mechanisms than high power arcjets. The research activities will focus on the viscous and thermal losses in the nozzle and the arc instabilities. Search prescriptions for the current waveform for the Ablative Pulsed Plasma Thrusters in order to match arc-circuit impedance. The goal is to optimize ablation, depolymerization, ionization and acceleration of solid propellant and to
minimize the production of slow neutrals which adversely impact the performance. - understand, predict, and control plasma instabilities, excessive plume divergence, and insulator erosion in the Hall thrusters to achieve acceptable levels of performance and life. - explore new concepts.

PHASE I: Concentrate on the predictive design of a selected thruster and physically characterize it.

PHASE II: Manufacture a prototype of the selected thruster, for optimal parameters obtained in Phase I, and experimentally verify the findings.

POTENTIAL COMMERCIAL MARKET: Military and industry have been pushing the trend towards small satellites (e.g., MSTI, STEP, MIGHTYSAT, Teledesic, New Millennium), there are multiple potential users of this technology.

REFERENCES:

AF97-007 TITLE: Human Systems/Subsystems Research

Category: Exploratory Development

DESCRIPTION: Proposers may submit ideas to enhance human performance as an integral part of Air Force systems and operations. Five directorates perform a full spectrum of basic and applied research including exploratory and advanced development: (Specify subtopic by letter).

a. The Human Resources Directorate conducts research in manpower and personnel, force management, training systems (including pilot training) and logistics/information technologies. The objective is to improve operational readiness and control costs by developing technologies for more effective selection, assignment, training and retention of a high quality military force.

b. The Crew Systems Directorate conducts research and development (R&D) to improve human performance, protection, and survivability in operational environments. R&D is conducted to: determine human responses to operational stressors, such as noise, impact, vibration, hostile fire, sustained acceleration, spatial disorientation, altitude, workload, and sustained operations; define human-centered design criteria and concepts for personal protection equipment and workstations; and optimize human-machine integration including visual/auditory displays and crew communication.

c. The Aerospace Medicine Directorate addresses the medical selection, protection and enhancement of humans in Air Force systems and operations. Mission related research and specialized operational support are conducted in aeromedical consultation, epidemiology, drug testing, hyperbaric medicine, and dental devices. Clinical sciences research is conducted to develop standards for aviator selection and retention.

d. The Occupational and Environmental Health Directorate assesses risks to personnel from hazardous materials, toxicology, noise, electromagnetic radiation, (Radio Frequency and Laser) and occupational processes and conducts research to reduce those risks. The goals are to mitigate impacts on health and to enhance the scientific understanding of the underlying biological mechanisms.

e. The Environics Directorate conducts in-house research and manages out-sourced contracted research on innovative technologies to fulfill Air Force requirements for site cleanup and environmental compliance. Site cleanup research emphasizes fuels and solvents. Environmental compliance emphasizes fuels, solvents, and other aerospace materials. Specific areas of research include the behavior, transport, and ultimate fate of chemicals in air, soil, or water; advanced contaminant characterization and pollutant monitoring; contamination cleanup technologies through control, conversion, or destruction using biological, physical, and chemical processes; and hazardous waste minimization. The goal is to find the most efficient, economical, and effective answers to eliminate, substantially reduce, or mitigate environmental consequences of Air Force operations.

REFERENCES:
Control of Microbial Biofilms in Dental Unit Waterlines

Category: Exploratory Development

OBJECTIVE: Identify technologies that can reliably and economically control or prevent the formation of microbial biofilms in dental unit water lines.

DESCRIPTION: Biofilms-consisting primarily of naturally occurring, slime producing bacteria and fungi-form on the walls of small-bore plastic tubing in dental units which deliver coolant water during dental treatment. Levels of contamination in dental unit treatment water often exceed one million colony-forming units per milliliter (CFU/mL). Although bacteria of human origin have been reported, most of the organisms are water bacteria often found in smaller numbers in drinking water. Although there is no current epidemiological evidence of a public health problem, the presence in dental water lines of potential human pathogens including Pseudomonas, Legionella and aquatic Mycobacterium species suggests reason for concern. One study has reported two Pseudomonas aeruginosa infections in immunocompromised patients and two other studies have demonstrated elevated Legionella antibody titers in dental personnel suggestive of chronic exposure. A fatal case of Legionnaire’s disease in a dentist has been linked to exposure to contaminated dental unit water.

The American Dental Association Council on Scientific Affairs recently published a statement on dental unit waterlines that challenges industry to produce systems that can reduce the level of bacteria used in dental treatment to less than 200 CFU/mL by the year 2000.

Methods proposed for control of waterline biofilms include filtration, UV irradiation, and chemical disinfection with or without the use of separate water reservoirs. Both separate water reservoir systems and filtration devices are commercially available. There is an urgent need for improved engineering methods designed to control or eliminate microbial biofilms in dental unit waterlines.

PHASE I: Phase I will identify a technology or combination of technologies that can reliably and economically control or prevent the formation of microbial biofilms in dental unit waterlines with minimal user intervention. Treatment water must not exceed the recommended ADA standard of 200 CFU/mL. The water produced must also be compatible with dental restorative materials and free of potentially toxic or carcinogenic chemicals. Economical methods for clinical monitoring of the effectiveness of the treatment method should also be developed.

PHASE II: Phase II will result in a commercially viable system, including in-office monitoring techniques, which can be tested in a clinical setting.

POTENTIAL COMMERCIAL MARKET: Since virtually every one of over 150,000 dental offices in the United States (and thousands more worldwide) is affected by this problem, the commercial potential of user-friendly and cost effective technology for this purpose is very great. The technology developed would be applicable in both civilian and DOD dental clinics. Since biofilms and biofouling are major problems in a wide range of other areas including medicine and the food and pharmaceutical industry, there is potential for further commercialization outside of dentistry.

REFERENCES:

Active Noise Reduction Headphones

Category: Exploratory Development

OBJECTIVE: Develop headphones for hearing assessment which employ active noise reduction to attenuate environmental noise.

DESCRIPTION: The accurate evaluation of hearing acuity depends on being able to attenuate background noise. This is
typically done by placing the patient in a sound treated room. These facilities are expensive, bulky, heavy and, as a result, require special installations. Recent work with active noise reduction (ANR) technology has been focused on hearing protection headsets. This technology uses active noise cancellation to effectively block hazardous noise from damaging the hearing of those working in hazardous noise environments. These headsets are quite effective for frequencies extending up to approximately 1000 Hz. Hearing test results are affected most by low-frequency noise. ANR technology should make it possible to test hearing in high noise areas and preclude the use of specialized sound-treated facilities. However, a novel approach would be needed to permit accurate transmission of the stimulus signal while attenuating the ambient noise. The stimuli used for audiometry include pure tones, narrow-band and broad-band noise, and more complex speech signals.

PHASE I: Develop a bench-level headset system, incorporating ANR technology to suppress ambient noise while leaving the stimulus unaffected.

PHASE II: Develop and validate a headset system that meets current ANSI specifications for delivery of auditory test stimuli (ANSI 69) while reducing ambient noise to meet current AF specifications (AFR 161-15) for audiometric test environments.

POTENTIAL COMMERCIAL MARKET: This technology could be used by all DoD and civilian facilities where hearing testing is conducted. This includes typical clinical environments as well as physicians offices, occupational health clinics, and newborn nurseries.

REFERENCES:

AF97-010 TITLE: Transport and Shipping of Diagnostic Specimen and Etiologic Agents

Category: Exploratory Development

OBJECTIVE: Develop system to transport large volume of specimens meeting federal/state handling and shipment regulations.

DESCRIPTION: All laboratories that ship diagnostic (clinical) specimens and etiologic (infectious) agents must have a system to ensure optimum integrity of these materials when shipped from point of origin to the reference (testing) laboratory. Specimen integrity is critical for the reference laboratory to ensure accurate analytical results. The current shipment system does not adequately control environmental conditions (i.e., temperature, pressure) that can affect the stability and analytical suitability of these materials. Equally important, the system does not eliminate safety problems associated with ordinary transportation (i.e., leakage of contents, breakage) and/or protect the laboratory staff who handle these packages.

PHASE I: This phase will result in the development of a disposable shipment container (outer). The container should be watertight, strong enough to withstand the rigors of handling and incidents associated with transportation, and capable of being disinfected if contents leak during shipment. The container should hold a minimum of 30 specimens allowing individual packaging of those specimens to include the required test requisitions or other documentation. The container must comply with applicable federal and international regulation on transportation of hazardous materials.

PHASE II: This phase will consist of production and testing of the shipment system. Prototypes will be produced and put into limited use to test efficiency and function. Changes to original design in order to address deficiencies detected during this phase will be accomplished and further testing will be performed. This phase will require close coordination with personnel of the Epidemiologic Research Division, Brooks AFB, Texas.

POTENTIAL COMMERCIAL MARKET: In both military and civilian medical communities, clinical laboratories have increased use of reference laboratories for high-volume, high-cost testing services. As part of their routine customer service, reference laboratories provide all the necessary supplies for specimen shipment to include the cost for transportation (i.e., postal, air express). Specific procedures for handling and transport of hazardous materials are strictly enforced by federal and international law. Therefore, there is a need to develop a transport system that is economical and safe. The major advantage to the system is that it could be recycled avoiding problems and expenses associated with disposal of biological medical waste.

REFERENCES:

AF97-011 TITLE: Portable Auditory Diagnostic System

Category: Exploratory Development

OBJECTIVE: Develop a portable system capable of evaluating peripheral and central auditory deficits.

DESCRIPTION: Complete diagnosis of hearing loss includes assessment of peripheral and central auditory systems. These tests include standard pure tone audiometry, speech audiometry, measures of middle ear immittance, otoacoustic emissions, and auditory evoked potentials. Present abilities to fully evaluate auditory deficits require transporting patients to medical facilities where the complete range of diagnostic equipment is available. This equipment currently consists of separate systems, which are, by current standards, large and cumbersome. Yet, each unit is built around a microprocessor. It should be possible to take advantage of microprocessor technology to build a single system incorporating all of the diagnostic systems mentioned. A lightweight, deployable auditory diagnostic system would reduce the costs associated with patient transportation, provide diagnostic capabilities to remote locations, and facilitate medical evacuation procedures.

PHASE I: Develop a single, delivered prototype, microprocessor system capable of performing pure tone audiometry, speech audiometry, measures of middle ear function, otoacoustic emissions, and auditory evoked potentials.

PHASE II: Develop and validate an easily portable (i.e. briefcase size) full diagnostic system.

POTENTIAL COMMERCIAL MARKET: This technology could be used by all DoD and civilian medical treatment facilities, audiology and otolaryngology clinics.

REFERENCES:

AF97-012 TITLE: Advanced Audio Evoked Interfaces

Category: Exploratory Development

OBJECTIVE: Enhance operational Air Force audio systems.

DESCRIPTION: A requirement exists for effective voice communications, crew safety, and human performance controls that are based on natural, intuitive interfaces using innovative abilities and requiring no learning or training for efficient operation. The intuitive interfaces facilitate operator task performance, reduce workload and fatigue, and improve personal safety. These intuitive interface technologies include, but are not limited to: 1) auditory system modeling and neural networks for robust signal processing of speech, 2) digital audio technology to allow integration into aircraft systems, 3) voice communications countermeasures/counter-countermeasures, 4) noise-induced hearing loss protection, 5) active noise reduction, and 6) three-dimensional auditory display for spatial awareness and communications. A single interface issue or any combination of interface issues may be addressed in the offeror’s proposal.

PHASE I: Phase I efforts would provide an assessment of the state of the art and an approach to develop an appropriate intuitive interface technology.

PHASE II: Phase II efforts would provide a demonstration and validation of the intuitive interface technology.

POTENTIAL COMMERCIAL MARKET: Commercial applications of these technologies are possible in the commercial aviation, entertainment, industrial safety, and health care fields.

AF-41
REFERENCES:

AF97-014 TITLE: Chemical/Biological Warfare Defense Detection and Decontamination Technologies

Category: Exploratory Development

OBJECTIVE: Develop novel technology/methodology that will detect, identify, quantify or decontaminate biological/chemical agents.

DESCRIPTION: This requirement deals with highly toxic chemicals or pathogens (bacteria, viruses, spores, toxins, and other materials of biological origin). Methodologies and technologies will be used to address needs on airbases, aircraft, air cargo and personnel. Special interest exists in technologies that have the potential for operation with little manual intervention and that will provide detection and warning for the presence of hazardous material existing in the aerosol or vapor phase. Requirements in sensitivity are 1) parts per billion or less for chemicals in aerosol or vapor phase, 2) less than 1000 microorganism particles per liter of air, 3) less than 100 microorganisms per liter of liquid suspension, or 4) parts per million or less for chemicals in solution. The technologies of interest include (but are not limited to): 1) immunoassay techniques, 2) PCR/DNA probe technologies, 3) light scattering, 4) optical spectroscopy techniques, 5) methodologies for sorting target particles from background interferent particles, 6) methods to automate the preparation of sorted particles for identification, and 7) techniques to automate the identification by microscopy. In addition, novel but simple and robust methods suited to the removal, detoxification or destruction of chemical and/or biological materials are desired. The method must be environmentally friendly, safe to use on aircraft materials and non-hazardous to personnel. Optimal methods will involve inexpensive materials and/or devices, and be highly mobile and rapid. The contractor's proposal may involve a specific device or method to address any of these requirements in part.

PHASE I: Phase I will result in the design and fabrication of a laboratory breadboard system and the development of data which shall demonstrate the proof-of-concept with the use of chemical and/or biological agent simulators.

PHASE II: Phase II will design, optimize, and fabricate a brassboard system that will be laboratory and field tested against a range of chemical/biological simulants. The brassboard system will be delivered to the Air Force for an in-depth evaluation of the system's potential.

POTENTIAL COMMERCIAL MARKET: This technology applies to environmental protection, clinical diagnostic, and therapeutic areas. Technology may be applied to on-site continuous monitoring and/or contamination control of various industrial, environmental, or medical contaminants/pollutants.

REFERENCES:

AF-42
AF97-015 TITLE: Multi-modal User-Interface for Remote System Operation

Category: Exploratory Development

OBJECTIVE: Develop multi-modal user-interface concept to support coordinated remote systems operations in hostile environments.

DESCRIPTION: Distributive interactive systems are on the horizon. Such systems represent a bending of distributive information systems, such as the World Wide Web (WWW) system, and remote operation or manipulation systems, such as those used by NASA in space operations. There is a need to develop new, integrated user-interfaces that can handle information searching, data analysis, and information repackaging while at the same time providing an immersive you-are-there sense of presence to support operation of remotely-located objects. These new interface concepts will serve as the front-end for emerging WWW-based productivity and entertainment products, as well as for new remote operation systems in the military. One approach under consideration for future military operations involves the tactical use of remotely-controlled systems. Both unmanned aerial vehicles (UAVs) and unmanned tactical aircraft (UTA) are planned for development. Highly coordinated user actions involving several remote systems will be required to achieve military objectives. A critical element in the design of a remotely-controlled system needed to achieve this goal is the remote user-system interface. An interface is needed that (1) induces a sense of presence in the engagement area, (2) assists the user in acquiring and updating situation awareness, both locally (single system) and globally (engaging unit), (3) manages information flow and representation, and (4) interprets user commands and control inputs. The user interface for a remote system is envisioned to contain a volumetric visual-audio display and will contain a range of methods for system interaction through manual, gesture, voice, head, and perhaps eye and other forms of control. Complexities associated with information management, system state conditioning, weapons deployment, and integrated task performance present a formidable challenge to the user interface designer. This is exacerbated by the need to induce a sense of presence and avoid disorientation effects within the constraints of available interface technologies. The Air Force seeks innovative interface concepts for remote systems that will enable the user to meet performance requirements for coordinated tactical operations.

PHASE I: Create an innovative interface concept, analyze operator performance and technological feasibility, and produce and deliver a proof-of-principle demonstration, including performance analysis.

PHASE II: Optimize the interface system design, produce, evaluate and deliver a full-scale prototype of the new interface concept, including full software documentation.

POTENTIAL COMMERCIAL MARKET: User interface concepts for UAV/UTA systems will apply directly to any tele-operation system, including nuclear power generation, chemical processing, and environmental waste removal. The concepts may be particularly appropriate for virtual reality based tele-medicine applications. More broadly, the multi-modal interface concepts should be applicable as a front-end user interface for productivity and entertainment software products, especially those products based on distributive networks such as the World Wide Web.

REFERENCES:

AF97-016 TITLE: Virtual Reality (VR) Control Centers for Unmanned Aerial Vehicles (UAV)

Category: Exploratory Development

OBJECTIVE: Develop UAV VR control center concept and required human systems interface technology development plan/strategy.

DESCRIPTION: As part of the Air Force Modernization Plan, there is a requirement to develop innovative ways to accomplish
force enhancement and force application, combined with risk reduction to personnel in the battlespace of the future (2010 fielding). To this end, there is a current Air Force interest area focusing on expanding the use and battlefield roles of UAVs. One possible scenario involves essentially an unmanned battlespace. Such a scenario requires teleoperation ground control centers for controlling UAVs, where UAVs would perform reconnaissance and surveillance, communication relays, Air Base support, strike, defensive counter air and jamming operations. Since the functions and tasks of ground station personnel would be dramatically different than those performed by contemporary airborne personnel, innovative and immersive VR control center concepts are being considered. However, fundamental human performance research issues involving VR properties have either not been addressed or the data available are limited (e.g., design tradeoffs between VR properties and human performance variables in dynamically interactive synthetic environments). These issues must first be identified and then a VR/human systems interface (HSI) research plan and technology development strategy must be developed to ensure technology maturity for possible VR UAV control center fielding within fifteen years. Research issues of intelligent aiding and multi-operator decision support associated with optimal situational awareness, mission management, and training (appropriate for VR UAV control centers) must be addressed in the plan.

PHASE I: Phase I will result in: (1) identification of human performance variables/VR properties design tradeoffs issues; (2) HSI and VR technologies requiring development to ensure maturity necessary for a UAV VR control stations/centers; and (2) proposal for a UAH VR concept demonstration supporting intelligent aiding, decision support, and mission management flexibility.

PHASE II: Phase II will result in a concept demonstration based on the research defined in Phase I.

POTENTIAL COMMERCIAL MARKET: The development of the VR control centers have multiple industrial uses, e.g., remotely controlled construction and site investigations in hostile (weather/chemical disasters) environments. The VR controlled UAVs could be used for immediate search and research operations in distant geographical areas, or inaccessible environments and for civilian drug interdiction efforts, as well.

REFERENCES:

AF97-017 TITLE: Multi-Operator Performance Aiding by Information Sharing

Category: Exploratory Development

OBJECTIVE: Develop methods or techniques to enhance operational effectiveness of geographically-distributed time-critical manned systems with improved information flow.

DESCRIPTION: With the growth in numbers and variety of sensors, there is a requirement to select, fuse, and distribute a multiplicity of data and information among a large number of specialized operators who are geographically distributed and possibly unknown to each other. This information sharing and coordination situation is unlike that within a combat flight, mission control center, or air traffic control tower. Rather, the human network may add and drop nodes or elements in a dynamic fashion with many players never knowing their real contribution, nor even each other's existence, as part of a dynamic network. For example, a photo-reconnaissance expert and a weather analyst might never know why or by whom a special forecast is requested, yet the two independent analysts' timely and accurate predictions, based on diverse data sources, can critically affect the performance of a combat mission. Indeed, commanders and end-act operators depend on the services of many diverse units to accomplish their respective missions. Analyses are needed for all nodes and levels of activity within the human network. Information sharing concepts and human performance aiding concepts are needed especially for time-critical and time-constrained scenarios.

PHASE I: Phase I effort would provide an assessment of the state of the art and suggest candidate multi-operator performance-aiding concepts of value at any whole-network, sub-network, or single node level.

PHASE II: Phase II effort would provide a demonstration and validation of a multi-operator performance aiding concept entailing information sharing.

AF-44
POTENTIAL COMMERCIAL MARKET: The problem of the timely distribution of multi-faceted information arising from a plethora of sources through an impersonal, diverse, and fluid human network is not unique to the military. Results of this effort can impact the structure and operations used by multi-national corporations, fast-reaction emergency and disaster civilian operations, distributed real-time medical operations, and financial decision making. Products can range from the design of entire networks to just single workstations.

REFERENCES:

AF97-018

TITLE: Decision Support System To Enhance Performance In Decision-Making Teams

Category: Exploratory Development

OBJECTIVE: Development of software/computer system enabling the facilitation of shared awareness and team decision performance.

DESCRIPTION: There is a requirement for tools and methodology to facilitate the cognitive processes inherent in decision-making teams composed of members with different areas of expertise. This issue is relevant to many realistic decision scenarios, where interdependent team members must coordinate information and/or collaborate in order to achieve a successful performance in a primarily intellectual (decision making) task. In this effort, the focus would be on decisions regarding resource allocation. Resource allocation dilemmas are commonplace yet often extremely difficult, whether the context be military battlefield logistics, corporate strategic planning, university research funding distribution, or public service settings. At this time, many team-based decision aids are marketed, but are not amenable to evaluation in that objective measures of successful team performance are usually not available. If measures are available, they are based on behavioral measures of team process (e.g., efficient communication) or team outcomes (correct decision was achieved). What is needed is (a) identification of computer-based technology most likely to enhance team decision processes, and (b) a flexible, team-based task that enables measurement of cognitive as well as behavioral measures of team performance, in order to evaluate the impact of these tools on performance. The software would enable diagnosis of team functioning through examination of team-level cognitive structures and processes. For example, phases of decision making often include stages such as problem formulation and development of shared awareness of the expertise, resources, and interdependencies of all members. Research questions currently being addressed by various investigators include issues such as (a) to what extent does an expert team differ from a novice team with regard to these stages of decision making; (b) how is shared understanding best achieved; and (c) how can computer-based technology (such as artificial intelligence (AI) components, communication structures, etc.) enhance the cognitive processes such as problem formulation and collective awareness across team members. This effort would capitalize on existing knowledge regarding team decision processes and computer-based technology in order to identify computer-based tools and techniques to enhance decision making in teams with members with diverse perspectives.

PHASE I: Development of the team task prototype specifications. Phase I would result in identification of computer-based technology most likely to enhance decision making processes within a resource allocation scenario, particularly when team members have varying expertise. This will be based on a review of current research, with an emphasis on identifying cognitive processes within the team, and the means by which these processes can be enhanced through interventions. At the same time, a team task will be developed that will enable demonstration of the effectiveness of these interventions. The decision support system composed of the team task and corresponding technology will enable team-based decision making for a minimum of three team members using standard networked Pentium class or better platforms running Linux (or other Unix variants). The task would be highly flexible, allowing configuration to a variety of decision scenarios, from military command-and-control to corporate resource allocation dilemmas. The software should enable the study of networked teams of up to 20 members, with the capability of investigating the processes of subgroups within the overall team. Knowledge and performance measures will be generated by the software, to include the assessment of individual and team-level task knowledge, measures of team processes (such as communication and coordination effectiveness), and criterion measures of decision performance. A plan of research will also be produced, in the form of a technical report, delineating the stream of research made possible by this team task, with the objective of identifying strategies, principles, and/or decision aid tools to enhance resource allocation decisions in teams.

AF-45
with distributed expertise.

PHASE II: Development, delivery, and demonstration of the team task and technology enhancements. Phase II will result in development and demonstration of the team-based task and computer support system specified in Phase I. The goal is the demonstration of computer-based technology and communication structures that will enhance shared understanding and performance within teams with distributed expertise.

POTENTIAL COMMERCIAL MARKET: Critical resource allocation decisions are made every day throughout military, private-sector corporations, and public agencies by teams comprised of individuals with differing expertise, perspectives, goals, and intentions, yet our understanding of the processes that affect team-based decision making is limited and often anecdotal. The team task itself can be transitioned to research facilities for use in team performance research. More importantly, the tools and techniques identified and developed in this effort can be transitioned for commercial use, such as for technical managers with limited resources. The opportunity for technology transfer, in terms of tools and techniques, is relevant to every facet (industry, education, military, public service) of organizational resource-allocation decision making.

REFERENCES:

AF97-019 TITLE: Intelligent Cognitive Engineering Suite for Information Warfare Domains

Category: Exploratory Development

DESCRIPTION: Information warfare is defined by (1) the characteristics of information systems (2) the constraints and capabilities of human cognition and (3) the contexts that afford mutual interaction and interdependence between humans and their information systems (e.g., multi-crew operations in theater missile defense). Yet, information warfare requirements demanded by cognition, collaboration, computation, and context are rarely leveraged in a way that will provide systematic planning, assessment, integration, and design of human system interfaces.

Cognitive engineering tools and techniques have been applied to contexts like information warfare but are often unidimensional, woefully under-developed, and applied in piecemeal ways. For example, they may only yield a task-analytical modeling perspective, or may be limited to a singular form of knowledge representation. Often, cognitive engineering is a paper-and-pencil exercise, conducted by a single engineer with a single domain expert, and does not take advantage of advances in computer science (e.g., collaborative computing technologies).

Requirements for a cognitive engineering suite for information warfare domains first necessitates the use of collaborative computing to support different types of integrated cognitive engineering processes. Group support systems for cognitive engineering redefine the area as a "distributed, participatory enterprise" wherein multiple engineers/multiple experts collectively establish joint assessments and mutual design rationale. Second, integrated cognitive engineering processes must interlock technological capabilities with knowledge-based, observer-based, and case-based modeling to perform analytical 'what-if' and design synthesis activities. This highlights the need for intelligent retrieval systems, exploratory sequential data analysis tools, fuzzy logic categorization, case-based reasoning, and/or machine learning systems that can index, represent, and distinguish differences in situated cognition within multi-operator performance. These processes highlight acquisition, exploration, transformation of operator-centered knowledge throughout different stages of the information warfare systems design. They simultaneously integrate multidimensional descriptions of the context in which information warfare activities occur and supply the cognitive basis for action in that context.

PHASE I: Phase 1 results in a comprehensive literature review of cognitive engineering applicable to (1) the general information warfare domain and (2) a specific context in the overall domain. This includes assessment/evaluative ratings of the appropriate computer technologies and cognitive engineering methods, tools, etc. to determine the best integrated suite. A detailed baseline description of the suite will be delivered. Documentation includes a technical report with an annotated bibliography.

AF-46
PHASE II: Phase II results in the implementation/building of the cognitive engineering suite. The suite will be applied to the context defined in Phase I for verification/validation using a single site test; and then using a new target context will be field tested for collaboration at remote, distributed sites. A final technical report will document all progress on the project and a completed prototype will be delivered.

POTENTIAL COMMERCIAL MARKET: Relevance for commercialization is strong as it identifies/defines procedures for integrated cognitive engineering across a variety of information systems applications (e.g., use in intelligent highway or air traffic control systems). These processes would be easily managed and implemented using the suite. Potential customers include air traffic controllers, Department of Transportation, and advanced computing technology companies (e.g., Xerox PARC).

REFERENCES:

AF97-020 TITLE: Universal Operator State Classifier

Category: Exploratory Development

OBJECTIVE: Develop system capable of accurately classifying human operator state during job performance.

DESCRIPTION: There is a requirement for accurate estimation of human operator state and for means of providing this information to the operator controls. Optimal implementation of complex systems requires that the human operator is functioning efficiently. Current systems do not have operator-state information even though the operator is a crucial component of the overall system. Operators become inefficient because of mental overload, fatigue, inattention, and boredom. By monitoring operator-state, the controlled system can alert the operator and/or make adjustments to itself to accommodate the level of operator functioning. Human operator state can be monitored by observing their psychophysiological condition and their overt performance. However, this is a new area and tools are not available that make operator-state evaluation practical. A system is needed that accepts psychophysiological and performance data from operators at their workstations, provides a broad selection of analysis and classification tools and yields a highly accurate classification algorithm that can be implemented at the workstation. The system would have capabilities to read the users’ data regardless of the format, would provide a number of methods of viewing the data graphically, would make suggestions concerning the most appropriate type of classifier to use, provide easy access to an array of classifiers and would provide evaluation of the success of each classifier. Since data feature selection is crucial to accurate state classification, tools would be available to permit manipulation of the data to select and derive features from the input data. The system should handle large amounts of data, 60 or more EEG channels, heart rate, eye blinks, respiration and 50 plus channels of performance data from the system. A wide range of analysis tools would be available to the user to provide a complete understanding of the data. The system would permit the user to take advantage of individual operator and group data to achieve the highest possible classification accuracy of operator state. The system must be very user friendly, provide on-line help functions and use graphical user-interface schemes. A list of background literature should be provided. Analysis speed is very important since the system could be used at the work site. Classifier output would permit use by equipment worn on the operator and/or installed at the workstation to implement the on-line operator state/system interface. The developed system would also be used in human factors research to understand man/machine interactions, human cognition and in display design and evaluation.

PHASE I: Phase I will include an evaluation of area and system design, making use of the large number of commercially-available packages.

PHASE II: Phase II will yield a prototype system.

POTENTIAL COMMERCIAL MARKET: This system will be of use to all DOD branches since it will assess the whole range of human operator states. Other agencies using human-controlled systems will also be able to use this product and include Department of Transportation, FAA and NASA. Commercial sector can use to evaluate and enhance human/system interface. These include transportation (trucks, automobiles, trains and airplanes), process control, and system design.

AF-47
REFERENCES:

AF97-021 TITLE: Advanced Escape Technologies and Ejection Data Recording for Aircrew Members

Category: Exploratory Development

OBJECTIVE: Develop methods or techniques to improve aircrew escape systems through the use of ejection data recording and enhanced restraint systems.

DESCRIPTION: DOD has incorporated women into the cockpits of combat aircraft. Presently, all flyers must meet longstanding entrance requirements for body size. New training aircraft will accommodate a much broader range of occupant sizes. This expanded flying population will eventually fly ejection seat-equipped aircraft. This has generated a requirement for novel methods of providing restraint and harnesses, improved effectiveness in seat adjustability, control of aerodynamic loads to optimize these forces for the wide range of occupant weights, and recording of the seat response during an ejection. Contractors’ proposals may address one or more of these issues related to advanced escape technologies. An integral part of these new requirements for the expanded aircrew population is the need to identify, develop, and test restraint and parachute harness systems which are compatible with an adjustable seat to better fit the expanded population range in escape systems. This research should examine the design of the restraint and harness system and the attachment points to the seat, as well as innovative techniques for adjusting the ejection seat within the cockpit. The technique should allow the expanded range of occupants to be located within the cockpit for proper vision, while maintaining acceptable arm and leg reach envelopes. Contour and adjustability of the seat bucket and cushions shall also be examined to determine the adjustments required to provide support and comfort for the expanded population. Closely associated with these new restraint and seat adjustment designs is the need to measure the actual ejection events by some type of “in seat” instrumentation package. The package needs to be a small, battery-operated data recorder/analyzer that uses internal sensors and attaches to the ejection seat. The collected data will be used to validate and improve the design of the ejection seat and restraint mechanisms in an attempt to reduce future injuries and deaths during ejections from aircraft. Current data have been obtained primarily from rocket sled ejection using manikins. No human data is being gathered on actual in-flight emergency ejection, since no ejection seats are fitted with data recorders.

PHASE I: Phase I will result in the identification and preliminary evaluation of advanced restraint and harness systems, advanced ejection seat adjustment concepts and/or the design and construction of a prototype data recorder.

PHASE II: Phase II will yield fully tested, promising technologies, including the integration of the recorder into R&D ejection seats for live-fire tests.

POTENTIAL COMMERCIAL MARKET: Anticipated civilian applications include improved restraint technologies for the automobile and airline industries, and innovative instrumentation measurement packages for the automobile testing industry.

REFERENCES:
In Situ Electrochemical Sensor Technology for Detection and Long-Term Monitoring of Organic Pollutants

Category: Exploratory Development

OBJECTIVE: Development of Electrochemical Sensors that will Provide Highly Specific, Sensitive, and Definitive Analysis of Organics in the Field.

DESCRIPTION: There is a requirement for fiber optic-based, low-cost, in situ, sensor technologies that will provide highly specific and sensitive measurements for environmental pollutants in soil and groundwater. Measurements should be real-time and possess detection capabilities on the order of parts per billion (ppb) or better. Electrochemical sensor designs may include pH, current, light (such as electrochemiluminescence) or other physical measurements of molecular recognition of target pollutants. Electrochemical biosensors using chemical or biological affinity surfaces are desired and will enhance the specificity of the sensor. Examples include antibody, enzyme, nucleic acid, novel bioreceptor, and whole prokaryotic or eukaryotic cell sensing elements and should be robust, sensitive, reusable, field portable and have relatively low power requirements. Technologies are especially needed for detection of chlorinated solvents such as trichloroethylene (TCE), tetrachloroethylene (PCE), methylene chloride, carbon tetrachloride, etc. in soil and water. It is desirable that the technology be capable of identifying mixed waste samples, thus, the proposed technique should be capable of discriminating fuel components such as BTEX. Technologies also capable of sensing metals and nitroaromatics will be considered an added benefit. These sensors should be designed for definitive characterization of pollutants in the field and long-term monitoring purposes. The method of sensor deployment may vary, such as compatibility with cone penetrometry, mini hydraulically-driven and/or percussion-driven devices and should be capable of long-term monitoring if inserted in the ground in monitoring wells or at air monitoring points.

PHASE I: Phase I will provide the results of an empirical feasibility study, develop a breadboard sensor, and deliver a technical report.

PHASE II: Phase II will consist of fabrication of an engineering model, field demonstration(s), and a final technical report.

POTENTIAL COMMERCIAL MARKET: Electrochemical sensors for clinical, food industry, and other sensing applications have been constructed and tested previously. This technology will help to meet the chlorinated solvent detection and monitoring needs of Environmental Managers on Air Force and DOD installations as well as the needs of those responsible for similar commercial contaminated sites.

REFERENCES:

Risk Based Remediation Modeling

Category: Exploratory Development

OBJECTIVE: Develop methods to couple risk assessment with a groundwater fate and transport model in a common computational environment.

DESCRIPTION: Install risk assessment information and calculation techniques (probability distributions) into an existing three dimensional numerical groundwater contaminant fate and transport model to predict contaminant concentrations in groundwater at down gradient sites and receptor wells. The contractor shall thoroughly search the existing market for effective and available
numerical three dimensional models. This effort does NOT include creating a new groundwater fate and transport code. Additional code will only be necessary to incorporate the risk-based analysis aspect of the model into the computational environment. The contractor shall also be knowledgeable of other risk-based models and build on progress made by these groups. Existing or developmental toxicological databases will be incorporated into the model to allow installation project managers a risk-based approach to decisions regarding remedial action alternatives. A major task will be incorporating the data base of chemical compounds of interest to the Air Force and their toxicity levels into the selected model. This will include databases which consider not only the human toxicity criteria but also the eco-toxicity which in many cases is more stringent than the human toxicity criteria. The end product will be a criteria for remedial action (RA) decisions from a risk-based perspective rather than cleaning to a specified maximum concentration levels (MCLs).

PHASE I: Phase I will result in selection of a groundwater fate and transport model and toxicological databases. In addition, the contractor will determine the approach to incorporate a risk-based analysis. The approach should be validated by a feasibility study. Phase I efforts will be summarized in a technical report.

PHASE II: Phase II will result in a risk-based remediation model, based on the description above, capable of analyzing contaminated groundwater sites according to risk. Phase II efforts will be summarized in a technical report.

POTENTIAL COMMERCIAL MARKET: The trend, as prompted by the EPA, has been to move away from decisions based on MCLs and toward the more sensible risk-based approach. Due to the regulatory involvement in this trend, all entities including government and industry will soon have the need for tools such as models to assist in risk analyses.

REFERENCES:

AF97-024 TITLE: Emplacement Technology for In Situ Treatment Zones

Category: Exploratory Development

DESCRIPTION: In situ treatment zones are emerging as a potential alternative to the traditional pump-and-treat approach to groundwater remediation. One approach to in situ treatment zones, "funnel-and-gate" uses physical barriers to funnel contaminated water under natural gradient conditions to a permeable reactive zone where the contaminants are degraded. The reduction of chlorinated solvents by zero-valent iron appears to be the most promising in situ treatment approach for chlorinated solvents-contaminated groundwater at the present time; however, the use of traditional sheet piling technologies for emplacement is costly. This has created the need for more cost-effective methods of emplacing in situ treatment zones. Options other than the funneling of contaminated groundwater to the treatment zone will be considered. Adequate permeability of the treatment zones is of considerable importance.

PHASE I: Phase I shall involve engineering design, cost analysis and possible laboratory testing of the technology to show the potential for successful emplacement.

PHASE II: Phase II shall focus on the demonstration of the emplacement technology at a field site.

POTENTIAL COMMERCIAL MARKET: Full-scale development of a technology capable of cost-effective emplacement of in situ treatment zones could be used at DoD hazardous waste sites and similar commercial contaminated sites. This process may reduce or eliminate the need for traditional pump-and-treat which will significantly reduce site remediation costs.

REFERENCES:

AF97-025

TITLE: High-temperature Redox Catalysts

Category: Exploratory Development

OBJECTIVE: Develop catalysts that can decrease air pollutants in immediate or near combustion environment.

DESCRIPTION: There is a requirement for catalytic technologies that can be installed and function in an exhaust manifold or similar environment to convert NOx and incompletely reduced carbon species into nonpolluting products. Relevant experience will be a consideration in the selection of proposals for awards.

PHASE I: Phase I will result in a convincing experimental demonstration of the reductive (or oxidative) capability of the catalysts at elevated (greater than 500 C) temperatures and residence times of approximately a few milliseconds. The experimental effort and results will be presented in a technical report.

PHASE II: Phase II will result in an experimental evaluation of the mean time to failure of surface-supported preparations of one or more catalysts in a simulated or real exhaust stream, the targets being greater than 50 percent initial removal of the target pollutant(s) and greater than 50 percent retention of initial activity after 500 hours of exposure to a high-temperature, high-velocity exhaust stream at the highest temperature at which the catalyst preparation has been shown to be active. The experimental effort and results will be presented in a technical report.

POTENTIAL COMMERCIAL MARKET: Both the government and the private sector use a wide variety of combustion devices for heat, propulsion, waste disposal, and a range of other uses. These are or will be subject to regulation as either fixed or mobile sources of air pollution. The technology sought will allow these devices to be used without drastic impacts to base or local operating permits.

REFERENCES:

AF97-026

TITLE: Evanescent Wave Fiber-Optic Sensor

Category: Exploratory Development

OBJECTIVE: Develop an integrated evanescent wave sensor, spectrometer and data collection/analysis system.

DESCRIPTION: The use of fiber-optics in spectroscopy permits sample spectra to be collected in locations and environments remote from the spectrometer optical bench. Various designs of fiber-optic chemical sensors have been developed utilizing fluorescence, interference, and absorbance spectral properties. In the most common designs, radiation from the optical bench is carried via fiber-optics to a sample cell or viewing region, and allowed to exit the fiber-optic, interact with the sample, and returning or re-emitted radiation re-enters the fiber-optics for transmission back to the optical bench. An alternative form of fiber-optic spectroscopy uses interactions between the sample, surrounding the fiber-optic, and the evanescent wave of the radiation. Material outside the fiber-optic of an evanescent wave sensor interacts with the evanescent wave and can absorb radiation at wavelengths characteristic of the sample. Since the evanescent wave accounts for only a small portion of the energy of the radiation being carried through a fiber-optic, this form of spectroscopy is not highly sensitive. However, the cladding
of the fiber-optic, this form of spectroscopy is not highly sensitive. However, the cladding of the fiber-optic media can absorb external sample material and concentrate it, thus increasing spectral response. Evanescent wave fiber-optic spectroscopy is useful in the ultraviolet through visible to mid-infrared spectral regions. Evanescent wave fiber-optic sensors for the Air Force should be rugged enough for field use and should be capable of detecting organic fuel and solvent vapors in air, water, or headspace matrices. Some typical analytes which may be of interest to the Air Force include fuels (including jet fuels), cleaning solvents (such as trichloroethylene, tetrachloroethene, methylene chloride, chloroform, and carbon tetrachloride), and aromatic hydrocarbons (such as benzene, toluene, xylenes, more highly substituted benzene derivatives, naphthalene, naphthalene derivatives, and polynuclear aromatic hydrocarbons). The ideal sensor should yield quantitative responses, although the quantitation of individual analytes in mixtures will require the use of chemometrics to isolate the response of a target analyte from other compounds in the mixture.

PHASE I: Phase I will result in the design and proof-of-concept of an evanescent wave sensor including a prototype demonstration in a laboratory setting at the Armstrong Laboratory, Environics Directorate and a technical report. Prototype chemometric tools required for qualitative and quantitative interpretation of the sensor's data should also be constructed (or selected from commercial sources) and demonstrated.

PHASE II: Phase II will result in the design and fabrication of a final prototype evanescent wave sensor. Chemometric tools to support the sensor should be demonstrated in an integrated prototype at the Phase II level. Testing and demonstrations of the Phase II product should include testing with analytes in air, groundwater, and soil matrices, at an Air Force selected site. The results of the development will be documented in a final technical report.

POTENTIAL COMMERCIAL MARKET: These sensor systems will be useful and have commercial value in both the Government environmental and the commercial economy. Civilian uses include additional environmental monitoring and chemical process monitoring. Use of the system with analytes other than those used by the Air Force would require chemometric classification and quantitation systems to be retrained with samples of the new analytes.

REFERENCES:

AF97-027

TITLE: Attenuated Total Reflectance (ATR) Sensor

Category: Exploratory Development

OBJECTIVE: Develop an Attenuated Total Reflectance (ATR) Infrared Radiation (IR) device for cone Penetrometer use for the detection of Dense non-aqueous phase liquids (DNAPLs).

DESCRIPTION: There is a requirement for technologies that can detect and delineate the extent of contaminants underground. This need is particularly acute when the contaminant is a dense non-aqueous phase liquid (DNAPL). When the DNAPL source is a solvent (such as Trichloroethylene, tetrachloroethene, methylene chloride, chloroform, and carbon tetrachloride), there is no in situ device available for detection. In addition, a danger exists using the cone penetrometer in environmental site characterization if an aquitard restraining a source of DNAPL is penetrated, causing possible further spread of the DNAPL contaminant. Diamond tipped ATR sensors using mid IR radiation have been developed for harsh environments, such as monitoring acidic reactions. A diamond tipped ATR sensor placed in the tip of a cone penetrometer, coupled to the surface by fiber optic cable, could be used to detect DNAPL sources.

PHASE I: Phase I will result in the design and proof-of-concept of a diamond tipped ATR sensor for use in a cone penetrometer, including a prototype demonstration and a technical report.

PHASE II: Phase II will result in the design and fabrication of a final prototype ATR sensor and incorporation of the sensor into the cone penetrometer. Testing and demonstrations of the Phase II product should include testing with analytes in air, groundwater, and soil matrices, at an Air Force selected site. The results of the development will be documented in a final technical report.

AF-52
POTENTIAL COMMERCIAL MARKET: These sensor systems will be useful and have commercial value in both the Government environmental and the commercial economy. Civilian uses include additional environmental monitoring and chemical process monitoring. The diamond tipped ATR system could also be used in harsh production and process monitoring applications. Use of the system with analytes other than those used by the Air Force would require chemometric classification and quantitation systems to be retrained with samples of the new analytes.

REFERENCES:

AF97-028 TITLE: Environmental Gas-Phase Sensor Array

Category: Exploratory Development

OBJECTIVE: Develop a sensor array for detecting and monitoring gas phase hydrocarbon and organic chemical vapors.

DESCRIPTION: Gas phase sensor arrays have shown considerable promise for identifying odors and other gas phase mixtures. These arrays utilize a collection of gas phase sensors, each with a different response characteristic, to generate a pattern of responses from vapors which enter the sensor array. The individual sensors in the array have different responses to vapors of different compounds and compound mixtures. The pattern of responses can thus be used to identify and classify odors and other vapor mixtures through the use of pattern recognition techniques or artificial neural networks. The individual sensors of the array should yield quantiative responses. Gas phase sensor arrays should be applicable to the detection and classification of spilled fuels and solvents in the air, water, and soils. If the devices can be made with sensitive enough responses to aromatic hydrocarbons, they should also be applicable to the detection of water-soluble fuel components in headspace over groundwater and groundwater sampling. Such sensor arrays should be useful for initial environmental site surveying, site characterization, and monitoring. Typical analyte mixtures which may be of interest for the Air Force include fuels (including jet fuels), cleaning solvents (such as trichloroethylene, tetrachloroethylene, methylene chloride, chloroform, and carbon tetrachloride), and aromatic hydrocarbons (such as benzene, toluene, xylene, more highly substituted benzene derivatives, naphthalene, naphthalene derivatives, and polynuclear aromatic hydrocarbons). Sensors intended for detecting and monitoring these analytes should yield quantitative responses, although the quantitation of individual analytes in mixtures will probably require the use of chemometrics to isolate the response of a desired target analyte from the other compounds in the mixture. There are a variety of ways to utilize gas phase sensor arrays in conducting environmental surveys. Devices may be designed and optimized for examining samples from groundwater monitoring wells, or for use within the wells themselves. Also, it should be possible to combine such sensor arrays with site surveying systems such as cone penetrometers and geoprobies. Gas phase sensor arrays should also be directly useful for detecting and monitoring atmospheric pollutants. The ideal gas phase sensor array for environmental use should include simple and inexpensive sensor elements. The manufacturing techniques used in the sensor and array fabrication should permit the arrays to be reproducibly mass produced with sufficient precision that the responses of duplicate arrays will be reproducible. Such reproducibility will be required in order that neural networks, classification rules, and calibrations developed with one sensor array will be equally valid for all members of the mass produced series. The ideal gas sensor array should also permit simple and easy acquisition of the array’s responses and interfacing with computers for data interpretation and chemometric analysis.

PHASE I: Phase I will result in the design, proof-of-concept, and technical report fully documenting the gas phase sensor array, including the demonstration of the Phase I prototype in a laboratory setting at the Armstrong Laboratory, Environics Directorate. Prototype chemometric tools required for qualitative and quantitative interpretation of data from the array should also be constructed (or selected from commercial sources) and demonstrated in Phase I. For Phase I, it should be sufficient to demonstrate the device with directly introduced gas phase analytes and mixtures. The device should be capable of speciating and quantifying mixtures with small numbers of components (five or fewer), and it should be capable of identifying complex mixtures (e.g., gasoline, jet fuel, or diesel fuel).

PHASE II: Phase II will result in the design and fabrication of a final prototype gas phase sensor array with considerations for mass production and commercialization in Phase III. Chemometric tools to support the sensor array should
be demonstrated in an integrated prototype at the Phase II level. Testing and demonstrations at an Air Force selected site of the Phase II product shall include testing with analytes in air, groundwater, and soil matrices and be fully documented in a technical report.

POTENTIAL COMMERCIAL MARKET: These sensor systems should be useful and have commercial value in both the Government environmental and the commercial economy. Civilian uses include additional environmental monitoring and chemical process monitoring. Use of the system with analytes other than those used by the Air Force would require chemometric classification and quantitation systems to be retrained with samples of the new analytes.

REFERENCES:

AF97-029 TITLE: Laser Output Field Test Measurement System
Category: Exploratory Development

OBJECTIVE: Develop a rugged, field-portable system to measure laser exit spot size, beam divergence, average output power, and temporal characteristics.

DESCRIPTION: Accurate output parameters (especially beam divergence and average power) measured at the system exit aperture are required to perform hazard analyses on DOD laser systems. Laser manufacturer's specifications are usually based on performance requirements or theory. As a result, many systems require safety-specific measurements. Small lasers can be sent to Armstrong Laboratory for measurement; however, large laser systems or systems on aircraft require field measurements. We need an automated, portable system to facilitate these field measurements. Specifically, we need a hardware prototype and a laptop (486 processor + Windows) interface with supporting software. In addition to Armstrong Laboratory use, this system could be used to verify laser system performance on the flight line by maintenance personnel. Verifying the laser's performance prior to aircraft takeoff will enhance mission effectiveness by helping to avoid in-flight aborts due to degraded laser output.

PHASE I: Phase I will result in the feasibility, technical design and proof of design for an apparatus and associated laptop PC interface to measure, determine and display laser output parameters. The laser output parameters will include laser exit spot size, beam divergence, average power (energy), and temporal profile.

PHASE II: The Phase II end product will be a prototype measurement system and PC laptop interface (including ability to output results to screen display, printer and word-processing files).

POTENTIAL COMMERCIAL MARKET: This system can be used as a quick, convenient method of characterizing the output of lasers located in any manufacturing facility, medical facility, or laboratory. It can also be used by companies running laser light shows to help verify compliance with FAA safety guidelines.

REFERENCES:

AF97-030 TITLE: Environmental Noise Modeling and Measurement Projects
Category: Exploratory Development

OBJECTIVE: Develop improved capabilities for modeling and measuring subsonic and supersonic aircraft noise.

AF-54
DESCRIPTION: To comply with the requirements of the National Environmental Policy Act, the Air Force must predict the environmental effects of major changes in flight operations, including effects of supersonic and subsonic aircraft noise on humans, animals and structures. Changes for which the noise effects must be assessed include the introduction of new aircraft, moves of squadrons or wings to new locations and development of new training routes, military operations areas, special use airspace and weapons ranges. In order to use scientifically acceptable methodologies for modeling noise exposure and predicting the effects of noise exposure, research and development projects are being sought in the areas of noise measurement and modeling. The Air Force has need for better noise modeling capabilities to assess the impacts of subsonic and supersonic aircraft flight activity. Proposals are invited on all aspects of noise modeling, from better propagation algorithms, innovative weather and operations data collection, noise contouring, noise measurement equipment, noise measurement procedures, and interface of models and monitoring data with Geographic Information Systems (GIS).

PHASE I: Phase I will result in feasibility analysis for various noise sources, data collection systems, microphones, methodologies, or improved plotting and GIS application.

PHASE II: Phase II will result in fully developed equipment or computer programs for modeling or measurement of aircraft noise that could be used for civil as well as military noise sources.

POTENTIAL COMMERCIAL MARKET: The research and development efforts needed to predict and assess the effects of aircraft noise will result in technical capabilities that can be used by hundreds of acoustical and contractor firms that support various federal agencies in addressing environmental noise issues. Agencies such as the Army and Navy, the Federal Aviation Administration, the National Aeronautics and Space Administration, the Department of Transportation, and the National Park Service all use commercial acoustics firms to perform acoustic analyses which could potentially use the products of the research and development sought under this solicitation. Zoning boards use it to specify land use.

REFERENCES:

AF97-031 TITLE: Laser Spectrophotometer

Category: Exploratory Development

OBJECTIVE: Develop a laser system which can measure the optical density of samples from the ultraviolet to near infrared up to an optical density of 6.0.

DESCRIPTION: The Air Force and Navy are currently developing new laser eye protection for air crew members. Measuring the protection capability of these new laser eye protection devices is difficult for several reasons. The currently available commercial spectrophotometers used to measure the optical density as a function of wavelength are limited to measurements of optical density less than 4.0 but some of these new laser eye protection devices have optical densities above 5.0. Another factor which makes testing difficult is the small sample chambers in typical spectrophotometers. Some of the new eye protection devices are helmet visors and they need to be tested in multiple places across their surface; these measurements are impossible inside the chambers of current systems. Either a larger sample chamber is needed or possibly some flexible delivery/capture system, such as fiber optics. Optical density and size are not the only problems. Some of the technologies being investigated are polarization sensitive, so the devices need to be measured while carefully controlling the incident polarization.

PHASE I: Phase I will result in the design/cost tradeoff analysis of a laser spectrophotometer system which can measure the optical density of aircrew helmet visors up to an optical density of 6.0 in the nominal visual range from 400nm to 760nm, and to an optical density of 5.0 from 200nm to 400nm and from 760nm to 1200nm. The system design will include a linearly polarized output with some method of controlling the polarization which is incident on the sample.
PHASE II: PHASE II will produce the formal design, construction, and initial testing of a spectrophotometer system. The system will be computer controlled via an IBM compatible personal computer (PC). Phase II will also produce a developed set of procedures to repeatably and reliably calibrate the system to a traceable standard.

POTENTIAL COMMERCIAL MARKET: This system can be used by companies conducting chemical research into photoactive compounds, or pharmaceutical development. The field of medical research has recently seen a rapid rise applications for photoluminescent and optical diagnostic equipment. The laser spectrophotometer system could also be used in applications where photoluminescence measurements are necessary such as in medical research where they are studying the details of chemical processes which take place in biological systems or in medical diagnostic laboratories for tissue or culture analysis.

REFERENCES:

AF97-032 TITLE: Development of Electromagnetic (EM) Dosimetric Evaluation Software

Category: Exploratory Development

OBJECTIVE: Develop novel methods to computer model propagation of radiation through biological tissue.

DESCRIPTION: An understanding of how EM radiation interacts with living tissue as it passes through the organs of the human body has direct application to public health issues, and to medical procedures like cancer treatment or imaging. Military and civilian projects involving devices which radiate EM energy cannot proceed without determination of what mechanisms are operating and what dangers actually exist. Current tools in use, primarily Finite-Difference Time-Domain (FD-TD) techniques, have computational limitations. The Air Force seeks a more efficient algorithm.

PHASE I: Phase I will result in the production of a computational demonstration of a novel algorithm for modeling EM propagation in biological tissue which will show that speed can be enhanced over current methods while maintaining good accuracy. The results will be documented in a technical report.

PHASE II: Phase II will result in the development and delivery of a mature computer program capable of accepting data defining the internal structure of a complex organism and modeling the propagation of EM energy throughout the body. Using such a data base, to be supplied by the Air Force, perform a calculation which predicts radiation conduction and energy deposition in the organism. Comparison will be made to experimental data, also to be supplied by the Air Force, for determination of accuracy, and to timed runs by the Air Force, using its own computer code, for determination of speed. A technical report will also result from this effort.

POTENTIAL COMMERCIAL MARKET: Power companies, airport, TV stations, manufacturers of cellular phones, etc. need software to evaluate the design of facilities in order to safeguard the populace. The same needs extend to the military, which also must be concerned with high-power radar and microwave communications.

REFERENCES:

AF97-033 TITLE: Toxin and Metabolite Analyzer: Breath

Category: Exploratory Development

OBJECTIVE: Develop and test a transportable laboratory- and field-deployable instrument for assessing body burden and metabolism of toxins.

DESCRIPTION: Biologic and environmental toxins are common everyday exposures in all human environments, and are special hazards in some industrial and military environments. Presently, there are no convenient or effective tools for assessing body
burden or metabolic impact of common toxins in humans. Non-invasive breath analysis has proven to be more sensitive and specific than available tests of either blood or urine for common industrial solvents in recent studies at Hill AFB. Breath analysis can be used to assess exposure to any volatile toxin and/or their metabolites, including alcohols, aliphatic hydrocarbons, chlorohydrocarbons, ketones, and others. Normal human breath contains a few to several hundred distinct, quantifiable compounds that reflect both environmental loads and metabolic products, some far larger than previously anticipated for "volatile" compounds - as large as 400 to 600 atomic mass units per molecule. Yet the analytical methods remain relatively simple and clean compared to blood, urine, or tissue analysis. The American Conference of Government Industrial Hygienists has published Biological Exposure Indices for breath levels of the following chemicals: benzene, carbon monoxide, ethyl benzene, n-hexane, perchloroethylene, trichloroethylene, and perchloroethane. A laboratory- and field-deployable tool will rapidly accelerate this area of research and will eventually lead to a much-improved clinical assessment capability.

PHASE I: Phase I will result in a proof-of-concept for the development of prototype sampling/analysis hardware. Technically feasible designs will be recommended for development during the Phase II effort, and a detailed roadmap will be provided for implementing and testing a prototype system. The results will be documented in a final technical report.

PHASE II: Phase II will result in the production of a prototype of the Phase I proposed system. Demonstrations and tests of the prototype system will be required to ensure that it meets its intended specifications and potential. Industrial hygiene/toxicology field trials will be conducted to collect preliminary data from actual operational procedures. A complete description of all the software and hardware designs along with the results of demonstrations, tests and environmental toxicology trials will be provided in a final technical report.

POTENTIAL COMMERCIAL MARKET: Once this tool is developed, it will be a "must-have" for every industrial toxicology, occupational medicine and environmental assessment program in the country.

REFERENCES:

AF97-034 TITLE: Automated Player Control Station

Category: Exploratory Development

OBJECTIVE: Develop a system which allows a single operator to redirect behavior of computer-controlled simulated entities in real-time.

DESCRIPTION: There is a requirement to manipulate and control multiple simulated entities within the conduct of multiparticipant training environments in real-time. Many synthetic learning and training environments contain a mixture of human and computer-generated participants. In order to optimize the effectiveness of the training environment, it is often desirable to introduce, eliminate, or alter in some way the actions of the computer-generated entities. For example, the instructor may wish to reposition computer-controlled entities or change their goals during the execution of a real-time training exercise to force the human players to learn to react to the unexpected. There are a number of instances in which the ability to control the simulated entities "on the fly" would result in more effective training. Current capability in this area is extremely limited. The entities are identified and positioned in advance according to prespecified scenario scripts and once the exercise has started, the entities perform in a preprogrammed fashion through the conclusion of the scenario. In addition, current displays depict the location and type of computer-generated entities in two-dimensional plan views. In many training environments, the activity is taking place in three dimensions. A three-dimensional display would aid the instructor or entity controller to more effectively decide when and how to introduce changes to the ongoing training activity. Initial applications would involve control of airborne enemy threat vehicles operating in a multiservice simulated combat scenario.

PHASE I: Phase I will result in a system requirements analysis to include computational requirements, networked information transmission requirements, a proposed functional architecture, and estimated time and cost to develop and implement the proposed system. The results of Phase I will be documented in a technical report.
PHASE II: The results of Phase II will be a preliminary system specification, development of software necessary to support a feasibility demonstration of the system to a selected application area within the multiservice distributed combat training area, and a real-time feasibility demonstration. The results of Phase II will be documented in a technical report.

POTENTIAL COMMERCIAL MARKET: The capability provided by this effort will be an asset to all forms of education and training which involves real-time operation of training scenarios in which the behavior of any entity is depicted with a computer-generated, automated (or semi-automated) program. The flexibility afforded by being able to adapt the training environment "on the fly" according to the instructional goals and behavior of the human participants should significantly increase the overall training effectiveness. Training of air traffic controllers, assembly line operators, surgical teams, firefighters, and law enforcement teams are examples of application areas that should profit from this technology. Additionally, this capability could be applied to some nonreal-time areas for aiding in the decision making process for rapid prototyping or design work, e.g., highway/traffic flow management and design.

REFERENCES:

AF97-035 TITLE: Development of Authoring Tools for Advanced Internet Multimedia Training Delivery

Category: Exploratory Development

OBJECTIVE: Develop prototype authoring tools that support development/maintenance of Internet Multimedia Training.

DESCRIPTION: There is a requirement for authoring tools which support easy development and maintenance of interactive training systems on the Internet. The Internet is a new gateway for delivering instruction worldwide through individual interaction and group interaction. The opportunity here is to provide training in a greater capacity by reaching more personnel in more geographically diverse situations. Access to training and efficiency and cost effectiveness of training delivery is essential. The Internet supports a multitude of training delivery requirements but the current education and training delivered through the Internet is a melting pot of multimedia styles, methodologies, and software. The requested proof-of-principle Internet authoring tools should be able to apply graphics (3-D, still graphics, image maps, etc.), Java scripts, hypertext markup language (HTML), video, sound, animation, and simulation as a minimum. The proof-of-principle authoring tools will be used to develop training in several domains and will be evaluated in a fielded environment. This is an opportunity to create new instructional strategies and evaluate them empirically and pedagogically in a fielded environment as well as using current pedagogically sound instructional strategies from a laboratory environment and proving them in a field setting.

PHASE I: Phase I will result in proof-of-principle development tools and a technical report which demonstrates that it is possible to provide instructional authors with the capability to easily implement Internet/multimedia instruction that is pedagogically sound, in that it is based on instructional strategies validated through pedagogically sound empirical research.

PHASE II: Phase II will result in an expanded full-scale, tested authoring system prototype and a technical report supporting a broad range of instructional domains requiring different pedagogical strategies.

POTENTIAL COMMERCIAL MARKET: Dual-use potential exists for commercially viable authoring tools which can be marketed as Internet/multimedia authoring tools. Examples might include technical areas such as flight dynamics, orbital mechanics, computer programming, aircraft maintenance, aircrew training, and medicine or in academic areas such as fundamental skills, statistics, foreign languages, etc.

REFERENCES:
AF97-037 TITLE: Electronically-Assisted Ground-based Learning Environments (EAGLE)

Category: Exploratory Development

OBJECTIVE: Develop electronic learning systems to reduce aircrew (academic) knowledge preparation time/effort for aircraft training.

DESCRIPTION: A requirement exists to reduce time and workload associated with aircrew ground-based, pre-simulator, and pre-mission training. A transfer-of-training "gap" exists between the acquisition of knowledge in the classroom (academics) and its implementation in the cockpit. Part of this challenge includes assisting the pilot in comprehending the complex interaction of multiple aircraft in the context of mission engagements. This comprehension is essential to the accurate conceptualization of air combat tactics as a precursor to simulator and aircraft training. Recent research indicates application of modern modeling and simulation technologies could significantly improve the impact of academics phases upon subsequent training of aircrews.

PHASE I: The objective of Phase I will be to conduct a comprehensive data collection and analysis of the challenges, feasibility, and expected benefits of EAGLE for aircrew training. Work completed in this phase will be documented in a technical report.

PHASE II: The objective of Phase II will be to develop and implement a prototype EAGLE in an operational aircrew training setting. The system and its implementation and evaluation will be documented in a final technical report.

POTENTIAL COMMERCIAL MARKET: EAGLE would increase the efficiency of aircrew training by overcoming learning problems and instructional drawbacks which impede current academics programs. EAGLE would have general applications in many aspects and levels of public, private education, and industrial training programs. Such learning systems would enable instructors to employ visual and acoustic displays to generate and manipulate simulations of many complex and potentially dangerous tasks and phenomena, e.g., heavy equipment operation, chemical and nuclear processes, and abstract scientific/mathematical concepts which are difficult to learn via static, e.g., textbook or linear media, e.g., videotape. High school and college students must learn math and physics principles, which involve some of the same time and motion components, as do pilots. Computer-controlled electronic learning systems will facilitate concept demonstration and practice, and cooperative exploration of such topic materials in the classroom without the complications, potential hazards, and expense of using physical processes and materials.

REFERENCES:

AF97-038 TITLE: Intelligent Agents for Education and Training Applications

Category: Exploratory Development

OBJECTIVE: Develop intelligent agent(s) for delivery of adaptive training systems in synthetic environments.

DESCRIPTION: There is a requirement for software methods (intelligent agents) to automate the process of individualizing instruction in multi-user synthetic environments. These agents would perform the functions of what is conventionally referred
to as the instructor and expert models in intelligent tutoring systems; however, in addition to the functions performed by these models, agents would be capable of operating in simulated environments with multiple students, each performing actions which can alter the environment. Consequently, agents must be a part of the simulated environment, acknowledging changes in it effected by other agents or students and taking these changes into account when providing instruction to the student. These agents must be capable of autonomously learning individual student abilities, selecting instructional objectives, and coaching/remediating an individual student in a multi-user synthetic environment.

PHASE I: Phase I will result in a technical report including a review of existing capabilities of intelligent agent architectures, particularly for pedagogical purposes, specifications for implementing such an agent in a synthetic environment, and a suggested approach for doing so.

PHASE II: Phase II will result in the development of a pedagogic intelligent agent, its implementation in a synthetic environment, and a technical report.

POTENTIAL COMMERCIAL MARKET: This agent-oriented architecture can be applied to education and training systems within the DoD, private and public education institutions, and commercial training organizations. Products developed under this topic can be sold directly to corporate training departments and consulting firms which produce training for their clients. In addition, they can be used to produce training systems for particular subject matter, such as, math or science, and sold through software publishing companies directly to the public or educational institutions.

REFERENCES:

AF97-039

TITLE: Virtual Reality for Embedded Assessment of Personnel Characteristics

Category: Exploratory Development

DESCRIPTION: There is a requirement for creating a personnel assessment system that is embedded in a virtual reality scenario. Given limitations of current assessment methods, it is envisioned that the proposed product will consist of a virtual reality technology that encompasses the advantages of current selection test methods, but also uses state-of-the-art technology to address limitations of current assessment systems. Specifically, the proposed product will require candidates to perform a virtual reality task so challenging and intrinsically interesting that the evaluation aspects will not be salient and, therefore, the behavioral responses will be more reflective of typical compared to maximal performance. The task will superficially resemble a job sample, as it will require a continuous series of responses to stimuli, as compared to a test battery made up of discrete subtests or tasks. The net effect of this assessment format will never be obvious to the candidate as to precisely how or when responses are being scored. As a result, this system will add to the validity of current assessment procedures.

PHASE I: Phase I will result in the specifications of the virtual reality task, including hardware and software requirements, the nature of the task, and the methodology for embedding reliable and valid performance measures into the task. The specifications will be documented in a technical report. Phase I will also result in a prototype version of the virtual reality task that demonstrates the feasibility of the embedded assessment methodology.

PHASE II: Phase II will result in full-scale development of the embedded assessment system and in an empirical demonstration of the reliability and validity of the system for measuring job-related characteristics. The results will be documented in a technical report. Software will be delivered, tested, and validated.

POTENTIAL COMMERCIAL MARKET: The virtual reality embedded assessment system will have applications to any military or civilian organization that selects, classifies and assigns employees to perform jobs in complex technological environments. Other possible applications include job analysis and cognitive task analysis for situations in which no empirical data is available, such as the proposed design of the flight deck for a next-generation aircraft.
REFERENCES:

AF97-041

TITLE: Full-Color, High-Definition Head-Mounted Display for Pilot Training

Category: Exploratory Development

OBJECTIVE: Develop a prototype head-mounted display for use in pilot training applications.

DESCRIPTION: It has been shown that near 20/20 visual acuity head-mounted displays (HMD) are required for high fidelity pilot training. The Air Force is seeking innovative dual-use, lightweight HMD technologies capable of presenting a full-color, high-definition (4620 x 2600 minimum resolution) display. In addition, the display should have a center-of-gravity approximating that of the user’s head and be capable of wireless, video signal transfer to allow unencumbered use. Reliability and maintainability must be considered.

PHASE I: Provide a technical report determining feasibility of the concept and provide a demonstration of the feasibility of the display.

PHASE II: Phase II will result in prototyping and testing the system proposed under Phase I and a technical report.

POTENTIAL COMMERCIAL MARKET: Dual use potential exists for commercial flight simulation, air traffic control, video games, and scientific applications.

REFERENCES:

AF97-042

TITLE: Design of Scenario-Based Test Technology for Job Performance Measurement

Category: Exploratory Development

OBJECTIVE: Develop a system to create job knowledge tests that measure airmen’s capability within their job context.

DESCRIPTION: There is a requirement for job knowledge and skills tests that are plainly relevant to successful job performance. Present job knowledge and skills tests are sometimes criticized by senior non-commissioned officer’s (NCO’s) for capturing test-taking ability, measuring book knowledge, placing too much emphasis on verbal abilities, and missing pertinent job knowledge. Advances in cognitive task analysis have shown that by placing airmen in contexts of task completion, knowledge that is critical to successful task completion is made salient; background knowledge that is irrelevant is safely ignored. What is really needed is a test development system that creates scenario-based tests that clearly measure airmen’s ability to perform within the context of their job. Scenario-based tests will require three phases for test development. The first phase is constructing realistic and representative test scenarios. To take an example from car mechanics, one scenario is that a car doesn’t start one morning when the operator turns the ignition key; the underlying cause is a rotted cable from the car battery. The second phase is presenting the scenario to the test-taker so that the flow of the scenario is maintained. The third phase is scoring the test takers’ proficiency. Although the scenario-based test system can assume that multi-media and virtual reality presentation modes are available for test delivery when appropriate; this project is concerned with methods and tools for developing scenario-based tests rather than the development of high-fidelity presentation media.

PHASE I: Phase 1 will result in a prototype version of the scenario-based job knowledge and skills tests for one enlisted Air Force specialty. It will also result in documented specifications for (1) test construction, (2) software, (3) hardware,
and (4) maintenance requirements for keeping the scenario-based tests current as the Air Force technology grows.

PHASE II: Phase II will result in a software package for the development of scenario-based job knowledge and skill tests. This software package might be sold as expert system shells are sold today. The "Job Assessment" shell might lead the user through (1) how to specify a representative set of job scenarios; (2) how to present scenarios to the test taker and collect responses from the test taker, and (3) how to score the test taker. The software package should be tested by developing scenario-based job knowledge and skills tests for at least four enlisted Air Force specialties. The specialties for which tests are built must include at least one specialty from each of the four classes of Air Force Specialty Codes (AFSCs) (electronic, mechanical, administrative, and general). The tests should be evaluated for validity and reliability.

POTENTIAL COMMERCIAL MARKET: Scenario-based job knowledge and skills tests can be applied in any organization, public or private, that wishes to accurately evaluate the capability of its workers. Occupations which can be evaluated by scenario-based tests include doctors, mechanics, bankers, florists, administrators, cashiers, teachers, or any occupation listed in the Department of Labor's Dictionary of Occupational Titles.

REFERENCES:

AF97-043 TITLE: Innovative C4I Technologies

Category: Exploratory Development

OBJECTIVE: Develop innovative technologies for enhancing the performance, availability, and affordability of C4I systems and subsystems.

DESCRIPTION: Proposals may address any aspect of C4I pervasive technologies not specifically covered by other SBIR topics. Areas of interest include, but are not limited to, innovative concepts and technologies in: communications, including networks and network management, radio, and wireless communications; signals exploitation; intelligence data handling; sensor exploitation radar signal; image and speech processing; computer science, including high performance computing, parallel processing, distributed systems, computer systems technology, and artificial intelligence; applications of photonics systems for ultra-fast optical communications and optical data storage; electromagnetic (EM) technology, including phased array antennas, null steering and scattering, and computational electromagnetics; reliability and diagnostic technology; virtual reality and other information presentation technologies; data fusion; and information warfare technologies emphasizing information protection. This topic offers great flexibility for proposers to offer innovative technologies with revolutionary impact on C4I systems and subsystems. Proposal titles must reflect the specific technology problem being addressed.

PHASE I: Provide a report describing the proposed concept in detail and show its viability and feasibility.

PHASE II: Fabricate and demonstrate a prototype device, subsystem, or software program.

POTENTIAL COMMERCIAL MARKET: Many C4I technologies have substantial dual-use potential and will impact competitiveness and performance of the commercial sector as well as the military sector. All solutions proposed must have potential for use/application in the commercial as well as military sector, and potential commercial applications must be discussed in the proposal.

AF-62
AF97-044 TITLE: Large-Scale Knowledge-Base Technology

Category: Exploratory Development

OBJECTIVE: Develop tools and techniques to provide seamless access, storage, and retrieval of knowledge within massive knowledge base systems.

DESCRIPTION: Large-scale knowledge-base (KB) technology will provide the foundation for intelligent systems that can quickly search massive KB's for relevant information; help users to evaluate the effects of complex courses of action; and work with users to develop, share, and effectively use knowledge about complex systems and processes. Distributed KB's will be the backdrop of all intelligent systems. Widely shared KB's, coupled to reasoning programs, will help transform data into information, supplying necessary but missing detail to a number of Air Force and commercial domain applications.

Mechanisms to be investigated include but are not limited to; KB libraries and associated construct/edit tools, KB acquisition/discovery tools, and high performance KB computing techniques. Advanced tools and techniques in these areas will allow system developers to build large-scale knowledge bases (millions of objects) quickly and economically and efficiently deal with excessive demands for querying mixed media resources. Proposals may also draw on current visions involving the Internet and the way autonomous intelligent information specialists might populate cyberspace in the future. To do so will involve looking at the future directions of KB systems, with focus on large-scale knowledge-bases and applications.

PHASE I: Identify, investigate, and prototype advanced knowledge-base capabilities and identify potential Air Force and commercial users of these products.

PHASE II: Develop and demonstrate unique large-scale knowledge-base capabilities and tools from phase I in both Air Force and commercial domains.

POTENTIAL COMMERCIAL MARKET:
Rapid accessibility to integrated, massive KB's increases choices for consumers in both civilian and defense applications. This technology could have a major impact on applications that require integrated decision making and timely and accurate information such as nuclear power plant control, autonomous vehicles, aircraft operation, hospital life support systems, decision support systems, and military command and control.

AF97-045 TITLE: Automatic Code Generation for Real-Time Parallel

Category: Exploratory Development

OBJECTIVE: Develop techniques or prototypes for migrating legacy real-time sequential code onto high performance computing platforms.

DESCRIPTION: In order for embedded real-time legacy software systems to realize the increased processing power available on high performance computing architectures, software support is required to help minimize the cost/effort involved in migrating these systems. Automatic parallel code generation is one area of research that could make a significant impact in the process of migrating legacy real-time systems. Automated code generation would significantly reduce the level of effort involved in rewriting sequential software so that it will run on these new hardware platforms. Automatic parallel code generation can be looked at from several different aspects. One approach is to provide techniques that allow sequential code (Jovial, C, Fortran, Ada) to be synthesized, identify the inherent parallelism, and then automatically produce the parallel code for the selected high performance architecture. Another approach would be to graphically represent the inherent parallelism that exists in the sequential code, allowing the developer to manipulate the graph, and then from the graph generate parallel code. The goal of this topic is to define a practical technique for automatically generating parallel code for real-time systems. This technique will then be demonstrated on a real-time C4I application.

PHASE I: This phase will develop the requirements for a prototype system, as well as a working demonstration of the system for automatically generating parallel real-time code.

PHASE II: This phase will develop a working prototype of the proposed system. The final deliverable under this phase will be a beta version of the automatic parallel real-time code generation system.

POTENTIAL COMMERCIAL MARKET:
The proposed research possesses significant application to the development of a number of commercial computer and software systems. Areas of potential commercial use exist in modeling and simulation, database transaction processing, and medical

AF-63
imaging systems.

AF97-046 TITLE: Multi-Source Collaborative Distributed Information Systems

Category: Exploratory Development

OBJECTIVE: Develop a multi-source collaborative environment in which geographically dispersed users can jointly edit, create, view, and manipulate multi-source data.

DESCRIPTION: C4I application environments which support collaborative computing requirements on a large scale have never been sufficiently investigated. Most existing collaborative systems emphasize a point-to-point communication capability for information sharing. A collaborative environment supporting such applications demand real-time information exchange and synchronized group decision making. Therefore, new techniques are needed to ensure synchronization of objects/applications in a distributed environment, exploitation of shared memory, and buffer management mechanisms for information management and new concepts associated with message passing and remote procedure calls. Intelligent real-time mechanisms or agents are required for providing integration of multi-source pieces of information from heterogeneous collaborative distributed data information systems. These advanced agents will provide services for encapsulation of processes for correlating multi-source data residing on distributed repositories for sharing among users in a collaborative distributed environment. This environment would provide an advanced collaboration domain between users with the support of a powerful distributed data information system which can provide a wide variety of services. Such an environment can be used to support the C4I for the Warrior, the Joint Warrior Interoperability Demonstrations (JWID), and DARPA's Joint Task Force (JTF).

PHASE I: Design and development of the techniques to support a collaborative information environment mentioned above.

PHASE II: Demonstrate a complete integrated collaborative information environment.

POTENTIAL COMMERCIAL MARKET:
This technology will have a major impact on applications that require information to be pulled together from different data information systems for collaborative group decision making. Typical applications include joint planning systems, aircraft operations, surgical diagnosis for physicians, logistics, disaster relief, and educational services

AF97-047 TITLE: Futuristic C5I (Collaborative C4I) Technologies

Category: Exploratory Development

OBJECTIVE: Develop methods to maximize speed and quality of planning, wargaming, and battlefield management via improved data visualization, navigation, and manipulation for collaborative knowledge based systems.

DESCRIPTION: To be responsive to 21st century demands of the information warrior, the Air Force must be more responsive to short time scales for decision making and delivery of increasing amounts of information. For example, planning for air battle command operations must be done quickly in order to increase the tempo of operations. People and databases involved in tri-service battlefield interactions, such as Planning and Control, may be geographically distributed. The ultimate goal is to give the battlefield commander and support staff access to all information needed to win the campaign - when they want it, where they want it, and how they want it. Systems are needed to augment human intellect and understanding and support collaborative decision making through "virtual" meeting facilities. Methods for data visualization are also needed so that users can navigate through and discover information on the way. Improvements to current state-of-the-art data visualization and manipulation technologies must provide a paradigm shift away from stand-alone documents and isolated information systems to a heterogeneous collection of malleable interdependent documentation and supporting data accessible through internets and intranets via linking. This effort will integrate knowledge, tools, and management processes by designing the collaborative communication-oriented aspects of Air Force applications (e.g., distributed planning environment, wargaming, and battlefield management scenarios) with visual methods to integrate various kinds of data (e.g., journals, email, plans, and time lines) and tools needed to make their decisions as a team.

PHASE I: To be responsive to this SBIR topic, any one of the following three Phase I objectives may be met:
1. Investigate hypermedia capability infrastructure (such as integrated applications, explicitly structured documents, addressable objects, view control, shared screens, and hyperdocument libraries) needed to support collaborative knowledge based
systems for planning, identifying commercial information technologies that provide such functionality, and proposing a strategic design for developing the key elements of such a system.

2. Identify current limitations and proposed innovative techniques which offer significant improvements over current state-of-the-art data visualization and manipulation technologies.

3. Develop a prototype tool for textual information. This tool should allow a user to navigate (browse) the information space graphically, without resorting to typed queries. In Phase I, the amount of data may be limited to several domains in order to show the feasibility of the technology being pursued.

PHASE II: The following are objectives for Phase II:

1. Design, develop, and demonstrate a prototype collaborative system on a real Air Force planning problem.
2. Accomplish a prototype development and/or demonstration which incorporates and demonstrates the proposed Phase I enhancements.

3. Further develop the Phase I prototype to handle a much larger amount of textual information. This data will vary widely in its subject area, in order to show how the techniques used can deal with the visualization of information from many different domains. A sophisticated graphical user interface will be developed to allow the user to navigate through the data in a non-obtrusive manner, discovering the data they need in the process.

POTENTIAL COMMERCIAL MARKET:
Although military systems might have shorter time scales and require more integrity due to the potential loss of human life in Air Force missions, all commercial organizations have similar needs for better organizational performance. Despite the enormous investments in information technology, white-collar productivity has risen slowly. One reason for this disappointing result is that today's computer systems fail to truly augment knowledge workers in their tasks. The technology from this SBIR will help improve end-to-end management processes in a wide range of management information situations in business such as digital libraries and financial domains, the medical community, and education

AF97-048 TITLE: Active Intelligent Information Environments

Category: Exploratory Development

OBJECTIVE: Develop a common core of capabilities for designing, developing, and integrating large-scale active information systems.

DESCRIPTION: As the 21st Century approaches, we are just entering the knowledge age in which we must develop new knowledge from data and information. Integrated access and cooperation among functionally independent intelligent systems and information bases is becoming increasingly critical to support planning and optimization efforts for a number of applications. Quite often, complexity is overwhelming due to several interrelated factors - timely access, vast amounts of data, diverse data types, ability to share large amounts information, difficulty in defining the goals and constraints of the problem, dynamic and stochastic environments, and independently developed and geographically-distributed subsystems.

DARPA and Rome Laboratory are exploring ways to evolve growth and usable potential of large-scale information systems. However, research is needed to bring active information systems development and integration into the next century. Basic research in areas such as knowledge discovery and active knowledge base technology will help provide more value from data, as well as help the knowledge to be managed more efficiently so that information can be automatically filtered, manipulated, and summarized. Research areas of interest include: collaborative computing techniques, representation languages and standards, negotiation and reasoning protocols, planning, resource allocation techniques, intelligent active data/knowledge bases, problem solving, machine learning, and human-computer interaction. In addition, techniques are needed to monitor and update large amounts of data/information, maintain configuration management, and permit change notification and consistency control in information systems.

Mechanisms to be investigated include (1) information rich hypertext web technology, (2) use of objects for real-time information integration, (3) seamless information access and collaboration, and (4) evolvable data/knowledge base primitives for scalable information aggregation/processing. Technical challenges include use of video, fax, graphics, images, voice, and textual data for domain engineering and architcting.

PHASE I: Investigate development of techniques for designing, developing, and integrating large-scale active information systems using massive multi-source data rich repositories.

PHASE II: Demonstrate an integration environment for core knowledge bases in appropriate scalable information processing domains/platforms.

AF-65
POTENTIAL COMMERCIAL MARKET: Rapid accessibility to integrated systems and information increases choices for consumers in both civilian and defense applications. This technology could have major impact on applications that require integrated decision making and timely and accurate information such as planning/scheduling systems, autonomous vehicles, aircraft operation, hospital life support systems, decision support systems and personal military command and control.

AF97-049 TITLE: Smart Networking Radio Technology

Category: Exploratory Development

OBJECTIVE: Develop an advanced radio technology which supports intelligent, seamless, and robust information networks.

DESCRIPTION: The U.S. has a global communications requirement to enable rapid application of air combat power via assured connectivity with timely, reliable, responsive, yet affordable, dissemination of information from HQ's down to the lowest, mobile, tactical force elements. The Air Force needs innovative research to enhance our ability to transfer large amounts of data, quickly, accurately, and securely. This data includes voice, image, and computer data. Researchers must identify promising wireless technologies which will provide substantial immunity to hostile action (electronic warfare), maintain connectivity in the face of battle damage (link outages), meet requirements for high performance in capacity and timeliness, be user-friendly, and enable transparent connection and interoperation with other services and friendly forces.

Specific task areas for innovative research include methods and techniques that:

- Enhance Quality of Service (QoS); Speed of Service (SoS); streamline interfaces to wide area information assets and advance radio architectures; and increase modularity, programmability, security (including Low Probability Intercept/Detection and Anti-Jam techniques), interoperability, and compatibility throughout various military and civil services and across the frequency spectrum.

- Enable radios to sense and dynamically adapt to the signal environment and demands for services. The radios should optimize performance through signal detection, waveform recognition, parameter estimation, passive surveillance, interference excision, resource management, and mobility management. Expert system-based radio and network control should be an avenue for consideration.

- Enable radio operators; via flexible, user-friendly man-machine interfaces (MMIs); to quickly and efficiently manipulate functions within integrated communications assets, with minimal errors and training.

- Provide efficient means to model innovative communications technologies as custom software module(s) for commercial-off-the-shelf link and network simulation environments. Also, identify the optimum configuration of future wireless tactical communication networks and their interfaces into commercial networks (e.g., Asynchronous Transfer Mode (ATM), SONET, etc.). For example, using computer models, demonstrate the effects of the channel on innovative image and speech compression techniques; or demonstrate innovative techniques for processing data over dynamic wireless radio networks, such as may be encountered in a stressed (loss of links, high noise/interference, difficult terrain, etc.) military or commercial environment.

- Define the framework for integrated control and management architectures containing detailed protocol options. Establish seamless internetworking radios and a framework to specify user access interfaces and subnetwork coupling options for the integration of commercial/tactical networks.

PHASE I: Identify techniques, explore algorithms, design interfaces, analyze, and define designs for task areas a-e above. Provide comparison and simulation support for design decisions and detail trade-offs. Supply test and analysis data. Justify both military and commercial potential for Phase 2.

PHASE II: Develop and demonstrate, usually through hardware fabrication or some form of prototyping, Phase I algorithms, concepts, or techniques. Provide comparison between this phase of implementation and Phase 1 analysis and computer simulation. Supply test and analysis data. The end result should show clear potential for commercialization.

POTENTIAL COMMERCIAL MARKET:
The commercial sector is urgently in need of secure, reliable communications which are free of benign interference and noise. Advanced communications techniques; such as spread spectrum, interference excision, waveform recognition, etc.; perform as well to counter noise, interference, spectral congestion, and other civil communications difficulties. Innovations in multi-band antennas and couplers, wideband transceivers, and MMI techniques are also transferable to the commercial user. Conversely, commercial communications means will be exploited extensively for military use. Programmable and flexible interfaces between military radio equipment and commercial networks will enlarge dual-use potential.

AF-66
AF97-050 TITLE: CAD Conversion Tools for VHDL-MS Library Generation

Category: Exploratory Development

OBJECTIVE: Develop an automated tool environment converting existing Simulation Program with Integrated Circuit Emphasis (SPICE)-based models into an IEEE VHSC Hardware Description Language-Mixed Signal (VHDL-MS) compliant model.

DESCRIPTION: There is an increasing need for electronic design automation (EDA) tools to support the mixed-signal (digital/analog) design engineer. The mixed-signal language extensions to VHDL, known as VHDL-MS (IEEE P1076.1), provide the basis of a solution. For VHDL-MS to be immediately useful, however, there must be a mechanism available for utilization of the vast number of existing libraries of simulation models implemented for SPICE and other mixed-signal and analog simulators. The ability to provide for the reuse of existing analog and mixed-signal models within VHDL-MS will allow the analog and mixed-signal design engineer to benefit from the top down and multi-level abstraction design approaches available through the use of VHDL-MS. The technical challenge is to design tooling which will take the existing analog simulation models and convert them into VHDL-MS compliant source code. The availability of such a tool would allow users to quickly realize the benefits of reduced system design time, technology and vendor independence, and system life cycle support in their design process.

PHASE I: This phase will consist of the development and documentation of the scope of the generators and the approach which will be taken in their development.

PHASE II: This phase will develop and document the generators with both alpha and beta releases completed.

POTENTIAL COMMERCIAL MARKET:
The ability to provide for reuse of existing simulation models with VHDL-MS will allow design engineers to benefit from the advantages of VHDL-MS, such as multi-level abstraction, without starting their designs from scratch. This technology will dramatically reduce the initial design cost for both commercial and military applications. As further capabilities are added to the VHDL-MS tools, a mature mixed-signal modeling and simulation environment will be developed, thus filling the void in existing proprietary approaches to design, diagnostics, and test of analog and mixed-signal electronic systems. Tools developed for this area will provide a decrease in the development time as well as reduce overall system costs including those of initial system design, life cycle support, and reprocurement for both commercial and military applications. This technology will have a major impact on applications for automobiles, communications, medical, and aerospace systems.

AF97-051 TITLE: Electromagnetic Environment Sensing/Recording System

Category: Exploratory Development

OBJECTIVE: Develop a system to monitor, record, and time correlate electromagnetic fields.

DESCRIPTION: Electromagnetic (EM) fields are suspected of causing system upset and failure on Air Force platforms. An understanding of the fields at the time of system upset can improve system reliability, reparability, and ultimately availability and maintainability. This is especially true for C4I systems being developed which employ large phased array radars for airborne surveillance systems. An understanding of the EM environment will be obtained with the development of an electromagnetic environment sensing/recording system. The environmental sensing system is a sensitive, wide bandwidth EM energy sensor system that will detect, record, and time correlate the real time occurrences and wavelengths of high EM fields on military platforms with a minimum of measured field perturbation. Sensor power and data are passed between the remote sensor and the centrally located signal processing unit in such a way as to minimizing the interaction between these signals and the environment. The signal processing unit performs the frequency discrimination and data recording functions. The functioning system will provide a powerful troubleshooting tool correlating EM environmental data with other upset/failure reports and data to significantly reduce costly Retest OK (RTOK) often encountered when equipment is brought into Air Force or contractor facilities for first or second level repair action. The EM environment sensing system will be designed to be utilized as both a stand alone system, or as a “smart” sensor for a Time Stress Measurement Device (TSM) system, depending upon monitoring requirements. The EM sensor system capability can also be applied to areas such as commercial aircraft, fly by wire systems, automotive digital engine/transmission controls, air bags/antilock brakes, digital displays/entertainment systems, nuclear power plant monitoring/control room status displays, alarms and reactor control signals, and anywhere where wireless communication systems are utilized. All of these areas are known to have problems with EM fields of various levels.

PHASE I: Phase I involves the conceptual development of the system. Particular interest is in the signal processing
electronics, and the interface of the sensor to the signal processing electronics. Realizing a prototype of the frequency discriminating system would be of great benefit.

PHASE II: Phase II involves the design, fabrication, and demonstration of a prototype stand alone system, with plans for interfacing with TSMD technology.

POTENTIAL COMMERCIAL MARKET:
Commercial markets would be the airline manufactures, especially with the fly-by-wire systems being developed such as used in the Boeing 777; hospital life support and monitoring equipment manufactures; wireless communication network manufactures

AF97-052 TITLE: Prognostic Assessment Technique/Tool for Electronic Equipment and Systems

Category: Exploratory Development

OBJECTIVE: Develop prognostic techniques and hardware for assessing health of electronic equipment/systems.

DESCRIPTION: Microelectronic semiconductor devices degrade as they age (transistor diffused or doped regions degenerate, metal / semiconductor contacts break down, metal traces degrade from electromigration, etc.) there is potential to measure system level radiated signals with external (non-contact) probing for the purpose of assessing the health of electronic equipment. The device level degradation causes reduced device and system performance. Furthermore, (as the equipment ages) this degradation may modify the ambient radiation inherent to all electronic equipment and can potentially be measured by external non-contact probing of various signals. Thus an innovative technique designed to measure and characterize life-cycle status of electronic equipment and predict necessity for replacement of system components is desired. It is envisioned that the technique/tools developed would have the capability to predict/estimate time to failure for the system under test and provide advance information on the life-cycle disposition of an electronic system. Additionally, the technique should have the ability to localize degraded devices within the system.

PHASE I: This consists of identifying appropriate measurable signals that are indicative of the health of electronic equipment and testing the feasibility of using these signals as a diagnostic/prognostic indicator for equipment under test. This may include simulations and empirical testing of hardware.

PHASE II: This phase would entail building a prototype system to be used as the prognostic tool (sensors, data processing, analysis of recorded information, etc.).

POTENTIAL COMMERCIAL MARKET:
There would be a large commercial potential from this effort. The ability to assess the health of electronic equipment could potentially dramatically impact both military and commercial practices regarding electronic equipment and maintenance

AF97-053 TITLE: New Diagnostic Tool for Evaluation of Material Surfaces

Category: Exploratory Development

OBJECTIVE: Develop a marketable technique for routine measurement and comparison of material surfaces during integrated circuit manufacture.

DESCRIPTION: The problem is that the reliability of microelectronic devices is dependent on the consistent quality of material surfaces and interfaces. There is no routine measurement to provide a simple complete surface description. The technical challenge is to develop a new diagnostic tool for evaluation of material surfaces to determine consistency of current manufactured lots with previous known "good" lots. Surface structure is known to change with deposition and substrate parameters. Presently there is no standard method to determine the quality of the surface or to compare one surface with another surface. Grain size, surface roughness, and grain orientation are parameters to be considered, but they need to be monitored and analyzed in such a way as to promote easy comparisons. One technique might be to determine the fractal dimension of the surfaces using a kinetic model with Smoluchowski equations and Jullien's solution.

PHASE I: Develop a robust, consistent technique for routine surface quality measurement of nanometer structures.

PHASE II: Manufacture and market tool for use by microelectronic firms to routinely monitor surface quality of materials used in microelectronics.

AF-68
POTENTIAL COMMERCIAL MARKET:
A readily available technique for surface quality measurements is imperative to producing high quality reliable microelectronic devices for both commercial and military applications. Such a technique would allow in-process monitoring of microelectronic materials for surface and interface quality before addition of more value to the product. The tool would also assist small companies with older deposition equipment to produce a high quality, more reliable product. Resultant reliable devices would be available for commercial (medical, transportation, and communications) and military (transportation, communications, and weapons) applications at more competitive prices.

REFERENCES:

AF97-054 TITLE: Design Tools for Minimizing Electronic Failure

Category: Exploratory Development

OBJECTIVE: Develop a computer aided design tool minimizing the failure of Very Large Scale Integrated (VLSI) microcircuits and integrate them.

DESCRIPTION: The failure of electronic components and systems has adverse effects on the readiness, effectiveness, availability, and affordability of military systems. It increases maintenance costs, and aggravates the quantity of spares required during deployment. Managing the failure of electronic systems and components involves building electronic systems and components that are not susceptible to end of life failure mechanisms, and that can perform the required functions when some of the components or some part of a component has failed. In order to build reliability into electronic components and systems, design techniques and tools must be developed which guide design processes such as synthesis and technology mapping based on reliability and fault tolerance. Reliability analysis and simulation during logic design assist in making circuits reliable.

The management of failure includes constraining circuit susceptibility to failure mechanisms like electromigration through design processes such as synthesis and technology mapping, analyzing physical layouts of VLSI designs to make the design more robust, and exploiting fault tolerant design techniques to increase the reliability of the overall circuit when some portion of it has failed. The models, algorithms, and techniques will be integrated into a commercializable CAD tool that can be interfaced with commercial design frameworks, and employ widely accepted design modeling languages such as VHDL Hardware Description Language (VHDL)

PHASE I: Define and detail the proposed algorithms that need to be developed and implemented. Create a preliminary design of the proposed methods and tools including the interfaces to commercial design frameworks

PHASE II: Develop the proposed algorithms and techniques and implement them in a prototype tool that can be commercialized. Investigate how the proposed methods and algorithms affect circuit area, power, and performance.

POTENTIAL COMMERCIAL MARKET:
The ability to manage circuit failure during the design of the circuit reduces the time required to develop advanced microcircuits, while maintaining high confidence in the availability of electronic systems. This technology is important both for the use of these circuits in military applications and in the commercial sector. The tools developed under this topic will have a significant effect on military electronic systems because the failure of the electronics can severely damage mission success rates and increase system support costs and the number of spares needed. The tools will reduce development time, which is the driving force for commercial electronics and defines the profitability of electronic companies. Electronic systems will benefit by reducing the number of spare parts needed when they are deployed by reducing the amount of time needed for system repair, and by increasing the availability of the system for operational use. Tools developed for this area will reduce the overall cost and time associated with developing reliable advanced microelectronic circuits. End of life failure mechanisms, that pervade the circuit population, must be eliminated as early as possible during circuit development. The tools developed under this topic will enable circuit designers to minimize the circuit’s susceptibility to these mechanisms, and minimize the effects of device failure on circuit performance. The tools will reduce life cycle support costs for both military and commercial electronics including automotive, communications, and aerospace applications.

AF-69
AF97-055 TITLE: Ultra-High Speed Bit Error Rate Tester

Category: Exploratory Development

OBJECTIVE: Develop a 25Gbit/s bit error rate tester (BERT).

DESCRIPTION: Current fiber optic links have only partially realized the enormous bandwidth available using single-mode optical fiber. The military and the telecommunications industry have had bandwidth requirements which have been increasing each year by a factor of greater than two. These demands are driven by the transmission of images and the increase in traffic on the world wide web. Current commercial systems operate at speeds up to 2.5Gbit/s with future upgrades planned for 10Gbit/s (OC-192). The Air Force and several other government agencies have immediate requirements for data transmission rates in the 10 to 40Gbit/s range and future requirements as high as 100Gbit/s. DARPA has a new program entitled "Ultra Photonics" whose objective is to increase the speed of current information processing systems by a factor of 10 to 100. The components needed to build fiber optic links with data transmission rates up to 40Gbit/s are available commercially but the test equipment needed to measure their performance is not. Measurement of the performance of these systems requires a high speed bit error rate tester (BERT). The highest speed BERT available commercially is 12Gbit/s and very expensive ($300K). The goal of this program is to design, develop, and commercialize a reliable and affordable 25Gbit/s BERT and establish the framework necessary to develop a 40Gbit/s BERT. The commercial availability of this instrument will accelerate the development and utilization of much higher speed fiber optic links than presently available. Collaborations are encouraged.

PHASE I: Design and demonstrate the feasibility of developing a 25Gbit/s BERT.
PHASE II: Develop, fabricate, test, and deliver a prototype 25Gbit/s BERT to the Air Force.

POTENTIAL COMMERCIAL MARKET:
The demand for this product will be driven by the telecommunications industry, which is a multi-billion dollar market

AF97-056 TITLE: Large Area Nitride Substrates

Category: Exploratory Development

OBJECTIVE: Develop a domestic source of large area III-N epitaxial substrates using cost effective manufacturing methods.

DESCRIPTION: Nitride semiconducting devices have demonstrated capabilities for solar blind detection, visible emission for heads-up displays, short wavelength sources for ultra high density data storage, and short wavelength optical communications. Cost effective manufacturing of these devices for subsystem insertion depends on the availability of large area nitride substrate materials. GaN-suited substrates must be compatible with existing semiconductor handling equipment. GaN and related materials are currently grown by epitaxial means upon surrogate substrates. Epitaxial deposition and substrate technology must be developed to demonstrate device quality material growth on economical, large area substrates. Program expectation is for demonstration of III-Nitride growth on large area substrates, with demonstration of material quality through demonstration of optoelectronic componentry. Teaming and collaborative relations, especially in Phase II, are encouraged.

PHASE I: Experimentally demonstrate growth on 75mm substrates, and feasibility of scaling substrate diameter in excess of 150mm.
PHASE II: Qualify substrate design, reactor configuration, and growth process for manufacturing. Demonstrate material growth through fabrication and characterization of optoelectronic componentry.

POTENTIAL COMMERCIAL MARKET:
GaN substrates are suitable platforms for blue lasers and blue LED’s. The market for blue light emitting diodes (LED’s) is expected to be as large as the present market for red and green LED’s, which is on the order of 10 billion parts per year. The substrate requirement to achieve this level of production is conservatively estimated to be over one million wafers per year, or approximately $100M/yr. The estimated price of $100 per wafer is expected to come down as the volume increases over time, as new applications such as blue lasers are brought into production.
AF97-057 TITLE: InP-based Power Transistors for Optically Controlled Millimeterwave Transmitters

Category: Exploratory Development

OBJECTIVE: Develop high power InP-based transistor technology for millimeter wave and optoelectronic integrated circuits.

DESCRIPTION: Microwave and millimeter-wave communication and radar systems require high power transmitters capable of producing directional beams of EM radiation. Presently, thermionic devices, such as traveling wave tubes, are often used. These tubes and their power supplies often drive system design through their weight, size, MTBF, and voltage requirements. An alternative to microwave tubes is a monolithic array of power combined semiconductor microwave sources, such as Gunn diodes or microwave transistors.[1] A shift to solid-state power devices; such as the InP-based HBTs, HEMTs, and MIFETs; would reduce weight and size of such systems, as well as dramatically improve system life and reliability. High power density InP devices are readily integrable with optical control and mm-wave radiating antenna elements. Integration of these structures on a common chip would reduce the necessity for coaxial interconnects, and advance system performance though enhanced amplifier efficiency. High electron saturation velocity and high thermal conductivity make InP a promising material for microwave power devices. The use of InP-based devices will allow integrated optical control functionality. Insulated gates are preferred over Schottky barrier gates for microwave power applications, since larger operating voltages and higher output powers are attainable before the onset of drain-to-gate breakdown. The performance-limiting factor of III-V insulated gate devices is the high density of traps at the insulator/semiconductor interface. Several approaches to improve and stabilize the surface of InP prior to insulator deposition have been demonstrated. Interface control layers (ICLs) are used to avoid the native oxides of III-V semiconductors or prepare the III-V surface for subsequent processing.[2] Another method introduced to improve the electrical properties of III-V semiconductor surfaces is sulfur passivation.[3,4]

PHASE I: Develop processing procedure for discrete InP-based power transistors.

PHASE II: Design and fabricate a mm-wave integrated circuit the combines the power of individual devices to produce a directional beam of mm-wave radiation. Demonstrate a wafer-scale integrated power-combining source on an InP substrate with over 100 radiating elements, capable of producing 25W of continuous wave power t, or above, 20GHz. Integrate the optical control of phase information to be distributed to individual elements.

POTENTIAL COMMERCIAL MARKET:
Integrated power circuits are highly applicable to airborne and space borne systems which are sensitive to payload mass, volume, and power requirements. Such systems include commercial communication and radar systems. An integrated solution would also be applicable to systems requiring high reliability, especially those which currently use heavy, redundant tubes to guarantee high power microwave capability in the 20, 40, 60, and 100GHz frequency bands.

REFERENCES:

AF97-058 TITLE: Ka-Band Satellite Link Quality Short-Term Forecasting Tool

Category: Basic Research

OBJECTIVE: Develop a small, low-cost device to forecast impending attenuation on satellite links in the Ka-band.

DESCRIPTION: Ka-band (20 to 40 GHz) satellite links, particularly at low elevation angles, often degrade due to rain, clouds, or excessive moisture content in the atmosphere. Link operators cannot adequately predict how impending weather will affect their datalinks and fail to optimally react to rapidly degrading propagation conditions, resulting in lower signal-to-noise (SNR)
ratios and, consequently, reduced data rates and throughput. Current forecasting techniques use passive radiometers, which simply measure the overall sky temperature. Potential errors abound due to the inhomogeneous distribution of expected brightness temperatures, which does not allow for correct estimation of the local attenuation. A simple, low-cost device is needed to provide advanced warning for operators to respond by reconfiguring their communications assets to either reroute data via different satellites, use landlines if available, or adjust power levels. This device will be placed alongside satellite terminals to provide a short-term, 60 minutes or less, forecast of the potential attenuation on satellite links in the Ka-band. The data will be displayed, recorded, processed, and interfaced with existing communications equipment to automatically adjust for changing SNR ratios and will also be used as input to take actions to change system parameters or switch to alternative communication paths.

PHASE I: Develop weather attenuation prediction algorithms at Ka-band frequencies.
PHASE II: Design and fabricate a Ka-band satellite link quality short-term forecasting tool based on weather attenuation prediction algorithms.

POTENTIAL COMMERCIAL MARKET:
The commercial application of this Ka-band satellite link quality short-term forecasting tool is expected to be excellent since many satellites under development for deployment are being planned for the Ka-band to take advantage of the larger channel bandwidths. These commercial systems will benefit from a warning device when changing atmospheric propagation conditions degrade the link sufficiently for data rate changes to occur

AF97-059 TTT TTITLE: Multifunction Phased Arrays

Category: Basic Research

OBJECTIVE: Develop affordable K-band phased array antenna and sensor technology for future vehicles.

DESCRIPTION: Military, commercial, and private air, ground, and sea vehicles of the future will require sophisticated but affordable antennae and sensors for aircraft and other mobile platforms. Expected performance needs vary from high gain, multi-element arrays to low gain, multiple function single elements. Digital beamforming, adaptive control, and neural networks will lead to more flexible and cheaper antennae and sensors for commercial and military systems. New capability needs include: improved low noise amplifiers (1 to 1.3 dB noise figure is desired), dual simultaneous polarization antenna elements, efficient RF power combining circuits, smart control for array antennas that can sense failures and correct or compensate antenna patterns, super-resolution and neural network techniques that can perform accurate direction finding with smaller systems using less accurate, lower cost components, automatic system calibration based upon the use of available beacons, and adaptive cancellation of interference for mobile satellite terminals. These capabilities allow the use of small, low cost radar, and communication antennae and sensors with increased capability due to the flexibility of adaptive digital smart control. Since most of this flexibility will be implemented by and under computer control, the development of low-cost, digital beamformer modules containing all components from radiating element to A/D converter is key to this initiative. The emerging technology of direct digital synthesizers based on fast D/A converters will drive digital beamforming on transmit. Components developed under this SBIR have the potential to greatly enhance and encourage a quickly growing multi-faceted market.

PHASE I: The contract should target a specific antenna application; refine the concept by a thorough theoretical analysis, trade study, and error analysis; and perform preliminary experiments on key subsystems that will test the overall idea.
PHASE II: The contract should demonstrate the full RF performance expected by a prototype operating in a realistic environment; and deliver a component, subsystem, or full system implementation so as to attract Phase III venture capital with a working prototype.

POTENTIAL COMMERCIAL MARKET:
An expanding commercial use of high technology products will include radar and communication capabilities for a variety of portable and mobile systems. These systems will face increasing demands for improved performance, while maintaining pressure to continually lower cost.

REFERENCES:

AF-72
AF97-060 TITLE: Information Exploitation for Identification

Category: Exploratory Development

OBJECTIVE: Develop new techniques for the exploitation of information to identify threats and potential targets.

DESCRIPTION: Information exploitation is the assimilation and analyses of data obtained from heterogeneous sources for the identification of threats and targets. The concept is to correlate and fuse information from a varietal set of sources and exploit the resultant data product for unique characteristics that would provide indications of the presence of a target and/or threat and its identification.

PHASE I: This consists of developing concepts for the assimilation and exploitation of information for target identification.

PHASE II: This would consist of the design and development of an information exploitation capability.

POTENTIAL COMMERCIAL MARKET:
Information exploitation is a potentially valuable tool for the analysis of data in processes of creating and sustaining competitiveness: new business opportunities can be identified; information fusion generates innovation strategies; discovered information is rapidly assimilated into the organization by learning; and available technologies are more readily commercialized. The present challenge for the information management business is to develop more effective mechanisms for distilling data into useful and valuable information through fusion, information discovery, and exploitation.

AF97-061 TITLE: Advanced Data Fusion Technology

Category: Exploratory Development

OBJECTIVE: Develop new all-source fusion technology applied to distributed environments implementation utilizing expert system fusion.

DESCRIPTION: Data Fusion has been defined [Joint Directors of Laboratories (JDL), Technology Panel on C3 (TPC3), Data Fusion SubPanel (DFSP)] as: "Information processing that deals with the association, correlation, and combination of data and information from single and multiple sources to achieve refined position and identity estimation, complete and timely assessments of situations and threats, and their significance in the context of mission operation. The process is characterized by continuous refinement of its estimates and assessments, and by evaluation of the need for additional sources, or modification of the process itself, to achieve improved results." Current data fusion techniques beyond level-1 (correlation) are mainly manual and cannot keep pace with the highly mobile, dynamic forces likely to be faced in the future. Current Level-1 fusion techniques only support limited sources, not all-source information. In addition, distributed data fusion is currently not available. This topical area will address advanced computing technologies for all-source data fusion, as well as distributed data fusion.

Develop an expert system fusion system for management and implementation of dynamic control, multiple assignment, and tracking algorithms. The concept of expert system fusion has long held intuitive appeal as a method of providing improved multilevel control capabilities. There are many cases when the shooter will turn off the fusion system because it simply does not work. Research is needed to manage and implement the dynamic control of multiple assignment and tracking algorithms which employ knowledge based systems/fuzzy logic approaches. Included should be the capability to plot target separation versus sampling time for nearest neighbor, cluster/raid tracks. Special purpose system portability and object orientation are essential features. Develop an expert system fusion system for management and implementation of dynamic control, multiple assignment, and tracking algorithms.

PHASE I: Develop an innovative concept to provide truth, alignment, association, assignment, tracking, and a system output capable of feeding back information through a knowledge based/fuzzy logic algorithm manager. Phase I will investigate advanced computing techniques (e.g., statistical, artificial intelligence, artificial neural networks, fuzzy logic) applicable to all-source data fusion. Phase I will result in a detailed plan and prototype software, which demonstrates the feasibility of a potential Phase II effort.

PHASE II: Implement the technology in a fusion to shooter experiment and a commercial test system. Phase II will design and develop the advanced computing techniques applicable to all-source data fusion, as well as distributed data fusion as recommended in Phase I, and then prototype a subset of the design to demonstrate partial distributed data fusion functionality.

AF-73
POTENTIAL COMMERCIAL MARKET:
This topical area has dual-use potential wherever data from different (or even similar) sources are required for decision making. Examples of potential industries include: drug enforcement/interdiction, medical, environmental, aerospace, automotive, and manufacturing. The system developed under this program will immediately contribute to the sensor fusion community by providing a neuro-fuzzy adaptive expert system fusion system which could be used for concealed weapon detection for airport security.

REFERENCES:

AF97-062 TITLE: Information Storage and Retrieval - Optical Memories

Category: Exploratory Development

OBJECTIVE: Develop and experimentally validate concepts for volumetric optical storage that demonstrate an optical advantage.

DESCRIPTION: Rome Laboratory is investigating the use of photonic technology in advancing the state-of-the-art in data storage. Optical memories show promise in many areas of the data storage hierarchy. Applications include: archival storage, random access memory, read only memory, cache memory, and associative (content addressable) memory. Three dimensional optical memory offers the potential of terabit storage in volumes on the order of a cubic centimeter. High data transfer will be crucial for military applications as well as civilian uses.

This initiative is directed towards exploiting the "Optical Advantage" of storing digital data in the form of optical volume or three-dimensionally. Concepts such as content addressable memory; either numerical, textural, or image identification techniques can be implemented in memory; results isolated; and effectively provide acceleration of output speed and access time. Correlation, auto-correlation, and change detection concepts within the memory itself should also be exploited.

PHASE I: Identify and characterize candidate media, lens architecture's, or beam steering concepts to provide storage capacities of 10E10-10E12 bits per cubic centimeter, or at least 10E3-10E6 discrete locations per centimeter.

PHASE II: Incorporate these concepts into a usable architecture and demonstrate feasibility via brassboard.

POTENTIAL COMMERCIAL MARKET:
Image exploitation would be greatly enhanced by the development of faster storage devices, not to mention the benefits of terabit of data accessible at any instant. Medical data will benefit from the advancement of these technologies as well. Imagine your entire medical history available to a physician in another town should medical attention be necessary away from home. A library of x-ray files stored digitally that not only are available on demand, but, now that images are stored digitally, a computer would assist the doctor in detecting tumors earlier than would have been possible before. The development of the "Information Superhighway" will hinge on the development of memory systems capable of storing more data than ever before, as well as transferring that data faster than ever before.

REFERENCES:

AF-74
AF97-063 TITLE: Intelligent Desktop Assistant

Category: Advanced Development

OBJECTIVE: Develop an intelligent desktop computer assistant to autonomously access, evaluate, retrieve, and fuse information from the growing number of on-line information sources available.

DESCRIPTION: The intelligent desktop assistant (IDA) will use machine learning techniques to familiarize itself with user styles, techniques, preferences, and interests. IDA will be able to guide users through the process of on-line information source selection, utilization, and interaction management (i.e., cost tracking, query refinement, etc.). Documentation will not be required as IDA adjusts user interface characteristics to reflect the changing experience of the user. IDA will schedule and execute multiple information retrieval tasks in accordance with user priorities, deadlines, and preferences. The software will be capable of evolving the processes by which it interacts with other systems, learning the characteristics of their interfaces and languages.

PHASE I: Prototype user and system interfaces and identify the learning algorithms required to support both. Develop a mechanism to specify deadlines, so that tasks can be completed in accordance with user defined priorities.

PHASE II: Implement a fully functional prototype and test it in a controlled environment. Develop a commercialization plan and define the target user base.

POTENTIAL COMMERCIAL MARKET:
The potential commercial market is literally the size of the personal computer market. This capability would be highly useful to any individual with a computer that is connected to any network

AF97-064 TITLE: Single-Channel Spectral Characterization

Category: Exploratory Development

OBJECTIVE: Develop the Adjustable Bandwidth Concept Signal Energy Detector (U.S. Patent 5,257,211) for enhancement to existing and well known spectrum analyzer designs.

DESCRIPTION: Rome Laboratory, through a series of contractual and in-house efforts, has developed a variety of approaches to characterize signal activity in user selectable RF band segments. In particular, proof-of-concept, FFT (Fast Fourier Transform)-based, single channel signal energy detectors (i.e., spectrum analyzers) have been implemented which are capable of detecting and "grouping" dispersed signal energy to form estimates of the composite bandwidth, center frequency, and signal-to-noise ratios. While multi-channel approaches exist and have many desirable characteristics, these techniques likewise require orders of magnitude increases in implementation complexity, size, maintainability and cost over that of single channel techniques. Similarly, Time-Frequency distribution approaches, while useful in many scenarios, also have rather complex processing requirements. Currently available commercial spectrum/signal analyzers, including those that employ FFT-based Fourier analysis, lack the composite signal grouping, and parameter estimation reporting functionalities. With such capabilities, the enhanced spectrum analyzer becomes an extremely useful RF spectrum characterization device. The "Adjustable Bandwidth Concept (ABC) Signal Energy Detector" shows particular promise as a technique for spectral analysis enhancement and is the focus of this research effort. Essentially, this technique allows for the grouping and parameter report generation of signals with various bandwidths within the RF segment analyzed. Specifically, the ABC detector allows for averaging narrowband signals more over time and less over frequency, while simultaneously averaging wideband signals less over time and more over frequency for improved detection, grouping, and parameter estimate performance.

PHASE I: In this phase of the effort, a proof-of-concept implementation of the ABC Signal Energy Detector will be developed (e.g., in the MATLAB language) for development purposes. At the same time, a theoretical analysis will be performed to optimize the ABC detection algorithm performance. The signal parameter report contents and format shall be developed in this phase. Basic user definable device settings, along with appropriate operator interface considerations, will be addressed. The intent of this phase is to lead into the design and development of a real-time implementation in phase II, which leverages currently existing spectrum analyzer and associated equipment designs.

PHASE II: Design, develop, and test an enhanced spectrum analyzer prototype utilizing the ABC Signal Energy Detection technique and contractor developed enhancements for real-time signal activity grouping and simultaneous generation of a computer compatible parameter report.

AF-75
POTENTIAL COMMERCIAL MARKET:
In recent years the private sector has witnessed a burgeoning growth in the sales and service of personal communications equipment, including such devices as the cellular telephone and Global Positioning System (GPS) receivers. This is in addition to the plethora of devices already common in the private sector, with purposeful and/or unintentional RF generation abilities. Both the communication engineer and the electromagnetic compatibility engineer, designing to meet FCC regulations, have come to rely upon various laboratory bench tools to properly develop and test their designs. In particular, the traditional spectrum analyzer is indispensable. The enhancements to the traditional spectrum analyzer as identified in this research have the potential to decrease communication equipment development time and cost, via superior signal analysis capability and automated specification testing. Regulatory agencies can likewise benefit from the development of the enhanced spectral analysis device.

REFERENCES:

AF97-065 TITL: Automated Information Extraction Tools

Category: Exploratory Development

OBJECTIVE: Develop Natural Language Understanding (NLU) tools that automate the extraction of information from unformatted text, and the porting of these capabilities to new domains.

DESCRIPTION: The Information Age has brought with it the need for tools to help people exploit the overwhelming volumes of textual information now available to them. Unformatted text is a rich source of potential information. Tools that automatically find and extract simple data from unformatted text could be of enormous value to any industry or organization that deals with large volumes of textual information. Data that can feasibly be extracted from text includes "shallow" information such as the names of people, places, locations, organizations, and equipment; quantities; and dates. The ability to extract such data and to put it into a structured form would enable a multitude of powerful applications; including automatic document indexing, automatic data base generation, and data visualization (for analytical purposes). Tools would also be developed to make the toolset portable to new domains, so it could easily learn about and recognize previously unseen information (e.g., people's names for a new country, equipment names related to a new application area, etc.)

PHASE I: Research the area of information extraction. Develop and refine the requirements for "shallow" information extraction tools; tools capable of recognizing and extracting simple (i.e., feasible) data from text, such as names, places, locations, organizations, equipment, quantities, and dates. Include requirements for making the tools portable to new application domains.

PHASE II: Develop the shallow information extraction tools. Test them out in commercial settings where large quantities of unformatted text are processed, and collect feedback on their performance. Iteratively refine the toolset in accordance with user feedback.

POTENTIAL COMMERCIAL MARKET:
Tools for shallow information extraction would be useful in any industry or organization that processes large volumes of unformatted text. This includes financial institutions (e.g., tracking competitors/business intelligence analysis), law enforcement agencies (e.g., automatic data base generation from police reports, visualization of data from unformatted text to help investigators analyze crime data), and the publishing industry (e.g., automatic document indexing).

REFERENCES:

AF97-066 TITL: Exploitation of GPS Controlled Imagery

Category: Exploratory Development

OBJECTIVE: Develop new and innovative methods, techniques or products that take advantage of GPS controlled imagery.
DESCRIPTION: Technology developed under this effort will replace traditional techniques for estimating airborne imagery exterior orientation parameters before exploiting the imagery. This will result in improved techniques for producing current imagery products. GPS controlled imagery will also support the development of new imagery products that were not feasible with current techniques.

GPS controlled imagery provides an estimate of the airborne imagery exterior orientation parameters. Technology developed under this effort will take advantage of the GPS information. These techniques will assist in working with blocks or strips of airborne imagery, imagery acquired at different times or from different sensors, and metric information available with GPS controlled imagery. The new products produced will take advantage of GPS controlled imagery to produce image mosaics, change detection; providing new methods to catalog imagery or obtain metric information.

PHASE I: Focus on defining, developing a specification and demonstrating the method, technique or product that is proposed. This should result in showing the required input information, an estimate of the processing time required and the accuracy of the output information. The contractor should supply any GPS controlled imagery required to support any proposed demonstration.

PHASE II: Focus on implementing and demonstrating a working prototype of the proposed method, technique, or product. This should result in showing the military and commercial benefits of the proposed method, technique, or product.

POTENTIAL COMMERCIAL MARKET:
This topic has high Dual Use Commercialization Potential. Both the military and the commercial sectors have sources for GPS controlled imagery. Although the sources may differ, methods to exploit the imagery can be similar. The commercial sector can utilize image mosaics and image catalogues for resource management; and the military can use image mosaics and image catalogs for wide area search applications. Imagery acquired at different times or from different sensors can be exploited for change detection by the commercial sector for detecting storm damage or environmental health. The military can use change detection for detecting changes in military activity.

REFERENCES:

AF97-067 TITLE: Defensive Information Warfare Technology

Category: Exploratory Development

OBJECTIVE: Develop improvements to the state-of-the-art in Defensive Information Warfare technologies by providing innovative basic research in information system integrity, availability, security, and vulnerability assessment.

DESCRIPTION: Defensive Information Warfare technologies span a number of different areas. Information Warfare planning functions are needed which provide for the application of defensive technologies. Application of these technologies must include the entire system of systems and not just individual elements within the system. Recovery techniques and technologies are required to ensure continuous information operations. The ability to automatically perform near real time vulnerability assessment and subsequent modification of the information system is needed to address increases in both the number and sophistication of threats. Predictive analysis capabilities are needed to provide analysis of intrusion potential, which will provide the greatest amount of lead time to protect and contain information threats (e.g. Indications and Warning).

PHASE I: Define and propose the development of Defensive Information Warfare technologies and capabilities for use within existing and future information systems. Rudimentary proof of concept prototypes should be developed to demonstrate the ideas proposed.

PHASE II: Design, develop, and implement a prototype demonstrating the proposed concept or technology. This prototype should be consistent with the philosophy of the Air Force and focus primarily on COTS based information systems.
POTENTIAL COMMERCIAl MARKET:
Technologies developed should have the widest global applicability to both Air Force and commercial information systems. The Air Force is quickly adopting COTS as the primary information system medium and, therefore, commercialization of the non-military specific portion of the Defensive Information Warfare technologies or concepts should be highly desirable.

AF97-068 TITLE: RF Photonics Technology

Category: Exploratory Development

OBJECTIVE: Develop innovative RF photonics technologies to enhance RF performance, availability, and affordability of C4I systems.

DESCRIPTION: Investigate and develop innovative technologies and techniques using RF photonics to improve and otherwise enhance the performance of electronic communications, command, and control systems. Develop new methods to apply RF photonics technology to systems performance resulting in improvements to existing systems and innovative approaches for new systems where RF photonics implementation will result in lower cost, higher performance, and/or lighter weight.

Fabrication of advanced RF optical and RF electro-optical components into subsystems with generalized compatibility with existing systems is encouraged. Specific areas of interest include, but are not limited to, the following:

OPTICAL RF INTERCONNECTS: High RF frequency, high power, low noise optical sources; high RF frequency, high optical power, low noise photodetectors; high frequency low V1 photonic modulators; and reconfigurable, integrated RF optical signal routing techniques. Frequency responses to be considered are broadband up to 100 Ghz minimum with minimum bandwidths of 20% in specific bands of interest.

OPTICAL RF BEAMFORMING: Photonically-based RF true time delay techniques for RF phased arrays and photonically implemented RF phased arrays operation up to 100 Ghz. Minimum requirements are 30% bandwidth.

OPTICAL RF SIGNAL PROCESSING: Direct RF antenna nulling using new innovative broadband - minimum of 4 Ghz RF bandwidth - techniques.

PHASE I: Conduct concept verification and experimentation justifying the technology need and proving the value of the planned approach. Develop a demonstration plan for Phase II.

PHASE II: Fabricate hardware that verifies the concepts by providing a demonstration of a well defined brassboard level subsystem.

POTENTIAL COMMERCIAL MARKET:
RF signal remoting for high frequency radio systems. Reconfigurable RF interconnects. Lossless RF routing systems. RF antenna nulling for frequency reuse.

REFERENCES:
Although a number of references exist, those that are relevant to this technology are not for unlimited distribution. Current and recent SBIR programs carry a four year restriction on release. Contact the POC for specific information on available limited distribution references.

AF97-069 TITLE: Photonic Signal Processing

Category: Exploratory Development

OBJECTIVE: Develop innovative approaches to apply optoelectronics technology to Air Force C4I signal processing systems platforms.

DESCRIPTION: The performance limits of conventional approaches to air and ground surveillance are now being stressed by the emergence of low-observable threats, sophisticated electronic countermeasures, increased target densities, and the complexity of engagement of the modern battlefield. A number of multi-spectral sensor fusion techniques and electronic counter-counter measures have been widely identified as a means to increase surveillance capabilities against these threats. Processing requirements of many of these schemes, however, remain prohibitive, outpacing the rate of advance of conventional electronics. Estimated near-term processor requirements are in excess of two orders of magnitude beyond those of all-electronic contemporary surveillance platforms. Investigate and develop optical techniques that may offer potential solutions to this
processing dilemma.

Investigate and develop innovative technologies and techniques using photonic and opto-electronics technology to improve and otherwise enhance the performance of electronic communications, command, and control systems. Develop new methods to apply photonics processing technology to systems resulting in performance improvements to existing systems and innovative approaches for new systems where a photonics based implementation will result in lower cost, enhanced capability, and/or lighter weight.

Fabrication for insertion of advanced photonics and electro-optical components into subsystems with generalized compatibility with existing systems is encouraged. Specific areas of interest include, but are not limited to, the following:

OPTICAL PROCESSING TECHNIQUES AND SYSTEMS: Application developments to include Bragg cell based processing, photorefractive devices, and other non-linear optical devices to implement processing algorithms without the necessity of optoelectronic conversion. Digital optical processing to include optical interconnects, architectures, algorithms, switching, and logic, non-linear optics aimed at low power systems which process totally in the optical domain with minimal or no electronic conversion.

INTEGRATED OPTICAL SUB-SYSTEMS: Methods for systems integration of high data rate sources/detectors/modulators for analog and/or digital operation, network optical processing for multi-gigabit per second transmission, integrated optoelectronic circuits (OEICs), and integrated optomicrowave circuits (OMICs) for future low cost reproducible implementation of advanced photonic systems.

PHASE I: Conduct concept verification and experimentation justifying the technology need and proving the value of the planned approach. Develop a demonstration plan for Phase II.

PHASE II: Fabricate hardware that verifies the concepts by providing a demonstration of a well defined brassboard level subsystem.

POTENTIAL COMMERCIAL MARKET:
Transferred to the civilian sector, this technology will be used to provide increased capability in FAA radar surveillance and safety, and in newly capable real-time imaging medical system applications at reduced overall cost. Rapid processing of multispectral signals also finds use in mass communications and entertainment systems.

REFERENCES:
Although a number of references exist, those that are relevant to this technology are not for unlimited distribution. Current and recent SBIR programs carry a four year restriction on release. Contact the POC for specific information on available limited distribution references.

AF97-070	TITLE: Space Systems Technology Development

Category: Basic Research

OBJECTIVE: Develop innovative methods for improving performance, endurance and survivability of future space and missile systems.

DESCRIPTION: Advanced Space Systems need a host of integrated technology developments in order to meet improved performance requirements. We are seeking innovative approaches and technology developments which will provide improved space system performance, endurance and survivability. The proposed approaches shall emphasize "dual use technologies" that clearly offer private sector as well as military applications. Some examples of dual-use technologies include High Definition Television (HDTV), advanced communications, Energy and Environmental Conservation, plus many more. Proposals emphasizing "Technology Transfer" will receive additional consideration. Specific areas of interest include the following:

Space Power Systems: Approaches to high specific energy and specific power at lower cost are needed. Specifically: long life, high energy density energy storage; advanced, high efficiency solar cell designs; light weight, low volume solar arrays; and power management and distribution electronics.

Thermal Management: Advanced spacecraft thermal control technologies in all temperature regimes are sought. Technologies for improvement include (but are not limited to): heat pipes, micromachined refrigerators and heat pumps, capillary pumped loops, integrated microelectronic cooling packages, thermal storage devices, deployable radiators, cryocoolers and cryogenic components.

Space Electronics: The following are sought: Innovative advanced processor, memories and digital logic components; advanced micro-electronics packaging; micro-electromechanical systems and instruments; optoelectronic, photonic and analog processing electronics, particularly those that lend themselves to operation in the space environment. Candidate solutions must
be radiation tolerant or leverage commercial processes to exploit radiation resistance.

Space Systems Software: Advanced concepts in expert system design, fuzzy systems, distributed expert systems, object oriented database, the integration of existing software (COTS and NDS) into an object-oriented environment, and user interfaces.

Sensors: Innovations in developing ultra-violet to very long wave infrared detectors, readouts, focal planes and sensors. Innovative approaches in active sensors concepts including LIDAR, RADAR and associated signal processing, signal conditioning, including related devices and subsystems are needed.

Space Structures: Innovative minimum weight structural concepts are needed that can withstand high-G space launch and ambient environment effects. Active and passive vibration suppression, control, advanced material applications, design and analysis methods are needed.

Astrometrics: Innovative ideas are sought related to determination, prediction adjustment, and optimization of trajectories in space: space navigation and mission analysis; perturbation theories and expansions; and spacecraft attitude dynamics and estimation.

PHASE I: Further develop the concept and perform analyses required to establish the feasibility of the proposed approach.

PHASE II: Complete the Phase I design and develop a demonstrator or prototype. Document the R&D and develop a technology transition and/or insertion plan for future systems and commercial ventures.

POTENTIAL COMMERCIAL MARKET: Space systems for DoD and commercial use require advanced technology that is highly reliable, high performance, and is survivable to a variety of man-made and natural environments. These technologies have immediate and definite commercialization potential in consumer goods and infrastructure improvements such as highway safety, environmental monitoring, etc.

REFERENCES:
1. PHILLIPS LABORATORY SOFTWARE CONSIDERATIONS, ADA & ADA9X., May 4, 94. Contact Phillips Laboratory PL/VTQ, 3550 Aberdeen Ave SE, Kirtland AFB, NM,87117-5776. Tele # (505) 846-0461 for copies

AF97-071 TITLE: Attenuation of Acoustic Disturbances in Containerized Payload Systems for Reusable Launch Vehicles

Category: Exploratory Development

OBJECTIVE: Develop a methodology for the design and implementation of acoustic attenuation technology into containerized payload systems for reusable launch vehicles.

DESCRIPTION: Current conceptual designs for reusable launch vehicles (RLVs) utilize container systems for the integration of payloads to the RLV. Payloads are integrated into standardized containers with standardized interfaces. These containers then allow for rapid integration into the RLV and result in much lower costs. However, like their expendable launch vehicle counterparts, these containers are subjected to acoustic and structure-borne disturbances which are in turn translated to the payload. Acoustic disturbances drive the high frequency design requirements for satellite systems, especially secondary structure such as solar arrays and antennae. If the containers could be designed to attenuate a portion of these acoustic disturbances, design requirements could be lowered, resulting in lower cost systems. Innovative concepts for the incorporation of acoustic attenuation technologies into the containerized payload systems for the RLV are sought. The government desires a performance improvement goal of 20 dB attenuation in the frequency band from 20-500 Hz. Passive blanket technology works well above 500 Hz (providing −20 dB attenuation), but provides approximately 3 dB attenuation below 500 Hz. The Government desires to improve performance in this frequency band. Although not required, it is highly recommended that in some fashion the small business team with an RLV contractor. The small business must demonstrate an understanding of the actual technical challenge. Proposers must be cognizant of the fact that their proposed systems will eventually have mass, volume and power constraints. Interest in or acceptance of the technology by an RLV contractor is critical for demonstration of commercialization. The Phillips Laboratory will not provide industry contacts with the RLV contractors. It is the small business’ responsibility to develop the necessary relationships with potential industrial partners.

PHASE I: Thoroughly define the problem. This includes specification of the container system, the acoustic environment the container will be subjected to at launch, and any potential restrictions or limitations faced in implementation of an acoustic attenuation system. State system level performance goals. Develop system level and component level conceptual design. Analytical and simulation results will be presented to demonstrate performance of proposed system. Unique proposed hardware may be developed and tested at the brassboard level.
PHASE II: Design, analyze, fabricate and test a sub-scale demonstration system for evaluation.

POTENTIAL COMMERCIAL MARKET: Both DoD and NASA are interested in reusable launch vehicle technology for cost effective means of increasing the U.S. lead in space operations. Decreasing the acoustic disturbance loading satellite manufacturers must design to would give this launch vehicle technology a distinct advantage. This technology also has potential application in the aerospace industry to quiet passenger jet and turbo-prop planes, and noise reduction in commercial HVAC systems, automobiles, washing machines, etc.

REFERENCES:

AF97-072 TITLE: Ultra-Lightweight "Meter" Class Optics

Category: Exploratory Development

OBJECTIVE: Develop graphite fiber composite-based, lightweight, meter class optics for use in infrared and visible band applications.

DESCRIPTION: Lightweight optics have been of interest for many years. In the past, they have taken the form of beryllium optics, lightweight glass optics, and, more recently, silicon carbide optics. In each case, collateral efforts included developing metering structures or optical benches that possess similar thermal properties to those of the optics in an attempt to "a thermalize" the optical assembly.

It is well known that from a pure thermal stability point of view, graphite fiber composites offer the optimum combination of minimum weight plus high thermal stability. Unfortunately, this material does not enjoy the same appeal when considered for an optic substrate because of the heterogeneous materials, presence of residual stresses and material variability. The proposal should center around large size stable optics that leverage off the use of composite materials.

PHASE I: Identify the main parameters that influence the performance of the optics. Determine the means to control those parameters so that their impact on the ultimate optical assembly is minimized. This will be done analytically and empirically, thus establishing the feasibility of building a stable, lightweight optic that performs in the IR band and possibly the visible band.

PHASE II: Design, analyze, and fabricate a meter size optic after thoroughly characterizing each critical parameter affecting this size optic.

POTENTIAL COMMERCIAL MARKET: There are many military, scientific, and commercial applications that would benefit from the application of graphite fiber, composite based, lightweight optics. Host platforms would include NASA and DoD aircraft, commercial remote sensing satellites and commercial aircraft for clear air turbulence detection sensors.

REFERENCES:
3. Romeo, R.C. "CFRP Composite Optical Quality Mirrors for Space Applications." Materials Challenge Diversification and

AF97-073

TITLE: Rigid Inflatable Structures

Category: Exploratory Development

OBJECTIVE: Develop processes for rigidizing inflatable structures while maintaining dimensional tolerances and stability.

DESCRIPTION: Inflatable structures potentially allow the construction of very large but very light structures in space. Structures which bear little load but are required to have a specific shape can be constructed from a thin film and then inflated with a low pressure gas. This gas must be carried on-board, and the gas supply must be sufficient to compensate for losses due to membrane permeability, punctures from micrometeoroids, gas volume changes due to temperature, etc. The need for replenishment gas can be eliminated if some means of rigidizing the structure is available.

Define, develop, design, build, and test a seamless and goreless inflatable integrated gossamer foam 9m X 7m off-axis parabolic concentrator for a Solar Orbital Transfer Vehicle. The system shall be of correct size and weight to fit in the payload bay of a Pegasus XL launch vehicle. The reflector must be rigidized: the dimensions of the structure must not change significantly during the rigidization process, or must change by a predictable amount, in order to ensure adequate functioning of the structure.

PHASE I: Review the results of the "Gossamer Baggie Torus" contract that ended during FY93. Also review the "Gossamer Structures Phase I and II," "Concentrator Technology," "Single Chamber Concentrator," and "Thin Film Creep-Formed Concentrator" Small Business Innovative Research technical reports. Review the "Gossamer Structures" technical report. Define the requirements. Perform trade studies and analyses on how to reflectorize the curved part of the structure. Evaluate the concepts and how they will integrate with the chosen concentrator concept.

PHASE II: Determine how best to reflectorize (silver) the off-axis parabolic section of the gossamer structure. Build integrated sub-scale and full-scale gossamer concentrators. A system optics test shall be performed. The measured data should demonstrate less than 2 mrad RMS slope accuracy error and 2mm RMS surface accuracy error after rigidization (using the system chosen in Phase I).

PHASE III: Extend the chosen system form Phase I to a larger structure, a seamless and goreless 9m x 7m off-axis parabolic concentrator. Ground testing should include a packing and deployment system representative of a flight system to ensure the robustness of the system to pre-launch handling.

POTENTIAL COMMERCIAL MARKET: The results of a successful Phase II approach would lead to reliable off-the-shelf structural components which are lighter than current components for use in a variety of commercial ground and space-based applications. In space, inflatable structures have potential uses as communication antennas, radar antennas for remote sensing, telescopes, solar collection for power or propulsion, or for non-load bearing structural parts. Ground-based uses in industry could include rapid prototyping of parts, use as improved packaging or insulating materials, use as a replacement for styrofoam, or use as a buffer between moving parts. Automotive uses such as bumpers or airbags for the outside of cars are also possible, as are a wide range of marine applications, including rapid construction of marine dry-docks, boat hulls, life rafts or lifesaving rings. Recreational uses include inflatable pools, sculptures or decorations, and form-fitting ski boots. Finally, disaster relief applications such rigidizable tents and patches for application to sidewalks or other light-duty structures following earthquakes would be feasible.

REFERENCES:

AF97-074 TITLE: Advanced Isolation for Launch Vehicle Avionics

Category: Exploratory Development

OBJECTIVE: Develop an advanced vibration isolation system for launch vehicle avionics which is capable of transferring the required thermal load to the airframe.

DESCRIPTION: Current launch vehicle avionics are hardmounted to the vehicle airframe primarily due to thermal management issues. The avionics generate a great deal of heat, and the airframe forms the heat sink necessary to keep the avionics from overheating. As a result, these avionics must be designed and tested to very high vibration specifications. This drastically increases the life-cycle cost of such items. If a thermally-conductive vibration isolation system could be developed specifically addressing the unique requirements of the launch environment, potentially lower cost aircraft avionics could be used. Such a system would allow the launch vehicle industry to take advantage of COTS technology, thereby greatly reducing procurement and testing costs. Innovative vibration isolation concepts for launch vehicle avionics are sought. The government desires a performance improvement goal of 20 dB attenuation in the frequency band from 10-500 Hz. Although not required, it is highly recommended that the small business team with a launch vehicle contractor in some fashion. The small business must demonstrate an understanding of the actual technical challenge. Proposers must be cognizant of the fact that their proposed systems will eventually have mass, volume and power constraints. Interest in or acceptance of the technology by a launch vehicle contractor is critical for demonstration of commercialization. The Phillips Laboratory will not provide industry contacts with the LV or avionics contractors. It is the small business' responsibility to develop the necessary relationships with potential industrial partners.

PHASE I: Thoroughly define the problem. This includes specification of the launch environment to be attenuated, any potential restrictions or limitations faced in implementation of the isolation system and all thermal conductivity issues. State system level performance goals. Develop system level and component level conceptual design. Analytical and simulation results will be presented to demonstrate performance of proposed system. Unique proposed hardware may be developed and tested at
the brassboard level.

PHASE II: Design, analyze, fabricate and test a full-scale demonstration system for evaluation.

POTENTIAL COMMERCIAL MARKET: DoD, NASA and commercial launch vehicle manufacturers are interested in decreasing vibration loads on avionics. Decreasing the vibration disturbances which avionics manufacturers must design to would give U.S. launch vehicle technology a distinct advantage. This technology also has potential application in the aerospace and industrial machining industries to protect sensitive equipment from operational disturbances.

REFERENCES:

AF97-075 TITLE: Microelectromechanical Systems (MEMS) Microrelays and Microswitches for Space

Category: Exploratory Development

OBJECTIVE: Develop, design, fabricate, and characterize various types of MEMS microrelays and microswitches for future use in space systems.

DESCRIPTION: For the same reasons that microrelays flourish today, it is necessary to consider microrelays and microswitches as an important aspiring class of MEMS device. While many research groups have built prototype microrelay devices, they all remain impractical novelties due to problems ranging from ineffective actuation, series loss, and degradation of contact resistance. The problems of dry contacts in microelectromechanical relays and switching devices are well understood, yet seemingly little has been done to improve the understanding of present and prospective instantiations of MEMS-based versions.

We seek novel and practical solutions to the development and insertion of microrelay and microswitch devices for space-based digital, analog, radio-frequency (RF), and power electronics applications. As such, we expect offerors to present approaches in their proposals that present extremely low series loss, low contact resistance, high isolation, and very high reliability. It is expected that many dozens or even hundreds of such relays should be able to be constructed within the size of a normal integrated circuit (IC). For RF applications, offerors should address the frequency-dependent performance potential of the devices, discussing any issues that affect their transmission line or full wave behavior (e.g., dispersion, reflection, etc.). For digital applications, moderately low loss and coupling are desired, with high density being of greatest importance. For power applications, series loss is of most direct importance. Finally, for analog (e.g. instrumentation/sensor) applications, signal fidelity and isolation are of the greatest importance. Of course, the space environment must be considered. Various radiation effects (such as total ionizing dose) and temperature range are of great concern here. For example, these switches might be immersed in a cryogenic environment for infrared imaging sensors. Another area of concern is the need for hermeticity or the ability to operate in non-hermetic conditions. If exposed microrelays/switches are indicated, offerors need to consider spacecraft charging/atomic oxygen/contamination issues. Of course, disadvantages in one sense become advantages in other cases. To expand the range of possibilities, we would welcome creative exploitation of the weaknesses of microrelays. For example, exposed micro-relays could be used to monitor degradation of contacts in a meaningful way, so as to glean useful information (perhaps) regarding its operating environment.

PHASE I: Efforts should define and validate models of prospective microswitching devices. It may be within the realm of reason to attempt to construct a prototype through a supported foundry such as MCNC.

PHASE II: Efforts would need to address more demonstrably the performance and long term reliability of practical devices in space environments. It is minimally expected that the contractor develop and deliver fully functional arrays of devices which should be packaged and demonstrated to perform reliably in the space environment.

POTENTIAL COMMERCIAL MARKET: Since micro-relays have a latent potential for interesting commercial applications,
we expect serious consideration of commercialization (as well as space) opportunities for these devices.

REFERENCES:

AF97-076 TITLE: Substrate Improvement for LWIR Mercury Cadmium Telluride

Category: Exploratory Development

OBJECTIVE: Develop innovative process and screening techniques for fabrication of large, high-quality substrates for mercury cadmium telluride-based focal plane arrays.

DESCRIPTION: The development of large format, long wavelength (12-micron cutoff and longer), mercury cadmium telluride-based focal plane array technology for low-background applications is seriously impeded by the limited size, purity, and crystalline perfection of currently available substrates. High performance, under the above conditions, requires lattice-matched substrates with low defect densities (less than 5 X 10E5 defects per sq. cm) and very low impurity concentrations (less than 10E14 impurities per cu cm). Currently available substrates are of limited size (typically on the order of 15 to 24 sq. cm), which severely limits the number of large format arrays which can potentially be formed on these substrates. In addition, while substrates can be screened reasonably for flatness and crystal quality (including defect density), too often the substrates are found to be the source of fatal contamination after considerable expense and effort of growth, fabrication, and testing of detector array lots. The development of LWIR array technology for low background applications would be facilitated greatly by the ready availability of large, lattice-matched, high-purity substrates. The Air Force is seeking innovations which would make available the high-quality substrates as described above to all MCT developers. In addition to addressing the above needs, it is very important that any approach include: 1) the development of cost-effective detection and screening techniques to identify material contamination at very low levels from receipt of source material through the entire substrate fabrication process, and 2) process improvements to ensure the purity of the final delivered substrates.

PHASE I: Develop preliminary processing and material screening steps to select most promising implementations. Some processing improvement and material/substrate screening demonstrations are desirable.

PHASE II: The contractor shall set up and demonstrate fabrication and screening of high-quality substrates for strategic MCT applications. The contractor shall deliver four substrates to the government for independent evaluation and shall develop plans for process/screening insertion into commercial substrate fabrication production lines.

POTENTIAL COMMERCIAL MARKET: The processes/screening techniques developed will support all long wavelength infrared focal-plane array imaging based on mercury cadmium telluride detector array technology. Commercial uses of this technology include remote detection, identification, and tracking of airborne pollutants emanating from industrial plants, and space-based earth and atmospheric condition imaging for environmental monitoring and natural resource assessment and management. The latter applications are now a multi-billion dollar industry worldwide which requires many high-performance arrays. Current capabilities are limited by array cooling requirements and performance capability. The results of this SBIR effort would enable much greater capability and flexibility by making available larger, higher performance arrays which would
directly translate into reduced satellite power and array cooling requirements and broader spectral and spatial coverage for each array. The latter would be accomplished with greater detail than presently available, significantly enhancing the value of the products currently being marketed.

REFERENCES:

AF97-077 TITLE: Anomaly Resolution Using Case-Based and/or Model-Based Reasoning

Category: Exploratory Development

OBJECTIVE: Develop methods to demonstrate how model-based and/or case-based reasoning systems can be used to assist a satellite operator in identifying unknown anomalies.

DESCRIPTION: Air Force satellite operators require an accurate and timely method for satellite unknown anomaly determination and resolution. Expert systems provide good tools for known satellite anomalies when knowledge is available. For unknown anomalies, a system must reason based on how the system works (model-based reasoning) and/or on the history of the system (case-based reasoning). Input to the reasoning system is satellite real-time health and status data captured from monitoring satellite telemetry and models of the spacecraft systems. The output is anomaly determination and resolution assistance presented to the satellite operator. What form this assistance takes must be determined, but may include recommendations, schematics, simulations, history, etc.

Computation must be timely to meet real-time requirements of satellite operations. Case-based reasoning potentially speeds anomaly resolution by recalling solutions to similar problems seen in previous experience. The utility of a case-based reasoning system is greatly enhanced if machine learning techniques are used to capture pertinent characteristics of the current problem and its eventual solution. Otherwise, if no learning capability exists, a case base must be derived from some other source.

Model-based reasoning is advantageous for solving unknown anomalies because component models can identify nonworking components despite the failure mode. A significant problem in implementing a model-based diagnosis system is finding appropriate models; a significant opportunity for solving this problem is to capture design information (e.g., CAD schematics in popular file formats) and use it to generate models automatically. Identifying the correct level of abstraction for the model is also an important challenge and can impact the real-time performance, certainly a consideration for telemetry anomaly resolution in real-time.

Consideration should be give to the accuracy of the reasoning system developed. Verification is difficult for complex software, but some metrics of goodness will be necessary before widespread acceptance of the technology can be expected.

PHASE I: Address whether model-based and/or case-based reasoning or some combination is best suited for unknown anomaly resolution, how it should be implemented into a satellite control system, and how accuracy is verified. The government will provide telemetry stream parameters necessary to conduct analysis. Develop a demonstration prototype using a subset of a satellite subsystem. Identify verification metrics and the results of testing the prototype.
PHASE II: Provide a prototype demonstration of an entire satellite onboard subsystem. Identify methods of extending this enhanced prototype to other satellites or other domains. Report any additional verification metrics or methods developed and test results obtained during development.

POTENTIAL COMMERCIAL MARKET: Potential application for this technology includes DoD, NASA, and commercial satellite ground stations. Other applications include process control such as automobile manufacturing, nuclear power, and robotics. Anomaly identification and resolution in satellite telemetry (at least) require a sizable portion of available resources; automated methods for anomaly identification potentially reduce the resources required and hence the cost of those resources.

REFERENCES:

AF97-078 TITLE: Cryogenic Coolers for Space Applications

Category: Exploratory Development

OBJECTIVE: Develop cryogenic cooling, and/or associated technology improvements.

DESCRIPTION: The evolution of cryogenic cooling requirements necessitates reduced size, weight, input power and induced vibration, longer life and increased reliability and increasing net cooling load for these devices. Improvements in cryocooler design, efficiency and reliability for the temperature regime of 10 to 150K are desired. Of special interest are concepts which show potential to provide cooling in the temperature range of 10 to 65 K as well as cooling capacities in the range of 0.3 to 5 W. The cryocoolers rejected heat should be removed in the temperature range of 275-325 K. If reduced induced vibration is a specific improvement area, it can be reduced by either inherent design features or external vibration reduction methods. Proposers may submit new concepts for improvements in basic cryogenic cooler designs, associated component level improvements, increased reliability and maintainability, or other significant technologies which promote cryogenic cooling for the Air Force and private sector use.

PHASE I: In Phase I of this SBIR the contractor shall develop initial designs and associated analysis to select the most promising approach. Preliminary demonstration of the chosen design is preferred but not required.

PHASE II: In Phase II of this SBIR the contractor shall further develop and demonstrate the preferred Phase I approach. Develop a plan for insertion of the Phase II demonstrated design into applicable Air Force and commercial systems.

POTENTIAL COMMERCIAL MARKET: Cryogenic cooler designs benefiting from improvements under this topic will be extremely useful for commercial applications. The cryogenic cooling potential applications include, but are not limited to,
communications, commercial satellites, computer and data systems, power applications, and medical instrumentation. Cryogenic cooling applications for communications include cooled or superconducting electronics for improved Signal-to-Noise ratio, efficiency and reliability. Commercial satellite applications can range from optics/sensor improvements similar to Air Force uses, to increased thermal management utilization. Computer and power applications benefits are similar to the communication applications described, with increased performance associated with higher speed cryogenic electronics and increased cost savings associated with improved efficiency and reliability. Medical uses of cryogenic cooling are widespread today (MRI, cryosurgery), but use bulky and costly stored cryogenic fluids which could be replaced by cryogenic refrigerators. Commercial applications also include replacement for current terrestrial refrigeration systems which require CFC's.

REFERENCES:

AF97-079 TITLE: High Performance Quantum-Well/Superlattice Infrared Detector Development

Category: Exploratory Development

OBJECTIVE: Develop multiquantum-well/superlattice infrared detectors that have high optical responsivity and low dark current.

DESCRIPTION: Multiquantum-well and superlattice infrared detectors are very promising for space surveillance and imaging applications because of their adjustable band gaps and device structures. The most mature of the many different material systems being developed is the GaAs/AlGaAs system. The devices made of this material system have outstanding radiation hardness and uniformity; however, they suffer from their inability to absorb normally incident light. The currently pursued approaches of incorporating beveled edges and gratings to overcome this problem yield low optical responsivities while increasing the processing complexity and crosstalk. Another problem with these detectors is that the measured dark currents are significantly larger than the theoretical predictions. Hence, there is a strong need for new, innovative approaches for improving the optical responsivity and to reduce the dark current in these detectors.

PHASE I: Identify and systematically investigate one or more innovative approaches for improving the optical performance of multiquantum-well/superlattice infrared detectors and/or reducing the dark current, and demonstrate the concepts.

PHASE II: Develop prototype multiquantum-well/superlattice infrared detectors with increased optical performance and reduced dark current based on the findings of Phase I, and characterize them. Develop a plan for technology transition and commercialization.

POTENTIAL COMMERCIAL MARKET: Because of their adjustable band gap, multiquantum-well/superlattice detectors could be designed to detect very long wavelength radiation for astronomy applications. High-performance multiquantum-well/superlattice devices could be used for semiconductor lasers, optical signal processing, nonlinear optics, and a variety of optoelectronic applications. Hence, it is anticipated that the results of this technology effort will benefit not only DoD, but also NASA and the optoelectronic industry in both the public and private sectors.
REFERENCES:

AF97-080 TITLE: Intelligent Solid State Switching

Category: Exploratory Development

OBJECTIVE: Develop an intelligent solid state switching device as an alternative to mechanical relays and fuses.

DESCRIPTION: Mechanical magnetic latching relays that are efficient and radiation-hardened have been used for decades in aerospace applications. These relays are large and heavy, do not provide for in-rush current limiting functions and/or circuit breaker functions, and have a limited lifetime at overrated switching currents. Recent advances in power electronics and microcontrollers have made it practical to design solid state relays which have the efficiency and simplicity of actuation of mechanical relays along with in-rush and short circuit current limiting capabilities. Intelligent solid state switching can provide significant weight reduction and improved performance in the area of telemetry and fault management. These switches can provide an alternative to fuses, relays, and current sensors which are historically costly and unreliable.

PHASE I: Through cooperation with the Air Force, analyze existing spacecraft relay, fusing and current sensing designs used in telemetry and for circuit breaker functions. Based upon this analysis, design the architecture for an intelligent solid state equivalent with built-in testability. Provide demonstrated proof that solid state based technology devices can reliably replace the mechanical counterparts presently used in space.

PHASE II: The Phase I concept will be fabricated as a prototype system and tested to validate that requirements are met. Testing will include environmental exposures and operational constraints. From this, performance and requirement specifications shall be developed.

POTENTIAL COMMERCIAL MARKET: The intelligent solid state relay concept is applicable to all markets that presently use relays and circuit breakers. This would include, but is not limited to, commercial and residential buildings, certain appliances and machinery.

REFERENCES:
AF97-081 TITLE: Momentum Wheel Energy Storage

Category: Exploratory Development

OBJECTIVE: Develop novel momentum wheel energy storage, possibly combined with spacecraft stability control designs and components.

DESCRIPTION: The power system size and payload capability of a satellite increasingly will be limited by the specific energy density of chemical batteries. Concepts combining energy storage with spacecraft momentum wheel stability are being solicited for development. The system concept shall be defined and technical risks identified and a program developed to solve each technological uncertainty. The device shall be capable of storage of a minimum 50kW/hr of energy, be compatible within spacecraft bus, and possess life capability of >30,000 cycles.

PHASE I: Identify approaches, procedures, tests/analyses and establish a conceptual design. Plans, cost, and schedule shall be accomplished. Critical experiments and analysis shall be performed to insite the success of Phase II.

PHASE II: Finalize design/produce an operational prototype unit. Provide demonstration to Air Force requirements.

POTENTIAL COMMERCIAL MARKET: The results of a successful Phase II development would lead to energy storage devices combined with altitude control momentum wheels which could be used in both military and commercial satellite buses.

REFERENCES:

AF97-082 TITLE: Electromagnetic Effects, Measurements, Protection, Sources, and Satellite Protection

Category: Basic Research

OBJECTIVE: Develop high power electromagnetic or Radio Frequency (RF) sources, measurement techniques, protection, and new methods for addressing threat phenomena to satellites.

DESCRIPTION: The Phillips Laboratory is in need of new and innovative approaches in the development and demonstration of compact, lightweight RF sources for both weapons and commercial applications. The technology sought should address sources capable of delivering gigawatt levels of power in microsecond or shorter pulses. Both narrow and wide band sources are of interest. The technologies that may be addressed in this effort include pulsed power, high power microwave tubes, transmission lines, mode converters, and antennas. Also of interest are methods and techniques for measuring the performance of these components, the effects that such environments will have on electronic systems, and methods of protecting systems from electromagnetic environments over a wide range of frequencies and field levels. Protection against electromagnetic effects is becoming critical with the increased use of electronics, lower power semiconductors with reduced noise immunity thresholds, reduced shielding through increased use of plastics and composite materials, and increased RF emissions from commercial and military radiators. The increased use of Commercial-Off-The-Shelf (COTS) equipment in military systems will also require
improved protection approaches to effectively use COTS without major redesign and expense. Application of electromagnetic technologies for other areas such as security systems, law enforcement, medicine, and information systems are also of interest. In addition to the application of electromagnetic protection to satellites, additional protection is needed for other threat environments such as radiation, thruster firings, space debris, orbit dependent chemical reactions with naturally occurring species, and solar or laser radiation. Many of these environments are natural or occur during normal operations, but others may be threats faced by satellites during a wartime situation. Reliance on commercial satellites for future military functions is likely to increase, and reliable, survivable satellites are a must for both peacetime and possible wartime conditions. Additional technologies of interest include high energy plasma production, measurement, and applications.

PHASE I: Feasibility experiments and demonstrations will be conducted. A proposed schedule for implementing the proposed approach, specific commercial applications, and possible market partners will be included in the final report. Commercial partners committed to Phase II support are desired.

PHASE II: Develop and implement the Phase I approach or preliminary design, producing a prototype model, device, and/or process which must be demonstrated to be effective either at full operation or scaled to laboratory bench parameters. Prototypes developed during Phase II will be delivered to the PL in operating order with sufficient documentation to allow for validation testing. Identification and commitment of commercial partners (if not accomplished Phase I) shall be pursued. A viable private sector marketing approach must be developed and implemented.

POTENTIAL COMMERCIAL MARKET: Many of the necessary technologies required for military weapons systems have similar commercial applications. High power sources and antennas can be used to locate and identify buried unexploded ordinance needed in base clean up efforts. Other technologies associated with ultra wide band sources can be used to improve airport and other security systems operating at lower power levels commensurate with personnel safety. Protection of future electronic systems is a must in a society with ever increasing dependency on reliable operation of automobiles with airbags, anti-skid brakes, electronic transmissions and steering, and engine control. Fly-by-wire aircraft, information highway systems, and home appliances are among other systems critically dependent on reliable operation of electronic subsystems. Increased use and dependency on satellites for everything from communications, global positioning systems for both military and commercial aircraft, weather information, and many other applications, combined with the high cost and difficulty of repair require that these systems be designed to protect them from threat environments both during normal operation and in case of wartime to protect our interests in the world of the future.

REFERENCES:

AF97-083

TITLE: Elimination of Pulse Shortening in High Power Microwave Tubes

Category: Exploratory Development

OBJECTIVE: Develop and deliver a long pulse high power microwave tube that delivers a pulse that generates power of 1 GW or more that has more than 2 kilojoules of energy in a pulse more than 1 microsecond long.

DESCRIPTION: Advances in narrow band high power microwave (HPM) tubes has made possible the generation of intense pulses of RF energy with power in excess of 1 GW. However, the experience is that for a number of tubes that can operate at this power level (e.g. klystrons, MILOs), as the power of the tube is increased above 100 MW, the pulse becomes shortened, limiting the energy in the pulse to the order of 100 J. The goal of this SBIR project is to demonstrate that the processes that limit tube performance to short pulses at high power can be understood and controlled. The contractor shall study the mechanisms that lead to pulse shortening in a high power microwave tube and explore and develop means of overcoming the cause(s) of pulse shortening. The contractor shall design, build, and demonstrate the performance of the tube at the contractors plant, and deliver the tube to the Phillips Laboratory along with operating instructions and reports.

PHASE I: The contractor shall experimentally and if desired analytically investigate the causes of pulse shortening in a narrow band HPM tube. The contractor shall investigate potential methods for overcoming the phenomena causing pulse shortening and identify those that are effective in lengthening the pulses at high power. The contractor shall provide quarterly and final technical reports in contractor format with view graphs.

PHASE II: The contractor shall continue the effort begun in Phase I to develop a tube that incorporates the mitigation methods developed in Phase I and may continue to explore additional means with a view to being able to build the needed improvements into a tube that meets the requirements above with appropriate pulsed power to drive it. The effort will support

AF-91
the design of the long pulse HPM tube. The contractor shall build, test, demonstrate, and deliver a tube, and the pulser to drive it, at the end of Phase II to the Phillips Laboratory. The contractor shall provide quarterly and final technical reports in contractor format with viewgraphs to document progress. The tube design shall be incorporated into one of the quarterly reports, and the as-built drawings of the tube, appropriate operating instructions, and a parts list with recommended spares shall be included with the final report.

POTENTIAL COMMERCIAL MARKET: A successful Phase II effort can be expected to make it possible to build particle accelerators with a factor of ten fewer stages, cavities, and accelerator tubes. This will significantly impact synchrotrons for use in the semiconductor industry and nuclear research. Large $20M storage rings 20m in diameter could be replaced by linacs 2-3 m in length with savings of up to 90% in capital costs. In like fashion, linacs for X-rays could replace radioactive 60Co sources for food processing and eliminate the associated NRC licenses, regulating, operating, and capital costs. Similar machines could be competitive in sterilizing waste streams, such as treatment of water from hospitals. The successful development of such tubes will also make markets in the use of linacs for making deep welds at high repetition rates and for radiology for inspecting deep welds in heavy industries including shipbuilding. US microwave tube manufacturers could capture a substantial increased share of the world market for high power tubes and spin off industrial applications.

REFERENCES:

AF97-084 TITLE: Automated Vehicle Identification

Category: Exploratory Development

OBJECTIVE: Develop a system capable of identifying moving vehicles using electromagnetic radiation techniques.

DESCRIPTION: There is an increasing need to provide an automated system capable of identifying passing vehicles for law enforcement, base entry monitoring, and other security applications. Manual methods of reading license plates and other vehicle identification stickers can be both time consuming and labor intensive. They are also prone to errors and don't allow for unattended operation. A new approach based on electromagnetic technology is desired to provide this type of capability. Its ability to operate in varying weather and lighting conditions would provide advantages over optical methods. Characteristics of such a system should consider the use of some type of special license plate that can be attached to vehicles that would respond when illuminated by an electromagnetic field. The response would be in the form of a radiated electromagnetic field containing vehicle identification information. The license plate should be easily produced, low cost, and perform reliably. A passive (unpowered) license plate which has the capability to receive sufficient energy from the radiated interrogating field necessary to radiate the vehicle information in the form of an electromagnetic field is preferred. Technical concerns include signal-to-noise ratio limitations, radiated field levels, possible interference with other electronic systems and receivers, and directionality of the interrogating radiated electromagnetic fields. The coded response signal received from the vehicle should be capable of being decoded and transformed into digital computer format for automated storage and processing.

PHASE I: The contractor shall investigate various approaches during Phase I, and through modeling, analysis, and other means determine the feasibility of such a concept. The results of the Phase I effort should clearly demonstrate not only the feasibility, but establish a defined approach for a Phase II effort. Commercialization and dual-use applications should be developed and potential partners identified.

PHASE II: The contractor shall develop and demonstrate a prototype system capable of identifying moving vehicles under realistic highway and local traffic conditions. The system shall be capable of operating within applicable regulatory
constraints, be cost effective, reliable, and produce a coded response signal output compatible with standard digital computers.

POTENTIAL COMMERCIAL MARKET: This technology will directly benefit civilian law enforcement needs for traffic surveillance and will support military needs to monitor base entry points and other security areas, thereby reducing labor requirements. Law enforcement agencies have identified this type of a capability as one of their needs.

REFERENCES:

AF97-085 TITLE: Wideband Sources, Antennas and Mode Converters

Category: Exploratory Development

OBJECTIVE: Develop new concepts and enhanced capabilities in Very High Power Wideband and Ultrawide Band Transient electromagnetic energy production and propagation.

DESCRIPTION: Wideband and ultra-wideband (UWB) sources and emitters are of interest for a variety of potential applications that range from radar transmitters to jammers and communications systems. This technology is of current interest to the USAF Phillips Laboratory where research efforts have been underway for a number of years. Fast transient waveforms with high power and broad spectral content are of primary interest. Rise times of interest are in the range of one nanosecond to 10s of picoseconds, and pulse widths as short as a few hundred picoseconds are desired.

Energy may be delivered from a high power wideband source on either a parallel plate or coaxial transmission line. In order to be useful, the energy must be transferred to an antenna to be radiated. This generally requires a mode convertor, especially in the case of coaxial sources. Extraction of energy from a coaxial source can be particularly tricky, especially at high voltages and short pulse times. The ability to extract and radiate high voltage energy with very short rise times of 10's to 100's of picoseconds is an area of technology which is only just beginning to be explored. Innovative ideas for the generation, extraction, mode conversion, radiation and focusing of these wideband and ultrawide band signals are solicited.

PHASE I: The goal of this effort is to select promising applications for utilizing Phillips Laboratory's electromagnetic technology. Basic feasibility of the proposed applications will be investigated to determine the specific approaches, identify critical development requirements, potential risks, and provide a basis for determining the potential success of a Phase II effort.

PHASE II: Develop and fabricate a prototype system, conduct laboratory and other tests which will demonstrate a capability with clear commercial potential. Develop commercial partnership interests for a Phase III production and marketing program.

POTENTIAL COMMERCIAL MARKET: The civilian sector has similar requirements for locating buried objects such as pipes or underground cables and to perform inspections on concrete structures such as bridges or building foundations. Potential uses also include locating and identifying objects such as unexploded ordnance or other objects such as buried or hidden guns from a crime scene.

REFERENCES:

AF-93

AF97-086 TITLE: Electromagnetic Integration of Commercial-Off-The-Shelf (COTS) Equipment Into Military Systems

Category: Exploratory Development

OBJECTIVE: Develop methods that will allow electromagnetic integration of Commercial-Off-The-Shelf (COTS) equipment into existing and/or new military systems with the minimum of redesign and costs.

DESCRIPTION: Recent changes in DoD policies and goals have stressed the need to use COTS equipment in military systems to reduce costs and spin-on new technologies. To assure that these goals are met with minimum difficulties and costs, standard methods are needed to allow the integration of COTS equipment into military systems which are often required to operate in much more demanding electromagnetic environments than are normally seen in the commercial sector. With the advent of directed energy weapons such as High Power Microwave (HPM) and Ultra Wide Band (UWB), the potential operating environments can be significantly higher than the standard military communications, radar, and other high density electromagnetic conditions. Reduced budgets will place a greater emphasis on the need to retrofit existing weapons system platforms to improve performance while retaining operability and containing costs. Methods that will improve the electromagnetic protection of COTS equipment without the need for major redesign of either the COTS equipment or the weapons system are needed. Approaches that will identify specific retrofit protection requirements with easily modified standard electromagnetic protection methods that are both cost effective and easily maintained through the operational life of existing weapon systems are needed. Other approaches are also needed to effectively deal with the use of COTS in new system designs.

PHASE I: The contractor shall identify specific areas and concepts for implementing electromagnetic integration of COTS equipment into existing and new weapons systems. The first phase effort will scope the problem into a specific approach that can be expected to produce definitive results during Phase II.

PHASE II: The contractor shall pursue the concepts and approaches defined during the Phase I effort to demonstrate the adequacy of the methods to be used for electromagnetic integration of COTS equipment into a weapons systems. A specific military system incorporating COTS equipment shall be selected to demonstrate the effectiveness of the electromagnetic integration methods.

POTENTIAL COMMERCIAL MARKET: The ability to effectively use COTS equipment in military systems operating in hazardous electromagnetic environments has great commercialization potential and by definition is dual use.

REFERENCES:

AF-94
AF97-088 TITLE: Advanced Rocket Propulsion Technologies

Category: Basic Research

OBJECTIVE: Develop innovative components, manufacturing and processing techniques, and integration technologies aimed at doubling existing rocket propulsion capabilities.

DESCRIPTION: There is a critical need for novel, innovative approaches in the development of technologies which can double existing rocket propulsion capabilities by the year 2010, and for bold, new, non-conventional aerospace propulsion-related technologies which will revolutionize aerospace propulsion in that century. These revolutionary concepts, based on sound scientific and engineering principles, are essential in order to increase performance and mission capability while either retaining or decreasing life-cycle costs. Specifically, technological goals include: 1) the 80% reduction of environmental hazards from propellant ingredients and processing, propulsion exhaust, and rocket motors while either maintaining or surpassing current propulsion efficiency; 2) increasing the payload capability of existing launch and upper stage propulsion systems by 7%; 3) a 50% decrease in the cost and time of manufacturing of solid rocket motors; 4) increasing the service life of cryogenic liquid rocket engines between overhauls from 3 to 100 flights; 5) reducing the number of parts for a cryogenic turbopump by 80%; 6) integrating high energy density matter into future rocket propulsion systems; and 7) advancing rocket propulsion capabilities through concerted government-and industry-based advances in Integrated High Pay-off Rocket Propulsion Technology (IHRPPT) efforts. Improvements in the operability, reliability, maintainability, and affordability of space launch applications, for example, might include development of novel systems which can be launched with short lead times for relatively low life-cycle costs. Such systems would need to demonstrate high reliability and maintainability levels. Subsets of advanced rocket technologies would have lengthy shreds of potential research subjects, but are not stated here in detail. These technologies might include the need for combustion and plume diagnostics (i.e., application of electro-optical devices and sensors), performance predictions, modeling of exhaust plume radiation and combustion characterization, propellant and component service life prediction technologies, and environmental contamination. Furthermore, bold, new, advanced propulsion and related technological concepts and products for space activities are solicited for development. These topics include revolutionary concepts in very advanced fuels and oxidizers, metastable high energy nuclear states, revolutionary energy devices, storage of antimatter in chemical matrices, nanotechnology products and techniques, and field propulsion thrusters. Research in these advanced rocket propulsion topics is included and structured to provide a maximum of innovative flexibility while yielding promising commercial applications/dual-use technologies to prospective investigators.

PHASE I: The initial research in the effort will assess existing capabilities and demonstrate, through bench scale evaluation of the proposed new approach, the payoff to be derived by implementing the concept.

PHASE II: Phase II will demonstrate selected advanced rocket technological concepts beyond bench scale and conduct verification testing of those concepts.

POTENTIAL COMMERCIAL MARKET: Advanced rocket propulsion technologies will transition to the US commercial space launch industry, thus enabling the US industry to more favorably compete with foreign sources for space launch opportunities through reducing the life-cycle cost of inserting payloads to space orbit. Advanced rocket propulsion technologies also serve the commercial sector by enhancing our ability in remanufacture and maintenance of the US ballistic missile fleet.

REFERENCES:

AF97-089 TITLE: Molded Polymeric Components for Combustion Systems and Extreme Temperature Applications

Category: Exploratory Development

OBJECTIVE: Design and fabricate components for the extreme temperature and pressure environments of advanced combustion and propulsion systems.

DESCRIPTION: The Propulsion Directorate of Phillips Laboratory is committed to infusing new materials technology into the very conservative rocket propulsion industry. The Polymeric Components group is striving to develop new preceramic polymers and polymer co-processing techniques that will allow components of all types to be manufactured more effectively and with less human labor. Polymeric materials have the highest probability of success in the low temperature regions of a combustion
system, but it may also be possible to use high-performance polymers as lightweight substructures for combustion devices. New and innovative solutions are sought for the obvious technical challenges in manufacturing polymer-based components for the extremely high-temperature, cryo-temperature, and high-pressure environments present in advanced combustion and propulsion systems. Any combustion system successfully exploiting advanced plastics technology will be lighter, tougher, more corrosion resistant, and easier to manufacture than conventional systems. These characteristics are highly desired in rocket propulsion systems which must be lightened and strengthened without loss of performance if the DoD is to reach the tactical and spacelift propulsion goals set forth by the Integrated High-Payoff Rocket Propulsion Technology (IHPRT) initiative.

PHASE I: Develop polymer-based materials (or materials combinations) and manufacturing suitable for extremely high- or extremely low-temperature applications. Show ability to manufacture components with the chosen materials.

PHASE II: Design and fabricate a liquid rocket engine component using the polymer materials and processing techniques outlined above. The component must be suitable for testing at Phillips Laboratory, Edwards AFB.

POTENTIAL COMMERCIAL MARKET: Mastering polymer processing and coprocessing for such hostile environments as those encountered in advanced combustion systems will open the way for applying high-performance plastics into any application where high-temperatures and pressures are a problem. Automobile and aircraft propulsion systems will benefit from the exploitation of this technology. Polymers are much easier to process than most materials and allow labor-intensive manufacturing processes to be automated. The advances in plastics processing achieved in this program will also increase the use of plastics in other high-temperature applications. Some potential applications: flame retardant materials and coatings, lightweight automobile structural parts, high-performance thermal insulation, and lightweight construction materials.

REFERENCES:

AF97-090 TITLE: Innovative, Remote, Laser-Based Diagnostic Techniques for High-Pressure Combustion Applications

Category: Exploratory Development

OBJECTIVE: Develop unique and innovative diagnostic instrumentation to measure concentrations, temperatures, densities, and velocities in high-pressure combustion devices for defense and commercial applications.

DESCRIPTION: Innovative laser-based optical diagnostic methods are sought for application in high-pressure, multiphase combustion devices which provide reliable, accurate quantitative measurement of significant thermodynamic, chemical, and flow parameters. Future Air Force and Civilian propulsion systems will operate in high pressure combustion regimes for which there are almost no available diagnostic methods that are reliable and quantitative. Over the last 20 years, a broad spectrum of laser-based optical diagnostic techniques have been developed for remote, non-intrusive measurements in extremely harsh combustion environments, such as gas turbine engines, internal combustion engines, rockets and shock tubes. These proven methods can measure species concentrations, temperature, density, and flow velocity, in many cases acquiring a two-dimensional visualization. Unfortunately, these methods are semi-quantitative or qualitative at high-pressures. But it is precisely this pressure regime that is of critical importance to several strategic technology areas, both military and commercial. Pertinent examples are rocket propulsion, advanced gas turbine technology, internal combustion engines (gasoline and diesel) and supercritical chemical extraction and processing. Many devices would improve performance if operated at higher pressure, therefore, it is imperative that new technology be found to interrogate this difficult, nearly inaccessible regime.

The Phillips Laboratory is seeking new and unique diagnostic methods, or innovative application of existing methods such as (but not limited to) the following: emission spectroscopy, line-of-sight absorption, Raman (line-imaged and 2-D), Rayleigh-Brillouin, LIF and PLIF, CARS, Degenerate Four Wave Mixing and other laser-induced transient grating effects, and picosecond pulse methods. Other nonlinear spectroscopic and optical methods may be considered also. In appraising potential methods, particular attention to the exceptional problems unique to high pressure diagnostics, such as beam-steering and scattering, spectroscopic line-broadening and band collapse (encountered in Q-branch Raman and CARS), are considered. High
sensitivity is not an overriding issue, rather, accurate measurement of major species, temperature, and density are paramount. An effort must be shown to reduce the size/weight/power demand/cost of the diagnostic instrumentation with the ultimate aim of onboard installation of the diagnostic on the combustion device. Similarly, consideration must be given to operation of the diagnostic under conditions of multiphase combustion and/or flow. Such multiphase considerations are necessary of liquid rocket engines and supercritical chemical processing.

PHASE I: Develop and demonstrate the potential of diagnostic methods for measurement of species concentrations, temperature and density of combustion reactants, intermediates, and products relevant to Air Force Propulsion and Energy conversion, under high-pressure, high-temperature, multiphase conditions in harsh environments, including supercritical conditions. An accurate, rapidly implemented measurement system is desired, which indicates an earnest endeavor to minimize size and complexity, and can be applied to both defense and commercial needs. A proof-of-concept demonstration of offeror’s high-pressure diagnostic methodology is required.

PHASE II: Develop and demonstrate operation of prototype instrument for high-pressure combustion diagnostics investigated under Phase I. All hardware and software developed under this program shall be delivered. A well-documented strategy for implementation of this technology into Air Force Propulsion Systems and transfer into commercial applications shall be composed.

POTENTIAL COMMERCIAL MARKET: Diagnostic instrumentation that provides reliable, accurate data from devices operating at high pressure would impact countless commercial applications. Developers of this diagnostic instrumentation will be immensely successful because of these several marketing opportunities, and should easily foresee a multi-million dollar market potential. As an obvious example, this unique measurement technology is immediately and directly applicable to internal combustion engines and gas turbine propulsion. Stationary power plants provide another example. These vital measurements would be used to increase efficiency and reduce pollutant emission, and eventually may be employed to provide interactive control of operating conditions. The latter application would contribute to longer-lived engines, reduced fuel costs, and higher performance.

Another critical utilization for high-pressure diagnostics is in the chemical process industry where high-pressure reactors are routinely employed. Very little fundamental information concerning kinetics, reaction mechanisms, and product distribution for high-pressure reactions is available. Crucial thermodynamic and kinetic data gained from accurate diagnostics would lessen design time and system check-out and would provide better-informed operating strategy. A challenging new extension in this field, operating at very high pressures and high temperatures, is supercritical extraction and synthesis. One of the most important objectives of this technology is the safe conversion of toxic wastes into harmless products. Instrumentation that contributes critical measurements in these devices would improve performance through better design and process operation, making this industry more competitive in the worldwide marketplace.

REFERENCES:
Electric Propulsion (EP) Thruster for Low Power Small Satellites

Category: Exploratory Development

Objective: Develop and validate innovative design concepts and components for low power electric propulsion thrusters applicable to small satellites.

Description: Small satellites are extremely mass and power limited. In addition, propulsion system requirements for this class of satellite will be high due to larger maneuvering requirements, higher precision attitude control, increased stationkeeping life, and higher drag wake-up for low orbit satellites. Substantial improvements in both thruster performance and specific power are needed to provide this increased propulsion system capability while constrained by large mass and power limitations. The objective of this effort is to radically push the technological envelope in the field of electric propulsion. Proposed concepts must show promise of more efficiently utilizing the on-board electrical energy while maintaining high specific impulse operation. Projects proposing enhancements to existing systems will also be considered. The propulsion system should be sized for satellite masses from 500 lbm down to 10 lbm with satellite specific powers from 1 to 4 W/kg.

For Phase I efforts, a strong emphasis should be placed on the validation of the design that is expected to provide the stated performance enhancements; experimental and theoretical methods can be considered. Both thruster components and complete thruster concepts will be considered for Phase I. One thruster component of interest is the cathode neutralizer, which is currently designed for Hall and Ion thrusters operating above 1 kW-potential advances include reduced cathode propellant and power usage, and reduced mass and size. Government and commercial test and evaluation facilities may be utilized; documentation of efforts to secure these facilities should be provided. Based on the results of these tests, thruster performance should be estimated and improvements quantified.

Phase I: Develop and validate innovative electric propulsion thruster concepts or components for small satellite (500 lbm to 10 lbm) applications; primary interests are performance, thrust-to-weight ratio, minimal impact on spacecraft operations and systems, minimal spacecraft contamination, environmental compatibility, and lifetime. The focus of the effort should be on stationkeeping and orbit maneuvering applications.

Phase II: Apply the results of Phase I to the design, fabrication, experimental validation, and optimization of EP thruster performance capabilities. An iterative thruster design process is expected, with the design and prototype that generates the best overall performance being reproduced and delivered to Phillips Laboratory upon completion of the Phase II technical period of performance.

Potential Commercial Market: Dual use commercialization would occur through the development of flight quality electric propulsion systems for small satellite and space experiment applications. The development of small satellites, and their propulsion systems, is one avenue for reducing satellite launch costs. The deployment of satellite constellations consisting of large numbers of satellites should create a large market for efficient low power thrusters. The higher performance thrusters will result in greater mission capability including both satellite life and maneuverability, which are areas of interest to government and commercial customers. Both mission capability and profitability will increase through the introduction of these thrusters into the marketplace. The outlook for commercialization therefore appears very strong.

References:
TITLE: Solar Thermal Rocket Propulsion

Category: Exploratory Development

OBJECTIVE: Develop novel solar thermal propulsion components.

DESCRIPTION: The solar thermal rocket propulsion concept is to develop an Orbital Transfer Vehicle (OTV) to boost payloads from low earth orbit to geosynchronous orbit. Theoretically, this rocket has the capability of inserting about twice the payload of current OTV's into higher orbits and will be reusable. The OTV consists of two energy-collecting and focusing concentrators which direct sunlight into two small apertures. Within the apertures are heat exchanging media through which hydrogen gas, the propellant, flows. The hydrogen picks up heat, expands, and thrust is produced out the propulsive nozzle.

For AF missions we must keep the package volume and weight of the OTV to a minimum. This means using thin film inflatable concentrators and structural supports as much as possible. These items are made of thin film polyimides and, depending on the type, are shaped like clamshells or balloons. Both types have a clear light transmission area and a reflectorized light collection area. Micrometeoroids can penetrate the thin film materials easily, leaving larger holes upon exit than entrance. The concentrators' useful life will be of longer time duration if they can patch themselves instead of having to be replaced every other mission or so.

Other components required for the solar rocket include, but are not limited to: concentrators, thrusters, energy storage propulsion bi-modal systems, propellant tankage, space sun-trackers, optical quality measurement devices, and laser beam power thrusters.

The latest technologies in Solar Thermal Propulsion concentrator components deal with: focusing laser light into apertures from ground-based systems; developing, designing, and fabricating foam inflation/rigidized structures for supports; and composite material telescoping supports that are lightweight, packageable in small volumes, and self-deployable. For thrusters, the newest ideas are: matrices of small tubes that act like black body cavity receivers; and working, shaping, and applying new methods of manufacture to high temperature exotic refractory materials for use as solar absorbers.

PHASE I: Generate a list of components. Analyze them and perform tradeoffs. Some of the factors include, but are not limited to, the following: usefulness in space, effectiveness in closing holes or at least reducing their size (self-repairing concentrators), cost effectiveness, ease of use, environmental concerns, autonomy, distortion of the focal image, reliability, maintainability, vulnerability, and survivability. Develop preliminary designs and perform analyses to select most promising candidate. Laboratory demonstration of the selected concept is preferred but not required.

PHASE II: Further develop, design, fabricate, and demonstrate the chosen Phase I design/concept. The contractor shall deliver any hardware/software developed, document the work performed and develop a plan for technology transition and insertion into future systems and other commercial ventures.

POTENTIAL COMMERCIAL MARKET: Any inflated object, upon detecting a leak, could be repaired at reasonably low cost using the inflatable technology developed under this effort. This is particularly true of tires and inflated pools. Any flat tire could be inflated and driven at reasonable speeds to the nearest repair facility. This would negate the necessity of even carrying a spare tire. A catastrophic blowout would not be helped, but since most tire problems are leaks, this could be of significant help. It is estimated that hundreds of millions of dollars could be saved if spare tires were eliminated from all new cars.

REFERENCES:
AF97-093 TITLE: Turbine Blade Cooling

Category: Exploratory Development

OBJECTIVE: Develop methods to increase the turbine inlet temperature capabilities of rocket engine turbopumps.

DESCRIPTION: The turbine of a rocket engine turbopump is typically operated near the material thermal limitations. This limits the amount of power that can be extracted from the turbine, and this leaves little margin for safety in the operation of the turbopump. By cooling the turbine blades, either the turbine inlet temperature capabilities can be increased, or the safety margin can be increased.

In many cases rocket engines are expendable: the turbopumps are only expected to last the life of a single mission, so the thermal limits of the turbine materials is not a critical issue. However, in reusable engines, such as the Space Shuttle Main Engine, or new reusable concepts, the turbopump is expected to last several missions. Overcoming the thermal material limitations could dramatically increase the reliability of the turbines, and potentially decrease the cost.

A Phase I effort in this area would include investigating various cooling concepts for a rocket engine turbine blade. Phase I may entail building an experimental model to investigate whether the proposed concept was functional, and quantifying the benefits of the cooling method.

PHASE I: Produce a representative cooled turbine blade, or blisk, that will withstand the environment of a rocket engine turbopump.

PHASE II: Produce a turbine blade or turbine blisk which can be tested in a representative rocket engine turbine environment. Possibly use an existing design.

POTENTIAL COMMERCIAL MARKET: There are potential uses of cooled turbine blades in commercial and military high power gas turbines. These high powered small gas turbines have many of the same material thermal limitations as rocket engine turbopumps.

REFERENCES:

AF97-094 TITLE: Magnetic Bearing for Rocket Engine Turbopumps

Category: Exploratory Development

OBJECTIVE: Develop methods to improve the capabilities of magnetic bearings to make their use in rocket engine turbopumps more attractive.

DESCRIPTION: There are several issues regarding magnetic bearings that inhibit their use in rocket engine turbomachinery. One issue is that, due to the weight of the magnets, the weight of a turbopump with magnetic bearings is usually greater than a turbopump with other types of bearings. Another issue is that magnetic bearings require a control system. This is a possible failure mechanism. A third issue is that the magnetic bearings may require an external power supply—another failure mechanism.

Despite their disadvantages, the Air Force is interested in magnetic bearings because of the possible benefits they may have. The advantage of magnetic bearing is that the bearing can compensate for off design loading conditions. With active control, fluctuations in the pump inlet conditions or the turbine condition, can be neutralized before they cause the turbopump to go unstable or cause damage.

A Phase I effort in this area would require optimizing a magnetic bearing for use in a rocket engine turbopump. The initial effort would require designing a bearing to optimize for lowest possible weight.

PHASE I: Design a magnetic bearing optimizing for lowest possible weight.
PHASE II: Produce a bearing based on a current turbopump design.

POTENTIAL COMMERCIAL MARKET: Although the Air Force is interested in magnetic bearings, industry would be more likely to capitalize on the benefits. Industrial turbomachinery is not subjected to the same weight limitations as the aerospace world. This allows for a backup power supply and physically larger magnets with higher load capacity, items which are typically weight prohibitive in the aerospace world.

REFERENCES:

AF97-095 TITLE: Flight Weight Electro-mechanically Actuated Cryogenic Ball Valve

Category: Exploratory Development

OBJECTIVE: Develop a small, highly reliable, low torque, electromechanically-actuated ball valve.

DESCRIPTION: Rocket propulsion systems require highly accurate and reliable valves for control of engine thrust, engine startup, and engine shutdown. Because these valves must also fly with the launch vehicle, small size and mass are also extremely desirable attributes. Limited available power requires that these valves have a small power requirement as well. Traditional hydraulic valves and support systems in use have been larger in size and weight than desirable. Additionally, leaks and reliability have been persistent challenges. Recent technology advances in manufacturing techniques, materials, electrical systems design, etc., may allow for great improvements in the design and production of new types of valves.

PHASE I: a) Identify specific requirements for valves in rocket propulsion systems and reasons why present valves fail in rocket engine applications.
b) Identify ways to reduce size, weight, and power requirements for electromechanically actuated valves for cryogenic liquid rocket propulsion systems.
c) Develop conceptual designs for improved valves.
d) Rank order new concepts in terms of reliability, ease of manufacture, size, weight, cost, risk, etc.
e) Select the most promising concept for development and detailed design.

PHASE II: a) Design, build, and test the promising concepts developed in Phase I.
b) Demonstrate reliability, performance, small size and weight in realistic operating environment if possible.

POTENTIAL COMMERCIAL MARKET: Cryogenic fluid usage by the aerospace industry in the United States accounts for only 6% of the nation's total usage. Cryogenic ball valves have applications in many commercial industries which account for the remaining 94% of the nation’s usage. During the hot summer months when natural gas is not in demand, the natural gas industry goes into peak shaving mode, in which vast quantities of natural gas are liquefied (to decrease storage volume) and stored until the winter months when demand skyrockets. Liquid nitrogen, a component of liquid air, is used extensively in the food industry to freeze food and hamburgers for fast food chains. A supermarket distributor for the city of Denver uses over 250 thousand gallons of liquid nitrogen each year for its fleet of refrigerated trucks. A single electronics manufacturing facility uses approximately 400 tons per day of liquid nitrogen to protect electronic parts from impurities during manufacturing. Half of all the liquid oxygen is used in the steel industry to remove carbon from molten iron. Considering the large commercial market for these valves, improvements such as lower cost, smaller size and weight, and reduced power requirements could save millions of dollars in annual operating costs each year.

REFERENCES:

AF-101

AF97-096 TITLE: Cryogenic Liquid Level Indicator #20

Category: Exploratory Development

OBJECTIVE: Develop a liquid level indicator that will give accurate level indications for turbulent flow conditions in various cryogenic liquids.

DESCRIPTION: In the rocket propulsion business, it is very important to know the amount of liquid contained in a storage vessel. Due to the extremely cold nature of cryogenic liquids (below -320°F) used in rocket propulsion, these liquids easily boil off. The amount of boil off that occurs depends on the propellant used (liquid nitrogen, oxygen, or hydrogen) and the quality of the storage vessel. An accurate liquid level gauge is important in the realm of the boil off.

Conventionally, liquid level indicators use pressure measurements to determine the level of cryogen. Turbulent conditions that can occur during filling or a run condition oftentimes result in erroneous liquid level readings. Common practice in cryogenics dictates 5-10% ullage in the storage vessel after a fill. Due to the uncertainty in conventional gauges during turbulent conditions, the actual ullage space is unknown during a fill. During test operations, the pressure on the cryogenic vessel can be raised up to 6000 psi or higher. When this pressure is increased, along with evacuation of the liquid from the vessel, the level indication can read to a 30% error. Uncertainty of the liquid level in the tank could result in a gas flowing to the particular test hardware, damaging the systems, and incurring a large capital cost.

Due to the nature of testing, many different cryogenic liquids are used. The most common are liquid nitrogen, oxygen and hydrogen. Many times a single vessel can be used for all three of these liquids. Each liquid has a different specific gravity, and therefore either three gauges are required, or one gauge needs to be calibrated to the specific liquid at that time. This calibration of the gauge for the different liquids can be time consuming and costly.

Development of a cryogenic liquid level indicator that can function under turbulent conditions caused by filling, pressurization, and boil off condition would be beneficial. The system shall give accurate readings for liquid nitrogen, liquid oxygen, and hydrogen in all operational conditions. Furthermore, the system shall be self sufficient and shall not use additional tools for calibration. The indicator shall have the capability of zeroing the reading and the ability to be vented. Finally, the liquid level shall be displayed at the vessel in a non-glaring digital read-out and also be interfaced with today's standard data acquisition systems for remote read-out.

PHASE I: Develop a cryogenic liquid level indicator to operate in the turbulent flow conditions of filling, pressurization to 6000 psi, and boil off. Test and verify operational conditions in liquid nitrogen. In addition, the zeroing, venting and remote reading to a 4-20 mA or 10V data acquisition system shall be accomplished.

PHASE II: Refine the results found in Phase I and validate the system with liquid nitrogen, oxygen, and hydrogen to pressures up to 10,000 psi. The system shall be able to be calibrated to any of these three liquids and shall not require an additional calibration tool.

POTENTIAL COMMERCIAL MARKET: Cryogenic fluid usage by the aerospace industry in the United States accounts for only 6% of the nation's total usage. This liquid level can easily be accommodated into the other 94% of the cryogenic world, whether it be for natural gas, the food industry, steel industry, or the computer industry. During the hot summer months when natural gas is not in demand, the natural gas industry goes into a peak shaving mode, in which all of the natural gas is liquefied and stored until the winter months. Liquid nitrogen is used extensively in the food industry to freeze food for fast food chains. Half of all liquid oxygen is used in the steel industry to remove carbon from molten iron. In addition, liquid cryogens are used to increase the speed of specific types of scientific computers. Finally, the level gauge can be adjusted to serve in the petroleum industry.

REFERENCES:

AF-102

AF97-097

TITLE: Next Generation Atmospheric Turbulence Sensors

Category: Exploratory Development

OBJECTIVE: Develop a new generation of atmospheric turbulence measurement techniques. Both in situ and remote sensing methods are sought.

DESCRIPTION: Develop a new generation of atmospheric turbulence measurement technology capable of sensing atmospheric wind or temperature fluctuations with scales from millimeters to a few tens of meters. In situ methods (aircraft or balloon) and remote sensing approaches (passive, active or lidar) are sought. Approaches to atmospheric turbulence measurements have progressed little in recent decades. In situ methods used on balloons and aircraft continue to rely on wire probes. The most widely used remote sensing methods are based on Doppler radar which has limited range, spatial and temporal resolution. The promise of active optical techniques such as lidar has not been achieved and passive optical methods such as scintillometers or scidar have limited resolution. New approaches are sought to perform measurements of either mechanical (velocity) or optical (temperature) turbulence. These measurements are desired to probe the free atmosphere, that is, the troposphere and lower stratosphere. Such approaches include new sensors, miniaturization of existing techniques and advanced data and signal processing. Such approaches include, but are not restricted to, fiber optic technologies, laser diodes, eyesafe lasers, inexpensive miniaturized telemetry packages, new temperature sensors, compact ultrasonics. Remote sensing approaches include extension or improvement of traditional optical and radar passive methods, lidar, hyperspectral techniques and acoustic sounding. Mechanical turbulence sensors are needed for studies of atmospheric dynamics and aircraft safety while the optical turbulence sensors are needed for studies and modeling of laser and optical propagation through the atmosphere and for the design and performance of adaptive optics systems.

PHASE I: Develop preliminary design and perform performance analysis of turbulence sensor. Design includes not only the hardware but also the theory and data processing. Either laboratory demonstration and testing of the concept or detailed simulation is required.

PHASE II: Further development and engineering of the concept, including demonstration of the capability and performance in the atmosphere. The contractor shall deliver any hardware/software developed, document the work performed and develop a plan for technology transition and insertion into future systems and commercial ventures.

POTENTIAL COMMERCIAL MARKET: The turbulence sensors and technology developed under this program will have civilian as well as military applications. Remote sensing of wind turbulence has applicability to military and commercial aircraft as well as diffusion measurements for pollution monitoring and forecasting. There is also a market in the atmospheric research community studying atmospheric dynamics and change. The sensing of optical turbulence has its primary market in government sectors involved with ground-based space surveillance and laser beam propagation in the atmosphere. There is also a market in the academic and astronomical community for telescope performance and astronomical site selection.

REFERENCES:
References are not provided since this topic covers such a broad range of technology and is intended as a solicitation for new and creative ideas.

AF97-098

TITLE: Flight Track Clear Air Turbulence (CAT) Model

Category: Exploratory Development

OBJECTIVE: Develop and test a one-dimensional model that will predict probability of CAT at any point along a line
connecting origin and destination of flight.

DESCRIPTION: There are no known numerical means of giving predictive guidance to aviators concerning the probability of encountering CAT at any point along a flight track. Current numerical models of the atmosphere can give general guidance on atmospheric conditions that may be encountered, but simply can’t resolve small-scale turbulence. The idea here is to nest some type of one-dimensional high resolution model, aligned along proposed flight tracks of choice, within an advanced mesoscale meteorology model. Such a model could use temporal and spatial boundary conditions from the meteorology model. Run at high spatial resolution (~10m), the 1-D model would attempt to simulate the conditions to be encountered in the wind fields. Probabilities of CAT could then be deduced from the simulations.

PHASE I: Identify, host on workstation, and execute a suitable one-dimensional based model to simulate motion field on planes intersecting the flight track.

PHASE II: Nest successful 1-D model in mesoscale meteorology model on workstation, and produce real data motion fields on planes intersecting the flight track.

POTENTIAL COMMERCIAL MARKET: The commercial airline industry and the FAA would greatly desire the capability of a workstation-based flight track CAT model for pre-flight planning and air safety issues. This would greatly impact travel comfort and increase consumer demand for air travel.

AF97-099 TITLE: Optical Sensors for Geophysical Remote Sensing, Environmental Monitoring and Target Characterization

Category: Exploratory Development

OBJECTIVE: Develop innovative visible/infrared remote-sensing instrumentation for geophysical research, environmental and target characterization.

DESCRIPTION: The Air Force conducts geophysical research to gain further understanding of the environment between the earth and the sun and to determine its effect on Air Force systems and operations. The Air Force also has the responsibility to measure the effect on Air Force operations on the environment. Phillips Laboratory has developed a variety of advanced remote-sensing instrumentation to aid in these efforts, but is interested in new sensors that leverage recent progress in commercial technology. Examples include passive optical systems such as visible or infrared radiometers, spectrometers, and imaging spectrometers. Many commercial technologies, such as those in detector arrays, electronics, and data storage and processing, are emerging that could be developed into innovative systems for remote sensing of the geophysical environment. The instrumentation will be utilized in ground-based, airborne, and space applications. Specific instrumentation of interest includes: imaging spectrometers, which simultaneously obtain both spatial and spectral characteristics of the background or target; imaging multispectral radiometers, which measure the spatial and temporal characteristics of a target or background simultaneously at two or more wavelengths; aerosol monitors, which can monitor and characterize aerosols deposited in the atmosphere by aircraft and missile engines; high-spectral-resolution infrared sensors having spectral resolution of 0.1cm-1 to 0.01cm-1 for middle atmosphere temperature profiling; very sensitive visible/near infrared spectrometers, covering the spectral range from 400 nm to 900nm, to be used, for example, to obtain spectral data of rocket plumes, to measure atmospheric pollution at levels as low as parts-per-trillion, and to observe emissions from the upper atmosphere during heating by ground-based, high-power, high-frequency transmitters.

PHASE I: An analysis shall be conducted which compares the candidate design to current technology in terms of sensitivity, spectral and/or spatial resolution, temporal resolution, size, weight, power consumption, etc. The effort should also include an investigation of how the new technology could be applied to other military and commercial applications.

PHASE II: Develop a working prototype and demonstrate operation in a laboratory environment. Tests shall be conducted to determine how effectively the design meets the requirements of the intended application.

POTENTIAL COMMERCIAL MARKET: The sensor developed under this program will also be useful for non-military applications, such as pollution monitoring, environmental change monitoring, process monitoring in manufacturing, and the remote sensing of earth resources.

REFERENCES:

AF97-100 TITLE: Precision Orbital Microaccelerometer (POM)

Category: Exploratory Development

OBJECTIVE: Develop miniaturized satellite sensor to accurately monitor atmospheric density and winds needed to update operational satellite drag and ionosphere models.

DESCRIPTION: The AF has flown accelerometers on selected satellites to measure satellite drag and neutral winds. Only a few instruments have been flown due mainly to their cost as well as size and power requirements. Routine, high-accuracy measurements are needed as inputs to initialize and validate operational ionosphere and neutral atmosphere space weather models. The drag data support satellite tracking requirements while neutral winds are an essential input to communications, navigation and radar ranging requirements. Advances in miniaturization are expected to permit development of accurate acceleration-sensing devices. A low-cost, small size and high reliability microaccelerometer will provide the capability to globally monitor satellite drag and winds on numerous satellites. The sensor required for space environment measurements must provide data in the along-track and cross-track directions. The instrument goal is a capability to accurately measure drag at the 0.05 micro-g level and cross-track winds at the 0.01 micro-g level. The dynamic range must also permit measurement of spacecraft orbital adjustment thrusts. Geophysical data are in the frequency range of approximately DC to 0.05 Hz. The sensor must be compatible with launch and space vehicle environment and operate reliably over a minimum period of one year.

PHASE I: Provide conceptual design of a space-qualified instrument. Include determination of achievable scale factor and bias levels, size, weight and power requirements.

PHASE II: Develop a prototype instrument as a proof-of-principle device. Perform analyses and calibration to predict the performance, reliability and physical characteristics of production accelerometer design. Define compatibility with spacecraft integration.

POTENTIAL COMMERCIAL MARKET: There are very clear commercial applications for a high sensitivity, low cost microaccelerometer. Several areas are:
(a) Aircraft Navigation: There is currently an estimated $30-40M business in strapdown Inertial Navigation System platforms for airliners that would utilize improved designs that reduce cost and improve performance. There is also a need for the military industry to develop autonomous navigation for warfighting planes. The B2, F117, and F22 SPO's have requested enhanced inertial navigation systems. Gravity Gradiometers have been proposed to meet this need. The Gradiometers consist of several accelerometers (4-8) mounted on a rotating platform. Consequently several microaccelerometers would be needed for each plane.
(b) Commercial Small Satellites: Applications include thrust dynamics, vibration sensing, attitude control and all navigation systems and all new inertial units. The market could include proposed large numbers of deployed systems such as the Iridium satellites. New accelerometers are also a technical need for the Navigation mission area.
(c) Exploration Geophysics (oil, gas, mining): Instrumentation is a large part of this big business. Applications include arrays of vibration sensors for seismic reflection studies, borehole logging of gravity signals and local seismicity. A new area that would exploit the new microtechnology is in airborne exploration. Bell Aerospace Corp. is evaluating the feasibility of mineral surveying from an airborne gravity gradiometer system-another area with tremendous growth potential in the civilian sector.
(d) Counterproliferation: Gradiometers are being planned to discriminate nuclear from non-nuclear warheads. For stationary monitoring in factories, current technology requires being within a couple of meters of the warhead. 3-D monitoring requires three sets of gradiometers. Since current technology requires large accelerometers, the large mass associated with these sensors means that the mass attraction of the gradiometer itself introduces an error. This error can be greatly reduced with the proposed small microaccelerometer. Mobile gradiometers that can detect underground structures are also being proposed. Closely related to this work are DOE applications which include detection of buried toxic waste sites.

REFERENCES:
AF97-101 TITLE: High-Power, Doped Fiber Laser Amplifiers

Category: Exploratory Development

OBJECTIVE: Develop efficient fiber laser amplifiers with over 10 watts of output power, operating at room temperature.

DESCRIPTION: Currently, Erbium-doped optical amplifier technology is reaching maturity with many low power products commercially available. Two methods are used to achieve higher powers. In systems requiring high pump intensities, such as Erbium, power is scaled by using waveguide splitters to couple in more pump power in stages; in systems not requiring high pump intensities, such as neodymium, a large outer clad region can contain larger pump power in a single stage. Over 10 watts of power has been achieved by this method. Power scaling methods which combine these two methods are possible. The purpose of this topic is to encourage the optical fiber laser amplifier/oscillator community to further develop higher power fiber laser amplifiers and their applications. The fiber laser amplifiers should possess the following characteristics: 1) room temperature operation; 2) output power capability of over 10 watts; 3) efficiency; and 4) low cost.

PHASE I: The rare earth material system, the scale up methodology and the application chosen will be modeled. Test and demonstration of elements of the system, especially those necessary to achieve efficient operation, will be performed.

PHASE II: A prototype laser system will be built and tested. Applications testing will be performed.

POTENTIAL COMMERCIAL MARKET: The optical amplifiers/oscillators which will be developed under this program have a direct impact on the commercial photonics industry. With the wide range of wavelengths available from the Lanthanides, many product enhancements and potential new product development will occur. For example, electronic printing, remote sensing, monitoring of airborne pollutants and ground water safety, and medical uses. Development of this technology will also help DOD in several key problem areas. For example, such devices could have potential use for the "Fotofighter", Electro-Optical Counter Measures, Laser Communications, LIDAR, and pump sources for nonlinear optical systems. These DoD applications would create a huge commercial market for fiber amplifiers/oscillators.

REFERENCES:

AF97-102 TITLE: Semiconductor Laser Technologies for Photodynamic Therapy (PDT) or Minimally-Invasive Surgery (MIS)

Category: Exploratory Development

OBJECTIVE: Develop cost effective, portable semiconductor laser systems or technologies for PDT treatment or other MIS surgical applications.

DESCRIPTION: In the past, most non-and minimally-invasive medical procedures have relied on large, inefficient and expensive laser systems. Use of such laser systems has been restricted to operating rooms, even for procedures that can be performed inside a physicians office. The benefits of semiconductor laser diodes include less expense and more compact laser delivery systems that can output substantial power. Semiconductor technology has the potential to provide wavelengths in the
visible to mid infrared regions at powers over 50 watts. This capability opens doors for many minimally-invasive medical applications. Since specific applications have specific requirements, the increasing span of semiconductor diodes will accommodate their needs. Photodynamic therapy (PDT) is a very promising treatment technique for cancer that utilizes laser energy to eradicate cancerous cells. The procedure has recently been FDA approved for the specific treatment of esophageal cancer. The most commonly used drug in the procedure is photofrin, which requires wavelengths in the visible region (approximately 630 nm). However, there has not been an efficient and cost effective laser system in the market to deliver the required laser energy, nor has there been a way to monitor the effectiveness of the treatment. As other drugs that absorb different wavelengths are produced and other techniques are developed to administer PDT, there may be different parameter requirements. Semiconductor laser diodes provide the capability to accommodate different parameter requirements. With the existing capabilities of diode technology, innovative and advance laser systems for specific minimally-invasive procedures, such as PDT, are sought. Phase I proposals which involve animal or human testing will not be considered for award. Phase II or III proposals which involve or are expected to involve animal or human testing must be submitted to the Philips Laboratory (PL) along with test plans and protocols prepared in accordance with the prescribed DoD format and, if appropriate, pertinent certifications.

PHASE I: The contractor shall address an innovative technique which would utilize a compact semiconductor laser diode system that can be used outside the operating room. The contractor shall identify the specific application of the system, which shall fall within the scope of PDT or minimally-invasive surgical procedures. The contractor shall be able to define, measure, and evaluate parameter requirements for their specific system and shall develop the parameters into a conceptual design. The conceptual design shall accommodate any specific requirements that the unit may request. The contractor shall also demonstrate the theory and/or feasibility of their conceptual design, and show that their system is an effective instrument that can be used in less threatening environments than the operating room. Final system requirements needed to produce an operational, FDA-approvable prototype during Phase II shall be considered as well. The proposed Phase I effort shall not involve any animal or human testing. However, if Phase II plans will involve or lead to animal or human testing, the PL requires delivery of the "protocols" within three months after Phase I contract award.

PHASE II: The contractor shall develop a working prototype of the system as a proof-of-concept demonstration device. The contractor shall provide the means to test their system in its intended application, evaluate its performance based on their pre-defined criteria and redesign the system as needed in order to optimize performance. Furthermore, the contractor shall perform a system analysis to analyze the performance of their technology in comparison with any similar conventional techniques that are currently being used. Ultimately, the contractor shall have a well-developed system that is ready for FDA approval and extensive clinical investigations in the near future. Optimizing output performance and manufacturability shall be issues addressed as well. The working prototype shall be delivered at the end of Phase II. Phase II proposals which require animal or human testing, if selected for award, will involve somewhat longer leadtimes to satisfy all government requirements prior to award. Phase II contracts involving any animal or human testing will require additional data deliverables (such as "Annual Report to the Surgeon General") documenting all such testing, test plans, and animal care.

POTENTIAL COMMERCIAL MARKET: The laser systems developed under this program have great potential in both civilian and military realms because more manageable and affordable laser systems are needed in the medical field. Furthermore, they would enhance medical capabilities in the normal physician's office. They would greatly benefit private practitioners who do not have the capacity to use larger existing systems. These laser systems will bring medical capabilities into the physician's office, where practical procedures can be performed. Military medicine would definitely have the same needs as civilian hospitals. Commercially, compact semiconductor laser systems have great potential to be mass produced at cost effective prices. These affordable laser systems will be a cost effective and efficient way to treat patients.

AF97-103 TITLE: Direct Generation of Mid-IR Laser Wavelengths and Sensor Development

Category: Exploratory Development

OBJECTIVE: Develop solid-state gain media which lase in the 2-5 micron band and develop appropriate detector/receivers for operation in this band.

DESCRIPTION: Current fieldable techniques for generating light in the mid-infrared require nonlinear optical frequency conversion processes which reduce system efficiencies. One way to possibly increase the laser efficiency is to find solid-state materials which lase directly in the mid-infrared, particularly in the 3-5 micron band. Also of interest are research efforts which investigate the effects of mid-infrared wavelengths on optical sensors; of particular interest is sensor degradation caused by mid-infrared wavelengths. We are seeking proposals which address these topical areas. On-going research in the Air Force, other
Government organizations, and in the remote sensing community can directly benefit from solid-state laser materials and sensors research in this wavelength band.

PHASE I: The Phase I effort should be directed toward researching the physics associated with solid-state materials which lase directly in the 2-5 micron band. Experiments, supported by theoretical analysis, should be performed which provide possible gain media candidates. Solid-state laser materials which can be diode-pumped are preferred. Attention should be paid to a particular market and application along with the implied performance criteria for source and detector/receiver. During Phase I, a preliminary design for the Phase II device/system should be developed.

PHASE II: Phase II should provide expanded proof-of-concept by fabricating a greater than 10 Watts average power, less than two times diffraction limited, laser source. Assembly and test of an associated detector/receiver should also be accomplished.

POTENTIAL COMMERCIAL MARKET: New 2-5 micron laser materials developed under this effort will have a direct impact on commercial solid-state laser applications such as lidar for wind shear and remote sensing, environmental monitoring, materials processing, surgical and therapeutic procedures in the health industry, and other applications which require eyesafe laser wavelengths (greater than \(\sim 1.5 \) microns). Current lasers which are used for some of these applications usually use gas as the gain media or use nonlinear optical frequency conversion elements in conjunction with solid-state lasers to generate the mid-infrared wavelengths. Both systems are inefficient and usually are physically larger, which limits their viability.

REFERENCES:

AF97-104 TITLE: Applications of Smart Vision Systems

Category: Exploratory Development

OBJECTIVE: Develop smart vision chips for real time on board processing.

DESCRIPTION: In the last decade, significant progress has been made in understanding the first steps in visual processing. A large number of well-studied algorithms exist that locate edges, compute disparities along edges, estimate motion fields, and find discontinuities in depth, motion, color and texture. Several key problems remain. One is the integration of information from different modalities. Fusion of information is expected to increase greatly the robustness and fault tolerance of current vision systems, as it is most likely the key toward fully understanding vision in biological systems. In particular, "silicon retina" technologies are of interest.

Phillips Laboratory Lasers and Imaging Directorate is interested in the development of real time smart vision chips consisting of reconfigurable electronics for space-based platforms. Uplinking allows the on-board processor to be reprogrammed to handle changing mission requirements. Having adaptable on-board processing alleviates the downlinking of massive amounts of data for post-processing. We are interested in moving much of the standard image processing tasks onto the focal plane array using silicon retina, pulse couple neural networks and SPRITE- (signal processing right in the element) like technologies. The primary objective is for multispectral satellite image processing and passive remote sensing.

PHASE I: Address techniques to process the visual information reliably. Vision systems must be able to operate over seven to eight orders of magnitude of light intensity. Smart vision chips should have the ability to adapt rapidly to recent input and only signal abrupt changes away from the operating point. A large application field would open up if vision chips could...
combine not only image acquisition and processing, but also if the same chips could learn to extract features from scenes and store them or compare features from the currently viewed scene with stored ones.

PHASE II: Develop a prototype imaging system and evaluate its performance. Demonstrate the reliability and quality formation of components.

POTENTIAL COMMERCIAL MARKET: The results of a successful Phase II approach will lead to superior space-based imaging systems and other military and commercial applications. In particular, compact, low-cost smart vision systems have a tremendous commercial potential for biomedical and machine vision systems. According to Picker International, a leading manufacturer of biomedical hardware, the market for low-cost, compact smart vision systems has a billion dollar market in the biomedical field. According to Intel, a leading manufacturer of microprocessors, the market for automated VLSI chip inspection using the smart vision chip technologies is in excess of $100 million.

REFERENCES:

AF97-105 TITLE: On-Chip Real-Time Wavefront Sensor Array Development

Category: Exploratory Development

OBJECTIVE: Develop a fast, accurate 2-D spatially resolved electronic full-field optical wavefront sensing device in which all sensing and processing is contained on a single IC chip.

DESCRIPTION: As applications of adaptive optics grow in the measurement and control of optical wavefront distortions produced by atmospheric and aircraft-induced turbulence and other highly dynamic spatially structured aberrating media, the need for high speed electronic wavefront sensing devices in the Air Force has increased. Examples of the kinds of sensors that are capable of measuring the amplitude and phase of an optical field are (but are not limited to) Hartmann sensing, heterodyne detection, and various holographic methods. On-chip measurement and processing of optical amplitude and phase data minimizes the need to transmit raw data from a remote sensor location to a processing center. Such on-board processing capability represents an important advance in the area of wavefront sensing for high speed and remote applications and for driving adaptive optics systems. We seek submission of proposals for development of a 2-D wavefront sensor array capable of measuring the amplitude and phase of incident optical fields at high speed and with 2-D spatial resolution in which functions such as sensing, signal conditioning, A/D conversion and signal output are resident on the sensor chip.

PHASE I: At a minimum, the results of the Phase I investigation should include: development of an amplitude and phase measurement and/or reconstruction algorithm; the receiving optical design optimized for sensor performance; circuit design to measure amplitude and solve phase reconstruction on chip; optics and microelectronics integration plan and packaging requirements; evaluation of the manufacturability of the device including the type of IC manufacturing process and cost of manufacture; estimates or simulations of device speed, sensitivity, spatial resolution, and noise characteristics. Existing integrated "smart sensor" technology, existing chip manufacturing processes, and low-cost optical fabrication techniques should be incorporated where possible for ease of manufacture and low cost.

PHASE II: Construct the wavefront sensing chip and demonstrate the full operation of the chip in a wavefront sensing application. Leveraging existing smart sensor technology with existing chip design and manufacturing processes is encouraged to maintain ease of manufacture and low cost. Demonstration includes integration of optical components, electronics, data acquisition hardware, and software for data management, processing and visualization as a package.

POTENTIAL COMMERCIAL MARKET: Results of a successful Phase II approach would lead to simplified fully-digital real-time testing of optical systems and improved devices for production line defect detection during manufacturing processes, process control, and product testing.

REFERENCES:

AF97-106

TITLE: Semiconductor Laser Technologies for Fieldable, Diagnostic and/or General Medical Applications

Category: Exploratory Development

OBJECTIVE: Develop minimally-invasive, cost effective, portable, and self-contained semiconductor laser systems, enhancing real-time assessments of a patient's condition.

DESCRIPTION: The United States military has become increasingly involved in low intensity conflicts. Due to the types of operations that the US performs, such as peacekeeping and humanitarian efforts, there continues to be an urgent need to provide rapid trauma care to troops out in the field. In many cases, it is necessary to stabilize the patient at the site of injury because it would be too late to move him/her to a medical facility. Semiconductor laser technology offers great promise in the area of compact, portable, self-contained diagnostic and surgical devices. Since medical modalities have specific requirements and conditions, parameters such as wavelength and power will be dependent on the specific application. In general, semiconductor lasers provide a great source of energy between the visible and mid-infrared region for diagnostic imaging and spectroscopy. Diagnostic applications, which are currently lacking, will provide medical personnel with the capability to quickly assess vital conditions of the patient. Also, semiconductor lasers have the capability to provide energy for simultaneous cutting and coagulating, which would be a great benefit for rapid wound stabilization. Coagulation has been shown to work well at 810 nm. Therefore, innovative and advanced capabilities to enhance rapid assessment and stabilization of patients through the research and development of new and improved semiconductor laser systems are sought. Phase I proposals which involve animal or human testing will not be considered for award. Phase II or III proposals which involve or are expected to involve animal or human testing must be submitted to the Phillips Laboratory (PL) along with test plans and protocols prepared in accordance with the prescribed DoD format and, if appropriate, pertinent certifications.

PHASE I: The contractor shall address an innovative technique that involves the use of a compact semiconductor laser diode system to enhance the capability of field medical units. The contractor shall be able to define, measure, and evaluate parameters requirements for their specific system in order to achieve their intended application in the area of injury stabilization. The contractor shall accommodate any specific requirements requested by the unit and shall develop the parameters into a conceptual design. The contractor shall also demonstrate the theory and/or feasibility of their conceptual design, and show that it can contribute to the stabilization of patients in its intended manner. Final system requirements needed to produce an operational, FDA approvable prototype during Phase II shall be considered as well. The proposed Phase I effort shall not involve any animal or human testing. However, if Phase II plans will involve or lead to animal or human testing, the PL requires delivery of the "protocols" within 3 months after Phase I contract award.

PHASE II: The contractor shall develop a working prototype of the system as a proof-of-concept demonstration device. The contractor shall provide the means to test the system in a comparable field environment, evaluate its performance based on predetermined criteria, and redesign the system as needed to improve performance. Furthermore, the contractor shall perform a system analysis to analyze the performance of their technology in comparison with any similar conventional techniques that are currently being used. Ultimately, the contractor shall have a well-developed system that is ready for FDA approval and extensive clinical investigations in the near future. Optimizing output performance and manufacturability are issues that shall be addressed as well. The contractor shall deliver a working prototype at the end of Phase II. Phase II proposals which require animal or human testing, if selected for award, will involve somewhat longer leadtimes to satisfy all government requirements prior to award. Phase II contracts involving any animal or human testing will require additional data deliverables (such as "Annual Report to the Surgeon General") documenting all such testing, test plans, and animal care.

POTENTIAL COMMERCIAL MARKET: Because medicine is such a universal field, the laser system developed under this program has great potential in both civilian and military realms. The markets on the civilian side would benefit mobile medical units such as paramedics. Furthermore, because time is critical, there would be a great need for such systems in emergency and trauma care units as well. Medical personnel can always benefit from advanced technology to make their jobs easier and more effective. Military medicine would definitely have the same needs as civilian hospital
AF97-107 TITLE: High Average Power Frequency Agile COIL (Chemical Oxygen Iodine Laser)

Category: Exploratory Development

OBJECTIVE: Develop high peak power and wavelength agile approaches for chemical oxygen iodine lasers (COIL).

DESCRIPTION: The Air Force Phillips Laboratory is seeking approaches for demonstrating high peak power, high rep rates, and frequency agile COIL (chemical oxygen iodine lasers) operating near 1.3 μm. The successful approaches must be capable of handling high average power levels above 10 kWatts. COIL devices have been operated with polarization dependent magnetic field induced gain suppression, (1) and have demonstrated (2) that gain switching of these devices will be possible at high rep rates. Optical techniques for mode locking these gain-switched lasers are required and may include seeding with narrow band, tunable, pulsed laser sources and optical parametric oscillators. Furthermore, frequency tuning of COIL has also been demonstrated (3) using magnetic fields. Approaches for exploiting this tuning capability, coupled with the requirements for high peak power and high rep rates, are also desired by the Air Force. Alternatively, larger frequency tuning may be obtained with approaches that use nonlinear optics or Raman shifting and is also of strong interest to the Air Force. Any nonlinear process must be capable of handling the high average power of the COIL device.

PHASE I: Identify and design hardware for mode locking high power, gain switched, COIL devices. Demonstrate feasibility of the approach with modeling and/or in a breadboard experimental effort. The potential for frequency conversion will be defined in terms of frequency shift and efficiency possible.

PHASE II: Deliver hardware to the Air Force Phillips Laboratory necessary to convert existing COIL laser devices to mode locked and frequency agile capability.

POTENTIAL COMMERCIAL MARKET: In addition to Air Force applications, tunable narrow band sources that operate at high rep rates have commercial applications in remote sensing laser material processing and eye safe applications.

REFERENCES:

Category: Exploratory Development

OBJECTIVE: Develop technologies which facilitate differential absorption lidar systems for space and high altitude aircraft applications.

DESCRIPTION: Differential Absorption Lidar, or DIAL systems measure absorption of chemicals in the atmosphere using a laser probe. Receivers for DIAL systems must operate while the laser rapidly tunes through a wide band of laser lines. For CO2 systems operating in the LWIR, operation at wavelengths between 9 and 11 microns is foreseen. Tunability in the MWIR operating regime covers 3 to 5 microns. Direct detection receivers are the simplest to tune rapidly, but are currently detector noise limited. Background-limited, tunable, heterodyne systems are under development, but rapid tuning over a large number of lines is still out of reach. Heterodyne receivers have more components, and are therefore less compact and sensitive to alignment and vibration. Proposers should submit new concepts for DIAL receiver technology. These proposals should address one or more deficiencies with current systems and include new tunable detection schemes or enhancements to heterodyne detection. Proposals should be broad enough to facilitate a wide range of laser sources in at least one of the wavelength bands of interest. Commercial applications to this technology include environmental pollution monitoring and chemical leak detection.
warning systems.

PHASE I: Develop preliminary designs and perform analysis to select most the promising candidate. Laboratory demonstration of the selected concept is preferred but not required.

PHASE II: Further develop and demonstrate the chosen Phase I design/concept within the framework of existing Phillips Laboratory laser assets. The contractor shall deliver any hardware/software developed. Document the work performed and develop a plan for technology transition and insertion into future systems and other commercial ventures.

POTENTIAL COMMERCIAL MARKET: The receiver technologies developed under this program will be useful for many civilian applications. The remote sensing applications are pollution monitoring of industrial plants and waste sites, process monitoring in manufacturing, identification of agricultural and plant species and growth conditions, and oil surveys. Other spectroscopic techniques include medical applications such as glucose monitoring.

REFERENCES:

AF97-109 TITLE: Hand-Held Visible Diode Laser Illuminator/Designator

Category: Exploratory Development

OBJECTIVE: Develop and demonstrate the effectiveness of a hand-held, self-contained visible laser and covert infrared (IR) laser capable of illuminating and designating targets up to a 1000 meter range.

DESCRIPTION: The devices sought are self-contained, variable focus laser illuminators to be used in law enforcement applications. There are distinct advantages to this approach. Providing IR illumination allows covert viewing of a suspicious subject without prompting flight or confrontation. Visible illumination provides rugged, low-power spotlighting for officers without night vision equipment. In the past, small laser diodes (670nm @ 15mw) have been used for targeting weapon systems and for designation. The pin-point spot is often hard or impossible to see at distance and is difficult to keep on a moving target. Law enforcement needs a variable spot size with more power, capable of covering the entire target in laser light, illuminating the target and designating it. For example: A target at 100 meters would require a 2 meter spot size, making the optical divergence of the source at 20mrads. But at 1000 meters, a 2 meter spot would require optics with 2mrads. The power required to effectively illuminate and designate a target with the aforementioned spot size is 300-500 milliwatts at 640-660 nanometers for visible, and 300-500 milliwatts at 808-880 nanometers for an IR laser. The IR laser would be used in
conjunction with night vision devices. A self-contained flashlight-type package with easy-to-adjust optics is sought. Power will be supplied by off-the-shelf batteries that are easily changed out or recharged.

PHASE I: Address availability, efficiency, and durability of the different laser diode arrays which potentially could meet the specifications stated above. If no diodes exist that can meet the specifications as indicated by current PL research, development of such diodes will be performed. Research and develop high-efficiency power supplies for powering the laser diode array. Design and develop rugged supporting electronics that will control the temperature of the chosen diode array to maximize performance and longevity. Design an optical head that will adjust from 2-20 mrad's with a simple physical manipulation of the hand.

PHASE II: Demonstrate feasibility of system manufacturability by building 20 refined units (10 of each). Units will be field tested by operators in the field and need to be ruggedized and easily operated.

POTENTIAL COMMERCIAL MARKET: This system is a multi-use one, capable of providing law enforcement officers a means of illuminating darkened environments without giving away their position, and designating targets for other officers on the scene. The compact system allows use in a variety of environments (darkened buildings, alleys, night scenes). It enhances the ability of the officer to control the engagement with more safety. Operations from helicopters for apprehending or searching for targets on the ground would benefit from the application of a large visible and/or IR laser illuminator/designator. A large commercial potential exists: the darkened environment is one of the most stressful for law enforcement officers. Most squad cars and all helicopter patrols would covet this type of system. After a successful Phase I, field tests will be completed by operators so feedback on the packaging and performance of the systems can be collected. In addition, tactics for a large spot size laser illuminator/designator can be developed during the tests.

REFERENCES:

AF97-110 TITLE: Scintillation Control for Imaging and Laser Propagation Systems

Category: Exploratory Development

OBJECTIVE: Develop spatial light modulator technologies for the high-speed control of amplitude fluctuations for imaging and laser propagation applications.

DESCRIPTION: The DoD has undertaken a large amount of research in adaptive optics for ground- and spaced-based imaging applications and in devices involving the propagation of lasers. Most of this work has involved the correction of phase aberrations. Correction of amplitude fluctuations (scintillation) is also important, especially for horizontal imaging near to the ground. Spatial light modulators are required which can control the intensity of light without inducing further phase aberrations. Furthermore, the devices must operate at high speeds (~KHz) and be capable of analog control. Innovative design and production is required to produce fast, analog spatial light modulator technology.

PHASE I: Design a spatial light modulator for the analog control light intensity at high temporal bandwidths (~KHz), which will not induce phase fluctuations across the beam as the device is switched. This will involve a detailed study of electronic addressing schemes for large (~128x128) arrays with ~8 bit control of the individual voltages. Assess the material properties of suitable technologies, such as switching speeds, optical quality, and reliability. Study the achievable specifications such as modulation depth, optical throughput, and power handling. Construct a simple array (~10x10) which demonstrates the above principles.

PHASE II: Following from the work of Phase I construct a large (~128x128) amplitude correction unit.

POTENTIAL COMMERCIAL MARKET: This work involves high speed analog intensity control of light with a high spatial resolution. There is commercial interest in this in order to extend the performance of compact TV displays (in particular for LCTVs). For example, a display constructed using such techniques could have individual pixels which display colors (current displays use 3-sub pixels) using the frame sequential color technique. Furthermore, they would require a lower digital control bandwidth. The second area is in optical correlators. A high speed analog correlator will show superior performance over the currently available bistable devices. These have applications in, for example, fingerprint detection and production quality control. In the astronomical community there is interest in scintillation correction for producing superlative imaging systems for the detection of extra-solar planets (refs. 1 & 2); this has been put forward as a "visionary goal" by NASA.

AF-113
REFERENCES:
3. Love, G.D. and Gourlay, J. "Intensity-only Modulation for Atmospheric Scintillation Correction Using Liquid Crystal SLMs. Preprint. Contact Gordon Love, USAF Phillips Laboratory, PL/LIMS, Kirtland AFB, NM 87117; email - loveg@plk.af.mil; telephone (505) 846-2711; Fax (505) 846-2045

AF97-111 TITLE: Optics Health Monitoring

Category: Exploratory Development

OBJECTIVE: Develop a portable instrument to monitor and indicate the condition of optical components in laser systems.

DESCRIPTION: Optical components and coatings used in laser systems are often damaged during laser beam operation and fail to perform after an extended period. Changes in the characteristics of these components may be indicative of degradation and/or impending failure. Potentially relevant characteristics include reflectance, transmittance, absorptance, scatter, dispersion, emissivity, temperature, stress, deformation, delamination, discoloration, haze, cracks, defects, and pits. A technique and subsequent monitor needs to be developed that will measure pertinent characteristics, accurately inform the laser operator of the condition of an optical component, and warn of impending failure. The technique must not interfere with normal laser operation, and the monitor must be lightweight, portable, automated, and low cost. The high energy laser wavelengths will range from the near-IR to the long wavelength IR.

PHASE I: Investigate promising techniques and determine the best technique(s) that satisfy the above constraints. Demonstrate the feasibility of converting the technique(s) into a reliable monitoring instrument.

PHASE II: Develop a prototype monitor and its associated controls and data processing. Plan and complete a testing program which demonstrates the reliability and accuracy of the monitor.

POTENTIAL COMMERCIAL MARKET: Application can be found in the national inertial fusion program, the industrial laser cutting and welding market, or in any technology which requires that optical components work reliably during system operation. Monitoring technique can be broadened for use in remote sensing and control of automated industrial processes.

REFERENCES:
AF97-112 TITLE: New Methods for Distributing Satellite Data to Users

Category: Exploratory Development

OBJECTIVE: Develop new methods for distributing data from small satellites to users by taking advantage of the numerous advances in the communications industry.

DESCRIPTION: Future advances in the communications arena will provide new opportunities for improving the way information is distributed to satellite data users. Currently, data is downlinked (e.g., from a small R&D satellite) to a ground station where it is stored on some sort of computer media (floppy, tape, hard drive). Operators then distribute the data to users manually (mail or couriers) or electronically (internet). As the communications industry advances in the electronic distribution arena, we would like to take advantage of these improvements to improve the speed, reliability, ease, and cost in which data can be transferred to users.

PHASE I: The contractor shall address new techniques to improve speed, ease, reliability, and cost of distributing data to users using new, innovative commercial-off-the-shelf (COTS) products wherever possible. Techniques should be electronic focused (i.e., internet). Considerations, at a minimum, should include hardware, software, security, and data integrity improvements (successful transfers). Phase I should include a feasibility demonstration of the preferred technique.

PHASE II: Further refinement of the technique selected in Phase I. Phase II includes use of the product as part of the data distribution for an existing or new space demonstration program (e.g., MightySat).

POTENTIAL COMMERCIAL MARKET: The results from Phase I and II products can be used by the commercial sector as the demand increases for fast distribution of data as many of the communication constellations come on-line (i.e., Iridium).

REFERENCES:

AF97-113 TITLE: Broad Area Technology Applications for Military Police Operations

Category: Exploratory Development

OBJECTIVE: Develop low cost systems to meet the needs of Military Police Operations.

DESCRIPTION: Integration of existing technology to develop low cost systems is preferred, as opposed to new development. Development with the civilian dual-use applications considered and integrated in the proposal is expected. To make the civilian applications viable, low cost solutions are necessary. Air Force-developed technology and some demonstration hardware can be made available for modification and commercialization.

PHASE I: Identify detailed military police operational needs in a specific area, and dual-use civilian needs. Develop preliminary design of system to meet those needs, with specific target performance goals. Develop commercial market assessment plan for the civilian application of proposed system, and perform initial market feasibility assessment.

PHASE II: Develop detailed design of system, and build a prototype for field evaluation. Perform performance testing and field evaluation testing by military and civilian organizations. The government can facilitate the field testing phase. Complete detailed market assessment. Based on field tests and market assessment, modify design and develop production plan.

POTENTIAL COMMERCIAL MARKET: Depending on specific system, dual-use applications should be significant. Most all military police needs are also pressing civilian law enforcement needs, or commercial security company needs.

REFERENCES:
AF97-114

TITLE: Precision Reference Information State Error Measurement (PRISEM)

Category: Exploratory Development

OBJECTIVE: Develop real-time techniques for qualitatively characterizing reference systems state vector quality.

DESCRIPTION: Current and future military operational concepts emphasize the use of multi-platform operations and the sharing of resources within the theater of operations. This capability would allow many more users access to data from expensive resources and in some cases would help extend the operationally beneficial life of certain aging airframes. However, before the concepts for sharing such resources are operationally feasible, many technical issues must be resolved. Of particular interest and technical challenge are issues related to the processing and sharing of reference systems information (position, velocity, attitude, and pointing information from, to, and regarding the ownership, other friendly, enemy operations, and targets). This research is intended to develop a capability to assess the quality of the reference state vectors used in the fusion process. These state vectors are generated by the reference system on each platform that provides or uses the information. The state vector information must be translated to each mission sensor on the information providing platforms. The real-time state vector quality assessment must provide the quantitative and symbolic measures required to enhance the various levels of information and sensor fusion ranging from intraplatform to interplatform. These measures will range from probability distribution characterization to fuzzy sets, depending upon the fusion algorithms being supported. Technology that would enable consistently representing and reflecting the impact of characteristics of the reference systems data upon platform subsystems dependent upon that data would provide a capability to support theater-wide information fusion with predictable and reliable results. Assessment of technologies developed will be performed using such metrics as targeting error, errors in detecting and discriminating targets and threats, and computational improvements in fusion algorithms. Potential sources of data include E-3As/AWACS, E-8s/JSTARS, national assets, UAVs, reconnaissance platforms, and combat aircraft. Potential users of the information include combat aircraft, special operations aircraft, transport aircraft, ground based systems and personnel, ships, missiles, and C2 nodes.

PHASE I: Using requirements determined under previous Theater-wide Reference Information Management programs (IMTRS, CORF, TRIM), Phase I of the Precision Reference Information State Error Measurement (PRISEM) program will consist of an assessment of current techniques for characterizing reference systems data and approaches to performing information fusion using that characterization to provide stability and coherence to the fusion process. Through the use of analysis and simulation, an assessment will then be performed of the applicability of various technologies to developing a coherent approach to this characterization and the sharing and using of that characterization by the gamut of levels of fusion required in the theater-wide environment. Potential technologies include modern estimation theory, symbolic reasoning, neural processing, and/or fuzzy processing.

PHASE II: Develop techniques, algorithms, and data structures using the applicable technologies identified under Phase I to produce real-time characterizations of reference state vectors. This demonstration system will consist of models of the sources and users of the information, and the information content of all data transmissions that would take place during a
specific, realistic mission scenario. Other pertinent functions of the developed technology include error detection and system compensation.

POTENTIAL COMMERCIAl MARKET: Dual use applications include any process requiring correlation of information from disparate sources, each having its own degree of precision and reliability and its own approach for representing the quality of that information. Potential application areas would include those requiring immediate determination of "situation awareness" such as transportation, environmental or natural disaster monitoring, medical emergencies, dynamic business operations, and complex manufacturing or chemical processes involving multiple sources of instrumentation and observation for which fault elimination is of critical importance.

REFERENCES:

To obtain this reference, contact Sandra Berning at (513) 255-2305

AF97-115 TITLE: Automatic Target Recognition (ATR) Technology Components

Category: Exploratory Development

OBJECTIVE: Develop new and innovative techniques for ATR algorithm design and performance evaluation.

DESCRIPTION: The Air Force is actively pursuing ATR technology for various reconnaissance and weapon delivery scenarios. Typical application scenarios demand robust approaches due to high clutter terrain environments or extensive use of camouflage and concealment or stealth. The Air Force is interested in new approaches to performing automatic target recognition with a variety of sensor modalities, examples of which include (but are not limited to) Synthetic Aperture Radar (SAR), Electro-Optic (EO) and Infra-Red sensors, 1D High Range Resolution (HRR) Radar-Frequency (RF) and laser sensors, and 3D laser radar or other 3D scanning sensors. Note that approaches which support fusion of sensor information across any or all of the above sensor modalities and with nonsensor data such as digital maps or object behavior models are highly desired, but not required. Examples of ATR technology components that are of interest include model and Physics-based, evolutionary computing, and behavior-based techniques. To promote understanding for potential respondents, a short explanation of these technology components are given below. Note that these are only examples, and any concept that shows promise for robust, adaptive ATR with remotely sensed data will be considered responsive to this topic solicitation. In addition to techniques for development of ATR algorithms, new and innovative approaches to improve existing ATR evaluation methodologies and tools, including both analytical and experimental approaches are also sought.

Model and Physics-based ATR - techniques that make explicit use of target object geometry models and/or the physics of the image or sensed data formation process. This could include explicit models of the 3D world-to-sensed data geometric transformation, the emitted or scattered radiation from the target object(s) and how this energy is sensed and processed to form the sensor output. Such approaches often include matching of predicted features to features extracted from sensed data.

Evolutionary Computing - this is characterized by a performance-driven selection process and a population of elements that undergoes reproduction with variation, in a manner similar to natural evolution. The motivation is to endow the computer with a capability to synthesize nonintuitive solutions to problems with minimal or no human interaction (other than in setting up the process). Key elements include a comprehensive representation domain for the problem, an intelligent search strategy and a performance evaluation methodology. Techniques which automatically or semi-automatically generate feature detectors or other algorithm components to create new pattern recognition systems are desired.

Behavior-based ATR - Behavior recognition can supply possible hypotheses for ATR that are not apparent from a direct analysis of the sensor information. Inferring the possible intent of a group of vehicles may often be the key to their identification, where purely visual-like processes may face difficulties. As examples, in air-to-air combat tracking the possibly threatening maneuvers of a group of aircraft may be the key to recognizing them as targets, or a vehicle that exhibits no unique sensor signature but moves in a particular fashion could be identified as a mobile missile launcher, but not otherwise.

WJ/AAC has been supporting the KHorus environment, which is a public-domain software environment for image and signal processing, KHorus is the AAC preferred environment for developing ATR algorithms and evaluation techniques, and its use would greatly enhance the potential for Air Force application of any ATR research conducted under this solicitation. For more information, see the MBVLab WWW page - http://www.mbvlab.wpafb.af.mil/.

PHASE I: Determination of ATR algorithm design or performance evaluation concept feasibility.
PHASE II: Development of dual-use ATR algorithm design or performance evaluation technique.

POTENTIAL COMMERCIAL MARKET: Object recognition technology is applicable to a wide array of commercial areas including vehicle navigation, security monitoring, industrial inspection, manufacturing automation, and satellite-based earth resource monitoring.

REFERENCES:
3. Evolutionary Computing - L. A. Tamburino

AF97-116 TITLE: Sensor Management Across Multiple Platforms (SMAMPS)

Category: Exploratory Development

OBJECTIVE: Develop methodologies for on-board sensor managers to work cooperatively across platforms.

DESCRIPTION: Presently, there is ongoing research to determine multi-platform resource sharing through Cooperative Research And Development Agreement (CRADA) between the Avionics Directorate and Lockheed Fort Worth. This work is determining the feasibility, merit, and means of obtaining and using shared resources among multiple platforms to enhance tactical aircraft effectiveness. In addition to the CRADA work, research must be performed on the development of on-board sensor managers that will take advantage of the shared resources. This effort will investigate methodologies for managing sensors taking into account cooperative resources from multiple platforms within the same formation. The issues involved include resource control across aircraft, coordination of functions, and alignment challenges. The major function of the sensor manager is to supply useful data to the pilot; therefore, issues such as data formats, data latency, size of data shared, and accuracy of the data will be investigated. A major difficulty will be timing aspects which may utilize the high accuracy clock signals from GPS. Another aspect of a shared sensor manager is the data links necessary. This program will examine if present or proposed data links will provide the cooperative functions necessary, the actual development of a data link is out of the scope of this program. It is envisioned that some of the missions multi-platform sensor management can support are cooperative search, tracking, and identification. Multi-platform sensor management could also utilize active sensors on one platform to keep another platform covert. The sharing of information from different sensors across platforms will decrease costs of aircraft, utilize aircraft covertness, and provide sharing of important information.

PHASE I: Determine the issues involved in developing a cooperative sensor manager. Develop preliminary techniques to solve the major problems with sensor management across multiple platforms.

PHASE II: Develop the techniques further. Design a cooperative sensor manager, utilizing these techniques, and test this system through simulation with the intention of incorporating into major platform avionics.

POTENTIAL COMMERCIAL MARKET: The manufacturing industry will use the resource allocation methods in production planning and scheduling. These technologies are especially useful in manufacturing for automated multistep processes which use sensors to determine positioning, defects and other factors. Resource allocation problems for R&D projects having multiple competing objectives in an uncertain environment is another dual use for this technology. Cellular phone technology can use some distributed technologies for emergency location systems. The automotive industry is an especially attractive dual use for this technology. The automobile manufacturers are being pushed to develop sensor management technologies with new car developments such as computer controls, GPS, onboard maps, and other intelligent features. Also, the technologies for sensor allocation and scheduling, and information sharing across multiple platforms will be a critical item for the Intelligent Vehicle Highway System being developed.

REFERENCES:
These references and additional references available by contacting Joe Diemunch at (513) 255-4952

AF97-117 TITLE: Avionics Applications of Reinforcement Learning Systems

Category: Exploratory Development

OBJECTIVE: Develop methods to use reinforcement learning systems, utilizing residual algorithms, for the control and allocation of sensor resources.

DESCRIPTION: Utilize a residual reinforcement learning system to optimally manage/allocate sensor resources. The system is to be embedded in an airborne platform with a standard suite of sensor resources. Based on situational circumstances, the reinforcement learning system should learn the optimal allocation of sensor resources for the purpose of target identification. For example, the reinforcement learning system might control a low resolution sensor with a wide field of view for the detection of objects that might require further investigation. After detection, the reinforcement learning system should then position a high resolution sensor with a narrow field of view on these objects for the purpose of identification. Determine the scientific and technical feasibility of this approach, through analysis and simulation. Identify the possibilities of this approach for dual-use application to civilian problems.

PHASE I: Determine the scientific or technical merit and feasibility of the application of residual reinforcement learning to avionics sensor resource management/ allocation.

PHASE II: Develop a product/process that utilizes residual reinforcement learning systems to optimally manage/allocate sensor resources.

POTENTIAL COMMERCIAL MARKET: The systems developed will be applicable to avionics problems in civilian aviation, and may be applicable to other optimal control and decision-making problems such as sensor management in cars or factories. For example, the automobile industry has an interest in robots that can perform more than a single function. The robot would decide the function to perform based on the object at hand. The process of object recognition and identification requires intelligent allocation of sensor resources. Another example of commercialization potential is in the home and business security industry. Security systems that utilize vision systems require the detection and identification of objects/people, and might use more than a single type of sensor. The technology developed in this SBIR would be directly applicable to foveal machine vision systems that are used in such security systems, as well as all other foveal machine vision applications.

REFERENCES:

These references and additional references available via World-Wide-Web: http://www.aawpafb.af.mil/~harmonme/

AF97-118 TITLE: Multiple Target Tracking for Avionics Platforms

Category: Exploratory Development

OBJECTIVE: Develop technologies to enhance avionics multiple target detection and tracking performance by sharing information between platforms.

DESCRIPTION: Innovative digital signal and image processing technologies which can be used to enhance the ability of Air Force avionics platforms ability to detect and track multiple targets are being sought. Some fighter aircraft systems share track file information between different platforms but better performance might be achieved by sharing detection information from sensors at different geometries and with different spectrum. This may particularly be true in scenarios where high false alarm rates occur because of low signal-to-noise ratios or ground clutter. The obvious approach of centralized fusion is impractical because of communication bandwidth requirements. Innovative approaches are needed which minimize communication requirements. The response should lead to significant improvements in one of the following areas where false alarms are a

AF-119
significant problem: detecting and tracking low signal-to-noise targets (detection false alarm rate - improve by 30% and tracking range - improve by 20%) e.g., F-16’s tracking cruise missiles and tracking targets in clutter (improve false alarm rate by 30%) e.g., F-15 tracking low flying aircraft. The technology should be applicable to avionics sensors in development or on operational aircraft. This includes either active or passive sensors such as RADAR and Electro-Optical sensors.

PHASE I: As needed, reduce risk of proposed technology obtaining stated goals by developing necessary mathematics and/or performing feasibility analysis. Make an initial assessment of implementation and trade-off issues. For instance, more fully develop the mathematical basis for an approach which reduces false alarms by fusing detection data from multiple platforms. Analyze the on-board and off-board communication requirements for such an approach. Consider impact of alternatives. Develop the Phase II technology demonstration approach.

PHASE II: Demonstrate that the proposed technology can obtain stated improvements.

POTENTIAL COMMERCIAL MARKET: Potential application areas are distributed process-control systems used for vehicle and air traffic control.

REFERENCES:

AF97-119 TITLE: Biological and Cognitive Foundations of Holistic Information Fusion

Category: Exploratory Development

OBJECTIVE: Develop methods to employ Biological and Cognitive Sciences concepts to develop general-purpose, holistic information fusion algorithms and architectures.

DESCRIPTION: Information Fusion (a.k.a. Sensor/Data Fusion) is loosely defined as the process by which noise-corrupted data (potentially from disparate sources) is gathered, combined, reasoned-over, and new resource allocation decisions are made. In dynamic, uncertain, and high-stress warfare environments, information fusion is a formidable task—the dimensionality of the space of states and actions makes a comprehensive solution untenable for most realistic problems. Instead, the system designer typically invokes one of the fundamental tenets of systems engineering which we shall call "Divide and Conquer": A single, complex process is separated into subprocesses which are then solved independently. For information fusion systems this means that a single large, interrelated process involving gathering data (sensing), filtering data (kinematic and ID estimation), assessing situations, and deciding upon new information-effecting actions is separated into distinct subprocesses with predefined interfaces. Unfortunately, this approach can lead to suboptimal performance resulting from the requirement to contend with complex interactions between the subprocesses. Further, significant computational and communication burdens can be incurred by ensuring that the subprocess interfaces are robust enough to account for all of the complex interactions. Taken together, these problems work to limit the types of information a working system can accommodate. Presumably, the benefits of a holistic approach would include more robust performance with more efficient use of communication/computation assets. This would enable a wide variety of information, including sensor readings, contextual information, and pilot assessments, to be integrated into a single computational framework. Such an approach could also impact attempts to formulate a general-purpose information fusion processing model which currently does not exist.

This effort shall seek to broaden the technology base for intelligent information fusion systems by leveraging theoretical results from the biological and cognitive sciences toward developing a holistic, robust information fusion algorithm/architecture (algotecture). In the past, efforts to develop intelligent systems based upon biologically-inspired concepts have led to significant advances and new paradigms (such as reinforcement learning, various types of neural networks, generic algorithms, etc.). These continue to be fruitfully exploited by the research community. The vision of this work is to develop novel, biologically-inspired paradigms for holistic information fusion systems with comparable utility.

PHASE I: Under the first phase of this research, the contractor would develop a theoretical approach to holistically address the information fusion challenge in the most robust and efficient manner possible. The basis for the paradigms developed shall be inspired from biological and cognitive theories/models. These paradigms may be developed by reworking existing biologically-inspired models, or completely new models may be developed for this effort. The contractor would conduct simulation-based research to evaluate trade-offs between various paradigms. The specific information fusion problem to be addressed should reflect the environment of a tactical fighter in a high-stress situation. General details shall be decided upon by mutual concurrence at the kickoff meeting.

PHASE II: Under the second phase of this work, the contractor shall perform studies to evaluate theoretical and
implementation trade-offs for the paradigm(s) developed under Phase I. The simulations used shall be of higher-fidelity than those used in Phase I.

POTENTIAL COMMERCIAL MARKET: The proposed effort will extend the theoretical foundations of information fusion. Since this research proposes to impact information fusion technology at a fundamental level, it is more likely to have a far-reaching effect. Aside from DOD applications involving military aircraft, ground and sea warfare, a variety of non-DOD applications are also envisioned; these include robotics, traffic control systems, industrial planning and control, flexible manufacturing, financial planning, and the "information superhighway."

REFERENCES:
1. E. Waltz, I. Llinas, MultiSensor Data Fusion, Artech House, Norwood, MA 1990

AF97-120 TITLLE: Solid State RF Electronics Applied Research

Category: Exploratory Development

OBJECTIVE: Explore innovative RF device and component technologies, and demonstrate concept feasibility.

DESCRIPTION: Investigate promising new microwave and millimeter wave circuit and component technologies with the potential to reduce the cost, weight, and volume, and increase the reliability/performance of military RF systems. Candidate technologies include microwave and millimeter wave solid-state and vacuum electronic devices, monolithic integrated circuits, computer aided design/characterization techniques, device and circuit fabrication, power and low noise amplifiers, signal control components, and mixed mode ICs. Emphasis will be placed on the development of technologies which reduce size, weight and cost through improved fabrication and higher levels of integration, and which are amenable to accurate modeling for improved design and simulation.

PHASE I: Determine the initial feasibility of the concept through design, physical analysis, mathematical modeling and analysis.
PHASE II: Develop key processes, validate the model experimentally, explore critical parameters, and optimize the design.

POTENTIAL COMMERCIAL MARKET: Commercial applications that will benefit from innovative electron device technological advancements include high temperature RF transmitters and mixed mode ICs for personal communications, and automotive collision avoidance/warning, and radiometric sensors for the medical industry.

REFERENCES:

AF97-121 TITLLE: Innovative Molecular Beam Epitaxy (MBE) Growth and Semiconductor Characterization Components and Techniques

Category: Exploratory Development

OBJECTIVE: Develop components and techniques to enhance the growth capability and understanding of MBE

DESCRIPTION: This effort will involve the ability to improve MBE semiconductor crystal growth capability by the design of innovative crystal growth and/or characterization components and techniques. These innovative components or techniques

AF-121
may either fit directly on an MBE machine, as in an effusion source, or support the MBE system in material characterization, as would a scanning tunneling microscope. The characterization may be either optical and/or electrical in nature. If the component is to go directly onto the MBE, it must fit on a Varian (GEN II-like system). The component or technique must emphasize nitride (wide bandgap) or antimonide (narrow bandgap) based III-V semiconductors.

PHASE I: Emphasis will be on the design and prototyping of the component or technique to determine feasibility. PHASE II: Emphasis will be on the fabrication of the innovative component or technique with a demonstration of the capability and delivery to the Air Force.

POTENTIAL COMMERCIAL MARKET: Potential applications would be the growth, characterization and development of heterostructure lasers, microwave and millimeter wave transistors, infrared detectors and high temperature electronic components. Potential users would be military and commercial component vendors; MBE manufacturers: EPI, STI and MBE machine users: Defense contractors (TRW, Hughes, Raytheon and TI), Government Labs (NL, ARL, NRL, NIST) and Commercial companies (HP, AT&T and Bellcore).

REFERENCES:

AF97-122 TITLE: Innovative Electro-Optic Device Technology

Category: Exploratory Development

OBJECTIVE: Develop electro-optic device technologies which offer expanded or new electronic functionality and/or improvement of electro-optical sensor capabilities.

DESCRIPTION: To meet the stated needs for future Air Force systems, further development of electro-optical component performance and functionality is required. Not only are these needs stated in terms of increased or new operational specifications, but there is also an expressed emphasis on achieving this performance at the lowest possible cost. The objective of this topic is to develop new and/or improved materials, devices, small to medium scale integrated circuits, and/or models or concepts which address: (1) detector or focal plane array sensors, especially in the ultraviolet and infrared spectral regions; (2) focal plane array sensor readout/multiplexer circuitry to allow increased signal processing at the focal plane array itself; (3) low power light emitters/lasers for integrated circuit optical interconnect and associated applications; (4) optical switching devices, directional couplers, and related concepts; (5) modulation control devices and techniques, especially for microwave frequencies; and (6) other electro-optic techniques for increasing the speed, reducing the cost, size, and weight of microwave/millimeter-wave or high speed digital electronics and integrated circuits which enhance current electronic functions.

PHASE I: Determine the initial feasibility of the concept through design, physical analysis, mathematical modeling, crystal growth, preliminary device fabrication and/or measurements. PHASE II: Develop key processes, validate the model/device experimentally, explore critical parameters, optimize design, and fabricate demonstration devices, circuits, or interconnects.

POTENTIAL COMMERCIAL MARKET: Commercial applications that will benefit from innovative electro-optic device technological advancements include: (1) optical sensors for applications such as environmental monitoring and night vision; (2) high speed electronics for computers and communication systems; and (3) diagnostic tools for the medical industry such as thermal imaging and miniaturized probes.

REFERENCES:

AF-122
AF97-123 TITLE: Support Technologies for Multichip Modules

Category: Exploratory Development

OBJECTIVE: Develop the support technologies required to produce affordable multichip assemblies.

DESCRIPTION: To meet the ever expanding need for increased functionality in advanced military systems requires the use of advanced IC technologies closely coupled to advanced packaging techniques such as multichip modules, chip on board and three-dimensional packaging. Many of these assemblies contain both analog and digital devices operating in close proximity to one another and must meet stringent size, weight, and power requirements while being able to operate over a wide range of temperatures (55 degrees C to 125 degrees C). The objective of this topic is to develop the support technologies required to produce affordable multichip assemblies. Areas of interest include, but are not limited to design tools for mixed mode assemblies, including electromagnetic modeling and simulation tools; known good die; low parasitic interconnects, including microwave dielectric materials for three-dimensional packaging; protective coatings; thermal management techniques; testing methods; and improved assembly techniques.

PHASE I: Determine the initial feasibility of the concept through design, physical analysis, mathematical modeling, measurements, and, if possible, a prototype.

PHASE II: Develop key processes, validate models experimentally with hardware, explore critical parameters and optimize the design/assembly.

POTENTIAL COMMERCIAL MARKET: Commercial applications that benefit from innovative packaging technology advancements include high performance digital, analog and mixed mode assemblies such as found in computers, wireless communications, automotive and miniaturized diagnostics for the medical industry.

REFERENCES:
2. Semiconductor Industry Association (SIA) "The National Technology Roadmap for Semiconductors

AF97-124 TITLE: Innovative Microelectronics Device Development

Category: Exploratory Development

OBJECTIVE: Develop innovative semiconductor device technology and demonstrate concept feasibility.

DESCRIPTION: Explore revolutionary new device concepts and conduct feasibility demonstration efforts on devices with potential for high frequency microwave/millimeterwave and high speed electronics applications, e.g., novel ideas for greatly increasing the speed of analog to digital converters with device cutoff frequency greater than 200 GHz and power consumption less than 1 uw/gate. Examine new device approaches to logic and electronic processing, ultrahigh speed digital switching devices and advanced semiconductor fabrication technology. Investigate promising microwave and millimeterwave solid-state devices such as microwave power device with power density greater than 20 mW/um2, monolithic integrated circuits and computer-aided design/fabrication. The intention of this program is to examine new device approaches, including existing devices such as Heterojunction Bipolar Transistors (HBTs), III-V Complementary Heterostructure Field Effect Transistors (C-HFETs), Metal Semiconductor Field Effect Transistors (MESFETs), and other very high performance devices (HEMTs, RTDs, etc.). Consideration will be given both to those technologies that promise reproducible circuits, and to the application of III-V nitride compounds to the device fabrication. Selection of the demonstration vehicles shall be based on customers future needs and the availability of suppliers transferring these technologies from a research to a production environment.

PHASE I: Device concepts, including material growth, characterization, and device development shall be completed, and fabrication feasibility, shall be demonstrated.

PHASE II: Functional demonstration vehicles and design of potential products shall be completed.

POTENTIAL COMMERCIAL MARKET: Commercial applications for low power, high density, high frequency IC technology include mobile communication equipment and networks, high density logic/memory components, and consumer electronics.

REFERENCES:
1. S.C. Binari, "GaN FETs for High Temperature and Microwave Applications," Proceedings of the Symposium on Wide
TITLE: Adaptive Computing for RF Device and Component Modeling

Category: Exploratory Development

OBJECTIVE: Investigate innovative RF device and component computer-aided engineering technologies, and demonstrate concept feasibility.

DESCRIPTION: Explore novel microwave/millimeter wave computer-aided engineering technologies. The goal is to achieve a major reduction in the cost of and time required for designing microwave/millimeter wave devices and monolithic integrated circuits. Candidate technologies include, but are not limited to, various computational intelligence methods encompassing: neural networks, fuzzy logic, genetic algorithms, evolutionary programming, and adaptive reasoning systems. Emphasis will be placed on the development of technologies that enhance areas which currently limit the efficiency of the microwave/millimeter wave computer-aided engineering design cycle.

PHASE I: Determine the initial feasibility of the concept through the development of prototype implementations and identification of opportunities for insertions into microwave/millimeter wave computer-aided engineering tools.

PHASE II: Develop and demonstrate prototype by insertion into microwave/millimeter wave computer-aided engineering tool, validate the implementation, identify candidate insertions into mainstream commercial microwave/millimeter wave computer-aided engineering tools to enable broad market access.

POTENTIAL COMMERCIAL MARKET: Commercial applications that will benefit include microwave/millimeter wave computer-aided engineering tools.

REFERENCES:

TITLE: Highly Sensitive Imaging Detectors for Laser Radar Systems

Category: Exploratory Development

OBJECTIVE: Develop highly sensitive imaging detectors for laser radar transceivers that operate at wavelengths longer than 1.4 micrometers.

DESCRIPTION: Laser radar systems have significant potential for imaging and targeting applications. The desire to use such systems to image unknown objects requires that the imaging function be performed at wavelengths that are eye safe; in other words, the wavelength should be longer than 1.4 micrometers. Such wavelengths are beyond the responsibility of typical silicon detectors. It is desired that the detectors operate at a minimum in the wavelength range from 1.5 micrometers to 2.5 micrometers, though operation out to longer wavelengths (5 micrometers) is desired. The detectors must operate uncooled or with moderate cooling at most (no cryogenics). Additional requirements include the ability to gather the entire image on a single pulse from the laser transceiver; therefore, the receiver must contain multiple pixels. Minimum pixel counts would be 32 x 32, with greater than 64 x 64 desired. Another consideration is that the laser radar transceiver will image objects at long ranges, perhaps in excess of 20 kilometers. Because the return signal from objects at such ranges will be extremely small, it is desired that the detectors have some form of gain which would allow them to operate at or near the shot noise limit. A final consideration is to obtain full three-dimensional imagery the detector must be capable of being coupled to readout circuitry that will provide a range counter per pixel. Such circuitry is being developed by Wright Laboratory, WL/AAJT, and is described in the reference listed below. Approaches such as the use of avalanche photodiodes and fiber amplifiers have been considered in the past and are described in the reference below. Extensions of these approaches to single pulse imaging or other approaches that meet the requirements specified here are solicited.

PHASE I: Design and assessment of receiver architecture and critical detector component technologies. The approach to achieving single pulse, highly sensitive imaging of eye-safe laser energy will be defined. Critical issues associated with fabrication of the detector and integration with the appropriate readout circuitry will be defined and approaches to fabrication will be developed.
PHASE II: Fabricate and quantitatively evaluate an eye-safe detector with limited number of pixels. Critical issues associated with fabrication of the detector would be addressed and fabrication approaches would be demonstrated. Coupling of the detector to appropriate readout structures would also be accomplished.

POTENTIAL COMMERCIAL MARKET: Sensitive laser radar detectors at eye-safe wavelengths would greatly increase the potential applications of laser radar systems. Imaging in factories for process control, imaging for nondestructive testing, and imaging for surveillance and security are examples where this technology can be applied.

REFERENCES:

AF97-127 TITLE: Architecture and Components for Modular, Multifunction Electro-Optical (EO) Avionic Systems

Category: Exploratory Development

OBJECTIVE: Develop and define compact and affordable integrated multifunction open architecture EO systems.

DESCRIPTION: The ultimate desired EO system would perform a variety of mission-critical functions, including target detection and recognition, precision weapon delivery, covert communication with hostile aircraft, missile and laser warning, and countermeasures against IR and EO threats. The successful integration of multiple EO functions into a compact, low cost system will revolutionize battlefield awareness and precision engagement. Architectures and critical component technologies leading to this ultimate sensor are of interest in this effort. Areas of interest include:

a) Conformal optical apertures that will rapidly, agilely, and precisely steer, with no gimbals, both the incoming image information and outgoing laser radiation. A broad spectral range as well as a large steering angle capability is required for both the image and laser radiation.

b) Multifunction laser sources capable of target designation, of imaging at eye-safe wavelengths for target recognition, of covert optical communications, and of infrared countermeasures. These sources may be required to be spectrally agile and coherent to increase the number of dimensions used in the target recognition space.

c) Sensitive infrared and laser receivers for target imaging and threat detection with high resolution and with multiple wavelengths.

d) Optical "backbone" for distribution of laser energy and connection/integration of optical apertures with common central processing.

PHASE I: Design and assessment of system architectures and critical components. Multifunction EO components will be designed, and detailed cost and risk assessments will be made. Methods of component integration will be defined.

PHASE II: Fabricate and quantitatively evaluate multifunction components at brassboard level. Develop detailed plan for integrated product in Phase III.

POTENTIAL COMMERCIAL MARKET: The multifunction technologies developed will have broad application to more conventional federated systems in military, medical and commercial arenas. The optical aperture technologies will find application in all surveillance sensors such as for facility security as well as for machine vision in robotics. The source and receiver technology will be directly applicable to remote sensing for pollution monitoring. Optical interconnection and distribution technologies development will support all manner of products in the fiber-optic communication industry, including phone line interconnects and chip-to-chip communications in computers.

REFERENCES:
AF97-128 TITLE: Robust Multi-Function Laser Sources

Category: Exploratory Development

OBJECTIVE: Develop robust, multi-function laser sources which are insensitive to environmental changes.

DESCRIPTION: A robust, multifunction, compact laser source is needed for airborne applications where extremes in temperature, pressure, and vibration are present. Thus the laser source must be rugged and reliable with minimal maintenance. In particular, device performance in terms of beam quality and operating efficiency must be either insensitive to optical alignment or automatically aligned. A device with few or no moving parts is also highly desirable since every part in a laser device adds to its complexity and the possibility that malfunctions will occur. Maintaining high quality optical coatings over long periods of time under adverse operating conditions is also a reliability problem for laser sources; innovations which could make optics repeatedly exhibit greater than 10,000 hours between failure is needed. Finally, while the number of airborne applications for lasers increases, the available volume and power on an aircraft do not. A different laser for each application is not going to be viable. A laser source which is flexible in terms of repetition rate (10 Hz to 10 kHz), output pulse energy (joules to millijoules) and wavelength (1-12 microns) is needed to meet diverse needs in the areas of target designation, obstacle avoidance, laser radar, and infrared countermeasures. A multifunction laser source must also operate reliably under the environmental extremes experienced aboard a jet fighter aircraft.

PHASE I: Demonstrate the feasibility of an innovative technique, concept, or device which would lead to a major improvement in reliability, reduced maintenance, or multifunctionality.

PHASE II: Demonstrate a complete device suitable for flight testing which incorporates the innovation demonstrated in Phase I. Device performance will be tested under a full suite of environmental extremes including lifetime, failure modes, and multifunctionality.

POTENTIAL COMMERCIAL MARKET: A reliable, rugged, low maintenance, simple-to-operate laser source is needed for many commercial applications as well as military ones. A number of important commercial applications, especially environmental monitoring, are basically not being pursued because the available laser sources are too complex and expensive to operate. Other commercial applications, currently not even contemplated, would also appear once a simple and reliable laser source was available.

REFERENCES:

AF97-129 TITLE: Nonlinear Optical Frequency Conversion of Ultrafast Sources

Category: Exploratory Development

OBJECTIVE: Develop schemes for efficient nonlinear frequency conversion of ultrafast solid-state, fiber, and diode lasers.

DESCRIPTION: Ultrafast laser sources are enjoying a period of significant development and application. This work has been spurred by the emergence of practical ultrafast laser designs based on solid-state, fiber, and diode lasers. The short pulse characteristics of these lasers make them important tools for spectroscopic, remote sensing, and scientific uses. The high intensity of short pulses make them particularly useful in situations where high peak power is required. Thus in nonlinear frequency conversion, efficient interactions are obtainable with the high peak powers that are generated in ultrafast lasers. This topic will develop efficient nonlinear frequency conversion techniques using ultrafast laser pump sources while mitigating temporal dispersion effects. Applications for ultrafast sources can be found in all regions of the UV, visible, and IR spectrum. The use of conventional birefringently phasematched materials is acceptable, but the new quasi-phasematched materials are of particular interest because of their capability to tailor the spectral properties of the phasematching.

PHASE I: Demonstrate a concept for nonlinear frequency conversion of an ultrafast solid-state, fiber, or diode laser, and establish the feasibility of the design and its potential utility.

PHASE II: Build a prototype system and demonstrate its applicability.

POTENTIAL COMMERCIAL MARKET: The commercial applications of this technology include environmental sensing systems for industrial process monitoring and pollution control. For example, the sensing of hydrocarbons is important in these
applications, and it is a constituent of vehicle exhaust that may be used as a detectable signature by a multispectral sensor. Spectrophotometers and spectro-ellipsometers are optical instruments used in the characterization of material reflection/absorption and in measuring thin film thickness and refractive index. Coherent versions of these devices will be important for high accuracy measurements. The same spectral activity that makes the multispectral sensor of such interest at the Air Force also makes these devices of great utility in spectroscopic applications. The monitoring of film deposition during semiconductor processing is a promising commercial application of a spectroscopic system using this technology.

REFERENCES:

AF97-130 TITLE: Coherent Spectroscopic Instrumentation

Category: Exploratory Development

OBJECTIVE: Develop coherent spectroscopic instruments such as spectrophotometers, spectroellipsometers, and environmental monitors.

DESCRIPTION: Present nonlaser based spectroscopic instruments have low brightness light sources (low power per unit spectral bandwidth) which limit measurement sensitivity and provide poor absolute accuracy. High brightness laser sources would provide better signal-to-noise ratio and hence allow for more accurate measurements. However, lasers generally operate at fixed wavelengths or have limited tuning over the technologically important spectral regions. Nonlinear frequency conversion, for example, optical parametric oscillators and difference/sum-frequency generators can produce a high brightness source with wide tunability. The objective of this project is to develop a coherent spectroscopic instrument which uses nonlinear frequency conversion to generate tunable wavelengths. The emphasis is the development of compact, practical sources suitable for scientific instrumentation or environmental sensing over distances typical of industrial facilities. Measurements of interest include transmission/reflection of low loss coatings and mirrors, accurate absorption and dispersion values for optical materials, precise thickness and index of films deposited or grown on substrates, and remote detection of environmentally sensitive gases in industrial processes and hazardous chemicals in military situations. Nonlinear frequency conversion using the new materials for quasi-phase-matching may result in particularly efficient and widely tunable designs.

PHASE I: Develop a concept for a coherent spectroscopic instrument and demonstrate key technical aspects to establish its feasibility.

PHASE II: Build a prototype system of the coherent spectroscopic instrument and demonstrate its measurement capability.

POTENTIAL COMMERCIAL MARKET: The Air Force applications of this technology are primarily in new sensor systems. For example, innovative methods of propagation through the atmosphere have been demonstrated with ultrafast lasers, and nonlinear frequency conversion of these sources can be used to shift the wavelengths to that required for Air Force missions (e.g. >1.5 um for eye-safe operation, or 3-5 um for penetration of haze). Another example is the use of an ultrafast laser combined with a nonlinear frequency converter in the sensor receiver for efficient upconversion of the return signal.

Commercial application of this technology lies in making ultrafast laser sources available at wavelengths where direct laser devices do not operate well. This will broaden the market potential for the newly emerging ultrafast lasers.

REFERENCES:

AF97-131 TITLE: Digital Multifunction Sensor

Category: Exploratory Development

OBJECTIVE: Develop and design a digital multifunction sensor system for advanced airborne platform.

DESCRIPTION: Avionics sensor systems are on the verge of revolutionary advancements, due to advancements in apertures, miniature filters, direct digital synthesis, analog/digital converters, amplifiers, and mixers. These advances are due to materials,
packaging, interconnect, sealing, chip compaction and process control improvements due in large part to transmit/receive module development and commercial processor chip developments. This program will explore applications of new technologies based on sensor requirements and constraints to meet our far-term vision of multifunction digital RF sensors. Enabling Sciences have advanced from Material, Engineering and Mathematical sciences such as Statistics (Estimation Theory), Numerical Techniques (Adaptive Processing), and Communication Theory (IF Sampling). Thus, the combination of enabling science and technology gives hope/confidence that an all digital multi-function RF sensor suite will be accomplished and that this effort allow us to begin to understand the research required and technology needs associated with this vision.

1. Conformal Multifunction Array: Airborne antenna apertures of the future must be low cost, broad band, low radar cross section (RCS) and multifunction in nature to earn their way onto platforms where space is at a premium. To achieve these requirements, radically new aperture technologies need to be cultivated. This research explores a) pattern control for an aperture that is conformal to a doubly curved surface which has never been done before. Electromagnetic computational codes will be developed to rigorously predict the phenomena associated with scanning a beam on a generally doubly curved aperture, and b) the potential for generating multiple simultaneous beams on a general double curved surface which has never been done before. Electromagnetic computational codes will be developed to predict the phenomena associated with formation of multiple beams on a doubly curved surface.

2. System and Concept of Operation: 1) strategies for developing those technologies required to achieve an all digital multifunction RF system, 2) system and concept of operation studies to determine the benefits of potential off-board cues or bistatic operations, and 3) the benefit of multifunction waveforms to timeline loading and survivability through simulation analysis. These studies and analyses will attempt to balance the cost of ownership (i.e., acquisition, operating, and support costs), installation, and performance constraints.

3. Wideband Digital Antenna Electronics: Current antenna electronics at present assumes conventional Nyquist A/D technology. RF (at the microwave band of interest) is converted to IF and finally to baseband. This research explores the emerging Delta-Sigma A/D technology which presents an opportunity to modify the architecture to incorporate a set of dynamically tunable A/Ds that hop, digitize and filter signals at RF. This sampling technology could allow for the reduction of size, weight and cost of a sensor while increasing sensor performance and flexibility.

4. Advanced Spread Spectrum Filter Technology: Current sensor approach to acquire long pseudo-random sequences uses many parallel correlators to simultaneously search multiple Doppler windows. This research will determine the feasibility of using a new innovative signal processing approach which integrates the best frequency and time domain processing algorithm technology with monolithic microwave integrated circuit technology to implement a very cost effective matched filter.

PHASE I: Research and define a digital multifunction system or Subsystem including applicable technology trades, performance and cost trades.

PHASE II: Define systems interfaces for platform applications and build and test a critical sub-system.

POTENTIAL COMMERCIAL MARKET: Resulting technology applicable to automobiles or commercial aircraft for low-cost antenna, high performance antenna, or ultra-low noise communication system.

REFERENCES:

AF97-132 TITLE: Digital Frequency Modulation

Category: Exploratory Development

OBJECTIVE: Develop digital frequency modulation capabilities for advanced active electronic attack (EA) techniques.

DESCRIPTION: Advanced coherent EA exciters require frequency modulation capability to effectively defeat certain threat radars. Current analog modulation schemes are counter productive to the digital advances being made in coherent exciters. Digital radio frequency memories (DRFM) have significantly enhanced the time domain performance of coherent EA subsystems. However, many modern threat systems are able to reject deception signals which only produce time domain perturbations. A critical need exists in these systems to provide coordinated time and frequency domain techniques. Having the capability to produce frequency modulations on the signal while in digital form has the potential to significantly reduce size, weight, cost,
and power as well as enhance the time-frequency coordination of EA systems. Digital frequency modulation will also afford advanced coherent EA subsystems the capability for spectral content deception techniques that provide platform type "signatures." Limited past research has produced various digitally fed analog implementations where the digital modulation signal is converted to analog prior to mixing with the desired signal. The objective of this effort is to design, develop, and analyze a frequency modulation algorithm entirely with digital hardware.

PHASE I: Design a novel, advanced digital frequency modulation subsystem based on current Wright Laboratory performance requirements for EA applications. The design must be based on amplitude sampled digital words and impose the shift by digital manipulation. Consideration must be given to minimize the impact to data throughput time.

PHASE II: Develop prototype hardware and evaluate the proposed design in context of coherent digital EA systems for ability to provide coordinated time/frequency modulations and spectral content deception.

POTENTIAL COMMERCIAL MARKET: The developed digital frequency modulation has potential use in a variety of commercial applications such as digital communications, data packet coding, cellular telephones, cable and standard data modems, intelligent highways, and signal instrumentation.

REFERENCES:

References can be obtained by calling Marvin Potts at (513)255-4322

AF97-133 TITLE: Combined Ultrawideband Radar/Communications Avionics

Category: Exploratory Development

OBJECTIVE: Develop an ultrawideband transceiver capable of performing short range radar and communication functions.

DESCRIPTION: Current avionics systems have been developed to provide only a single function. The large number of functions required from today's avionics and the shortage of payload volume and load carrying capability, especially in unmanned air vehicles (UAVs), necessitate the combining of functions and sharing of resources. Some missions, such as those of Special Operations Forces, require low-probability-of-intercept (LPI) radar and communications for formation flying and rendezvous. Hence, there is a need for a single avionics package that can perform radar ranging to a distance of 15 to 20 nautical miles (nm) and can transmit and receive digital communications at a maximum range of 100 nm with a data rate of 16 kilobits/second using featureless waveform technology. Such a system can be used for rendezvous and communicating with refueling aircraft and other aircraft within a formation. It can also be used for navigation and radar altimetry by fixed and rotary wing aircraft, and for station keeping and control of UAVs. Use of spread spectrum, featureless waveform for both radar and communications will greatly enhance the survivability of the using vehicle.

PHASE I: Investigate various means of generating and receiving an LPI waveform that can be used for both radar and communications functions. Investigate beam steering methods that can be used for radar and communications. Develop a functional architecture for such a system. Determine military and commercial applications.

PHASE II: Design, fabricate and test a system in accordance with the Phase I functional architecture. Determine the suitability of using such a system on helicopters, light aircraft and UAVs.

POTENTIAL COMMERCIAL MARKET: This system has potential uses in commercial and general aviation for ground proximity warning, collision avoidance, and communication functions.

REFERENCES:

Reference available by calling Dave Pleva at (513) 255-5565

AF-129
AF97-134 TITLE: Chaff Dispenser Location Computer Model

Category: Exploratory Development

OBJECTIVE: Develop a model to determine the optimum aircraft location for chaff/expendables dispensers.

DESCRIPTION: Create a computer based model for Air Force and Navy application to assist in determining the optimum location for chaff/expendable dispensers. This program would model the 6 degree-of-freedom characteristics of the air flow across aircraft surfaces, vortices, jet engine exhaust, rotor or blade effects, winds, chaff pyrotechnics, type of chaff and dispenser location and position. With detailed models of the aircraft, the program will allow relocation of the dispenser or dispensers to any location on the aircraft. This effort will also assist in creating a chaff database to represent chaff RCS and Doppler for specific types of chaff. This program would be written such that it will run on a PC or workstation and will be incorporated into the existing MARCS (Missile, Aircraft, Radar, Countermeasures Simulation) electronic countermeasures simulation.

The utility of this type of computer program is to allow the user to run the program either as a stand-alone program or within the computer simulation MARCS to evaluate countermeasures effectiveness. The program would be available to the Tri-Service community, aircraft manufacturers and integration engineers for chaff dispensers, foreign countries and NATO.

Contractor performing work would have to be familiar with chaff/expendables, chaff/expendable dispensers, computer model generation and programming, and modifying the source code of MARCS (including the modeling chaff in MARCS data files).

PHASE I: Determine the initial feasibility of the concept through design, physical analysis, computer based modeling and analysis.

PHASE II: Develop validated computer model, explore critical parameters and design means of implementation.

POTENTIAL COMMERCIAL MARKET: There is potential commercial application of these models to aircraft such as Air Force One and for DOD contractors working on aircraft such as the F-22.

REFERENCES:
1. NAVAIR-16-1-539, "NAVAIR Expendable CM Directory."

AF97-135 TITLE: Global Positioning System (GPS) P(Y)-Code Acquisition

Category: Exploratory Development

OBJECTIVE: Develop and evaluate innovative techniques that utilize RF/EO technologies for GPS Direct P(Y)-Code acquisition.

DESCRIPTION: GPS acquisition is currently accomplished using Coarse/Acquisition (C/A) Code. C/A Code is 1 MHz Gold Code sequence that repeats every 1 microsecond. These properties make the C/A-Code easily acquired with relatively simple hardware. However, these same code properties make acquisition using C/A-Code vulnerable to jamming and spoofing. Acquisition of GPS using 10 MHz P(Y)-Code pseudo-random (PN) sequence greatly improves system acquisition jamming and spoofing immunity but makes acquisition of the code much more difficult. The difficulty stems from the fact that the jamming requires a large number of chips be integrated for each correlation. The P(Y)-Code chipping rate requires that a large number of correlations must be performed to search even small time uncertainties. Also, large Doppler windows have to be searched for frequency uncertainty due to oscillator and doppler uncertainties. These factors create a two dimensional (time and frequency) area that must be searched to acquire the P(Y)-Code. The problem is further compounded by operational considerations which require this search be accomplished with affordable low power/small hardware, in a short period of time, and in a jammed environment. The current Direct P(Y)-Code acquisition approach uses a large number of parallel correlators and/or precise clocks. These approaches can achieve reasonable time-to-first-fix (TTFF) (several minutes) when searching time uncertainties on the order of 50 microsecond and frequency uncertainties of several hundred hertz for J/S ranging from 35-40 dB.

PHASE I: Investigate/develop RF/EO technologies and search techniques that have the potential to greatly improve the speed at which large time and frequency uncertainties can be searched. The acquisition time goal for this effort is less than 15 minutes for time uncertainty of 2 seconds, frequency uncertainty of +/- 300Hz and J/S of 43 dB. The approach and technologies chosen must have cost, size, and power consistent with the constraints of most GPS applications.

PHASE II: Optimize the design of the acquisition technique developed under Phase I and characterize the techniques...
performance using analysis, simulation and hardware demonstration.

POTENTIAL COMMERCIAL MARKET: This technique can provide commercial GPS receivers with a C/A code rapid acquisition capability. This technique can also be exploited by any real time signal processing application performing signal correlations such as spectrum analyzers, image/speech processing or coded telecommunications.

REFERENCES:

AF97-136 TITLE: Avionics Modeling and Simulation Technology

Category: Exploratory Development

OBJECTIVE: Develop realtime and non-realtime simulation technology for collaborative engineering and virtual prototyping of avionics systems.

DESCRIPTION: The contractor will develop simulation technologies to enhance DoD productivity and commercial sector competitiveness by advancing real-time and non-real-time desktop collaborative virtual prototyping processes and applications. Proposals should build on the significant technology base existing for electronic systems design (VHDL, AHDLL). Joint modeling and simulation (M&S) standards, and other commercial/industry modeling standards. Collaborative Virtual Prototyping (CVP) involves the application of advanced distributed modeling and simulation over a geographically disperse area using an integrated simulation environment to support design, performance, and producibility trade-off analyses throughout the entire life cycle of system development. The high-leverage Joint standards and M&S initiatives include the DoD High Level Architecture, Joint Simulation System (JSIMS), the Joint Warfare Simulation (JWARS) and the Joint Modeling and Simulation System (J-MASS). Using CVP, a simulation model, developed in parallel with the hardware or technology development, allows the scientist, engineer, or end user to refine system requirements early in the engineering process. A virtual prototype allows the engineer on the desktop to see the impact of design changes. Trade studies using the model can then be performed throughout development as an essential part of the systems engineering process. The Joint M&S Standards emphasize models based on reusable components. The virtual prototyping tools necessitate research in areas such as simulation engineering based on visual programming and visual assembly with domain specific icons and browsers, automated test, automated verification and validation, model based software requirements development, parallel automated documentation, automatic code generation with multiple language support, embedded configuration control, multimedia help and on-line documentation, domain specific toolkits for component developers to populate libraries, application developer toolkits to define requirements and compose model software from components, expert system assistants and domain specific software structural models.

PHASE I: The desired products of Phase I are 1) identification and development of applicable desktop M&S processes and requirements for avionics, 2) identification of the enabling realtime or non-realtime technologies for avionics M&S based upon employing J-MASS as the underlying modeling system, and 3) conduct of specific experiments to verify critical aspects of the defined concepts, 4) development of a system specification, implementation approach, and demonstration plan.

PHASE II: Design and develop the prototype technology and demonstrate the proposed technology in the appropriate Wright Laboratory System Concept and Simulation Division simulation facility. The contractor shall also detail his plan for his Phase III effort.

POTENTIAL COMMERCIAL MARKET: M&S is an enabling technology and a change in the way of doing business that will have major implications for the commercial and defense sector. Desktop M&S will become a mainstream concept in the design and production of commercial systems. The commercial marketplace will increase for generic simulation techniques, simulation infrastructure, and off-the-shelf components for applications in financial industries, manufacturing, industrial process control, biotechnology, health care, communication and information systems. Boeing demonstrated the success of integrated computer assisted design with supporting modeling and simulation in bringing to market the 777 airliner. Similarly, the automotive industry has used CAD and modeling for years. Advances in software and computer technology is making CVP and desktop M&S possible and affordable for the small to medium business. Software development itself is a manpower intensive endeavor. Requirements definition remains a problem area where the user is unable to verbalize what he/she wants in detail. Virtual prototyping of software requirements and modeling of the software is a future growth area in which simulation is used to review
completeness of software requirements and functionality.

REFERENCES:

These references plus additional references are available at the WL/AASE Technical Information Center, contact William McQuay at (513) 255-4511 for additional information

AF97-137

TITLE: Electronic Design Automation

Category: Exploratory Development

OBJECTIVE: Develop electronic design automation tools and methods which support the design of complex analog and digital electronic systems.

DESCRIPTION: The Air Force continuously develops complex electronic components and systems for its weapons. Significant cost savings can be achieved if design times and design errors are reduced and the appropriate factors are considered during the initial design of this equipment. Electronic Design Automation (EDA) or Computer Aided Engineering (CAE) technologies play a key role in achieving a successful weapon system design while reducing its cost. The AF's primary interests are tools that a) allow technology independent, parameterized, automated generation of analog building blocks (i.e., op-amps, filters A/D converters etc.), b) allow high level synthesis of analog circuits from VHDL-A (the emerging IEEE standard), c) support the design of low power electronics (e.g., asynchronous logic or multivalued logic) d) dramatically reduce system design and verification time, e) help a design team view and manage complex designs, or f) that help a designer work with commercial-off-the-shelf parts. Inputs to a tool should be either an industry standard format such as VHDL or VHDL-A, libraries of design choices, or some other natural format that is intuitive to the design team member that is targeted to use this tool. Outputs should be compatible with other tools that are used in follow-on stages of the design process. The tool must have interfaces to the CAE or enterprise framework and data bases on which it is intended to operate. Duplication of capabilities that are already commercially available or that are already receiving significant investment by the DOD are strongly discouraged.

PHASE I: The preliminary design of the tool will be performed. The functionality, user interface, and design environment interface will be completely specified.

PHASE II: The tool will be constructed, evaluated, and demonstrated. Reference manuals and user guides will be developed.

POTENTIAL COMMERCIAL MARKET: All tools developed under this topic will be inherently dual-use. This is because the same methods used to design military electronic systems are applicable to commercial systems, although military systems design often includes additional requirements such as legacy system support and adverse operational environment support.

REFERENCES:
2. ANSI/IEEE 1076 VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL) REFERENCE MANUA

AF97-138

TITLE: Single-Mode Reliable Optical Card-Edge Connector

Category: Exploratory Development

OBJECTIVE: Develop, design and test a reliable, rugged, blind-mate single-mode optical connector for avionics modules.

DESCRIPTION: For decades research has been performed on solving the problems associated with optical connectors for avionics applications. Efficient and reliable bulkhead connectors have been in use for several years. However, blind-mate connectors for avionics line replaceable modules (LRM) need to be developed to reduce problems associated with fiber optics and photonics. The connector problems include the inability to maintain optical alignment, excessive damage under shock and
vibration, contamination of exposed fiber ends, and degradation of the alignment sleeves and fiber surfaces. Other concerns result from transitioning from light emitting diodes (LED) to laser transmitters such as eye safety. To help alleviate these reliability and maintainability problems with optical networks in weapon systems such as the Air Force F-22 tactical fighter, a reliable, blind-mate optical connector using multimode fiber has been developed. A prototype was built, tested and transitioned to the F-22 program. This connector is fine for most digital applications. The next technology step is to develop a single-mode reliable optical connector. There are many benefits of developing this connector so that it can be used in optical systems with laser transceivers. Higher power margins can be achieved. Greater bandwidths than that of LED systems will be attained.

PHASE I: Will involve 1) establishing a preliminary connector design (either a new design or enhanced existing design), 2) providing a mock-up of this innovative design, and 3) creating a development plan for the chosen concept.

PHASE II: Will involve the detailed design, prototype development, and testing of this single-mode optical connector. This will include any demonstration applicable to a commercial application of this technology concept. The testing will include the rigors of the severe military environment and maintenance procedures to which the avionics and connector will be subjected.

POTENTIAL COMMERCIAL MARKET: Commercial avionics have become more sophisticated and faster, using laser transmitters. This connector can be used for sensor to processor data transfer and airline seat monitor and entertainment bus connections. Ground-based super computers with optical networks will require these for connecting peripherals, central processors, and monitors. Commercial space applications such as satellite and medical payloads require rugged connectors that operate in a harsh environment.

REFERENCES:

AF97-139 TITLE: Missile Warning System Scene Projection

Category: Advanced Development

OBJECTIVE: Develop an EO scene projection technology for missile warning system evaluation.

DESCRIPTION: The development and evaluation of missile warning system technology/enhancements have required extensive flight tests. Recent breakthroughs in digital IR scene generation capability developed for the Wright Laboratory Integrated Defensive Avionics Laboratory (IDAL) was transitioned to WR-ALC to provide a capability to perform hardware-in-the-loop simulations for developing algorithm/software enhancements for the AAR-44 missile warning system. This capability allows the development and evaluation of these enhancements prior to flight test. This capability significantly reduces the required flight tests and significantly increases WR-ALC’s ability to respond to the warfighter’s evolving missile threats. The current capability provides a digital scene that is injected into the missile warning system processor. Current EO scene projection technology is expensive and does not provide the required capability converting digital scenes to optically projected scenes that could be used to stimulate the missile warning system's sensor optics. This requires innovative research to define/develop EO scene projection technology that can interface to digital scene generators and provide an optical scene to stimulate missile warning receivers such as the AAR-44, AAR-47 and the joint service Common Missile Warning System (CMWS). This scene projection technology would be demonstrated and utilized in the IDAL for the development of missile warning system technology.

PHASE I: Define the key technical requirements/issues, develop a preliminary concept/design and provide an implementation approach including feasibility and cost tradeoff analysis. Performance demonstrations of critical aspects of the design are desired to evaluate risk in proceeding with Phase II.

PHASE II: Develop, fabricate, demonstrate and document proposed concept/design. Based on the Phase II results, provide recommendations on how the resulting technology can be applied to fulfilling commercial needs.

POTENTIAL COMMERCIAL MARKET: This SBIR topic has dual use potential for the laboratory development of IR camera technology. The conversion process for transforming digital scene information into optically transmitted scene information has potential application to the television industry for quick response flat screen technology. The projection technology also has application to the commercial airlines industry for crew training using projection technology to stimulate the forward-looking infrared (FLIR) autonomous landing system being developed for category III landings (minimum ceiling visibility of 50 feet).
REFERENCES:

These references and additional references are available from the WL/AASE Technical Information Center. For additional information, contact Roderic Perry at (513) 255-4264.

AF97-140 TITLE: Innovative Electron Beam (EB) Cured Structures

Category: Exploratory Development

OBJECTIVE: Develop a new class of low cost, highly efficient composite structures enabled by EB cure.

DESCRIPTION: The Air Force seeks to exploit the unique processing and tooling allowed by EB cured composite materials to develop new, low cost, highly efficient aircraft structural concepts. EB cure combined with advanced fiber reinforcement textile products and low cost processing techniques such as resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM), and fiber placement shall be employed. Highly efficient structural concepts that are un producible and/or unaffordable with two-dimensional lay-up and thermal autoclave cure materials shall be developed. Low cost tools made of wood, cardboard, plastic, and/or plastics shall be employed to fabricate the concepts. Highly unifrized structural concepts with low part and fastener count featuring efficient load transfer through joints and intersections such as integral sin and substructure shall be developed. Highly efficient substructure concepts such as truss and geodesic webs shall be considered.

PHASE I: Small subcomponents shall be built to demonstrate the feasibility of the fabrication process and evaluated to provide the initial demonstration of structural efficiency.

PHASE II: Full size structural components shall be designed, fabricated, and tested to demonstrate the structural design concept and validate the manufacturing and tooling approach.

POTENTIAL COMMERCIAL MARKET: Low cost EB cure composites will create new multi-million dollar markets for high performance composite materials in cost driven commodity type products. The use of high performance composites is currently limited to premium cost products. EB cure composites could enable a significantly greater use of composites in commercial automobiles, trucks, buses, and trains leading to significant weight savings and improving fuel efficiency thereby reducing consumer energy costs. EB cure composites will enable application to an array of economical consumer products from lightweight appliances and bicycles to fishing poles and power tools. A great market potential also exists for application to lightweight, long life, corrosion free composite building components such as columns, beams, and girders for public bridges and buildings.

REFERENCES:

AF97-141 TITLE: Distributed Actuation for Aircraft Maneuver and Performance Enhancement

Category: Exploratory Development

OBJECTIVE: Develop innovative concepts in actuation, distributed throughout the structure, to achieve aircraft maneuver and performance enhancement.

DESCRIPTION: Innovative concepts are solicited in the use of smart/distributed actuation as applied to flight vehicle structures. The employment of such concepts can effect both the performance characteristics and the total weight of aircraft. The elimination of the need for conventional, discrete control surfaces can have major impact on flight vehicle weight, drag, and signature. Other distributed actuation concepts can be applied to structural problems such as buffet alleviation, flutter suppression, vibration isolation critical components, and anti-icing. (The results of a recent SBIR feasibility study in the area can be found in the reference.)

PHASE I: Perform a feasibility study (primarily analytical) of employing the selected concept to either a current operational vehicle or to a new vehicle design. Determine the payoff of using the concept in terms of vehicle performance or in solving light vehicle structural problems. Estimate the weight impact of the new concept versus conventional designs.

AF-134
PHASE II: Perform ground or wind tunnel tests (or both) to validate the concept developed in Phase I.

POTENTIAL COMMERCIAL MARKET: Distributed actuation can be used to design lighter weight commercial aircraft. In addition, many of the concepts (distributed actuation for vibration suppression, for example) have nonmilitary, nonaerospace uses and can benefit from concept feasibility studies.

REFERENCES:

AF97-142 TITLE: Structural Integrity of Aging Aircraft

Category: Exploratory Development

OBJECTIVE: Develop methodologies for determining, assessing, and predicting the effects of various forms of aging aircraft damage.

DESCRIPTION: A variety of critical service problems are currently plaguing our aging aircraft fleets and threatening them with grounding or shortened service lives because accurate methodologies for prediction and assessment do not exist today. These problems include but are not limited to corrosion fatigue, widespread fatigue damage (WFD), fretting fatigue, fretting corrosion, joint debonding, composite delamination, and composite impact damage. Research efforts should involve generating analytical methodologies, validating these methodologies through experimental testing, and integrating these methodologies with existing aging aircraft computer codes. These models shall be suitable for integration into PC or workstation based deterministic fatigue crack growth, probabilistic risk assessment, and/or repair design and analysis computer programs. Emphasis areas are (1) fretting fatigue and fretting corrosion including testing techniques for validation (e.g. correlation of fretting corrosion and fatigue data produced in laboratory environment with data from aging aircraft by developing the appropriate transformation functions), (2) deterministic fatigue crack growth analysis model (e.g. in the plastic zone), (3) advanced life extension techniques (e.g. laser shock processing, ion implantation), (4) advanced analysis methodologies of composite repairs on metallic structures, (5) low velocity impact damage of bonded composite repairs on metallic structures, and (6) concept of equivalent initial flaw size.

PHASE I: Develop computer code modules suitable for integration with existing deterministic, probabilistic, and/or repair analysis computer programs as well as advanced life extension techniques.

PHASE II: Methodologies and techniques developed in Phase I will be validated by experimentation.

POTENTIAL COMMERCIAL MARKET: The methodologies and techniques are directly applicable to aging commercial aircraft as well as to new commercial aircraft. Also, the potential for use is extremely high in the automotive, shipping, railroad, nuclear and space industries.

REFERENCES:

AF97-143 TITLE: Flight Control Technology

Category: Exploratory Development

OBJECTIVE: Develop affordable flight control technology to support Air Force Global Reach, Global Power objectives.

DESCRIPTION: The Air Force is interested in the development of one or more of the following advanced flight control technologies for future air vehicles: a) computation based implicit air data systems, b) scalability of flight control test results between air vehicles lacking geometric similitude, c) closed-loop flight control of tactical aircraft with flexible structures, d) miniature actuators using smart materials for high response changes in wing shapes, e) virtual channel real-time fault tolerant computing architectures/techniques, f) multiple frequency optical multiplexing for fault tolerant flight control communication, g) domain based graphical software that automates and integrates redundancy management, mode logic, and interface programming with control law development, h) real-time optimization algorithms for engagement solutions for cooperative uninhabited air vehicles (UAV) and multiple target, i) optimization of UAV formation flight between aerodynamic benefits (reduction of induced drag) and sensing benefits (resolution of distributed aperture radar), j) development of an electronic, retrievable stability and control data base for various aircraft configurations based on both linear and nonlinear wind tunnel data, and k) development of flying qualities guidelines and criteria based on quantitative pilot workload assessment methods.

PHASE I: Expectations include determining the feasibility, preliminary concept identification and requirements definition. Some specific examples are photonic interface module design, control software interface design description.

PHASE II: Expectations include hardware fabrication, ground testing, simulation or flight testing, and validated, executable software code. Some specific examples include photonic interface fault tolerant communication elements built and lab tested, complete flight control software design tool built and demonstrated.

POTENTIAL COMMERCIAL MARKET: All of the items in this SBIR topic are generally applicable to both the civilian and military aircraft sectors. The technology developed will provide for greater integration at the system level, more affordable configurations, more efficient and supportable flight control architectures, and the ability to operate air vehicles safely and effectively in an interneted environment. All commercial aircraft manufacturers, suppliers, and airline would benefit from this technology.

REFERENCES:
4. Aviation Week and Space Technology, special issue on UAVs, 10 July 1995
TITLE: Tactical-Uninhabited Air Vehicle (T-UAV) Operator Station Simulator

Category: Advanced Development

OBJECTIVE: Develop, design, and demonstrate an operator station simulator for T-UAVs.

DESCRIPTION: Future DOD plans envision a T-UAV operator controlling multiple vehicles. Operators require a simulation station to effectively train to control these platforms. Technology development personnel need a facility for research, testing, demonstration, and evolution. It is envisioned that a two-person station could control up to eight T-UAVs. A simulated operator station would provide operator trinées the means to monitor the vehicles' operation from both a strategic and tactical point of view. Such a station would also allow for control of the simulated vehicles through an interactive interface. The station would interact with other advanced flight management systems such as decision aids and situation assessment systems. The aim of this program, then, is to research and design a T-UAV operator station simulator that allows for strategic and tactical displays and interactive control, considering human factors engineering issues. An innovative approach is sought that takes into account advanced display hardware technology, information display formats and controls, decision aids, and operator/vehicle interfaces.

PHASE I: Simulation station requirements definition to include an analysis of available advanced display technologies, mission definition and analysis, and T-UAV operation's requirements. Design an operator simulation station based on requirements analysis. Design should identify hardware and software requirements needed to implement prototype station and should include an interface control document. Limited prototype demonstration and evaluation of key design features.

PHASE II: Implement a prototype capability based on the design defined in Phase I. Demonstrate prototype operation of several T-UAV missions. Integrate prototype with established operator/vehicle interface technology development facility.

POTENTIAL COMMERCIAL MARKET: The commercial potential of this work includes air traffic control, land surveys, drug interdiction, search and rescue, and, forest fire control.

REFERENCES:
A web site that addresses this topic is: http://www.cc.gatech.edu/computing/classes/cs6751_94_summer/gt5350/proj-main.html. Additional material might be found by pointing your web tool to ht://www.altavista.digital.com and doing a complex query using "unmanned aerial vehicles" AND "operator*."

AF97-145

TITLE: Full-Color Autostereographic True Three-Dimensional Displays

Category: Exploratory Development

OBJECTIVE: Develop an autostereographic true 3D display that is fully addressable, interactive, operator position independent, without special user equipment.

DESCRIPTION: Current technology portrays the world through the limitations of two-dimensional displays. These limitations restrict the perception of depth and viewing angles in complex scenes and object interactions. A true three-dimensional display will yield a more realistic representation of the world that will simplify its understanding to a human observer. This will be especially useful for control of multiple remotely operated air vehicles in complex, high workload environments. The objective of this effort is to develop the technology for a true three dimensional, full color autostereographic display system that produces images in true three dimensional space. This display will define a fully addressable, high resolution array of XYZ points in space for drawing solid surfaces, stick figures, and readable text. The display system will be high speed and capable of real time operation with a minimum of 60 3D frames per second. It must supply means for user interaction and a complete lookaround viewing capability. The design must include provisions for safety, considering a naked-eye operator/viewer, with no special equipment requirements.

PHASE I: Generate a design for an autostereographic full color, true three-dimensional display system. Determine display’s maximum display volume, spatial resolution in XYZ space, refresh rate, number of colors, brightness, contrast, and graphics performance (e.g., 3D vectors, polygons). Define the display’s specifications e.g., RGB input, RS-170A input) and requirements (e.g., input voltage), as well as its programming and user interfaces. Produce an analysis on how to integrate such design with WL/FIGP’s laboratory facilities.

PHASE II: Design and build a working prototype 3D display system based on the results and conclusions of Phase I.

POTENTIAL COMMERCIAL MARKET: Three dimensional displays (3D) have wide applications in commercial and military markets. Three dimensional displays have the potential of replacing current two-dimensional displays. Commercial applications include television, NMRI medical displays, air traffic control, remote vehicles operation, robotics, and remote telepresence operations.

REFERENCES:
A number of references to holographic displays can be found by pointing your web tool to: http://www.altavista.digital.com and doing a simple search on "holographic displays." (Note the exact spelling.)

AF97-146 TITLE: Global Diagnostic System for Unsteady Flow Fields

Category: Engineering Development

OBJECTIVE: Develop a nonintrusive flow diagnostic instrument capable of making off-body, global measurements of unsteady flowfields.

DESCRIPTION: Substantive advancements in both military and commercial flight vehicles hinge on understanding and exploiting unsteady flow phenomena. Wind tunnel tests require detailed quantitative measurements of flow variables (velocity, pressure, density, temperature) throughout the flow field to understand the flow phenomena and to validate computational fluid dynamics codes. Since probes inserted into the flow field may disturb the flow, these data must be taken by nonintrusive means. Furthermore, to allow detailed investigation of unsteady flow fields, these methods must allow simultaneous measurements on entire planes or volumes in the flow field. Some planar methods, such as Doppler Global Velocimetry (DGV) are capable of making global velocity measurements in the flow field. Others, such as Planar Laser Induced Fluorescence (PLIF) are capable of making density measurements. All these methods face limitations in unsteady flow fields because of the amount of data which must be acquired at high speeds. These methods also have limited dynamic range. A new method to augment these techniques or extend the dynamic range or accuracy typical of these techniques is desired. Ideally, this method would simultaneously provide information on multiple flow variables throughout the flow field. Furthermore, the dynamic range of an ideal technique would allow measurements of velocities ranging over at least 3 orders of magnitude in subsonic flows. This method must provide nonintrusive measurements and would most likely be optically based. The technique must be usable in wind tunnels with limited optical access. The technique should account for distortions due to nonoptical quality wind tunnel windows (e.g. plexiglass). Any seeding material used must be environmentally nonhazardous. The data acquisition hardware required to provide temporal resolution of unsteady flow fields for such a method may also need to be developed. This would require shutter speeds of less than 0.1 millisecond and frame rates of approximately 1kHz.

PHASE I: Phase I activity would identify a new diagnostic system or substantial advancements or improvements to existing techniques. The optical requirements, wind tunnel modifications, computer requirements and data reduction techniques applicable to this task would be identified and the feasibility of the technique would be demonstrated.

PHASE II: Phase II would design and build the diagnostic system, including any specialized data acquisition hardware and data reduction software and install the system in the Subsonic Aerodynamics Research Laboratory (SARL) wind tunnel in Wright Laboratory, or other facility, as suitable.

POTENTIAL COMMERCIAL MARKET: Significant advances in flow-field diagnostics have the potential of making a tremendous impact in the commercial aircraft, automotive and trucking industries. Improved fuel economy due to decreased vehicle drag might be achieved cost effectively by using enhanced diagnostic systems. Commercial wind tunnel tests may become simpler and less expensive while yielding orders of magnitude more data than are possible using existing testing techniques.

REFERENCES:

AF97-147 TITLE: Cost Estimating Methodology for Advanced Air Vehicles

Category: Advanced Development

OBJECTIVE: Develop cost estimating model for advanced air vehicles.

DESCRIPTION: Affordability is a major factor in the development of advanced air vehicles technologies. The emphasis in developing affordable advanced air vehicles requires proper measurement of the impact of new technologies in the cost of developing advanced air vehicles. The Air Force Scientific Advisory Board new World Vistas Study "recommends that research
efforts be established to define fundamental principles for cost determination and that all S&T projects consider the proper balance between life cycle cost and capability.a Trade-off studies used to determine which new technology may give the best return on investment are limited due to the lack of existing cost estimating tools that do not address the impact of new technologies on air vehicle designs. Parametric cost estimating relationships (CERs) relying on historical, as-built data, cannot capture effects of advanced materials and technologies. Weight-based CERs only address existing materials mixes and do not take into account the functional complexity of a system, which in some cases drives the cost. Engineering build-up methods are labor intensive, manufacturer specific, and with a show turnaround. The development of a cost estimating tool that will address new technologies impacts in a more realistic manner is desired. Ideally, this development would take into consideration the favorable characteristics of parametric cost estimating relationships and engineering build-up methods, to provide a cost estimating tool that would yield a more reliable, realistic conceptual level life cycle cost estimate of the impact of new technologies in the development of advanced air vehicles. It is desirable that this tool would be developed to be used by design engineers and technical cost analysts.

PHASE I: Phase I would identify a new cost estimating tool and its feasibility, or major improvements to existing tools.

PHASE II: Phase II would develop and test the tool. This phase would include baseline testing for correlation purposes, as well as integration with existing conceptual/advanced design tools to provide a complete suite of tools that would be available to the design community.

POTENTIAL COMMERCIAL MARKET: Air Force, Navy, and industry have expressed interest in developing a cost estimating tool that would properly address advanced technology insertions and their impacts in conceptual and advanced air vehicle design. Affordability will dominate development, procurement, and operation of future weapon systems. Cost prediction is essential to the determination of affordability. The commercial sector would benefit from the development of a cost estimating tool that would provide more realistic estimates of the impact of new and advanced technology insertion in future (post JAST) advanced air vehicle systems. This will result in development of affordable, high performance advanced air vehicle systems.

REFERENCES:

AF97-148 TITLE: Aeromechanics for Future Aircraft Technology Enhancement

Category: Exploratory Development

OBJECTIVE: Develop aeromechanics technology to achieve affordable fighter aircraft with advanced maneuverability, extended range, and high survivability.

DESCRIPTION: The Air Force has a vital interest in the development of manned and unmanned aircraft with significant advancements in flight performance and mission effectiveness. These advanced air vehicles will rely on innovation in aeromechanics technology to achieve new levels of speed, maneuverability, range, payload capability, low life cycle cost, and rapid design development. Advancements are needed in the following areas: a) accurate engineering design methods for determining aerodynamics characteristics and flight performance of unconventional aircraft, b) rapid efficient computational fluid dynamics methods to describe the airflow about air vehicles in rapidly maneuvering flight, c) flow control devices such as MEMS and active compliant surfaces which can be used to reduce drag or prevent flow separation, d) methods to improve the accuracy and reduce the cost of wind tunnel experiments through more accurate measurements and extrapolation of subscale results to flight, e) efficient integration of inlets and nozzles, and f) innovative aircraft configurations which produce advanced performance capabilities.

PHASE I: Define the proposed concept, outline the basic principles, establish the method of solution. Present an example of the advanced performance which will result from the technology. Determine the risk and extent of improvement over existing methods.

AF-140
PHASE II: Build a prototype application of the equipment or software. Demonstrate the advanced technology under actual engineering conditions.

POTENTIAL COMMERCIAL MARKET: Improved performance and safety of commercial and private aircraft will be realized with application of this technology. New areas of commercial growth will result from aircraft design tools which allow fast and accurate development of vehicles to respond to aircraft needs throughout the world. Examples are devices which allow aircraft to operate from remote fields, carry large payloads at low cost, and are economical to produce and operate. New aerodynamic analysis tools will improve education methods and allow industry to produce with lower initial investment. Advanced experimental methods are applicable to more efficient ground transportation systems.

REFERENCES:

AF97-149 TITLE: Fire Detection/Suppression Systems

Category: Basic Research

OBJECTIVE: Develop advanced firefighting technologies that can significantly improve fire detector efficiency and increase fire suppressant performance.

DESCRIPTION: The Air Force has a critical need for improved fire protection capabilities. Firefighting is being revolutionized by increasing environmental concerns. Front-line fire extinguishing agents caused environmental concerns. Similarly, firefighter training with hydrocarbon fires has been severely restricted. Current fire detection systems cannot discriminate against all potential false alarm stimuli and have resulted in the loss of vital Air Force resources and costly cleanup operations. New environmentally safe and effective fire detection/suppression systems are required. Some of these areas include but are not limited to the following:

1. High Speed Suppression via Cold Inert Gas Generation - Fire extinguishment by inert gases is an effective means of protecting electronic and electric equipment. Large volumes of inert gases can be generated by thermochemical means to suppress potentially dangerous fires rapidly and effectively. This proposed research will develop a system that rapidly generates cold inert gases for rapid extinguishment of electronic/electric fires.

2. Optical Pre-warning Gas and Flame Detection - Current fire detection technologies generally depend on the presence of a flame before corrective action can be taken. An open path gas detection system that can provide early warning of flammable or toxic gas presence will significantly improve fire protection, safety.

3. Computational Fluid Dynamics Fire Suppression Systems Design Tools - The high cost of new fire suppression agents emerging from laboratory development makes medium and large scale testing of these agents in fire suppression delivery systems prohibitively expensive. This research will produce a set of design tools that can be used to design, at low cost, fire suppression delivery systems that incorporate current and future Halon 1301 and Halon 1211 replacements.

PHASE I: Development of preliminary design of cold gases and path detectors.

PHASE II: Build and test prototypes for field testing using results obtained in Phase I.

POTENTIAL COMMERCIAL MARKET: All commercial facilities and industries where rapid fire detection and suppression would increase the survivability of people and resources, including but not limited to the automotive industry, commercial cruise lines and/or other sea transportation, and any other industry where the use of high speed turbine engines are the primary source of power.

REFERENCES:

AF-141
TITLE: Innovative, Localized, Autonomous Cooling Systems

Category: Exploratory Development

OBJECTIVE: Develop localized, autonomous cooling system capable of dissipating large power densities with moderate cooling capacity.

DESCRIPTION: The increased performance, compact packaging, and variable operation cycles associated with future aircraft systems and retrofits of existing fleet aircraft systems lead to both increased power densities and transients. Additionally, these systems, which include actuators and electronic components, are being positioned in the extremities of future high performance aircraft. These trends necessitate the advancement of the state-of-art in localized or distributed cooling concepts that can meet the power densities associated with future electronics and the thermal transients pertaining to “on demand” systems. The cooling system must be “environmentally friendly” and compatible with lightweight aircraft structures and avionic equipment. It must also have affordability benefits and good producibility for practical application. It shall be capable of dissipating large power densities of up to 100 W/cm² with moderate cooling capacities of up to 2 kW while being exposed to aircraft environments.

PHASE I: During Phase I, analysis and conceptual design work will be performed to evaluate the heat transfer effectiveness and energy dissipations capability of the proposed localized, autonomous cooling systems. This analysis and conceptual design will also address the concepts compatibility with aircraft and electronic systems. The design will show sufficient technology maturity for orderly development into aircraft systems with compatible environmental factors. The Phase I work will produce a competent technical report and plans for experimental development in a proposed Phase II effort.

PHASE II: This phase continues the necessary analytical work and provides experimental verification of predicted heat transfer capability for the localized cooling system. Laboratory simulation of typical operating conditions will evaluate performance at different temperature and power conditions. Any environmental restrictions will be assessed. Benefits to be gained from the use of the heat transfer system will be quantitatively established for different potential applications to prepare for possible commercial development of the system. A competent technical report will document all of the work conduct, a final optimized designed will be completed, and an optimized localized cooling system will be fabricated.

POTENTIAL COMMERCIAL MARKET: Dual use commercialization will be considered in all phases of this effort. Commercial markets could include commercial aircraft, large machinery for agriculture and transportation, electronics, and automobiles.

REFERENCES:

TITLE: Spall Fragment Field and Surface Deformation Characterization System

Category: Exploratory Development

OBJECTIVE: Develop a quantitative spall fragment field and surface deformation system.

DESCRIPTION: This effort involves the development of a quantitative means of recording the spall fragment field and surface deformations produced by projectile penetration of composite materials. The system will be used by Wright Laboratory to characterize the fragment field’s kinetic energy distribution (i.e., particle size and velocity vector distributions) and threat-target interactions resulting in surface deformation. Required system capabilities include quantifying the dynamics of selected individual fragments over a protracted period of time, together with characterizing the deformation (or velocity) history of target surfaces. Spall fragments having cross-sectional dimensions in excess of 10 microns and lengths in excess of 100 microns must be discernable. Fragment velocities are dependent on proximity to the impact location and can be as high as 3 km/s. Surface observations must span a minimum area of 100 square centimeters, with a lateral (spatial) resolution of 1 mm (i.e., 10,000 measurement locations per time step). The axial resolution requirement, with respect to the shotline, is 100 microns over a
deformation range of 1 centimeter. Several user-selected time steps are desired. Time step intervals will vary from 1-500 microseconds. Quantitative measurements will be used to validate first-principles-based algorithms for composite penetration.

PHASE I: A prototype system will be designed to quantify impact-generated surface deformations and spall fragment fields. The design will be supported numerically and through proof-of-concept tests.

PHASE II: A turn-key prototype system will be developed, tested, and delivered. The system will be capable of quantifying the dynamics of selected individual fragments over a protracted period of time and characterizing the deformation history of target surfaces.

POTENTIAL COMMERCIAL MARKET: As composites are introduced into commercial and consumer products, a system that characterized energy dissipation mechanisms and mass loss (as a result of collision, impacts, and/or explosions) is needed to characterize the hazard and evaluate safety issues. Targeted commercial organizations are damage resistant material manufacturers serving the optical, automotive, marine, and aviation industries.

REFERENCES:

AF97-152 TITLE: Engineering Research Flight Simulation Technologies

Category: Engineering Development

OBJECTIVE: Develop innovative flight simulation techniques which support research for advanced aircraft.

DESCRIPTION: The Air Force is interested in new flight simulation technologies which support flight control or aircraft system development for advanced aircraft. The Air Force seeks simulation technologies that support a small number of high fidelity entities interacting in a virtual research environment. Technologies that optimize aircraft fidelity between local and long haul network entities are needed to support training applications. Novel display technologies, lower life cycle cost simulation techniques, or improved techniques for conducting research using networked simulation are of interest. Application of commercial virtual reality technologies to simplify research simulation is encouraged so long as simulation can be maintained at a high fidelity. Innovative approaches for the use of large High Definition Television (HDTV) Cathode Ray Tubes (CRTs) or flat panel displays in flight simulator instruments and projection systems for visual displays are of interest. Improvements will be considered for any technology, hardware device, or software program/architecture that shows potential for flight simulation advancement.

PHASE I: Shall define the proposed concept, investigate alternatives, and predict performance of the proposed design. Demonstrations of high-risk portions of the design are encouraged, but not required.

PHASE II: Shall fully implement, demonstrate, and test the Phase I design. Results of the test and recommendations for improvements and/or alternatives shall be documented.

POTENTIAL COMMERCIAL MARKET: Improvements in flight simulation technology have application to flight simulators used by the airline industry to satisfy FAA training requirements. Flight simulation technologies can also be applied to the expanding fields of virtual reality, medicine, manufacturing, and entertainment.

REFERENCES:
2. Dynamic Latency Measurement Using the Simulator Network Analysis Project (SNAP); Bryant et al. IITSEC: 1994

AF97-153 TITLE: Innovative Damping Concepts for Extreme Environments

Category: Exploratory Development

OBJECTIVE: Develop damping concepts for structures subjected to high temperatures, centrifugal loading, and other extreme environments.
DESCRIPTION: Although there are a number of relatively mature technologies associated with damping non-rotating structural components at temperatures below 500 degrees Fahrenheit, there is a critical need for damping concepts appropriate for applications that are subjected to high temperatures, centrifugal loads, and other extreme environments. Existing polymeric viscoelastic damping materials are only effective over narrow temperature range, and become susceptible to creep when exposed to elevated temperatures and/or when subjected to large steady state loads. For extreme environments, damping concept using polymeric materials must include some sort of innovative scheme to address these problems. Alternative approaches to the use of polymeric viscoelastic materials may be identified for the damping concept, and damping treatments that are relatively insensitive to temperature would be very useful in many applications. An analytical model that can be used in the design of the damping treatment is required so that the damping design will not be based on an empirical "trial and error" approach. The damping treatments may be designed for specific extreme environment applications of interest to the Air Force, including engine nozzles, hypersonic or exhaust washed structures, and rotating components within air vehicle engines. One application of special interest is the damping of aircraft turbine engine blades, which supports research to reduce the effects of high cycle fatigue (HCF) in aircraft engines.

PHASE I: Must demonstrate the feasibility of the damping concept, including its compatibility with elevated temperatures and/or sustained steady state loads. If the damping treatment is intended for a specific Air Force application, the feasibility study should include analytical studies of the concept that predict the level of damping to be seen in the component and an evaluation of the effectiveness of the damping treatment in the system environment.

PHASE II: The damping treatment must be fabricated and then tested to demonstrate its effectiveness in the application considered. The testing must effectively demonstrate the damper's durability in the environment for which it is designed. The Phase II must also demonstrate that the treatment can provide effective damping without adding excessive weight, cost, or maintenance requirements.

POTENTIAL COMMERCIAL MARKET: There are several commercial markets for damping technologies that are capable of withstanding elevated temperatures and large steady state loading, including vibration isolation devices for heavy machinery. Damping concepts can also be used in the commercial aircraft and automotive industries to reduce undesirable vibration in structures and engines. Added damping reduces resonant response, which reduces requirements for maintenance and enables the development of lighter weight, higher performance turbine engines. Large turbines are also used in the power generation industry, which could realize similar benefits.

REFERENCES:

AF97-154 TITLE: Bare Base Operations

Category: Exploratory Development

OBJECTIVE: Develop lightweight, air transportable Bare Base support systems that significantly improve existing and/or new Bare Base capabilities.

DESCRIPTION: The Air Force has a critical need for improved mobile, air transportable support systems to expedite and sustain aircraft operations and personnel beddown during contingency operations. These new systems must be smaller in size, lighter in weight, rapidly deployable, and provide capabilities to improve system operations, reduce operating cost and manpower. These new systems must be smaller size, lighter in weight, rapidly deployable, and provide capabilities to improve system operations, reduce operating cost and manpower. There are significant opportunities through application of advanced technologies to achieve measurable results in many key areas. Some of these areas include but are not limited to the following:
1. Efficient Waste Processing and Disposal Plant - Currently Bare Base waste is disposed of by liquid waste pumps. This poses severe penalties in airlift volume in deployments, such as Desert Storm, Guantamano and Somalia. This proposed novel research is to develop an air mobile waste disposal plant which minimizes weight and volume of current waste systems.
2. Advanced Integrated Mobile Power Generation Systems - Existing Bare Base power generation systems are heavy, bulky, and require significant airlift. Use of new cryogenically cooled superconducting materials will enable the development of a generator one-quarter the size and weight of current assets. The application of superconductivity technology can revolutionize mobile power generation.
3. Hybrid Dual-Fluid Environmental Control Units - Mobile base environmental control units (ECUs) protect

AF-144
personnel from harsh climates. Present day ECUs use banned ozone depleting chemical (ODC0) R-22. The proposed research will develop a new generation of ECUs that replace ozone depleting fluorocarbon refrigerants on both fixed and mobile AF installations.

4. Pavements Creation From In-Situ Materials - Air Force forward and contingency bases require additional parking capability to meet mission requirements. The proposed research will develop methods to rapidly create aircraft operating surfaces using insitu solid materials. Target time-frame for construction of a 150ft by 150ft parking apron is 8 hours.

5. Air Mobile Shelters - The Air Force has requirements for innovative concepts for a new generation of air mobile shelters. The shelters must minimize weight, packing volumes, and assembly times, support snow loads, wind loading, and be capable of long term storage. Life cycle costs, energy efficiency and potential for chemical/biological protection are also areas of interest.

PHASE I: Identify and laboratory test a proof of concept.
PHASE II: Will include the transition of individual components into an optimization process whereby a module assembly will be fabricated and tested.

POTENTIAL COMMERCIAL MARKET: Technologies used to develop improved Bare Base equipment will be developed jointly with industry and have direct application to DoD and commercial sectors (utility, transportation and aircraft industries).

REFERENCES:

AF97-155 TITLE: Advanced Aircraft Coatings Systems

Category: Basic Research

OBJECTIVE: Develop approaches for a fundamental understanding leading to advanced aircraft coating systems capable of satisfying operational requirements over a service life of 30 years.

DESCRIPTION: Aircraft painting/stripping/repainting processes and handling the associated hazardous waste is one of the highest cost maintenance activities in the Air Force. As a result, in late 1993 a USAF Paint Technology Task Force was chartered to establish a strategy for the Air Force paint removal and coating systems of the future. The Air Force Coating System Strategy applies to almost all operational aircraft and identifies aircraft coating system requirements from now until beyond the year 2003. In addition to environmental compliance, the strategy clearly defines long term coating system performance parameters significantly beyond the current state-of-the-art. An advisory panel of internationally recognized experts in the fields of coating technology and corrosion science and engineering, from industry and academia, was chartered to study the potential of a basic research contribution to ameliorate the aircraft paint issue leading to recommendations for a programmatic course of action. As result of that study, the following four areas of basic research activity were identified as enabling for the Air Force to meet its stated objectives by the year 2003.

1. Investigation of synthesis/structure/property relationships for surface treatments, primers and matte topcoats.
2. Identification of degradation mechanisms of polymers in matte coatings and subsequent development of appropriate models for performance predictions.
3. Synthesis of advanced materials (polymers, additives, pigments, inhibitors) for new coating systems.
4. Development of nondestructive evaluation (NDE) for under-coating inspection and coating health monitoring.

The Air Force plans to establish basic research programs in each of the above enabling technology areas with participation by the top researchers in the country. Although there are ongoing activities to address environmental compliance, AF requirements are unique in the areas of 30-year life and removal/reaplication of topcoats. Current national and international research activities in the above areas lack a "fundamentals" approach, are somewhat unfocused and do not address requirements unique to the Air Force. Research and development programs are sought which address the unique operational requirement of 30-year life.

PHASE I: The establishment of viable approaches to addressing key elements of the above enabling technologies are sought in Phase I.

PHASE II: Follow-on efforts in Phase II will further develop and optimize the elucidation of mechanisms, development of models, synthesis of advanced materials and/or development of NDE techniques using the approaches established in Phase I.

AF-145
POTENTIAL COMMERCIAL MARKET: The commercial aircraft industry will benefit because much of the technology developed will be directly applicable. The auto industry also has a great need for corrosion protection as well as a need for predicting and extending the life of coatings for cars and trucks.

REFERENCES:

AF97-156 TITLE: Environmentally Compliant Aircraft Coatings

Category: Exploratory Development

OBJECTIVE: Develop low/zero-VOC materials and/or application techniques suitable for aircraft coatings.

DESCRIPTION: The Air Force is interested in conducting exploratory development of aircraft coatings with a minimal detrimental impact on the environment. Most coatings now used by the Air Force release large amounts of volatile organic compounds (VOC’s) into the atmosphere, producing smog or other air pollution. Some coating formulations include hazardous components (EPA 17, lead, chromates, etc.). Some of the new coatings for low speed and high speed aircraft, which meet the environmental standards, suffer an unacceptable loss of properties such as adhesion, durability, cleanability, optical signature control, and affordability. The Air Force has a durability goal of 8+ years. New materials and/or application systems that can greatly reduce or eliminate VOC’s and other undesirable materials, while controlling the aircraft’s spectral and diffuse infrared signature, are necessary in order to comply with stringent environmental regulations, either currently in effect or likely to be enacted in the near future. Relevant technologies for low/zero-VOC coating development include, but are not limited to, high solids coatings, waterborne coatings, powder coatings, plasma/thermal spray systems, and appliqués.

PHASE I: Phase I will address initial formulation, fabrication, evaluation, and application techniques of specific subjects for proof of concept.

PHASE II: Phase II will further develop and optimize the material and/or application techniques, and produce larger samples for a full spectrum of evaluations.

POTENTIAL COMMERCIAL MARKET: The requirement to comply with environmental regulations applies equally to the commercial coating industry. As such, much of the technology developed for compliance of military coating systems could be extended to commercial applications. Commercialization of the technology would involve scale-up to production capacity, and production of sufficient quantities of material to coat aircraft or other large objects using an environmentally compliant and commercially viable application technique. Additionally, opportunities for commercialization in the solar energy field exist.

REFERENCES:
2. Title I of the Clean Air Act Amendments of 1990 (CAA).
3. California South Coast Air Quality Management District Rule 112

AF97-157 TITLE: Affordable Composites

Category: Exploratory Development

OBJECTIVE: Develop low cost materials and processes for carbon fiber composites.

DESCRIPTION: The Air Force is seeking new and highly innovative concepts for affordable carbon fiber composite materials and processes utilizing polymeric and/or carbon matrices. These concepts are for aircraft, spacecraft, automotive, and/or electronic applications. Concepts on near net-shape manufacturing, integrated structure, low cost coatings, and low cost raw materials and processes are sought. A large cost driver in producing parts from advanced composites is from machining after the part is processed. Near net-shape manufacturing can help to reduce costs due to machining. The cost of labor to assemble many parts to build a structure affects composite costs. Integrated structure would reduce part count, thereby reducing assembly time. For some composite materials, a faster processing time or reduces step processing would eliminate some composite costs. Low cost coatings for use in the 1000 or 1200°F temperature regime could greatly increase the number of applications utilizing
carbon fiber composite materials. Finally, high material costs keep carbon fiber composites from being fully utilized in applications such as automobiles and electronics. Low cost raw materials can help to expand the use of carbon fiber composites.

PHASE I: The Phase I program must demonstrate the feasibility and cost savings of the proposed concept sufficiently to justify further development and/or scale-up in a Phase II effort. Proof-of-concept subcomponents should be fabricated and tested.

PHASE II: The concepts demonstrated in Phase I will be scaled up and developed in detail. The payoffs and benefits of the technology will be demonstrated by fabrication and testing a component.

POTENTIAL COMMERCIAL MARKET: Affordable carbon fiber composites will provide technologies for commercial transportation vehicles, sporting goods, electronic modules, and civilian infrastructure such as composite bridges. Extreme environment composite technology (high temperature, stress, and/or vibration) will have extensive applications for internal combustion, turbine engines, nuclear reactors, and incinerators.

REFERENCES:
1. 40th International Society for the Advancement of Materials and Process Engineering (SAMPE) Symposium, Anaheim CA, 1995

AF97-158 TITLE: Polymer/Inorganic Nanocomposites for Substructure Applications in USAF Rockets and Aircraft

Category: Exploratory Development

OBJECTIVE: Develop a new generation of polymer-matrix nanocomposites for use in substructure applications in USAF rockets and aircraft.

DESCRIPTION: New high-use temperature, lightweight polymeric materials shall be required in future airframes and rockets to enable the optimum performance characteristics of the systems. Recently, a new generation of polymer-matrix nanocomposites has been developed based on the molecular-level dispersion of highly anisotropic, inorganic nanoscale rods or plates, such as mica-type layered silicates, in a thermoplastic polymeric resin. These new polymer-matrix nanocomposites exhibit superior mechanical characteristics (e.g. 100% increase in the heat distortion temperature) and chemical resistance (e.g. ~ 10 fold decrease in O2 and H20 permeability) compared to the neat resins. These property improvements raise the use-temperature and extend the potential use-environments of the polymeric material. Additionally, in contrast to conventional filled-polymer systems where inorganic loadings are greater than 30 wt%, these nanocomposites contain less than 10 wt% of the inorganic. Thus, the overall weight of the nanocomposites is less than that of conventional composites and the impact strength of the nanocomposites is not drastically decreased with respect to that of the neat resins. These impressive properties are believed to be related to the homogenous nanoscale dispersion of the highly anisotropic nanoscale inorganic phase. In contrast, conventional filled resins and composites utilize inorganic fillers on the micron or larger scale, such as talc, kaolinite, carbon black, glass fiber and carbon fiber. This technology has yet to be explored for potential Air Force applications. These materials may replace current composites and filled polymer materials in substructure applications, such as trusses, in rockets and aircraft resulting in a weight and cost savings. Also, these nanocomposites could replace nonpolymeric materials in some noncritical structural applications such as fuel-line brackets, stirred combustion chambers and cryogenic storage containers, again resulting in weight and cost savings. New economically-viable, preferably nonsolvent based processing techniques are sought which retain or improve the nanoscale dispersion and global alignment of the inorganic phase and result in polymeric-matrix nanocomposites with superior mechanical, thermal and chemical properties. Additionally, the development of new economically-viable inorganic constituents that are dispersible as nanoscale plates or rods in a variety of commercially available thermoplastic resins and that are more thermally stable than current commercial material will also be considered.

PHASE I: The goal of the Phase I effort is development of at least two potential thermoplastic resin/inorganic constituent nanocomposite systems. Emphasis should be placed on potential nanocomposite systems from (1) elevated use-temperature thermoplastics (i.e. > 175°C, long term) and (2) ultra high use temperature resins (i.e. > 250°C, long term) such as aromatic heterocyclic rigid rod polymers.

PHASE II: The polymer-matrix nanocomposite with the most promising combination of mechanical, thermal and chemical properties will be selected, and continued technical work shall require the fabrication of commercially viable specimens in the form of films, fibers and molded components.

POTENTIAL COMMERCIAL MARKET: Commercial applications would include structural components in automobiles,
replacement of current filled polymer systems in automobiles, replacement of conventional fiber composites such as fiber glass, and packaging materials such as films and containers for foods which require low permeability and recyclability.

REFERENCES:

AF97-159 TITLE: Improved Tribological Systems for Spacecraft

Category: Advanced Development

OBJECTIVE: Develop methods to extend spacecraft useful life up to 15 years from limits imposed by existing tribological systems.

DESCRIPTION: Existing spacecraft utilize lubrication systems that have not been optimized for long life and low torque and wear. There is a general reluctance to change a lubricant and/or bearing surface finish to new materials that are known to be superior, but have not been "space proven." However, as the size of spacecraft is getting smaller and the time in space is lengthened, more severe demands are placed on the tribological systems. Lubrication failure is more and more often the cause of satellites becoming useless in space as the bearings and other mechanical parts lock up following lubricant depletion. NASA Lewis Research Center has been organizing the tribological experiences of spacecraft in the form of a handbook, but the ranking of the needs for tribological research and development needs to be established with the highest payoffs targeted for testing and improvement. Materials Directorate, Wright Laboratory has been conducting R&D on new base fluids and on additives for these and existing base fluids and on new tribological coatings for wear surfaces. Base fluid general classes of interest (because they are in existing systems) include hydrocarbons and perfluorpolyalkylethers. Silahydrocarbon base fluids offer excellent improvement in reduced torque and low volatility compared to other hydrocarbons. Low volatility additives have been found to reduce friction and wear over the base fluid. Greases made from silahydrocarbon are needed to take advantage of the excellent properties of the base fluid. Materials Directorate has also developed improved coating materials, including WS2, Cfx, CNx and TiN, applied by different state-of-the-art techniques, including magnetron sputtering, pulsed laser deposition and cathodic arc deposition. These are improved bearing/race coatings to potentially improve the life of space bearings. Improvements in currently used familiar materials will have greatest acceptance to potential uses of new technology. The greater the involvement of Aerospace Corporation, NASA, satellite and spacecraft component suppliers, satellite and spacecraft manufacturers, tribological experts and government agencies, the greater anticipated acceptance by the space community.

PHASE I: Identify most critical needs in space system tribology. Incorporated improved base fluids and additives and coatings from Materials Directorate programs and from industry into optimized lubricants, greases and coatings. Develop a standard for liquid/grease "outgassing" to overcome the shortcomings of current methods developed for structural materials.

PHASE II: Based on input from the space community, fabricate an operating mechanism to demonstrate the various lubricants and coatings to simulate the life characteristics of a space mechanism. Thoroughly assess the strengths of various lubricant systems identified in Phase I towards the goal of up to 15 years life in spacecraft mechanisms.

POTENTIAL COMMERCIAL MARKET: Since many spacecraft are commercial as well as military, the knowledge gained and demonstrated from this program on extension of mechanical system life and weight reduction through elimination of redundant mechanisms will easily transfer to commercial spacecraft.

REFERENCES:
AF97-160
TITLE: Paint Stripping Methods

Category: Exploratory Development

OBJECTIVE: Develop innovative process for stripping paint--completely and selectively--from aircraft.

DESCRIPTION: The Air Force is interested in new innovative ways to strip aircraft. The primary method of removal was application of methylene chloride which was a labor intensive process and under current regulations is environmentally unacceptable. Currently, plastic media blast materials and water technologies have been emerging at Air Logistic Centers, but there is still concern over disposing of spent materials, cost of systems and their operations, and strip rates. New technologies are sought that will eliminate environmental concerns, reduce labor, and be nondestructive to the skin of the aircraft over its lifetime. The technology should be able to strip the coating system completely (primer and topcoat), but also be able to demonstrate selective stripping as well (topcoat only leaving primer intact). The stripping process should focus primarily on aluminum 2024-T3 alloy as the substrate with a small emphasis on composite materials, and the system should be a feasible and realistic transition to existing Air Logistic Center’s support facilities. Some technologies sought but are not limited to are new water technologies, energetic stripping methods, newly developed plastic blast materials or wheat starch materials. These systems must reduce or eliminate HAZMAT disposal fees, be cost competitive in production of the apparatus and in its operation, be able to strip a majority of the aircraft, and meet/exceed current strip rates.

- **PHASE I:** Phase I will entail the initial design and development of the paint stripping method with some preliminary evaluation on strip rates and ability to completely and selectively strip paint systems.

- **PHASE II:** Phase II will further develop and optimize the stripping process and produce a prototype stripping apparatus. Larger parts representing aircraft components will be stripped to evaluate strip rates, selectively of stripping process, and ease of application used.

POTENTIAL COMMERCIAL MARKET: This has the potential to be used commercially due to the impending environmental regulations. Stripping of aircraft is essential in inspecting the skin of the aircraft and this process must be done faster, cheaper, and more environmentally responsible than what we use in current practice. All aircraft operators and manufacturers will have a vested interest in this technology if they plan on keeping aircraft more than 7 years.

REFERENCES:

AF97-161
TITLE: Gap Treatment Materials for Low Observable Aircraft

Category: Exploratory Development

OBJECTIVE: Develop a rapid-cure conductive sealant for gap treatments.

DESCRIPTION: Many of the Air Force’s current and planned aircraft employ low observable or "stealth" technologies. One critical component of these technologies is the treatment of the gap formed at the surface of the aircraft between structural components and access points. The nature and function of the gap requires a material that is flexible and electrically conductive, properties which are mutually exclusive. Due to the physical requirements, current gap materials tend to have low reliability, are difficult to apply and repair, and have special storage requirements. The Air Force is seeking to develop a gap treatment material which is reliable, has a short cure cycle, is easily stored and applied, and can be easily repaired. The traditional approach has been to fill an elastomeric sealant with conductive particles. Unfortunately, achieving a minimal cure time for a highly filled conductive sealant is very difficult due to the solvents required to process the system. Potential approaches to meet the rapid-cure concept include ultra-violet light, induction heating, and electron-beam curing matrix systems or other approaches.
methods that use little or no solvents.

PHASE I: The Phase I program must demonstrate the feasibility and cost savings of the proposed concept sufficiently to justify further development and/or scale-up in a Phase II effort. Proof-of-concept subcomponents should be fabricated and tested.

PHASE II: The concepts demonstrated in Phase I will be scaled up and developed in detail. The payoffs and benefits of the technology will be demonstrated by fabrication and testing a component.

POTENTIAL COMMERCIAL MARKET: Reliable and maintainable gap treatment materials could readily be used in many areas where conductive caulks or sealants are required. Markets include electronic shielding, dissipation of electrostatic charge in computer assembly, flexible attachment for wiring and hybrid circuitry, and construction.

REFERENCES:

AF97-162 TITLE: Affordable Multi-Material System Alternatives

Category: Exploratory Development

OBJECTIVE: Develop thermal, mechanical, and/or chemical process design of alternative near net-shape processes for difficult-to-form materials.

DESCRIPTION: Materials insertion applications and spare components for aging aircraft systems offer tremendous opportunity to introduce innovative methods, processes and material systems to reduce weight and costs while improving wear, temperature and strength performance. The need is for material process design methods which consider alternative processing which lead to significant reduction in design and fabrication times. Of particular interest is the design and fabrication of precision tooling to enable materials substitution or replacement components that are lighter, stronger and less expensive than might be otherwise attained through conventional forging, casting and machining operations. Demonstration of reduced part turnaround and delivery with cost savings of 50% are a targeted goal. Methods, processes and materials should be functionally integrated via a feature-based design environment allowing selection and optimization of manufacturing methods, processes, and materials for structural aircraft and engine components.

PHASE I: Demonstrate feasibility of embedding analytical models of basic transport phenomena such as thermal, mechanical, and chemical processes into computer-aided design system with geometric modeling and feature-based design environment capability. Develop a protocol for adding material and process models and a design feature library for storing them. Using an aircraft component such as a turbine blade, verify process design system capabilities by evaluating and comparing different manufacturing methods.

PHASE II: Develop a prototype design system for exploring different thermal, mechanical, and/or chemical processes for effectively producing near net-shape components composed of difficult-to-form materials. Verify the process design system by comparing the feasibility and cost benefits of alternative types of physical processes, namely hot forging, investment casting, reaction-based forging, and reaction-based squeeze casting for certain turbine engine and structural components.

POTENTIAL COMMERCIAL MARKET: Dual use of this exploratory research is foreseen for integrated shape, material, and process design of high performance metals, ceramics and polymers. Aircraft and automobile propulsion system vendors providing tooling for forming new higher temperature alloys.

REFERENCES:

AF-150

AF97-163 TITLE: Gradient Materials Interface Design

Category: Exploratory Development

OBJECTIVE: Modeling and simulation of the interface design of gradient bulk and thin-film materials.

DESCRIPTION: The widespread application of gradient materials in areas ranging from biomimetic and mechatronic materials for nondestructive sensing and micro-actuation, to nonlinear optical properties for threat and detection, and to multilayer films for unique combinations of properties is limited by the lack of a design environment. Future material systems will require a design environment for modeling and simulating gradient thin-film interfaces including thin-film to bulk materials interfaces across monolithic and composite materials. Of particular interest is the ability to enable the integrated design of bulk components comprised of monolithic alloys and/or polymer, metal, and ceramic matrix composites whose properties are enhanced by interfacial effects and/or multilayer thin-film coatings. Although computational materials science approaches offer the potential for such a design environment, innovative approaches are sought to mitigate computational complexity and cost issues.

PHASE I: Demonstrate the tractability of approach relative to the design of the structure and composition for a given performance envelope (thermal, strength, magnetic and electro-optical properties) of multilayer film interfaces, i.e., inter-layer and film-to-substrate. Materials of immediate interest are replacement components for aging aircraft to include high temperature intermetallics, composites, and inorganic and polymer based electro-optical materials.

PHASE II: Develop a generic capability to design the structure and composition of a multi-layer film together with the ability to evaluate the performance (thermal, strength, magnetic and optical properties) of the combined film and substrate.

POTENTIAL COMMERCIAL MARKET: Dual use of this exploratory research is foreseen for integrated shape, material, and process design of high performance aerospace metals, ceramics and polymers. Aircraft and automobile propulsion system vendors providing multilayer films for component thermal and wear protection.

REFERENCES:
5. A. G. Jackson, M.C. Ohmer, and S. R. LeClair, "Relationship of the second order nonlinear optical coefficient to bandgap in inorganic noncentrosymmetric crystals," to be published in Infrared Physics & Technology; available as a Wright Laboratory report.

AF97-164 TITLE: Advanced Materials & Processes for Aging Aerospace Systems

Category: Exploratory Development

OBJECTIVE: Develop novel materials and processes to extend service life of aging weapon systems.

DESCRIPTION: The many aerospace weapons systems in the Air Force inventory are being asked to perform ever-longer periods of service as the number of new weapons systems is reduced. Examples of these systems include aircraft structures, propulsion, electronics and optics, hydraulics, seals, sealants, and coatings. Novel materials and processes are needed to extend the life and reduce the cost of operating these systems. Due to the large variety of weapons systems, technical approaches should
focus on concepts that would address more than one if possible. This is an exploratory development effort that would result in a materials and process feasibility demonstration with a clear path provided for further development to commercialization. Materials systems of interest would include both metallics and nonmetallics, monolithic and reinforced, and the related processes to produce, inspect, and simulate the effects of long-term aging.

PHASE I: A limited scope, concept verification phase that gathers enough experimental information to allow the original concept to be validated. Where possible the Phase I efforts shall utilize and compare findings with those obtained utilizing current materials and processes. The contractor shall include an engineering analysis of potential uses of the new technology for applications in various aging systems both military and civilian.

PHASE II: This phase will conduct much more extensive exploratory development materials and process verification efforts with heavy emphasis on comparisons through aging studies with existing materials and processes being used in the depot of field. Where possible, actual hardware and processing methods shall be utilized to validate the Phase I predictions. Lab level NDE and testing will be conducted on both the as-developed and artificially aged materials and related processes.

POTENTIAL COMMERCIAL MARKET: This effort should have significant dual use commercialization potential due to the extensive nature of aging infrastructure in the civilian economy. Improved metal alloys, composites, coatings, and other materials and processes should be broadly applicable to civil components.

REFERENCES:

AF97-165 TITLE: Novel Nondestructive Evaluation Technology for Aerospace Components & Systems

Category: Basic Research

OBJECTIVE: Develop new nondestructive evaluation (NDE) techniques that permits the detection and tracking of life limiting flaws in structural components.

DESCRIPTION: The Air Force is interested in research and development projects directed toward potential applications of new and novel NDE techniques to detect and quantify flaws in a range of components. Such a program should address the types of nature of a particular class of flaws and offer a method for their detection and quantitative assessment. Examples of the flaw types that are of interest include the very small flaws that result during high cycle fatigue, corrosion of aluminum aircraft structure, and the mapping of wide area fatigue damage in older aircraft. Another long standing NDE problem deals with the assessment of adhesively bonded components. Any work in this area must show that NDE measurements are applicable to well known models of adhesive joint performance. Such work must not be a simple correlation of performance with an NDE signal. An investigation of the trade-offs involved in the use of any proposed technique should lead to a rational engineering use philosophy for the technique. Special consideration will be given to those proposals that address materials that have both military and civilian applications, i.e., dual usage.

PHASE I: Programs in these areas should address the requirements and goals of the proposed efforts, as well as initial formulation, testing, and evaluation required for proof of concept.

PHASE II: The process or design concepts from Phase I would be developed through optimization and scale-up efforts to establish feasibility for manufacture and wide scale use of any instrument proposed. Either process or design concepts would lead to a marketable product after a Phase III program.

POTENTIAL COMMERCIAL MARKET: With the world wide emphasis on reliability and initial quality, the potential
applications of new NDE techniques could be conceivably quite large.

REFERENCES:

AF97-166 TITLE: Metallic Structural Materials for Air Force Systems

Category: Exploratory Development

OBJECTIVE: Develop, characterize, and model metallic structural materials.

DESCRIPTION: New approaches are requested to (a) develop and characterize gamma titanium aluminide intermetallic materials (up to 1800°F); (b) characterize, understand, and model damage initiation and growth in metals used in or proposed for use in turbine engines; and (c) develop continuous filament reinforced Ti-matrix composites with improved mechanical properties. For gamma titanium aluminide intermetallic materials, research is limited to (a) methods for modeling intermetallics which lend insight into chemistry selection and control, as well as microstructural selection and control; (b) methods of synthesizing gamma titanium aluminide to provide chemistry and microstructural control on a submicron scale while maintaining the ability to vary and control the final microstructural scale; and (c) methods for environmental protection of gamma (both monolithic and composites) aimed at providing long life under cyclic oxidation conditions. For damage initiation and growth in turbine engine metallics, proposals must describe new, innovative experimental test techniques and/or analytical modeling approaches for the characterization of life-limiting mechanical properties such as low cycle fatigue (LCF), fatigue crack growth, and creep/fatigue interactions. Special emphasis is placed on damage tolerance and high temperature, often time-dependent, properties, leading to the development of life prediction models. For continuously reinforced Ti-matrix composites, proposals must describe approaches for producing improved mechanical properties (damage tolerance, creep, and environmental resistance are mechanical properties of specific interest) and should focus on methods or concepts for control of interface properties of reinforcement, or control of matrix composition and microstructure.

PHASE I: This program will focus on the critical issues which when solved, will provide proof of concept for developing the materials, approach or methodology.

PHASE II: This program will be structured to develop and refine those feasible concepts to the point where an assessment could be made of the ultimate potential to help meet Air Force advanced materials needs.

POTENTIAL COMMERCIAL MARKET: The developed approach could have broad commercial applicability due to the large number of commercial aircraft and engine systems that have materials requirements of a very similar nature to those faced by the DoD. Various energy conservation applications, e.g., radiant burners, heat exchanger, and power turbines, are also pertinent.

REFERENCES:

AF-153
AF97-167 TITLE: High Temperature Structural Materials for Advanced Air Force Systems

Category: Exploratory Development

OBJECTIVE: Develop and characterize advanced high temperature structural materials.

DESCRIPTION: New approaches are requested to develop and characterize (a) advanced high temperature structural ceramic composites (1800°F to 3500°F, excluding carbon-carbon composites), (b) intermetallic materials and composites (1800°F to 3000°F, excluding nickel aluminides) and (c) model forming processes for advanced structural materials. For ceramic composites, research is limited to continuous ceramic fiber reinforced ceramic matrix systems and may include the following: (a) new, unique ceramic composite development, (b) novel matrices suitable for continuous fiber reinforcement, (c) fiber/matrix interface treatments engineered for toughened behavior and stability, (d) continuous ceramic fiber development, (e) test techniques to determine mechanical and physical behavior (such as failure modes, crack and void growth, oxidation, stress-strain, cyclic stress-strain, etc.) as a function of temperature and loading history, and (f) analytical modeling of composite behavior. For intermetallic materials, research is limited to (a) methods for modeling intermetallics which lend insight into chemistry selection and control, as well as microstructural selection and control, (b) methods of synthesizing intermetallics to provide chemistry and microstructural control on a submicron scale while maintaining the ability to vary and control the final microstructural scale, and (c) methods for environmental protection of intermetallics (both monolithic and composites) aimed at providing long life under cyclic oxidation conditions. For modeling of forming processes, research may include modeling of (a) the unit forming process, (b) the material behavior in response to the demands of the unit process, (c) the interface between the work piece and the die or mold, and (d) novel methods for obtaining physical property data and constitutive equations for insertion in models.

PHASE I: This program will focus on the critical issues which, when successfully addressed, will provide proof of concept. Proposals should demonstrate reasonable expectation that proof of principle can be attained within Phase I.

PHASE II: This program will be structured to develop and refine those feasible concepts to the point where performance is demonstrated on a scale sufficient to permit an assessment of the ultimate application potential to help meet Air Force advanced materials needs.

POTENTIAL COMMERCIAL MARKET: The developed approaches would have broad commercial applicability due to the large number of commercial aircraft and engine systems that have materials requirements of a very similar nature to those faced by the DoD. Various energy conservation applications, e.g., radiant burners, heat exchangers, hot gas filters, and power turbines, are also pertinent.

REFERENCES:

AF97-168 TITLE: Design and Synthesis of New Bichromophore Laser Protective Materials

Category: Exploratory Development

OBJECTIVE: Develop, design and synthesize new bichromophore laser protective materials

DESCRIPTION: The expanded use of lasers in many applications, including range finders and target designators, necessitates the protection of assets from accidental exposure. New linear and nonlinear materials are sought for use in protection schemes for use in the visible to near- infrared spectrum (0.4 to 2 microns). We are interested in new chromophores containing an optimized donor and acceptor, and a linking molecule with energy transfer between them. Indeed, recent recognition of the
importance of advances in absorbing dyes and combinations thereof to address specific requirements and shortfalls, necessitates
the application of predictive tools that address various aspects of advanced design, synthesis and characterization. Such a
predictive capability is provided by an extensive application of computational methods ranging from ab initio quantum mechanical
approaches, also including solvent effects, to semi-empirical techniques, and molecular mechanics/dynamics of large molecular
systems for determining the structure of the linking molecule, and also with necessary modifications to address processability
and solubility. The objective is therefore to apply computational-chemistry/materials science methods to predict structure and
properties of existing and improved absorbing dyes, followed by synthesis and characterization. This objective is intended to
lead to significant advances in bichromophore materials synthesis and processing, thereby permitting crucial changes in the
design of optical systems that prevent damage during accidental or exposure to hostile laser radiation. Companies having both
computational chemistry, dye synthesis and laser characterization expertise are encouraged to apply.

PHASE I: During this phase the proposer will design, synthesize and demonstrate material that has potential for laser
protection.

PHASE II: Design, synthesize and characterize an expanded series of bichromophores based on proof of principle
studies in Phase I.

POTENTIAL COMMERCIAL MARKET: This technology will have broad commercial applications involving lasers and will
provide needed safety devices for worker protection. Materials would be commercialized by manufacturers specializing in laser
protective eyewear.

AF97-169 TITLE: Advanced Liquid-Crystal Materials Development

Category: Exploratory Development

OBJECTIVE: Develop new liquid-crystal materials and processing technology to enhance their performance and utility.

DESCRIPTION: Devices based on liquid-crystal materials are being considered for use in a broad range of active and passive
optical applications. Some examples of devices where liquid crystals are used include displays, electro-optic beam steering, active
spectral filtering and solid-state shutters. The majority of the materials and process development effort internationally has
focused on display applications, however, there are other applications for these materials in which there are distinct materials
and processing technical shortfalls. The objective of this topic is to develop materials and/or processing techniques with
enhanced performance over existing materials or enable liquid-crystal-based devices to be implemented in nonconventional
environments or configurations. Examples of research and development areas appropriate for this topic include the development
of materials or cell configurations with enhanced contrast over that currently available; materials which exhibit a broad nematic
phase temperature range; guest-host dichroic dye technologies with dichroic ratio > 50; functionalized dye-liquid-crystal
molecule development; processing technologies for liquid crystal cells which have curved geometries; high speed (< 1 ms)
nematic liquid crystals which are intrinsic or geometry dependent; and, polymer-liquid-crystal composites. Proposals submitted
to this topic should clearly address the applications where the device technology can be applied; however, the content of the
program should focus on materials and process development - not device demonstrations.

PHASE I: During this phase the offeror will demonstrate the feasibility of the materials or process to satisfactorily
demonstrate a proof of principle and identify those materials/process issues which must be addressed during Phase II of the
program.

PHASE II: Optimize the materials and/or processes to achieve performance or capabilities not currently available.
Design, fabricate and characterize a test article based on the developed materials or process which demonstrates an advanced
in the state-of-the-art in liquid crystal technology.

POTENTIAL COMMERCIAL MARKET: Liquid crystal materials are employed in a wide range of commercial products such
as portable computer displays, solid-state shutters and stereo viewers. Improvements in the materials and processing techniques
will have broad applicability in numerous industries such as the display, entertainment and research product markets.

REFERENCES:
AF97-170 TITLE: **High Temperature Superconducting Thin Films**

Category: Exploratory Development

OBJECTIVE: Develop advanced thin film processes to enable fabrication of HTS devices for electronic, microwave and optoelectronic applications.

DESCRIPTION: Significant progress has been made in the fabrication of high-quality high temperature superconducting (HTC) thin films since the discovery of these materials. However, critical materials and processing issues still need to be solved to fully use these films in a variety of device applications. Examples of issues considered appropriate for this program include the following: (1) thin films which have lower loss, better power handling and lower intermodulation products for advanced microwave devices, (2) improved SNS junctions and arrays of junctions with optimized and more uniform properties, (3) tunable HTS microwave filters, (4) textured buffer layers for growth of high-quality, biaxially-textured HTS films on polycrystalline substrates, and (5) HTS heterostructures for devices. This topic addresses the development of materials and processing techniques which will result in solutions to the above issues and increase the potential for successful application of HTS materials. Proposals should identify the potential application and its importance, identify the materials or processing problems which limit performance, and propose an innovative solution to these problems. Devices may be examined only for evaluating and demonstrating the techniques and materials which have been developed for successful fabrication of the devices.

PHASE I: Phase I will address process development and initial testing to demonstrate proof of concept. Delivery of a representative test sample or samples to the government is encouraged.

PHASE II: Phase II will develop and optimize the process or material to demonstrate the potential application and will plan for Phase III commercialization. Delivery of material samples to the government for testing is encouraged.

POTENTIAL COMMERCIAL MARKET: HTS materials technology has great potential for dual use and commercial applications. For example, HTS microwave filters could be used in wireless communication systems to alleviate growing cellular interference problems and improve frequency utilization. HTS SQUID based systems may find applications in the medical field for measuring magnetic signals from the heart, brain, and other organs. SQUID magnetometers may also be used for nondestructive testing of aging aircraft and other structural systems to find deep cracks and hidden corrosion.

REFERENCES:

AF97-171 TITLE: **Nonlinear Optical Materials**

Category: Exploratory Development

OBJECTIVE: Develop nonlinear optical materials with superior properties as compared to those presently available.

DESCRIPTION: Nonlinear optical (NLO) materials are required for a variety of Air Force applications including electro-optic countermeasures. LIDAR, laser radar, optical signal processing, and optical interconnects. These applications require new laser sources (optical parametric oscillators and harmonic generators) and electrooptic devices (directional couplers, guided-wave interferometers, and optical phase shifters). However, presently available materials are unsatisfactory for many applications due to small nonlinearities, poor optical clarity, difficulty in processing for devices, and other factors. Proposed efforts shall address inorganic or organic materials in bulk or thin-film forms which exhibit large second-order nonlinear effects. Strongest interest is (1) in bulk crystals for frequency conversion to the 2- to 12-micron wavelength range including quasi-phase matched and periodically poled structures and (2) in thin films for guided-wave devices in the 0.7- to 1.5-micron range. Innovative techniques for preparing new materials or for improving the growth or processing of known materials are encouraged. Nonlinear optical devices may be examined only as a minor part of a materials effort to evaluate and demonstrate the properties of the material(s).

PHASE I: The objective is to demonstrate the proposed growth or processing techniques.

PHASE II: The objective is to develop advanced nonlinear materials and relevant processes to demonstrate potential.
POTENTIAL COMMERCIAL MARKET: Materials technology is fundamental to all applications, military and commercial. Examples of commercial applications for NLO bulk crystals are LIDAR for environmental monitoring, medical lasers, and scientific instruments. Examples for NLO thin films are optical switches for cable TV, optical phase shifters for phased array radar, optical interconnects for electronic packages, and switching networks for communications.

REFERENCES:

AF97-172

TITLE: Failure Mechanisms in Avionics Equipment Preventable by Dehumidification

Category: Exploratory Development

OBJECTIVE: Determine what electronic components and materials within avionics assemblies change critical characteristics due to moisture.

DESCRIPTION: Significant design, development and testing work is expended to minimize moisture sensitivity of avionics. However many studies suggest significant improvements in the reliability when host aircraft are dehumidified. Most of the data sets collected have been simple summations of maintenance actions for one or more dehumidified, and a like number of very similar, non-dehumidified aircraft. Little or no data has been gathered which identifies the actual causes of degradation and failures dehumidification appears to prevent or reverse. The dehumidification studies have been performed on avionics built using traditional requirements/parts. These suggest dehumidification can apparently effect a 20% reliability improvement (indicating substantial moisture sensitivity), in assemblies using conformally coated hermetic parts. As mentioned, little of no information is available to explain the root causes of moisture sensitivity in older systems or those of more recent design. An additional complication is the trend away from traditional military hermetic parts. These parts are being replaced with technology families often more sensitive to moisture and other environmental stresses. A prime example is integrated circuits (ICs). Military standard ICs were required to be packaged in hermetic metal, glass, or ceramic. Many assemblies now in development include "commercial grade" plastic encapsulated integrated circuits. These have a well documented history of moisture sensitivity. Other examples are plastic encapsulated discrete semiconductors, non-hermetic capacitors, various resistors types, connectors, wiring, and printed wiring boards. When more moisture sensitive technologies are used, even more sensitivity assemblies can be expected. Physics-of-failure data is necessary to optimize dehumidification profiles (temperature, relative humidity, duration, etc.) to stop or reverse each mechanism by device type, or material. These then provide the basis for optimized profiles at system through aircraft levels.

PHASE I: Identification of the most inherently moisture sensitive components and assemblies. Proposals shall include information relevant to understanding the physics-of-failure mechanisms, rates of parametric and material property changes, and contributing factors for the part/material technologies (in rank order from most sensitive) commonly used in fielded assemblies and in common use for new design. While not recognized as sensitive at the piece-part level, these may become sensitive when exposed to manufacturing, use, and logistic support operations and storage conditions. Mechanisms shall be categorized as either reversible or non-reversible by dehumidification. Laboratory and engineering characterization tests shall be performed as necessary.

PHASE II: Develop models which accurately identify assemblies sensitive to moisture related failure mechanisms (both intermittent and 'hard' failures) under system operating conditions. The models shall identify moisture sensitive circuit locations based upon components/materials present in the assembly. For each sensitive component or material, a list of contributing factors, such as duration of exposure and onset thresholds, relative humidity, rate of parametric and material properties changes, and acceleration factors shall be provided. In addition, dehumidification process parameters (relative humidity, duration, etc.) necessary to stop or reverse parametric or materials changes shall be established for each sensitive technology family. The cost

AF-157
and mission consequences of moisture sensitive avionics assemblies shall be modeled based upon the presence of moisture sensitive technologies (identified in Phase I) on selected USAF aircraft. These models and analytic tools shall provide the capability to minimize moisture sensitivity of new assembly designs and to aid in locating and identifying root causes of moisture related failures (by circuit location) in aging aircraft avionics systems.

POTENTIAL COMMERCIAL MARKET: Both military and commercial designers benefit from identification of moisture sensitive technologies and the associated contributing and accelerating factors. This will improve first pass success in the design of moisture proof products, reducing development time and increasing customer satisfaction. This SBIR identifies opportunities for innovations in, and development and marketing of, less moisture sensitive parts and materials for use in both military and commercial products. With a knowledge of the sources of moisture sensitivity, an estimate of the maintenance burden attributable to moisture related mechanisms can be performed. This supports cost benefit analysis required by system owner/operators in making decisions about the use of dehumidification or other alternatives. These capabilities also enable the acquisition community to choose among design alternatives to minimize moisture sensitivity of new assemblies. Operator benefits include identification of opportunities for reduced maintenance burden achievable by "desensitizing" aging equipment.

REFERENCES:

AF97-173 TITLE: Environmentally Benign Aircraft Deicing/Anti-icing Technology

Category: Exploratory Development

OBJECTIVE: Develop an environmentally benign aircraft deicing/anti-icing agent.

DESCRIPTION: The use of glycols as aircraft deicers has come under scrutiny due to the Clean Water Act. Ethylene glycol is toxic and is no longer purchased by the Air Force for the purpose of deicing, while propylene glycol based deicers have a significant adverse environmental impact in surface and ground water from airfield runoff due to the high biological oxygen demand (BOD) of glycol degradation. Alternative materials are being sought to replace glycol-based aircraft deicers. The USAF is seeking to develop an environmentally benign deicing/anti-icing agent that eliminates or significantly reduces the BOD of airfield runoff, is nontoxic, noncorrosive to aircraft components, and cost-effective. Life Cycle Cost Assessment shall be included in each phase. This assessment will represent the systematic process in the life cycle by identifying environmental consequences and assigning monetary value.

PHASE I: Phase I research should require the development and testing of an alternative deicing material that demonstrates acceptable deicing/anti-icing performance (using SAW AMS 1424 and/or 1428 as a performance guideline), is noncorrosive to common aerospace materials, nontoxic, and environmentally acceptable. Included with this phase will be life cycle analysis for the alternatives. The approach to selection will be a rational design that includes computational prediction of properties i.e. toxicity and partition coefficient, understanding of icing mechanism as well as syntheses and testing of candidate materials.

PHASE II: Phase II should include the identification of a few candidates, further testing and development to support the performance and environmental acceptability of the deicing/anti-icing agent(s), as well as the fabrication and demonstration of a prototype delivery system to apply the material(s) developed for the purpose of deicing an aircraft. Included with this phase will be life cycle analysis of alternate agent(s), processes, system, or facility.

POTENTIAL COMMERCIAL MARKET: The proposed deicing technology would have broad applications in the civil aviation community as well as potential for cross-over into runway and roadway deicing applications.

REFERENCES:
1. Society of Automotive Engineers (SAE) Publications: Aerospace Material Specification (AMS) 1424 - "Aircraft Deicing/Anti-icing Fluid, Newtonian - SAE Type I".
2. AMS 1428 - "Aircraft Deicing/Anti-icing Fluid, Pseudo-Plastic, Non-Newtonian - SAE Type II".
3. Aerospace Recommended Practice (ARP) 4737 - "Aircraft Deicing Methods for Large Transport Aircraft"
AF97-174 TITLE: Aero Propulsion and Power Technology

Category: Exploratory Development

OBJECTIVE: Develop innovative approaches for turbine engines, advanced high speed propulsion systems, and electrical concepts.

DESCRIPTION: The Aero Propulsion and Power Directorate aggressively pursues major performance advances in all components of gas turbine engines under the Integrated High Performance Turbine Engine Technology (IHTET) initiative. Technologies derived under this initiative have resulted in higher thrust-to-weight ratios and improved efficiencies. The focus of this topic is to consider those aspects in the design of gas turbine engines that impact affordability and robustness without compromising the performance advances required. Dual-mode ramjets and engine concepts using storable hydrocarbon fuels for sustained high speed flight are being developed. The emphasis is on supportable and affordable sustained high speed flight for military and commercial applications. The More Electric Aircraft initiative is focused on reducing the cost of force projection by doubling power system reliability and reducing dependence on aircraft ground support equipment. New analysis techniques, innovative designs and concepts for gas turbine engines, fuel and lubrication systems, high speed propulsion technology, and aircraft electrical power concepts are solicited.

PHASE I: Explore the feasibility of a new concept or concepts, through analysis and/or small scale testing to demonstrate the merits of the concept.

PHASE II: Provide detailed analytical derivations and prototypical device or hardware demonstrations.

POTENTIAL COMMERCIAL MARKET: The higher performance gas turbine engines and associated technologies will lead to more efficient, durable, and affordable commercial air breathing systems. Concepts developed under this program are suitable for integration into new engines for commercial use.

AF97-175 TITLE: Power Generation and Thermal Management

Category: Exploratory Development

OBJECTIVE: Develop techniques, devices and components for aerospace power generation and thermal management/control.

DESCRIPTION: Electrical machines are needed that operate at high speeds (30-70 krpm), while transmitting power up to 300 kW. A machine running at higher speed can usually attain a higher power density and lower weight. However, a high power density motor or generator poses difficult technical challenges generally associated with the generation of high heat loads from magnetic and electrical losses and windage. Proposals are solicited which offer ways to either reduce these heat loads, or to ameliorate their effects. Examples of areas of interest include, but are not limited to high temperature windings and potting materials (>400 degrees C, 600 degrees C goal) for switched reluctance machines (SRMs), high temperature bearings for lubeless APU applications, fault tolerant winding configurations for permanent magnet (PM) generators, and high temperature PM materials with high performance. Other areas of interest are self-excitation for switched reluctance generators, hybrid bearings, touchdown (backup) bearings, and windage reduction.

Innovative thermal management concepts are also sought in the area of high temperature electronics and actuator cooling. An emerging family of silicon Carbide (SiC), Silicon Nitride (SiN), and Gallium Arsenide (GaAs) power electronics will operate at junction temperatures >200 degrees C in the near term and >600 degrees C far term. Even though the efficiencies of these devices will be much greater than conventional silicon devices, the power densities will be 4 to 8 times higher. Therefore, even greater power dissipation levels and waste heat fluxes must be dealt with. Passive thermal management concepts for high performance aircraft have the potential for being reliable and simplistic in design, and are therefore preferred. However, such concepts must deal with the inherent coupling of transient heat generation and transient acceleration-induced forces, and their effects on the cooling performance of the device. For example, as a direct result of aircraft orientation, altitude, and speed, efficient cooling of flight actuation components results in addressing a transient heat generation problem which is coupled to transient accelerations and transient external boundary conditions. When active cooling is proposed, existing aircraft fluids such as JP-8, polyalphaolefin, 7808, or 5606 must be used, unless that cooling system is conceived as a line replaceable unit (LRU) or is modular. Reduction of initial cost, maintenance, and logistics should be a key objective for all efforts. The effects of altitude or the impact of the use of compressor bleed air must be addressed when air cooling is proposed. Areas of interest include but are not limited to, microchannel cooling, immersion cooling, heat exchangers with enhanced heat transfer surfaces, and the use of micro electro-mechanical systems (MEMS) to control and enhance interfacial heat transfer.
PHASE I: Develop a detailed technical definition of the problem, identify a proposed solution, and demonstrate the key technologies enabling the use of that solution.

PHASE II: Concentrate on development of prototype components, subsystem demonstrations, and hardware development.

POTENTIAL COMMERCIAL MARKET: These technologies have application for all high speed motors, generators, actuators, and power electronics which may be used in future high power density electric/hybrid transportation vehicles (commercial air, high-speed rail, and electric car), power generation, and manufacturing facilities.

REFERENCES:

AF97-176 TITLE: Advanced Capacitors for Power Electronic Systems

Category: Exploratory Development

OBJECTIVE: Develop innovative wide temperature range (-55 to >300 degrees C), high reliability, dielectric materials and capacitors.

DESCRIPTION: Power electronics systems will be a pervasive technology in the next generation weapon systems. Typical power electronic systems include motor drives, inverter/converter for switched reluctance starter/generator systems, DC to AC inverters, and DC to DC converters. Common to all of these systems are capacitors, which are numerous and are critical in the operation of the system. Today’s capacitors are the weakest link in power electronic system reliability and are limited in temperature capability to 125 degrees C. Application temperatures range from -55 to 200 degrees C and some applications may require >300 degree C operation with superior electrical performance. Candidate proposals shall address novel and innovative dielectric and/or high density packaging and/or manufacturing technologies to reduce cost. Specific uses include DC and AC power filtering, energy storage, and small signal applications for controls.

PHASE I: Demonstrate innovative capacitor approaches with substantial improvements in capacity, dielectric constant, voltage breakdown strength, dissipation factor, and temperature capabilities. Also, demonstrate advanced packaging and manufacturing technologies. Prototype laboratory capacitors should be fabricated and tested to demonstrate the feasibility of the technology.

PHASE II: Demonstrate development of a large-scale prototype capacitor components using innovative dielectric material or advanced high density packaging or manufacturing technology or a combination thereof. Actual application testing should be performed and electrical, thermal and life assessments made.

POTENTIAL COMMERCIAL MARKET: Capacitors are used in nearly every commercial and military system that consumes electrical power. Potential applications include all consumer electronics, medical electronics including defibrillators, automotive electronics including vehicle electronics, and electric utilities. High temperature applications include aircraft engine ignition systems and electrical actuation, deep oil well instrumentation, and under the hood automotive applications.

REFERENCES:

AF-160
AF97-177 TITLE: Advanced Battery Development

Category: Exploratory Development

OBJECTIVE: Develop novel battery technology which demonstrates improvements over state-of-the-art performance.

DESCRIPTION: The Air Force has a need for high energy density, primary and secondary battery technology which can operate safely over a broad range of environmental conditions (temperature, shock, vibration, etc.) in cell sizes from 1 to 100 amp-hours. Battery designs capable of providing lightweight energy storage at voltages as high as 270 volts for aircraft use are of particular interest. The proposed technology shall include parametric studies of high rate discharge, rapid recharge, cycle life, float or overcharge behavior, safety and environmental.

PHASE I: Demonstrate advancement in the performance criteria cited in the description above.

PHASE II: Demonstrate the technology advancements in cells which are of a design that can be transitioned to a manufacturing capability at the contractor’s facility or to a Phase III sponsor.

POTENTIAL COMMERCIAL MARKET: The dual use aspects of high energy density batteries finds application in a wide variety of consumer products. Batteries capable of powering items such as electric vehicles, power tools, laptops and cellular phones will benefit from advances in technology developed under this initiative.

REFERENCES:
1. A comprehensive overview of state-of-the-art battery technology can be found in "Handbook of Batteries, Second Edition," David Linden, Editor, 1995

AF97-178 TITLE: Special Purpose Power and Power Components

Category: Advanced Development

OBJECTIVE: Develop efficient, high performance electric power systems, or components for airborne or ground applications.

DESCRIPTION: This solicitation seeks innovative proposals that address two basic power issues: power switching concepts based on wide bandgap semiconductor (WBG) devices, and power generation concepts based on advanced conversion technologies. These two areas address applications for the More Electric Aircraft program, solar-powered unmanned aerial vehicles (UAVs), power systems for ground support of UAV systems, air combat training and remote sensor sites.

The More Electric Aircraft program demands high-temperature (350 degrees C) and high-power electronics for use in power management and distribution, actuator motor control, on-site "smart" sensors, and data bus electronics. WBG semiconductor materials are projected to be excellent semiconductors for high power, high frequency and high temperature applications due to their high critical breakdown field, high saturation drift velocity, and high thermal conductivity. An objective of this solicitation is to seek proposals that offer solutions to critical issues related to WBG semiconductors, including, but not limited to (1) both deposited and natural dielectric insulators, (2) deposition and characterization of ohmic contacts, (3) cleaning techniques for WBG semiconductors, (4) ion implantation, doping, for WBG materials including diamond, and (5) concepts for WBG device topographies. Just as the evolution of silicon power semiconductor devices led to the development of advanced power concepts such as "smart" power and "optically-triggered" power, the evolution of WBG-based power semiconductor devices is expected to include implementation of these technologies, as well. This solicitation also seeks proposals containing innovative concepts that integrate such advanced technologies with the WBG-based devices.

There has been increased emphasis within DoD regarding commitment to the use of UAVs. PV-powered UAVs offer a number of unique military operational advantages; they exhibit virtually nonexistent thermal signatures, their use of lightweight (nonmetallic) materials make them virtually radar transparent, their reliance on a noncombustible propulsion system enables operation at extremely high altitudes (60,000-100,000 ft), and their use of unlimited solar power together with energy storage enables very long duration missions. Such UAVs will require lightweight, high-power density PV arrays mounted on the aircraft wings to provide daylight power for electric-propulsion and charging of batteries for nocturnal propulsion. Power- and mass-density of photovoltaic (PV) cells play an important role in enabling electrically-powered UAVs for a variety of military and civilian missions. Proposals are sought containing high performance PV cell concepts that approach or exceed performance parameters of 18% conversion efficiency, 0.04 lbs/ft², 1300 watts/kg.

Small, highly efficient power systems support a number of issues important to Air Force operations: the higher efficiency reduces the problem of fuel resupply in the field, improves mobility, reduces logistics costs for remote sites, and
addresses environmental issues associated with operation of inefficient power systems in environmentally sensitive regions. Proposals submitted against this need should offer innovative concepts to transition advanced conversion technologies to use in mobile, and/or unattended power systems. Proposals may address an innovative solution to a subsystem (combustor, power conditioning, conversion system, etc) problem or a complete generator system. Desired features include a system efficiency greater than 10%; i.e. 4-5 times present thermolectric generator systems; output power of 5 to 200 watts; operating temperature environment +100 degrees F to 135 degrees F; multifuel combustor using JP-4, propane, etc.

PHASE I: Demonstrate feasibility of the proposed system or component. Sufficient progress must be accomplished to make a low risk go/no go decision for a phase II contract. Proof-of-principle experiments are desirable.

PHASE II: Result in an operable prototypic component or system that is completely suitable for the intended application. A complete, standalone system is desirable; however, proposals that address only innovative improvements to existing component technologies such as highly efficient combustors, energy conversion devices, smart switching devices, improved high temperature switches are also welcome.

POTENTIAL COMMERCIAL MARKET: The benefits of smart power include improvements in device protection and power dissipation, and knowledge of device status by the controlling microprocessor. For small-scale electric power systems, present commercial and government systems are based on old conversion technology that is 3-5% efficient. Improving overall performance by implementing advanced conversion technologies dramatically reduces overall cost of operations. Some commercial uses of these power systems include air and marine navigation stations, gas metering stations, weather monitoring stations, off-shore platforms, communication relay stations, cathodic protection, and oil exploration. In addition to commercial applications, DoD uses for these types of power systems also include air training range communications, training range data relay stations, seismic observatories, remote monitoring stations, and intelligence gathering stations.

REFERENCES:

AF97-179 TITLE: Advanced Power Technology Concepts

Category: Exploratory Development

OBJECTIVE: Develop advanced power technology concepts in superconductivity, aircraft high voltage, and electromagnetic effects.

DESCRIPTION: Conduct exploratory development of advanced power technology concepts including superconductivity approaches, high voltage aircraft technologies, and electromagnetic effects solutions. Superconductivity approaches are to select and demonstrate superconducting materials and fabrication processes which offer the potential of superconductor operating capability at liquid nitrogen temperature, in magnetic fields greater than three tesla, and at current densities greater than 100,000 amps per square centimeter. High voltage aircraft technologies include innovative approaches for insulation system design, high electric field dielectrics and insulation aging characterization related to dedicated aircraft high voltage and high power systems. Electromagnetic effects solutions include the assessment of the survivability/vulnerability of More Electric Aircraft (MEA) circuits to both manmade and natural electromagnetic threats.

PHASE I: Tests of at least short samples of superconductors demonstrating the capabilities stated above. Characterization of dielectric needs and aging-related requirements for dedicated aircraft high voltage and high power components. Assess and select most applicable available computer codes which address electromagnetic effects on MEA circuits.

PHASE II: Demonstrate long lengths of superconductors for use in coils, generators, and motors and assess the use of cryocoolers for airborne applications. Develop electrical insulation design criteria and aging-mitigation techniques for dedicated aircraft high voltage and high power systems. Produce a computer code which specifically addresses electromagnetic effects on MEA type aircraft.

POTENTIAL COMMERCIAL MARKET: High temperature superconductors will be used in commercial energy storage
applications to manage peak power in utility grids, ground power generators, and electric motors. High voltage insulation technologies are used in both commercial aircraft power systems and utility ground power components. Electromagnetic survivability/vulnerability information is directly related to commercial aircraft.

REFERENCES:

AF97-180 TITLE: High Mach, Advanced Air-Breathing, Storable-Fueled Engine Technology
Category: Exploratory Development

OBJECTIVE: Develop key technologies for advanced cycle engines operating from Mach 0 to 8.

DESCRIPTION: Engines of interest in the Mach 0 to 8 flight regime include combined cycle systems (such as turboramjets (TurboRJ) and air-turborockets (ATR)), pulse detonation engines (PDE) and other advanced concepts. The turbomachinery aspects of cycles such as the TurboRJs and ATR, while flexible, efficient and of great importance in the Mach 0 to 4 range, are not of interest under this topic. Technologies pertinent to the simplicity, low weight, low cost, and high specific impulse of the ramjet in the Mach 3 to 6 flight range and the scramjet from Mach 6 to 8 are of great interest. The PDE, another cycle of interest, combines the simplicity and efficiency of detonation wave combustion with the capability of air breathing at flight speeds of Mach 0 to 4 and ramjet or rocket operation above Mach 4. Technologies of interest directly involve the air, fuel, and/or combustion flow path, and use noncryogenic fuel. These include total engine concepts, the air intake systems; exit nozzles; solutions to reduce drag and total pressure losses; innovative fuel ignition, piloting and flameholding methods; solutions to reduce the length, weight, and/or cost of the inlet, combustor and nozzle and components; ramjumbo structures and materials, endothermic fuel reactor/engine issues; ramjumbo cooling techniques. Proof-of-concept testing is preferred, but analytical investigations will be considered at the Phase I level.

PHASE I: Identify novel concepts and quantify their payoff when integrated into the selected high Mach propulsion system, and to conduct small-scale experiments to demonstrate concept feasibility. If a strictly analytical approach is proposed, sufficient analysis must be performed to demonstrate a high degree of concept feasibility and a plan for experimental direction in Phase II must be shown.

PHASE II: Large scale development and testing which would include identification of appropriate facilities, and pertinent capabilities.

POTENTIAL COMMERCIAL MARKET: High Mach, advanced airbreathing, storable-fueled engines have potential application to a multitude of vehicles which require efficient acceleration and cruise capabilities. Military application might include long-range, high speed aircraft for reconnaissance and strike missions, stand-off missiles, and drones. Commercial applications might include high-speed civil transport or passenger aircraft. Dual use applications include military/commercial space launch vehicles which require an airbreathing propulsion system for the initial atmospheric boost phase. The PEGASUS launch vehicle and similar systems could benefit from the use of airbreathing boost propulsion.

REFERENCES:

AF97-181 TITLE: Accelerated Convergence Rate for Numerical Analysis of Predominantly Supersonic Flows
Category: Exploratory Development

OBJECTIVE: Develop improved algorithms to accelerate the convergence rate of a numerical code for predominantly supersonic flows.

DESCRIPTION: The available computational fluid dynamic (CFD) codes require enormous amounts of computer processing unit (CPU) time to solve steady-state flow problems. Most CFD codes are designed to solve the Navier Stokes equations in a time-marching fashion. This is a reliable technique, but it can be quite expensive in terms of CPU time, especially when one
is interested only in the steady-state solution. Added complexity arises due to the present reacting flows at high speeds.

Further development of unfactored implicit relaxation techniques hold the promise for accelerating the convergence of time-asymptotic calculations. Also, alternate equation sets such as the Reduced Navier-Stokes procedure could be aggressively researched either as an alternate solution procedure or to provide an improved initial condition for a traditional time-marching procedure. Other novel ideas for faster relaxation schemes are also applicable.

Development of a new solution technique presents challenges such as accuracy, stability, and optimization. The developer must ensure that the new technique adequately represents the flow physics. It is also necessary for the new technique to be robust, such that it is stable as it approaches the steady-state solution. The techniques must also be optimized to provide the largest possible savings in CPU time.

PHASE I: A scheme to accelerate the convergence for time-asymptotic solutions will be developed and implemented into a CFD code with multi-block or hybrid grid capabilities. The validity of the concept will be demonstrated and the scheme will be tested for model problems involving streamwise reversed flows, strong streamwise upstream influence, and supersonic and subsonic flow. Results will be compared to a traditional time-marching solution in terms of accuracy and CPU time.

PHASE II: Extend the acceleration scheme for chemically-reacting flows, including hydrocarbon chemistry.

POTENTIAL COMMERCIAL MARKET: The CFD tool developed will have many applications in industry. The tool is expected to have uses in automotive and other industrial applications, in addition to the military and commercial aircraft industry.

REFERENCES:

AF97-182 TITLE: Advanced Instrumentation for Ramjet/Scramjet Combustors

Category: Exploratory Development

OBJECTIVE: Develop advanced high resolution, high frequency instrumentation for use in subsonic and supersonic combusting flows.

DESCRIPTION: Obtaining accurate measurements of various flow parameters in a combusting flowfield without disturbing the flow is a difficult task. Various optical "flow" diagnostics techniques are currently under development with the eventual goal of being used in the harsh environments of direct connect and free jet facilities. The need still exists for the development of new techniques and/or refinement of the currently available techniques to allow accurate point or field measurements of velocity, temperature, density, fuel concentration, and the constituent of the exhaust effluence in hydrocarbon and hydrogen fueled ramjet and scramjet propulsion systems. Time resolved and time averaged measurements are required to allow validation of analytical/computational codes.

New robust miniature instrumentation is required to assess the performance potential of subsonic and supersonic ramjet combustors and various flow path components in free jet and direct connect facilities. In particular, the development of micro-scale high frequency sensors for measurements of wall pressure, temperature, skin friction and heat flux capable of surviving high enthalpy (up to Mach 8) flight conditions is desirable. Single- and multi-element addressable micro-opto-mechanical sensors are required for engine health monitoring and flow control. These sensors shall require minimal pre- and post-test calibration.

PHASE I: Develop and refine the measurement technique and/or the instrumentation concept to allow proof-of-concept demonstration in representative subsonic and supersonic research flows with and without chemical reaction and heat release.

PHASE II: Develop the instrumentation and the associated measurement technique to a point where it could be employed and used in realistic combustor temperature and pressure environment of direct connect and free jet facilities.

POTENTIAL COMMERCIAL MARKET: Potential for dual use is great. Similar if not identical instrumentation and measurement techniques are required in automotive, ground power generation, and incineration, and the aerospace industries. Commercial success is however, dependent on sensor/instrument durability, practicality, accuracy, and cost. The intensive technology requirements and the relatively long system development time period forces the small businesses to look to the
government agencies and the national laboratories for partnership and investment. There is, however, a great market in the US and abroad for commercialization of micro sensors and optical instruments.

REFERENCES:

AF97-188 TITLE: Novel Sources of Electromagnetic Radiation for Advanced Combustion Diagnostics

Category: Exploratory Development

OBJECTIVE: Develop and demonstrate electromagnetic radiation sources tailored for measuring key combustion parameters.

DESCRIPTION: A principal driving force in the continuing development of advanced gas-turbine combustors is the reduction of environmentally hazardous emissions. Emerging gas-turbine design methodologies increasingly seek to achieve this low-emissions goal through the use of computational fluid dynamics and chemistry (CFDC) codes. The successful performance of these codes is predicated upon experimental validation through measurement of key combustion parameters. Advanced, noninvasive, laser-based diagnostics represent an ideal approach to achieving this validation. Unfortunately, the characteristics of existing laser sources often limit the application of these powerful diagnostics techniques. This topic seeks the development and demonstration of novel electromagnetic radiation sources with unique performance advantages over existing sources. Advantages might include, but are not limited to, extended spectral coverage, tailored bandwidth, increased power, decreased noise, and enhanced temporal characteristics.

PHASE I: Demonstrate experimentally the potential for a proposed source to provide improved measurement of key combustion parameters compared to existing state-of-the-art sources. Modeling and other computational support of the concept is advantageous but not sufficient for a Phase I effort. Simply proposing a novel source of electromagnetic radiation is also insufficient; the potential advantages the proposed source brings to combustion diagnostics applications must be thoroughly explored.

PHASE II: Provide complete demonstration and documentation of the performance gains associated with the novel source of electromagnetic radiation. Ideally, this demonstration would be achieved in conjunction with a combustion application of interest to the Air Force.

POTENTIAL COMMERCIAL MARKET: The gas-turbine design methodologies validated through the use of advanced, laser-based diagnostics designed around these novel sources will have tremendous impact on the future of both military and commercial aviation, particularly as these techniques contribute to the reduction of emissions. The sources themselves have tremendous dual use commercialization potential as well. The market for this equipment includes many university, government, and industrial researchers who require tailored sources to make measurements under extreme conditions.

REFERENCES:

AF97-184 TITLE: Self Contained Dampers for Gas Turbine Engines

Category: Exploratory Development

OBJECTIVE: Develop a self contained damper for use in an expendable gas turbine engine.

DESCRIPTION: Self contained dampers are required to replace conventional liquid squeeze film dampers in future expendable
gas turbine engines. In addition to the properties normally associated with a damper, the dampers developed under this effort should demonstrate the following properties: temperature capability to 1500 degrees F, low cost, low volume, and low weight. The Phase I effort shall produce a system design in coordination with a gas turbine engine manufacturer participating in the Joint Expendable Turbine Engine Concept (JETEC) program. As a minimum, the design shall include analytical predictions of stiffness, damping coefficient, critical speed, and unbalance response applied to a JETEC rotor. The Phase II effort shall result in the fabrication and testing of hardware sized for a JETEC demonstrator engine. The hardware shall be tested at conditions projected for a JETEC demonstrator engine.

PHASE I: Design a self-contained damper system for application in future expendable gas turbine engines.

PHASE II: Successfully demonstrate a self-contained damper system at operating conditions projected for future expendable gas turbine engines.

POTENTIAL COMMERCIAL MARKET: This technology has application in any system where rotor damping is desired without the use of liquid squeeze film dampers. Specific applications where this may be desirable include automobile turbochargers, high speed electric motors, and dental drills.

REFERENCES:

AF97-185 TITLE: Thermally Stable Jet Fuels, Additives, and Test Methods

Category: Exploratory Development

OBJECTIVE: Develop high heat sink thermally stable jet fuels, additives, improved test methods and improved fuel system components.

DESCRIPTION: Jet fuel is used to cool many aircraft and engine subsystems on current and future aircraft. Subjecting the fuel to high temperatures for long periods of time causes the fuel to degrade and form gums, varnishes and coke that can plug engine fuel nozzles, afterburner sprayrings/spraybars, fuel manifolds and fuel controls. Fuel additives can be used to improve many characteristics of the fuel. For example additives can reduce fuel degradation, prohibit the formation of frozen water particles, improve lubricity, reduce static discharge and improve low temperature flow properties. Advanced engines require fuels that will be used at supercritical conditions or that will undergo endothermic reactions to provide cooling to various engine components. The objective of this topic is to solicit technologies that improve fuel characteristics (i.e. increase thermal stability, improve low temperature flow behavior, inhibit free water from freezing etc.), to improve the design of aircraft and engine fuel system components, and reduce fuel system maintenance. Also of interest are new fuel additives, test methods (both laboratory and field), advanced models and computational chemistry techniques to predict fuel properties and the environmental aspects of fuel, fundamental methods to study fuel freezing, water in fuel freezing, fuel thermal degradation (both autooxidation and pyrolysis), fundamental aspects of the supercritical behavior of fuels, and technologies related to the use of endothermic fuels. Technologies submitted under this topic can be for conventional fuels (i.e. J-8, JP-8+100, JP-5, Jet A or Jet A-1), supercritical fuels (JP-900) or endothermic fuels.

PHASE I: Demonstrate the feasibility of the technology and quantify the payoffs for both military and commercial applications.

PHASE II: Demonstrate the application of the technology, demonstrate a prototype of the technology, validate performance, and quantify payoffs for both military and commercial applications.

POTENTIAL COMMERCIAL MARKET: All technologies developed under this topic have both military and commercial jet fuel applications due to the similarities of the jet fuels (i.e. JP-8 is commercial Jet A-1 fuel with a military additive package).

REFERENCES:
AF97-186 TITLE: Advanced Techniques for Ultra Trace Analysis of Aviation Fuel

Category: Exploratory Development

OBJECTIVE: Develop and demonstrate techniques for quantitating ultra-trace-level contaminants in aviation fuel.

DESCRIPTION: Many aircraft performance improvements are accompanied by substantial heat loads that lead to increased thermal stress on the fuel—the primary coolant for on-board heat sources. The result is increasingly complex thermal management, which affects aircraft design and maintenance requirements. Continuing Air Force research has revealed the critical role that trace quantities of contaminants can play in the chemistry that limits fuel thermal stability. Unfortunately, reliable techniques for quantitating the concentration of ultra-trace-level contaminants in aviation fuel are largely unavailable. The plethora of compounds present in typical aviation fuels complicates efforts to make these important measurements. This topic seeks the development and demonstration of new analytical techniques for quantitating key contaminants, such as water, Cu, Fe, Cn, Pb, S, N, and P, in the problematic fuel matrix. Requirements of a successful technique include extreme sensitivity and selectivity. The measurements achieved through proposed methodologies will drive the continued development of chemical kinetics models essential to designing next-generation aviation fuels.

PHASE I: Demonstrate experimentally the potential for a proposed technique to provide improved measurement of ultra-trace-level contaminants compared to exiting state-of-the-art methodologies.

PHASE II: Provide complete demonstration and documentation of the performance gains associated with the proposed technique. Ideally, this demonstration would be achieved in conjunction with a fuel application of interest to the Air Force.

POTENTIAL COMMERCIAL MARKET: Successful commercialization of the proposed techniques will accelerate the development of advanced fuels and yield benefits in terms of increased performance and reduced environmental impact for both military and commercial aviation. The quantitation methodologies have tremendous dual use commercialization potential as well. Ultra-trace-level quantitation is central to research and development underway in many university, government, and industrial facilities. Applications span a vast array of disciplines including materials and biomedical research.

REFERENCES:

AF97-187 TITLE: Aircraft Turbine Component Technology - Aerodynamics and Cooling

Category: Exploratory Development

OBJECTIVE: Develop concepts for improving aerodynamic performance and reducing cooling flow requirements of turbine components.

DESCRIPTION: Proposals should address the development of aircraft engine turbine component technologies in the area of aerodynamics and heat transfer. A major trend in turbine components for aircraft engines is increased loading, increased turbine inlet temperature and reduced cooling air. New design concepts, analysis techniques, experimental test methods and high temperature instrumentation development are needed to further the technology in these areas. Proposals should focus on an effort that contributes to meeting the goals of the Integrated High Performance Turbine Engine Technology (IHTET) program.

PHASE I: Explore the feasibility of a new concept or concepts, through analysis or small scale testing, to demonstrate the potential merits of the concept.

PHASE II: Provide detailed analytical derivations, prototype and/or hardware.

POTENTIAL COMMERCIAL MARKET: Higher performance turbine engines and associated technologies will lead to more efficient, quieter and environmentally acceptable propulsion systems. Turbine technology improvements play a major role in military applications and there is great potential to transition to commercial use.
REFERENCES:

AF97-188 TITLE: Compression System Design Methodology

Category: Exploratory Development

OBJECTIVE: Develop concepts or software to advance aerodynamic and mechanical technology of compression systems and secondary gas path systems.

DESCRIPTION: A major trend in compression system hardware is the increased utilization of highly loaded, low aspect ratio, complex shape airfoils in multistage configurations. Increased loading produces larger blade wakes resulting in significant unsteady aerodynamic and aeromechanical interactions between stages. In addition, increased loading has produced stall margin and efficiency sensitivity to blade tip clearance levels. Airfoils shapes tailored to meet specific loading, efficiency, and operability goals produce significant mechanical design challenges. Aerodynamic and aeromechanical design capability does not fully account for the unsteady interactions, the effects of complex airfoil shapes, or the sensitivity to tip clearances that exist in compression systems. Developments that improve the understanding of these phenomena, such as advanced measurement methods and new design models, are desired. Innovative concepts that exploit an understanding of these phenomena are also desired. Areas of particular technical importance include endwall and secondary flows, time unsteadiness, forced response and mistuning, and innovative diagnostic instrumentation.

Obtaining precise secondary gas path flow control will play an increasingly larger role in optimizing engine efficiency, as further gains in the major engine components become more difficult to achieve. Understanding primary and secondary gas path interactions can be critical to the performance of both. Reducing parasitic leakage and seal deterioration, while minimizing air needed for cooling, ventilation, and thrust balancing, is a significant challenge as the secondary gas path environment becomes more extreme. Innovative concepts and models leading towards precise secondary gas path flow control are desired. Areas of particular interest include film sliding seals, trenching and shrouds, innovative thrust balancing, counter rotation, and disk pumping.

PHASE I: Demonstrations of concepts or software for the development of advanced compression system or secondary flow system design.

PHASE II: Bench tested technology concepts or software for advanced compression system or secondary flow system design, adequately documented to be acceptable to the technical community.

POTENTIAL COMMERCIAL MARKET: The improvements gained in compression and secondary gas path system performance and efficiency are directly applicable to both military and commercial gas turbine engines.

REFERENCES:

AF-168
AF97-189 TITLE: Real-Time Ontogenetic Engine Health Monitoring (EHM) of Gas Turbine Engines

Category: Advanced Development

OBJECTIVE: Develop a real time ontogenetic (RTO) EHM system and demonstrate its capabilities using real or simulated engine sensed or derived data.

DESCRIPTION: The ability to trend an engine's performance has been possible ever since James Watt fired up his first steam engine; however, the development of the ability to monitor and predict an engines life, health and performance has not kept in step with technological advances. The introduction of digital engine control management and the use of electrical data buses enables us to obtain considerable sensed data while the engine is running; however, we have never capitalized on this and have only managed historical trending of vibration, temperature and rotational speeds. By using neural networks, NASA has produced a credible real time engine health monitoring system for their reusable rocket engines. With major advances in computer science and production control technologies, we can now realize a true EHM system that will trend the performance, life consumption and health in real time. The introduction of an ontogenetic EHM system will considerably reduce engine life cycle costs and enhance operational capabilities.

PHASE I: Develop an ontogenetic EHM system that can provide real-time monitoring of creep and fatigue life, component condition and life consumption, engine performance and engine health based on actual or simulated engine sensed or derived data. The system will accept performance algorithms and historical information to produce its own expert system; it will then show the capability to monitor, trend, predict and inform the required monitors, while developing its own ontogenetic knowledge/experience.

PHASE II: Develop the EHM system to fly on a USAF aircraft and provide a true intelligent EHM system that will relate engine condition information in a user friendly form related to Technical Orders. The system will demonstrate a system redundancy capability, in that it will use tools such as probabilities techniques, based on data from the active sensors, to compensate for any system fault.

POTENTIAL COMMERCIAL MARKET: The development of a RTO EHM system will bring major cost reductions to the civilian aerospace community. Never intended to replace the technician, RTO EHM will provide fast and accurate diagnostic information to reduce maintenance times, no-fault founds and turn-around times. The improved critical life management aspect will reduce the engines cost of ownership.

REFERENCES:

AF97-190 TITLE: Combustor Acoustics Modeling Technology Research

Category: Basic Research

OBJECTIVE: Develop methods to identify the physical causes of acoustic instability in high performance aircraft gas turbine engine combustors.

DESCRIPTION: Future gas turbine engine combustors will be physically shorter, operate at higher through flows and axial flow velocities, burn liquid and gaseous fuel streams and operate with a lower pressure drop. Occasional breakdown of the combustion flow causes extreme pressure and temperature pulsations inducing low and high cycle fatigue in hot section components. Current combustor design systems lack the capability of identifying acoustic coupling of these combustion processes.

PHASE I: Phase I will require an in depth analysis to identify the casual physics of combustion driven acoustic resonances in gas turbine combustor environments.

PHASE II: Focused towards proposed methods to eliminate resonances. These methods shall be consistent with the practical features and environmental limitations of gas turbine combustors. The information gained under phase I will be used to design and fabricate a subscale test article which exhibits the anticipated conditions in a modern gas turbine engine. A test plan shall be prepared identifying the testing and development work required to validate the physics and suppression concepts identified. Testing shall demonstrate both the resonant states of the test article and the effectiveness of the proposed suppression and avoidance systems.

AF-169
POTENTIAL COMMERCIAL MARKET: All commercial gas turbine engines require combustion systems. Characterization of the impact of unsteady combustion processes on high and low cycle fatigue will provide great benefits in extending hot section life and performance, therefore, directly benefiting commercial gas turbine engines.

REFERENCES:

AF97-191 TITLE: Adaptive Filtering for Improved Turbine Engine Performance and Component Estimation

Category: Exploratory Development

OBJECTIVE: Develop new adaptive filtering methodologies with capability to optimize over a large number of engine parameters.

DESCRIPTION: Modern gas turbine engines are controlled by digital electronic engine controls. They employ conventional linear control system algorithms which are implemented with discrete time realizations. The most advanced engine control systems now employ model based control techniques which provide more accurate control, optimizing dynamic performance over the engines operating envelope. Model based controls employ a tracking filter to adjust the engine model. Future engine control systems will have higher performance, lower cost, employ damage tolerance techniques, and have significantly reduced maintenance cost. They will require active combustion and stall margin control. These goals are only realizable by employing adaptive filtering, or tracking filters around each subsystem; i.e., sensors, components, and active engine performance loops. The complexity and cost of implementing many individual tracking filters prevent general use of this approach. The development of improved tracking filter methodologies which have the capability to optimize a variety of important engine subsystems will result in a substantial improvement in engine control. Investigation of generalized techniques such as linear adaptive control, and nonlinear sliding mode control are appropriate. Implementation of these new techniques will enable the integration and cost effective implementation of engine performance trending, deterioration estimation, fault isolation, and dynamic control.

PHASE I: Develop conceptual designs for an advanced tracking filter which will estimate a significant number of key engine parameters. The design should apply advanced system identification techniques to the turbine engine system with its associated sensor suite.

PHASE II: Demonstrate the effectiveness of a multiple parameter optimization (tracking) filter over state-of-the-art techniques. In this effort, a tracking filter algorithm which implements the most promising technique developed in the Phase I effort will be designed and tested. An appropriate engine model will be employed in the design and test of the advanced tracking filter.

POTENTIAL COMMERCIAL MARKET: Commercial aircraft engines will realize significant benefits in terms of reduced operating cost by improvements in control efficiency and better predictive diagnostics. Fuel and maintenance costs will go down. The technology can also significantly improve the control of industrial robotic manipulators and advanced electric motors. It will especially benefit systems with large uncertain dynamics.

REFERENCES:

AF97-192 TITLE: Whole Wafer Thermal Measurement

Category: Exploratory Development

OBJECTIVE: Develop an affordable thermal measurement technique for reliably measuring in-situ temperature uniformity across semiconductor wafers.

AF-170
DESCRIPTION: The production of <0.5 mm VLSI silicon integrated circuits and III-IV semiconductor heterojunction and quantum well devices requires the capability to measure and control the across-wafer temperature to ±1°C at temperatures ranging from 150°C to 1100°C depending on the type of fabrication processes used. Currently either thermocouples or optical pyrometers are used for measuring the wafer temperature. Thermocouples in contact with the wafer provide the actual temperature of the wafer only in the region of the contact point. While fairly reliable, thermocouples suffer from slow response time, and their lifetime is inversely proportional to the process temperature. Optical pyrometers, on the other hand, respond rapidly, but the measured temperature can be unduly influenced by variations in the wafer emissivity which is a function of the number and type of layers on the wafer. In addition, the reliability of pyrometers is of concern. For the most part, these techniques are also restricted to measuring the temperature at a point or small region of the wafer.

PHASE I: Develop and demonstrate the feasibility of concepts for measuring in real-time the temperature across a semiconductor wafer to an accuracy of ±1°C at temperatures appropriate for the semiconductor device targeted for the in situ environment. Concepts must be compatible for single-wafer and/or batch processing and have a benign effect on the processing environment.

PHASE II: Fabricate a breadboard demonstration of the concepts defined in Phase I and experimentally demonstrate the approach for in situ, real-time measurement capability. Plans shall be developed to bring the concept to a commercially viable product for use as an in situ, real-time technique for measuring and controlling the across-wafer temperature in a semiconductor production process.

POTENTIAL COMMERCIAL MARKET: An accurate and reliable in situ whole-wafer temperature measurement technique will have an immediate commercial market in temperature monitoring and control for a wide variety of thermal processing technologies such as rapid thermal processing, molecular beam epitaxy and metallo-organic chemical vapor deposition.

REFERENCES:

AF97-193 TITLE: Systems Engineering Using Key Characteristics

Category: Advanced Development

OBJECTIVE: Develop an integratable software tool to manage the systems engineering process using Key Characteristics.

DESCRIPTION: Key Characteristics (KCs) can be defined as product features, manufacturing process parameters, and assembly process issues that significantly affect product performance, function, and form. They are classified into three different types of engineering functions: 1) Product Key Characteristics (PKCs), which are product geometric features and material properties that have a significant impact on the product performance, function and form at each product assembly level, 2) Assembly Process Key Characteristics (AKCs), which are the features during each assembly stage on the product, tool, fixture, or procedures that significantly affect the assembly process, and 3) Manufacturing Process Key Characteristics (MKCs), which are the manufacturing machine process parameters and/or work piece fixturing features for machine tools and equipment that significantly affect the realization of a product. Key Characteristics when used in conjunction with the development of the Work Breakdown Structures (WBS) and the project planning processes could provide a vehicle to 1) significantly reduce the learning curve associated with the start of assembly by identifying the critical issues early in the product development cycle, and 2) assess manufacturing cost trade-offs during product development by considering engineering issues, manufacturing process capability, assembly issues, and customer requirements. By identifying the critical product features upfront, resources can be allocated to address them through multi-disciplinary teams.

PHASE I: Phase I of this effort will consist of a detailed analysis of the appropriate processes and tools that need to interact to provide the maximum utility for the systems engineering managers. Phase I will culminate with the development of an initial concept feasibility demonstration on a tool to help create, manage, and communicate Key Characteristics throughout the life cycle of the product development process.

PHASE II: Phase II will focus on the continued development, refinement, demonstration and implementation of the tool. This phase will culminate with the release of at least a beta version software tool.

POTENTIAL COMMERCIAL MARKET: Any company that designs complex mechanical systems. Boeing, Northrop Grumman, Ford, and General Motors are using the notion of Key Characteristics. However, instead of using software tools to manage them, they have a thick book that is hard to track, update, and distribute.
REFERENCES:

AF97-194 TITLE: New Methods for Copper Electro-Plating Advanced Printed Wiring Boards
Category: Engineering Development

OBJECTIVE: Develop novel plating technologies that decrease environmental impact of producing electro-deposited copper foils.

DESCRIPTION: Department of Defense and commercial suppliers of printed wiring boards require new methods of depositing copper foils which are easily controlled, cost-effective, and environmentally benign. The packaging and interconnection of advanced electronics systems is presently achieved through laminate-based printed wiring boards. This technology is founded in the electrical and mechanical performance gained through the use of electro-deposited copper foils. Electro-deposited copper contained in laminated boards provides the necessary surface and through-hole connections for conductivity. Additive-based chemistries currently in use in electro-plating baths are difficult to control and shorten the life of the plating bath. Additionally, manufacturing processes have not progressed sufficiently to support the level of performance required in advanced printed wiring boards. Novel, more environmentally friendly, plating technology is needed which can achieve the control necessary for increased performance and reliability of newer, fine-featured designs.

PHASE I: Phase I will demonstrate the feasibility of an environmentally friendly, plating technology for depositing copper foils as described above.

PHASE II: The goal of Phase II will be to fabricate a complete prototype plating system using the technology demonstrated in Phase I. Advanced design printed wiring boards with fine-features will be plated and their electrical and mechanical properties shall be measured to demonstrate the performance improvements.

POTENTIAL COMMERCIAL MARKET: Copper plating is the basis of printed wiring board manufacturing for both military and commercial suppliers. These plated boards are the foundation of a world-wide market of $18 billion in commercial electronics. New methods for improved plating can be more reliable, more cost-effective, and provide high technology boards at lower environmental impact.

AF97-195 TITLE: Manufacturing Information for Electronics System Upgrades
Category: Exploratory Development

OBJECTIVE: Develop methods and techniques to automate the creation of manufacturing information and simulation models for emerging and legacy electronics systems

DESCRIPTION: Current state-of-the-art methodologies and techniques for creating manufacturing information and simulation models needed to drive the reengineering of "bad actor" electronics or to perform electronics systems upgrades are based upon manual and error prone approaches. In many cases, the design data representing the physical implementations is inaccurate and/or incomplete. The purpose of this effort is to explore and exploit emerging VHDL (VHSIC Hardware Description Language) and VHDL-A (AHUSIC Hardware Description Language - Analog) modeling practices and approaches. In addition, new principles and practices must be developed for automating the extraction of information needed to drive simulation model creation from legacy engineering and manufacturing information. Examples of legacy engineering and manufacturing information sources are test program sets, schematics, performance specifications and netlists.

PHASE I: Phase I will develop methodologies and techniques for a highly automated process to extract the salient information necessary to create accurate manufacturing information and simulation models for emerging or legacy electronics systems. In addition, software tools needed to automate the process and ensure its repeatability will be identified for development in Phase II. The feasibility of the developed process will be demonstrated at the end of the Phase I effort.
PHASE II: Phase II would develop the software tools to automate the extraction and information creation methodologies and techniques defined in Phase I and package them into a commercially viable product.

POTENTIAL COMMERCIAL MARKET: Commercial industries utilize past designs for new electronic product endeavors. With time to market and cost issues critical for global competitiveness, the methodologies, techniques and tools developed during this effort will be applicable to design reuse for many commercial applications.

REFERENCES:

AF97-196 TITLE: Three-Dimensional Semiconductor Substrate Inspection

Category: Exploratory Development

OBJECTIVE: Develop and demonstrate methods of three-dimensional (3D) inspection of semiconductor wafers.

DESCRIPTION: State-of-the-art wafer processing is only as good as the quality of the starting substrate materials. As technology has greatly reduced the size of active components and allowed the integration of vast amounts of circuitry on a chip, the starting material quality has become a major variable in determining the final yield of a product. Not only is it important to have high wafer surface quality, it is equally important to have substrate crystal uniformity, i.e. defect free beyond the depth of the junctions of the active devices.

PHASE I: Develop 3D wafer inspection concepts for various substrate materials. Downselect the concepts to the one that has the greatest potential for inspecting the variety of substrate materials. Feasibility of the concept must be sufficiently proven.

PHASE II: Develop the selected concept, design and fabricate a prototype system to 3D inspect wafers. Demonstrate the effectiveness of this inspection system by processing a suitable device with wafers from a baseline inspection system and wafers inspected by the 3D system. Compare the yields and report the results. This demonstration task should be performed on at least two different material types such as bulk silicon, silicon on insulator (SOI), and Gallium Arsenide.

POTENTIAL COMMERCIAL MARKET: The product is valuable to the semiconductor industry to improve fabrication yields and reduce overall costs

AF97-198 TITLE: Innovative Manufacturing Technology Concepts

Category: Basic Research

OBJECTIVE: Develop and demonstrate innovative approaches in advanced manufacturing technology concepts which have broad applicability to AF weapons systems.

DESCRIPTION: The Manufacturing Technology Directorate aggressively pursues advances in manufacturing technology which have broad applicability to the affordability and performance of AF systems. The focus of this general topic is to allow opportunities for major breakthroughs in the following areas: Composites Processing & Fabrication, Electronics Processing & Fabrication, Metals Processing & Fabrication, Advanced Industrial Practices, and Manufacturing & Engineering Systems. New processing techniques, variability reduction tools, affordability improvements, manufacturing simulation & modeling, are a few examples of the types of proposals that are desired. The emphasis is on innovation, the ability to achieve major advances, and defense/commercial applicability.

PHASE I: During Phase I, the offeror shall determine the technological merit and feasibility of the proposed innovative concept.

PHASE II: The Phase II effort is expected to produce a well defined deliverable product or process.

POTENTIAL COMMERCIAL MARKET: Each proposal submitted under this general topic should have an associated commercial/defense related application of the planned technology. The commercial application should be formulated and developed during Phase I. Phase II will require a complete commercialization plan
AF97-199 TITLE: Weapon Flight Mechanics Research

Category: Exploratory Development

OBJECTIVE: Develop innovative concepts for advanced weapon airframes and navigation, guidance and control.

DESCRIPTION: New and innovative concepts for the area of air delivered conventional munitions and armament is sought. The Weapon Flight Mechanics Division conducts research and directs exploratory development of advanced weapon airframe concepts and the guidance, navigation and control (GN&C) of weapon airframes. Weapon airframes under consideration include air-to-air missiles, air-to-surface munitions (general purpose bombs and hard target penetrators), submunitions, and projectiles. Areas under consideration for weapon airframes include aerodynamic shaping, folding fins and wings, carriage and release technologies (especially multiple carriage and release of submunitions), and innovative control techniques (i.e. reaction controls, body bending, etc.). Areas of primary interest in navigation include very small low cost inertial measurement units (IMUs), Global Positioning System (GPS) guidance, jam resistance GPS, and transfer alignment. Areas of interest in guidance technology include optimal guidance law development, target state estimators and advanced adaptive autopilots.

PHASE I: During Phase I, the offeror shall determine the technological or scientific merit and feasibility of the innovative concept. The merit and feasibility should be clearly demonstrated during this phase.

PHASE II: The Phase II effort is expected to produce a well defined deliverable product or process.

POTENTIAL COMMERCIAL MARKET: Each proposal submitted under this general topic should have an associated dual-use commercial application of the planned technology. The commercial application should be formulated during Phase I. Phase II will require a complete commercialization plan

AF97-200 TITLE: Advanced Flight Controls for Small Airframes

Category: Exploratory Development

OBJECTIVE: Develop a technique using advanced non-aerodynamic controls, such as reaction controls, to allow incremental translation maneuvers of small, high speed airframes.

DESCRIPTION: Large, conventional aerodynamic control surfaces not only add to the weight of an airframe, but also its cost. The advantage of extremely accurate aimpoint selection provided by the global positioning system (GPS) is maximized, flight control devices must enable precise maneuverability. The use of reaction controls aids in countering target location error, assists in the terminal guidance phase, eliminates the weight of conventional control surfaces, and reduces package size and cost.

PHASE I: Phase I of this project should determine the feasibility of controlling a 250-400 pound, 5-7 inch diameter, 70-100 inch length vehicle through a prescribed set of flight maneuvers representative of a hard target penetrator weapon.

PHASE II: Phase II would require the development of a six-degree of freedom (6DOF) simulation of such a weapon. Limited ground tests of representative reaction control hardware, as well as wind tunnel tests of the airframe, are required to produce data for the simulation models.

POTENTIAL COMMERCIAL MARKET: Any aircraft can experience in-flight control system failures. If mechanical control surfaces fail on a small aircraft utilizing this type of alternate control philosophy, a blending of aerodynamic and propulsive flight controls may result in the pilot having some control over an otherwise uncontrollable aircraft. Some aspects of propulsive flight control technology may also be applicable to space vehicles.

AF97-201 TITLE: Tactical Kinematic GPS/IMU Algorithms

Category: Exploratory Development

OBJECTIVE: Develop methods to investigate and evaluate use of Kinematic GPS/IMU algorithms in a tactical munition dynamic environment.

DESCRIPTION: A need exists to improve navigation accuracy of Global Positioning System (GPS) guided munitions. Kinematic GPS uses carrier phase information that greatly improves the accuracy capability of GPS systems. However, high
dynamic kinematic GPS navigation is limited by the ability to resolve the carrier integer cycle ambiguity in a timely manner. Ongoing efforts to develop more accurate IMU's (0.1 deg/hour) that are smaller and cheaper can be exploited to enable high dynamic kinematic GPS algorithms resulting in sub-meter GPS navigation accuracy.

PHASE I: Phase I of this project should investigate innovative high dynamic kinematic GPS/IMU algorithms tuned for the high dynamic environment of a tactical munition.

PHASE II: Phase II should be the realization via procurement/fabrication of a breadboarded kinematic GPS/IMU system tuned for the high dynamic environment of a tactical munition.

POTENTIAL COMMERCIAL MARKET: The commercial airline industry plans to use GPS as a primary navigation device. Thus, the FAA is very interested in accurate automated landing systems

AF97-202 TITLE: Multiple Sensor Inertial Measurement Unit

Category: Exploratory Development

OBJECTIVE: Develop the filter for an Inertial Measurement Unit (IMU) utilizing multiple lower performance, low cost gyroscopes and accelerometers and produce an inexpensive IMU with higher performance.

DESCRIPTION: There has been a constant demand to make tactical grade Inertial Measurement Units (IMUs) smaller, less expensive, and more accurate. Many of these factors are interdependent. The goal of this topic is to acquire greater accuracy from lower cost, less accurate sensors by using several of them per axis and then filtering their outputs to obtain lower errors than the single sensor method. A trade off will exist between the number of sensors and the accuracy gained per size increase, therefore, an accuracy improvement versus size/cost model must be developed. The end product will be a miniaturized filter and electronics package used to construct a multiple sensor per axis IMU. The size of the gyroscopes and accelerometers is not relevant, however, once the sensor technology has matured, MicroElectroMechanical (MEMS) sensors should be excellent contenders.

PHASE I: Phase I will consist of an analysis to determine the optimal number of sensors used to maximize performance and minimize size and cost. A computer simulation must be developed to demonstrate the performance improvement obtained when using multiple sensors rather than a single one. The simulation must include the development of the filter algorithms used to process the output of the multiple sensors, as well as depict the design for the filter, electronics, and the packaging. To demonstrate filter potential, single and multiple sensor accuracy for one axis must be tested and documented.

PHASE II: Phase II will develop and fabricate an IMU consisting of multiple sensors per axis, sensing electronics, and the sensor filter. The unit will minimize the package for the electronics and sensor filter without regard to sensor size, however, sensor quantity will be optimized. Single and multiple sensor per axis performance must be tested and documented.

POTENTIAL COMMERCIAL MARKET: Applies to almost all applications which use inertial sensors

AF97-203 TITLE: Guidance Research

Category: Exploratory Development

OBJECTIVE: Develop innovative concepts in guidance technologies

DESCRIPTION: The Advanced Guidance Division of the Wright Laboratory Armament Directorate seeks new and innovative ideas/concepts in several areas: Electrooptical, millimeter-wave, and radio-frequency seeker technology and the components and signal processing systems used in these seekers. This includes, but is not limited to, sources, detectors, polarization-sensing elements and systems, modulators (both single element and pixelated), pattern recognition and processing systems, and basic material and device development for accomplishing all of these; Polarization-sensing elements and systems for studies of the utility of such systems for target characterization and discrimination; Developing algorithms for use within autonomous target acquisition (ATA) applications; Innovative signal and image processing algorithms used, for example, in synthetic-aperture radar (SAR), millimeter-wave (MMW), infrared (IR), and laser radar (LADAR) are needed to autonomously detect and recognize target signatures embedded in sensor data; Operations/functions associated with the ATA process involve noise elimination, detection, segmentation, feature extraction, classification, (i.e., truck vs. tank), and identification (i.e., truck A vs. truck B);
Algorithms capable of processing multi-sensor data are of particular interest; The utilization of image algebra in the development of non-proprietary ATA algorithms; Key research areas include signal and image processing, pattern recognition/classification, image understanding, artificial neural networks, fuzzy logic, superresolution, knowledge- and model-based vision, and data fusion. Concepts must have a good dual use/commercialization potential.

PHASE I: During Phase I, the offeror shall determine the technological or scientific merit and the feasibility of the innovative concept.

PHASE II: The Phase II effort is expected to produce a well defined deliverable product or process.

POTENTIAL COMMERCIAL MARKET: Each proposal submitted under this general topic should have an associated dual-use commercial application of the planned technology. The commercial application should be formulated during Phase I. Phase II will require a complete commercialization plan.

AF97-204 TITLE: Optical Detection and Discrimination Techniques for Laser Radar

Category: Exploratory Development

OBJECTIVE: Develop alternative detection and discrimination techniques useful for 3D range-imaging and/or range-doppler imaging with an emphasis on low-cost and manufacturable technologies.

DESCRIPTION: Laser range-imagers and laser radars are useful tools for a variety of applications such as remote-sensing, machine-vision, parts inspection, and others. Most existing laser radar systems rely on one of two schemes for finding the distance to an object; either a pulsed detection scheme which measures the photon-time-of-flight or a coherent detection scheme which measures the radio frequency beat noise of two interfering optical signals. Generally, these systems operate with a single element detector (or a linear array of such elements) combined with a scanning laser beam to assemble an image. Each of these systems has several drawbacks which limit their applications, particularly in areas where cost is a concern. Current direct detection systems tend to have limited range resolution (inches) and are often limited by background noise, while current coherent systems tend to be complex and expensive. The use of a scanner limits the data rate of the system and the environment in which it can be used. The area searched by a system is limited by the required resolution and the data rate of the system. Although these two basic design concepts dominate the laser radar field, several variants of these systems and other system concepts are feasible. The goal of this topic is to develop laser radars based on techniques which promise a substantial performance improvement and/or cost reduction. Approaches which can improve the range or angular resolution are of interest. Systems which rely on previously unexploited optical properties (such as wavelength dependent properties) are also of interest. One possible example is to use modern solid state technology to implement low cost coherent systems. An additional example is to use modulation of the transmitted pulse to simplify/improve detection and or increase resolution.

PHASE I: Phase I of this project would demonstrate the applicability of the detection technique to specific problems in a controlled environment.

PHASE II: Phase II would consist of the construction of a fieldable laser radar system which operates on the principles demonstrated in Phase I.

POTENTIAL COMMERCIAL MARKET: This project would add new capabilities in the laser radar field that would benefit both commercial industry and the military, particularly in areas where current systems can not be used or are prohibitively expensive. A low-cost coherent system would be useful for structural fatigue studies on large buildings and structures. A system with improved range resolution would enable automated parts inspection for manufacturing, and have possible medical applications for the measurement of burns and incisions.

AF97-205 TITLE: Narrow Bandwidth Near-Infrared Tunable Optical Filter

Category: Exploratory Development

OBJECTIVE: Develop a high-throughput optical filter with a line-width of 1 nm or less and tunable in the near-to-mid infrared.

DESCRIPTION: Optical bandpass filters are used in a variety of devices to reduce optical background noise near particular wavelengths of interest. Reduction of the optical noise increases the system signal-to-noise ratio, thereby increasing the probability of detection and accurate measurement of a given event. While high-performance compact narrowband filters are
available at some specific wavelengths in the visible and near-infrared, there are currently no tunable filters available with equivalent size and performance. Recent advances in tunable laser technology make the development of high-performance tunable filters highly desirable. Currently, there are a few techniques which are used to filter tunable radiation; however, few of these have the size or performance required by our applications. For instance, monochrometers can be used to produce a tunable filter with a fairly narrow optical bandwidth; however, they are large, not particularly rugged, and generally do not have a very high throughput. In this project we are interested in producing a device which can be used as a tunable filter. The desired performance parameters are: tuning range from 1.5 microns to 2.5 microns, full width half maximum (FWHM) bandpass of 1 nm or less, greater than 70% in-band throughput, and greater than 40 dB rejection of out of band signals. This overall device size should be small enough to be incorporated into fieldable optical systems, i.e. comparable or smaller than existing components such as detector assemblies, optical isolators, etc. Additionally, the device should be able to operate over a wide temperature range without elaborate temperature control requirements.

PHASE I: Phase I of this project will investigate and demonstrate candidate techniques for developing compact tunable optical filters with the above performance goals.

PHASE II: Phase II would involve the fabrication, characterization, and packaging of the filters based on the techniques demonstrated in Phase I. The filters will be deliverable items.

POTENTIAL COMMERCIAL MARKET: This project would fill a gap in current filter capabilities that would benefit both the military and commercial industry. A tunable optical filter is required for several applications which have been enabled by recent advances in tunable laser technology. The compact size of this technology will allow the transition of techniques currently being explored in the laboratory into fieldable and commercially viable systems. One potential application of this technology is highly-accurate hand-held chemical and pollution sensors.

AF97-206 TITLE: High Performance Pulse Capture Circuity for Near-Infrared Optical Receivers

Category: Exploratory Development

OBJECTIVE: Develop, design and construct pulse capture circuity with high sensitivity, wide bandwidth, and large dynamic range.

DESCRIPTION: Recent advances in the field of imaging laser radar have resulted in compact and rugged lasers capable of producing high-quality, short pulses of light. One of the principal challenges to the field use of this technology is the lack of corresponding high-quality receivers. The receiver is needed to convert the returned optical energy to an electrical signal usable by digital circuity and is generally composed of an optical detector, amplification and discrimination electronics, and an analog-to-digital converter. One challenge to the design of these receivers is the very large dynamic range required; the returned signal falls off as one over R-squared (best case), where R is the range to the object being imaged, and this problem is exacerbated because the reflectance from various objects can range from less than 1% to greater than 99%. A second challenge is the desire to time the arrival of the returned optical energy to greater than 1 ns accuracy, although transmitted pulse lengths are often longer than 10 ns. This requires implementation of pulse discrimination techniques in the receiver. While it is possible to obtain receiver systems which have either high sensitivity, wide-bandwidth, low-noise, or large dynamic ranges; suitable combinations of these desirable characteristics in a single receiver are not currently available. This limits overall performance for an application since systems must often be optimized for a particular region of the desired operating space. Detectors, such as avalanche photodiodes (APDs), are now available which can simultaneously fulfill many of these requirements; however, these detectors are useless without the appropriate electronics to capture and convert the optical signals into electrical signals usable with conventional digital circuitry. It is desirable to have electronics which can capture both the temporal and intensity information from an event with high accuracy over the desired dynamic range. Currently, there are no commercially available electronics packages which can support the desired operating range. The goal for this project is to develop receiver electronics which can accurately capture the intensity of an optical pulse with a dynamic range of at least 5 orders of magnitude and convert this pulse to a digital signal with high accuracy. The dynamic range must start from the minimum detectable signal from the detector. For purposes of initial design, a commercially-available InGaAs APD detector can be assumed. The electronics must be able to detect the pulse arrival with a minimum accuracy of 1 ns for optical pulse lengths from 1 ns to 20 ns in length. The electronics must be able to properly control the bias of the detector and must be reasonably resistant to interference from other electronic components typically used in laser radar systems.

PHASE I: Phase I of this project should include designing the electronics circuity and demonstrating the critical elements of the electronic design.

PHASE II: Phase II would consist of the construction and hardening of prototype receivers based on the technology
developed in Phase I. A working receiver system will be delivered at the end of this phase.

POTENTIAL COMMERCIAL MARKET: This project would extend the field of the laser applications by increasing the robustness and useful operating range of fieldable systems. This technology would be useful in applications where both a high responsivity and a fast response time are required. Examples of such applications include spectroscopy, remote sensing, LIDAR, and fiber optics communications.

AF97-207 TITLE: Advanced Processing Techniques for Restoration and Superresolution of Imaging Sensors

Category: Exploratory Development

OBJECTIVE: Develop innovative and computationally affordable signal/image processing algorithms for image restoration and resolution improvement (superresolution) for smart weapon applications.

DESCRIPTION: The detection, acquisition, classification, identification, and aim point selection of tactical ground mobile, and high value targets are critical issues for smart weapons. The sensor resolution is dependent on aperture parameters and operating frequency. While it's true that the larger the aperture, the better the resolution will be, aperture size is constrained by the missile airframe. Spatial resolution varies proportionally with target distance. To be able to acquire a target at a reasonable range in a high clutter environment, or low signal-to-noise within an aperture-limiting hardware platform, advanced signal/image processing techniques are required. Wright Laboratory's Armament Directorate is interested in innovative signal/image processing techniques to perform image restoration and superresolution for smart weapon applications. Proposed efforts should offer the potential to improve the resolution of a variety of imaging sensors, and enhance target acquisition and classification performance in high clutter environments. Image restoration is essentially accomplished within the system's spatial frequency passband. Superresolution is a technique that recreates the frequency components not present in the image. Superresolution of image data requires bandwidth extrapolation in addition to passband restoration and consequently needs nonlinear processing techniques. Active radar, synthetic aperture radar, and interferometry are all inappropriate for this Research and Development effort.

PHASE I: The Phase I effort will consist of a conceptual study of advanced signal/image processing for image restoration and resolution improvement of images taken by various imaging sensors such as Imaging Infrared (IIR), laser radar (LADAR), or passive millimeter wave (PMMW).

PHASE II: Software development based on the conceptual study of Phase I will be demonstrated against measured and/or simulated data provided by the sponsor. The software must be developed on hardware platforms compatible with sponsor platforms. The software product will be installed on the government hardware platforms. The software documentation/user manual and the final report will be delivered to the sponsor at the end of the program.

POTENTIAL COMMERCIAL MARKET: This technology can be used in medical image enhancement and restoration; law enforcement photo enhancement (for identification purposes); space imaging applications; global terrain mapping; and collision avoidance in air and ground transportation.

AF97-208 TITLE: Data Fusion Using the Wavelet Transform, Fractal Theory, and Statistics

Category: Exploratory Development

OBJECTIVE: Develop a method for characterizing ladar intensity signatures using the wavelet transform, fractal theory, and/or statistics.

DESCRIPTION: The intensity data of a laser radar (ladar) pulse may be extracted when the range data is computed. It would be advantageous to use intensity data to augment the range data to improve automatic target identification (ATI) algorithm performance. Ladar intensity data is not currently being used in ATI algorithms because its inherent characteristics are not thoroughly understood (e.g., speckle fluctuations, aspect dependency, variations associated with range to target as well as atmospheric and weather conditions). These characteristics make it difficult to compare intensity data to some physically meaningful quantity. If the basic characteristics of intensity signatures are identified and a steadfast method of characterizing them is achieved, it is anticipated that the intensity data will provide an indispensable way of distinguishing dissimilar textures. This, in turn, will allow target signatures to be distinguished from background terrain and clutter thus improving detection,
recognition, classification, and identification capabilities for autonomous algorithm performance. From previous studies of infrared/ladar sensor data, several mathematical methodologies have shown promise as a means for characterizing intensity data. These methodologies include the wavelet transform, fractal measure theory, and statistical theory.

PHASE I: The purpose of this program is to investigate the use of wavelet transforms, fractal measure theory, and statistical theory in formulating a real-time algorithmic fusion technique for ladar range and intensity data. During Phase I, current and past research efforts relevant to the theoretical development of wavelet transforms, fractal measure theory, and statistical theory as well as pertinent signal/image processing applications will be identified. These techniques will then be evaluated to identify those capable of distinguishing target intensity signatures from clutter, countermeasures, and background information. This will involve developing computer models of the various mathematical methodologies, generating databases of the respective intensity signature characteristics, and defining a set of unique characteristics that will augment information provided by the range data.

PHASE II: During Phase II the successful fusion algorithms formulated under Phase I will be used to develop ATI algorithms for seeker systems capable of acquiring ladar range and intensity data. The associated cost benefits of the methodology will be indentified. This will be achieved through algorithm performance analysis (false alarm rates; target detection, classification, and identification probabilities) and real-time implementation analysis (data throughput, processor requirements).

POTENTIAL COMMERCIAL MARKET: These algorithms will have utility in conduction studies of the earth’s resources using ladar data from satellites. For example, in an initial study performed for the Forestry Service, WL/MNGA used ladar to identify different varieties of trees. The results of this study indicated that ladar has the potential to be used as a surveying tool for forests.

AF97-209 TITLE: Armament Research

Category: Exploratory Development

OBJECTIVE: Develop innovative concepts in areas associated with air deliverable munitions and armament.

DESCRIPTION: We need new and innovative ideas/concepts and analytical methodologies in the area of air delivered non-nuclear munitions, that have a dual use/commercialization potential. Products include bombs; submunitions; warheads; projectiles; fuzes (including safe and arm devices); explosives/energetic materials; time delayed, self degrading explosives; genetic engineering of molecular explosives; polymer binders for shock survivable explosives; structural technologies; fiber optics; solid-state inertial components; exterior ballistics; lethality/vulnerability and performance assessment techniques; test technology; modeling and simulation resources and techniques; and conventional weapon environmental demilitarization and disposal techniques. Some examples of desired research are target detection sensors; warhead initiation; self-forging fragment warheads; shaped charges; long-rod penetrators; reactive fragment warheads; computational mechanics (including interactive grid-generation techniques, and warhead hydrocode-assessment techniques); and hard-target weapon/penetration technology end energetic materials.

PHASE I: During Phase I, the offeror shall determine the technological or scientific merit and feasibility of the concept.

PHASE II: The Phase II effort shall provide a deliverable product or process.

POTENTIAL COMMERCIAL MARKET: Each proposal submitted under this general topic should have an associated dual-use commercial application. The commercial application should be formulated during Phase I. Phase II will require a complete commercialization plan.

AF97-210 TITLE: Expendable, Low Cost, Solid State Millimeter Wave Components

Category: Exploratory Development

OBJECTIVE: Develop small, expendable, low cost, solid state millimeter wave components. Include a complete description of research materials and processes.

DESCRIPTION: Low cost components serve as the prime design driver in all developmental expendable short range sensors regardless of the optimum operational frequency for the application. Ideally, many short range sensor designs would use the 60 -
110 GHz band of operation if low cost, miniature, expendable components were available. Advantages include antenna size, directionality, and reduced man-made noise sources. Output power levels of +10 dBm would be more than adequate for most intended applications if low cost, miniature, components were available.

PHASE I: Phase I efforts would examine materials, processes, and fabrication techniques for producing millimeter wave sensor components listed in the objective.

PHASE II: Phase II of the program would emphasize fabrication and packaging of several devices for performance testing by the Air Force.

POTENTIAL COMMERCIAL MARKET: Possible areas of commercial application include liquid level sensors, intrusion detectors, collision avoidance systems, "intelligent" vehicles, wireless communications, and space communications

AF97-211 TITLE: Infrared Fisheye Optics

Category: Exploratory Development

OBJECTIVE: Develop, design and construct Infrared Fisheye lenses for fusing sensors and fusing test equipment video cameras.

DESCRIPTION: Recent advances show that very wide-angle imaging sensor proximity fuzes can significantly enhance warhead lethality. A key component for such sensors is the optical front-end which may consist of one or two fisheye lenses projecting images onto focal-plane detector arrays. At this time there are no known fisheye lenses in infrared bands, and typical visible band designs exhibit undesirable image compression near the edge of the Field-of-View (FOV). The focus of this effort is to explore the possibilities and limitations of customized fisheye lens designs for the infrared spectrum using optical materials suitable for high supersonic flight regimes and of visible-band customized fisheye lens designs intended for target position truth instrumentation.

PHASE I: Phase I of this project should investigate fisheye lens designs for the infrared bands of 3-5.5 microns, 5.5-7.5 microns, 8-12 microns and the visible band. The designs should achieve uniform magnification over the 180° FOV and will otherwise be optimized for minimum size, low ratio of focal length to aperture diameter, minimum internal reflections and number of elements given notional resolution requirements. Infrared-band designs shall consider materials suitable for operation with missile flight aeroheating and will be scaled to fit available focal plane detector array geometries and notional tactical size requirements. Two prototype visible-band fisheye lenses matching government furnished equipment (GFE) instrumentation video cameras shall be produced.

PHASE II: Phase II would involve scaling infrared fisheye designs to fit available non-developmental item forward looking infrared (NDI FLIR) cameras, constructing and evaluating fisheye lenses of the selected designs for all three identified infrared bands.

POTENTIAL COMMERCIAL MARKET: This project concerns efficient capture of very wide angle imagery with uniform magnification. Advances in this field could lead to low-cost wide-angle imaging sensors for many applications ranging from security cameras to robotics control to transportation (aircraft, marine and automotive) collision avoidance and protection systems

AF97-212 TITLE: Penetrator Communication Link

Category: Exploratory Development

OBJECTIVE: Develop a shock hardened communication link capable of relaying penetrating weapon fuze data.

DESCRIPTION: A need exists for a shock hardened communication link capable of relaying penetration weapon fuze data. The communication link must be capable of surviving and transmitting the fuze data during or after the actual penetration event. The fuze data to be transmitted includes, but not necessarily limited to: Command and control signals between fusing modules located at various positions within a multiple-event warhead/agent defeat weapon system; or deceleration data from an on-board accelerometer, fuze logic states, and a pre-fire pulse for bomb damage assessment (BDA) information. The communication link internal to the warhead must either be capable of surviving the penetration event or the communication link must not depend upon the survivability of a "hardware link."

PHASE I: Phase I will consist of a requirements study to assess the technology baseline for achieving a shock hardened communication link, and the development of a conceptual design(s). This phase will establish the concept(s) for
internal weapon system communication between fuze modules, weapon-to-weapon communication between fuze systems, and weapon-to-surface communication capable of being received by an airborne relay.

PHASE II: Phase II will develop and fabricate a shock hardened communication link, or components, capable of relaying fuze data from a penetrating weapon. Static tests will be accomplished to demonstrate the ability to transmit the data through typical warhead media (e.g., simulated explosive material, simulated agent defeat chemicals, etc.). The communication link components will be tested on a Very High G shock machine. The shock hardened communication link system will be tested in a subscale projectile from a 155mm Howitzer.

POTENTIAL COMMERCIAL MARKET: Wireless transmission of information through porous media requires characterization of the media which has significant potential for in-bulk monitoring of the manufacture and/or storage of porous media. It is feasible to measure the consistency/purity of bulk materials such as feed grains, flour, fertilizer, or explosives for production control.

AF97-213 TITLE: Pyrotechnic Initiator

Category: Exploratory Development

OBJECTIVE: Develop, design and construct an igniter for various pyrotechnics capable of passing the safety requirements for use with in-line fuzes.

DESCRIPTION: Recent advances in the area of semiconductors and semiconductor processing have demonstrated the ability to fabricate a silicon sublayer that will vaporize under the action of a heavy current. The resulting plasma can be used to ignite a pyrotechnic material, which makes these devices suitable for use as igniters or detonators in explosive initiation. However these devices do not pass the safety requirements namely, the 500 V no-fire, and 1 amp/1 watt requirements for initiating sensitive pyrotechnics due to their susceptibility to stimuli from external sources. This topic is intended to explore methods for fabricating a small semiconductor device with internal electrical components to allow it to stand off voltages below the 500 V limit (required for noninterrupted trains by MIL-STD-1901) and not function. Such a device will enable the item to be safe from accidental functioning without external electrical circuitry. The ability to fabricate the required components on a single silicon substrate will greatly enhance the versatility, lower the cost, and decrease the required volume. The Air Force applications include ordnance fuzing, munitions dispensers, rocket motor igniters, and actuators.

PHASE I: During Phase I, the offeror shall determine the feasibility of the proposed initiator, as well as develop a preliminary design and test plan.

PHASE II: The Phase II effort is expected to produce a well documented, tested, and deliverable igniter.

POTENTIAL COMMERCIAL MARKET: A safe igniter for primary pyrotechnics would be used most extensively by the oil drilling, mining, and construction companies. This igniter would provide increased safety and reliability versus blasting caps and other conventional components. It would also provide increased precision and control for blasting, oil well casing perforation, cutting, and other multiple or sequential events that require remote initiation or activation of pyrotechnics.

AF97-214 TITLE: Hard Target Influence Fuzing Technology

Category: Exploratory Development

OBJECTIVE: Investigate applicable technologies required for influence fuzing of hard target penetrators.

DESCRIPTION: Influence fuzing technology (i.e., acoustic, magnetic etc.) exists for detection and classification of heavy vehicles. However, the existing technology is not compatible with the desire to utilize large (up to 2000 lb) guided unitary weapons to inhibit vehicle traffic. The needed influence fuze technology must be capable of being contained within the existing 3 in. x 7 in. standard fuze well; surviving high speed impact into any media including rock and sensing vehicles out to the bomb crater radius from a buried position. The hardened components shall be capable of sensing heavy equipment such as trucks, earth movers and locomotives to prevent clearing of weapons.

PHASE I: Phase I of this project will study applicable magnetic and acoustic sensor mechanisms and necessary hardening techniques for a hard target attack capability. The study and analysis will also assess the sensor's influence due to heavy machinery through a thick steel case such as the BLU-109/B bomb body and determine approaches to increase sensitivity.
such as deploying sensors or antennas once the warhead is at rest. A trade study shall be made of survivability versus function/capability to determine the most applicable sensors and concepts including a preliminary design of the influence fuze.

PHASE II: Based on the results of the analysis and preliminary design in Phase I, selected sensors shall be hardened and concepts tested/verified for function and survivability during laboratory shock testing, field cannon testing through concrete targets and influence testing against heavy equipment.

POTENTIAL COMMERCIAL MARKET: This program will develop hardened sensors applicable for use in deep and subsurface mining and trenchless pipe and cable laying. This will allow the area to be explored prior to hitting underground metallic objects. In addition the refinement and environmental harding can produce benefits of higher reliability and placement flexibility to the traffic control industry

AF97-215 TITLE: Munition Instrumentation and Performance Assessment Technology

Category: Exploratory Development

OBJECTIVES: Develop new (revolutionary) instrumentation technologies and methodologies for analysis of data.

DESCRIPTION: a) Innovative ideas are sought for instrumentation to serve the very harsh, transient nature of munitions development and test. Specific requirements exist for: flexible, high capacity, rechargeable battery technology for powering miniature munition telemetry packages; high power, 100 mw, continuous laser technology that can produce long coherence lengths, 2M, to reconstruct pulsed ruby laser produced holograms; high speed multiplexer technology that will enable image data to be read out from high resolution, high speed infra-red focal plane arrays. b) Performing an assessment of a new weapon concept requires inputs of factors such as target location and vulnerability, warhead lethality, guidance package precision, weapon flight profile, aircraft loadout. Current methods are mostly ad hoc and analyst driven. Research is sought for both conventional and innovative analytical methods to optimize existing personal computer based munitions effectiveness tools and develop new or more effective methodologies.

PHASE I: a) Phase I will include analytically evaluating the feasibility of the proposed concept, investigating alternatives, developing the concept through a design, and documenting proof of principle hardware that will be developed during Phase II. A demonstration of the concept using simple breadboard components is very desirable. b) Proposed analysis models will be investigated to arrive at technology choices. Existing models may be adapted or entirely new approaches may be investigated. A recommended methodology suite, including code requirements will be described.

PHASE II: a) Phase II will be used to develop, fabricate, and test an experimental version of the concept. Sponsor may provide access to actual munition experiments for validation purposes. b) Analysis codes recommended in Phase I will be implemented

POTENTIAL COMMERCIAL MARKET: a) By its very nature, instrumentation has high application potential for commercial uses and industrial processes. As examples: low profile, high current density batteries are needed in consumer devices such as camcorders and cell phones; lasers with long coherence lengths are required for 3-D large display holography and non-destructive test interferometry; and high speed multiplexer technology will support high resolution machine vision cameras for production lines. b) User friendly, PC-environment assessment codes would be a highly marketable product for any R&D organization. Commercial users would include mining and drilling, and industrial safety organizations

AF97-216 TITLE: Electronic Imaging Transient Stereo Photogrammetry

Category: Exploratory Development

OBJECTIVE: Develop stereo imaging sensor/illumination technology with "pulsed light" spatial/temporal gating capability.

DESCRIPTION: Ultrahigh speed diagnostics of conventional blast phenomena are presently based on rotating mirror/prism mechanical cameras. For experimental advanced munitions research, random access to events is required. Current high speed cameras require start up and synchronization, and, as a result, the cameras must trigger the experiment rather than capture random events. Current cameras only provide a sequential record, with no provision for indeterminate delays between events. Sample rates from 100,000 to 5 million frames-per-second are needed to cover the range of applications for detonation research. Advanced sensor/image intensifier/pulsed laser technology could lead to a random access electronic imaging solution for

AF-182
asynchronous capture of 8 to 10 high resolution images at up to 5 million frames-per-second. Research is required to enable film quality resolution (megapixel) at nanosecond or less exposure times with current generation fast image intensifier tubes. Potential approaches include multi-pulse lasers/multi-rod lasers with pairs of gated high resolution CCD cameras and electronic stereo displays. Modeling and simulation will be used to determine requirements such as power, pulse width, wavelength, and optical geometry. This project will also include proof of concept fabrication of the most promising technologies and experimental investigation of the proposed architecture.

PHASE I: Modeling, simulation, and the design of the "camera" to incorporate the technology will be included in Phase I. A proof of concept experiment with an explosive event would be highly advantageous to demonstrate the technical approach.

PHASE II: Phase II will include the design and fabrication of the sensors and support electronics necessary to demonstrate sensitivity, resolution and frame rates of the prototype system as compared to current ultra-high speed film cameras.

POTENTIAL COMMERCIAL MARKET: This technology would greatly benefit commercial explosives research, laser physics, spectroscopy, and auto safety research

AF97-217 TITLE: Blast and Ballistic Loading of Structures

Category: Exploratory Development

OBJECTIVE: Develop physics-based models to simulate the response of structural elements subjected to high amplitude, short duration loading(s).

DESCRIPTION: Engineering models which accurately describe the response of ground-fixed structures to extreme loading conditions are needed. The technical challenge is to be able to accurately capture the essential features of the structural and material response using a physics based approach without having to resort to finite element/finite difference techniques. Areas of research interest include source term modeling of blast and shock, explosive casing breakup to include fragment characterization and subsequent transport, and blast and fragment synergy. Analytical models which simulate the interaction of these source terms with internal structural components are also required. Ultimately, the individual models will reside in a flexible, consistent, and modular overall end-to-end methodology.

PHASE I: Phase I proposals should clearly define objectives, approach, and payoffs for the innovative model concept. Although being exploratory in nature, the proposals should also address follow-on implementation concepts for modeling the response of hardened structures to high amplitude, short duration loading.

PHASE II: During Phase II the concepts developed during Phase I will be implemented in a modular assessment, PC or work station based format, user friendly environment. Unique features of the physics model based analysis methodology will be documented.

POTENTIAL COMMERCIAL MARKET: Proposals submitted must have an associated commercial application potential, such as prediction techniques for building demolition and safety-related assessments

AF97-218 TITLE: Non-Intrusive, Remote Identification of Chemical Contaminants

Category: Exploratory Development

OBJECTIVE: Develop technologies to remotely detect and identify environmentally damaging residue from munitions development and testing.

DESCRIPTION: Conventional munitions contain a variety of materials which could be hazardous to the environment. These materials include explosives, electronic components, plating materials, heavy metal alloys, as well as hazardous chemicals associated with the aforementioned. When munitions are tested at military land test ranges, some of the chemical and explosive residues remain in or on the soil, some may be deposited on the surface of vegetation, and some is dispersed into the atmosphere. Conventional identification and mapping of the exact contaminated areas is a costly and time-consuming process. The inability to quickly and efficiently map contaminants potentially limits use of test ranges due to closing large test areas as a safety measure when contamination occurs during testing. As an example of a remote, non-intrusive detection capability, a radar using extremely short pulses has been used to penetrate soil and detect the interface between soil layers. If such a non-
intrusive technique could be developed to detect chemical contaminants in the soil using specific properties of the contaminants, identification of contaminated areas could be rapidly accomplished. This is not an effort to detect underground buried objects nor is it intended to develop one technology to identify all environmental contaminants. We are looking for innovative methods and technologies that will address specific remote sensing capabilities for contaminants related to conventional munitions research and testing.

PHASE I: Phase I is intended to explore and evaluate existing remote detection and identification technologies for their potential use in detecting environmental contaminants. This phase will also include the evaluation of chemical, heavy metal, and other environmental contaminants to determine specific properties that would lend themselves to detection using innovative applications of existing sensor technologies. Using these evaluations, candidate technologies for remote sensing applications will be recommended, and a program plan for exploiting these technologies in Phase II will be developed.

PHASE II: This phase will include developing and demonstrating new technologies, applications, or further refinements of existing technologies to solve the stated problem. Experiments will be performed that will demonstrate the ability to remotely detect and identify chemical and/or heavy metal contaminants in soils. The cost effectiveness of the sensor technology will be analyzed.

POTENTIAL COMMERCIAL MARKET: The commercial world would be interested in a technology that could sense and detect the presence of chemicals or heavy metals without taking core samples. The benefit would be safer, faster, and less costly assessment of contaminated areas.

AF97-219 TITL E: Slipper Wear/Gouging Phenomena

Category: Exploratory Development

OBJECTIVE: Develop analytical techniques to characterize wear and gouging phenomena of slippers at speeds up to hypersonic and demonstrate means to eliminate or reduce slipper wear/gouging.

DESCRIPTION: The High Speed Test Track, Holloman AFB, New Mexico, is a ground based aerospace test facility used for testing various types of military hardware such as missile guidance systems, aircraft seat ejection systems, and weapon systems. Testing is conducted using rocket propelled sled vehicles guided by steel slippers which ride on continuous steel rails. The rails are standard 171 lb/yard crane rails, butt welded in 39 foot sections for a length of 10 miles. Extreme straightness of the rail is required to reduce the dynamic loading induced into the sled vehicle traveling along the track, particularly at high speeds approaching Mach 10. Straightness of the rails is maintained through precision survey and rail alignment. In spite of this, small irregularities of the rail do exist. These irregularities cause a dynamic bounce of the sled traveling down the rail at high speeds. At hypersonic speeds, the impact of the sled on the rail can cause a tear-drop shape of material (gouge) to be eroded away from the surface of the rail, sometimes resulting in a mirrored effect, occurring simultaneously (lasting micro seconds) on the inside of the slipper. Slipper wear is affected by a combination of conditions, including slipper materials, slipper bearing pressure, and ram-air pressure (between the slippers and the rail) that produces forces affecting rail contact and causes aerodynamic heating. These effects change as a function of velocity. This study would discourage active air bearing systems as they have not proven to be operationally viable, but innovative ideas might be considered.

PHASE I: Develop analytical techniques that can be used to predict slipper wear patterns and gouging phenomena throughout the sled velocity regime to Mach 10. This will require characterizing bearing and aerodynamic pressure distributions, aerodynamic and friction heating, and material wear resistance.

PHASE II: Validate and provide analytical techniques developed to predict slipper wear/gouging via laboratory and/or sled testing. Develop and test candidate state-of-the-art slipper design, materials, coating lubricants, possibly transpiration cooling (total system weight limitation not to exceed 10 lbs) for hypervelocity sleds to eliminate or reduce slipper wear and gouging effects.

POTENTIAL COMMERCIAL MARKET: Wear prediction methods can be applied to high speed and high temperature bearings and brakes. Materials, lubricants, and designs developed could also be applicable. Analytical techniques and use of state-of-the-art designs, lubricants, and materials developed can reduce and eliminate gouging effects in electromagnetic rail guns and hypervelocity artillery.

REFERENCE:
2. Surface Gouging by Hypervelocity Sliding Contract Between Metallic Materials; Sandia Corp, Sand 87-1328, Baker L.M.

AF-184
4. Rail Gouging on the Holloman High Speed Test Track; Krupovage, Daniel J., Sept 1984. _35th Meeting of the Aeroballistic Range Assoc._

AF97-220 TITLE: Rail Tension/Compression Phenomena

Category: Exploratory Development

OBJECTIVE: Develop techniques to predict and measure tension/ non-tension conditions in the tract rail due to temperature variations (0°F to 120°F)

DESCRIPTION: The High Speed Test Track, Holloman AFB, New Mexico, is a ground based aerospace test facility used for testing various types of military hardware such as missile guidance systems, aircraft seat ejection systems, and weapon systems. Testing is conducted using rocket propelled sled vehicles guided by steel slippers which ride on continuous steel rails. The rails are standard 171 lb/yard crane rails, butt welded in 39-foot sections for a length of 10 miles. Extreme straightness of the rail is required to reduce the dynamic loading induced into the sled vehicle traveling along the track, particularly at high speeds approaching Mach 10. Even though straightness of the rails is maintained through periodic precision survey and rail alignment, there remains small irregularities in the rail which can be reduced by maintaining rail tension. The crane rail, when initially installed, was pretensioned to ensure the rail would remain in tension over the temperature range of 120°F to 0°F. Over the years, various rail breaks have occurred and the design pretension has not been systematically maintained.

PHASE I: Explore design ideas in non-destructive measurement techniques for determining local rail tension/non-tension. Develop and provide analytical techniques that can be used to accurately predict temperature effects on rail tension and straightness.

PHASE II: Demonstrate and provide non-destructive methods of rail tensioning measurements, and validate analytical prediction techniques and tension measurements at various track locations. Develop and validate rail break repair techniques to maintain original design rail tension. Survey rail to identify areas that do not meet design pretension, supervise rail retensioning by Test Track personnel.

POTENTIAL COMMERCIAL MARKET: Analysis and measurement techniques (and hardware) developed by this effort will be directly applicable to the Department of Transportation and railroads in designing rail based ground transportation, and monitoring rail conditions. In addition, this effort might be applied in metal production mills to determine stress conditions during various processes including extrusion, drawing, and rolling.

REFERENCES:
2. Original Stress Analysis of Holloman Supersonic Track, Black, J., 7 Jan 56.

AF97-221 TITLE: Low Cost Laser Range Finder

Category: Engineering Development

OBJECTIVE: Develop a low cost means of accurately measuring slant range to target.

DESCRIPTION: For Airborne Forward Air Control, Close Air Support, and Air Interdiction platforms, current weapon delivery algorithms are subject to errors based on uncertainty in slant range and/or elevation of the target. Addition of a capability to slew a laser rangefinder to a target, designate the target, track the target and provide accurate slant range vector measurement, would enhance weapon delivery computation and accuracy. Acquisition and integration of an attack radar on the aircraft to provide this capability is undesirable due to cost, space, and pilot-vehicle interface concerns. Also, the inherent
jam resistance and controllable emissions of a laser system are preferable. The system, when integrated with aircraft radar altitude, barometric altitude, GPS, and inertial navigation information, should be capable of providing single, or continuous, slant range to target measurements to an accuracy of 3 meters or 1 percent of altitude (whichever is greater) up to an altitude of 5,000 feet above ground level (AGL), with a goal of 10,000 feet AGL or higher.

PHASE I: Research and analysis of alternatives for integrating laser range finding technology into aircraft target acquisition and weapon delivery functions.

PHASE II: Development of a prototype, pylon-mounted unit for potential concept exploration flight testing.

POTENTIAL COMMERCIAL MARKETS: Aerial Survey, Mapping

AF97-222 TITLE: Storing Energy and Delivering Power Using Capacitors

Category: Engineering Development

OBJECTIVE: Develop a Capacitive Energy Storage System to use in concert with or in place of battery backup systems.

DESCRIPTION: Alternative energy sources are needed to supplement and replace battery back up Uninterruptible Power Supplies (UPS). Capacitor energy storage systems are one method of providing short term ride through for critical loads. A capability to carry through short term power sags and outages as well as a capability to hold a load until a generator can come on line is needed. A Capacitor based energy storage has no stray field limitation and appears to be more inexpensive than some other technologies. Efficiencies and cost effectiveness will be determined.

PHASE I: Develop and demonstrate (using conventional power electronics) a capacitor array which will provide the same ride through as a similar battery based UPS. Verify energy hold times, leakage currents, maximum voltage, and dissipation of the array.

PHASE II: Develop a power electronic converter specifically designed for the capacitor storage unit. Enclose power electronics and capacitors in an appropriately cooled container. Verify and compare energy hold times, leakage currents, maximum voltage, and dissipation. Compare overall system footprints.

POTENTIAL COMMERCIAL MARKET: Capacitive Energy Storage Systems open up a new range of power quality applications. Computer manufacturing facilities, DoD installations, and any other facility that contains sensitive electronic equipment type loads will benefit from alternative energy sources. Specifically, any facility where magnetic fields or noise levels are problems would be interested in this type of alternative energy solutions.

AF97-223 TITLE: Modeling the Effects of Gamma Irradiation on Electro-Optic Components

Category: Exploratory Development

OBJECTIVE: Develop detailed models of specific electro-optic devices to accurately demonstrate effects of gamma, neutron and/or proton irradiation ranging from zero to the high end of POTP-64 dose rates and total dose levels.

DESCRIPTION: High quality detailed models of specific electro-optic devices are not readily available from standard industry sources. This is particularly true in the area of modeling performance in hostile environments as caused by nuclear effects and space. The benefits of using modeling and simulation to predict system performance have become widely understood in the industry and the DoD. System behavior can be evaluated early in the design cycle, well before expenditures and resources are more deeply committed to a design with an unforeseen flaw. Also, "what if" scenarios may be readily accomplished, speeding up decisions regarding approach, and hence mitigating design risk. The more detailed the model, the more accurately system behavior will be predicted. Detailed electro-optic device models are very complex mathematical structures which combine concepts ranging from applied physics to advanced numerical analysis. Hence, development of these models is no small task, and the development of a partnership between the Air Force and Industry would greatly benefit both through the sharing of technology and knowledge. To this end, these models should be developed using Analogy, Inc's MASTR modeling language for execution on their SaberTM Simulator. The purpose of this project is to develop detailed models of the following devices:

1. LED:p/n IRS-1306-640, from Laser Diode, Incorporated.
2. Fiber-Optic Cable: Flightguide TM 100/140 mm Fiber
Optic Cable, from Spectran.

Models should demonstrate the effects of Irradiation using FOTP-64 dose rates and total dose levels.

These devices have been selected because their performance specifications make them strong candidates for use in DoD communications systems and weapons systems, particularly the F-22 ATF, RAH-66 Commanche Helicopter, and B-52 (FOIS) aircraft. For example, the Spectran fiber-optic cable is a customized product developed in a cooperative effort involving Lockheed, Sikorsky, Boeing, Spectran and the Electro-Optics Technology Group (EOTG) at McClellan AFB, to target use in military avionics systems such as the F-22 ATF aircraft.

PHASE I: Determine feasibility, as well as level of detail and accuracy required in order for these models to be used effectively in the simulation of electro-optic device performance in space and aircraft applications. Provide cost analysis to achieve these goals using Analogy’s MAST R modeling language and SaberTM Simulator.

PHASE II: Design and develop the above specified models using the MAST R modeling language. Demonstrate and evaluate model performance in the EOTG at McClellan AFB, CA.

POTENTIAL COMMERCIAL MARKET: Electro-optic models will have widespread applications in the commercial sector, not only in modeling communications links, but also in electro-optic sensor applications. Optical models of this caliber are needed for applications in the space and aerospace industry. These models will reduce costs associated with redesigning optical components for use in radiation hardened (Rad-Hard) environments.

AF97-224 TITLE: Sustainment Science and Technologies

Category: Basic Research

OBJECTIVE: Develop software to support the information, processes, objects, and rules necessary for successful maintenance and repair of large weapon systems.

DESCRIPTION: Sustainment is all the activity necessary for the maintenance and repair of an end item with a minimum amount of disassembly. Sustainment is only working on what needs attention (on-condition-maintenance) as opposed to most remanufacturing (total teardown and rebuild). A great deal of technology exists to aid the production and manufacturing domain. However, little has been developed for the sustainment domain. Normally, the assumption has been that _what_ works for manufacturing will also work for remanufacturing and sustainment. This is verifiable by the current DOD _acquisition process which appends operations and support to the end of the development and production and recommends the same systems engineering process and tools for maintenance and repair of weapon systems. In reality, and especially for large complex systems, the nature of maintenance and repair is such that a portion of the work is unpredictable (not identified until programmed work has been initiated), and therefore not planned for through the methods and tools used to manage the work. In cases where the end item is completely disassembled and routed for repair (remanufactured), information systems developed for standard production prove quite useful. However, when the objective includes minimizing the amount of invasive disassembly needed for overhaul, then the information and decisions necessary for efficient management and control of the repair changes dramatically. Production management and scheduling systems (such as Critical Path Method, or _CPM_, and Project Evaluation and Review Technique, or _PERT_, which assume knowledge of and independence of activities) often produce impossible _work to lists_ due to the heavily shared resource pools, and activity dependencies found in sustainment. The information concerning the maintenance and repair is continually being acquired during the repair cycle. Especially for large systems, e.g. aircraft and ships, there exists a substantial amount of work which is identified only after the depot has taken possession of the end item and repair work has been initiated. Moreover, the lag between the time when these _unpredictable discrepancies are identified when the replacement parts have been ordered and acquired can be extremely long, and therefore costly. The nature of this type of (minimized disassembly) remanufacturing necessitates that the rules, processes, and objects needed to minimize the effect of maintenance and repair on large system availability at a minimum cost of resources must be examined so that the appropriate science and technology can be applied. These characteristics of the maintenance and repair domain will be documented using the enterprise engineering Integration Definition language (IDEF) family of methods. Minimally the research should investigate the nature of:

1. Unknown work effect on labor and bills of repair and materials
2. Flexibility of sequence on repair, especially on large weapon systems
3. Access and repair constraints
4. Shop floor knowledge base (point of discovery)
5. Managing the iterations and progression of unknown work changes throughout the life cycle of the weapon system.

PHASE I: Produce a sustainment principles document containing at a minimum the information, processes, and relationships which must be maintained for sustainment at minimum life cycle cost and maximum availability of weapon system. Develop a system requirements document and a system software architecture for information technology necessary to support the nature of sustainment from the time the work specification is identified to the time the end item is released for redeployment. Included in this document should be a set of verifiable principles which govern the nature of large end item (minimized disassembly) sustainment environments.

PHASE II: Complete the Phase I design and develop a full scale prototype. Test, document and revise as necessary the documents from Phase I.

POTENTIAL COMMERCIAL MARKET: This technology has immediate application in any remanufacturing industry. Commercial airlines, power plants, railcar maintenance, and ship maintenance are a few of the many application industries.

RELATED REFERENCES:

AF97-227 TITLE: Miniaturized/Universal Flight Termination System (FTS)

Category: Engineering Development

OBJECTIVE: Develop a Miniaturized FTS capable of application on a wide range of weapon systems.

DESCRIPTION: Flight termination systems (FTS) are installed in a large variety of weapon systems and drones to abort the vehicle’s flight if a failure occurs and continued flight becomes dangerous. The current approach to design and testing of an FTS is to develop a unique FTS for each individual weapon or system. Physical space limitations available for the FTS have resulted in the FTS design being incorporated into the system design process resulting in long term design cycles. One to two years of design and environmental qualification testing are required for each unique FTS using today’s methods. This approach has resulted in a separate FTS for the JDAM, JSOW, AGM-130, MMTD, and QF-4 systems, with no interchangeability or interoperability. Yet all the FTSs in these systems accomplish the same end - initiate an explosive or actuator. This effort should provide the engineering, research, and development necessary to standardize and miniaturize an FTS suited for wide ranging applications in future weapon systems. The baseline design may offer several options to meet the widest possible range of vehicles, considering retrofit of existing FTS designs as a possibility. The effort will perform verification testing to measured or calculated extreme environmental conditions rather than the minimum necessary for a specific program. Innovative design and packaging is essential. Guidelines for system requirements should be taken from RCC-STD-319-92, Flight Termination Systems Commonality Standard. System specifications, component specifications, drawings and test procedures will be part of this effort.

PHASE I: Define hardware and software system requirements, research appropriate technologies for the best short-term design baseline, and identify new areas of emerging technologies capable of offering further miniaturization. Develop system specifications and verification test plans.

PHASE II: Design, develop and produce a limited number of flight worthy prototype FTSs. Validate the system through verification testing and document results.

POTENTIAL COMMERCIAL MARKET: Industries such as oil and mining, commercial aviation and transportation have potential uses for this miniaturized, hardened, highly reliable communications package capable of performing many functions remotely.

RELATED REFERENCES:
1. RCC-319-92, Flight Termination System Commonality Standard.
Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AF97-228 TITLE: **Miniature Munitions Aerodynamic Global Positioning System (GPS) Receiver/Transmitter (MMAGRET)**

Category: Engineering Development

OBJECTIVE: Develop a miniaturized, aerodynamic GPS receiver, capable of mounting on a high speed munition and providing real-time telemetry of position data to a ground station.

DESCRIPTION: The technology shortfall exists in determining highly accurate Time Space Position Information (TSP) for high-speed ballistic or guided munitions. This information is critical to the development of missile warning receivers, missile signature models, and missile flight tracking capabilities. Current methods and capabilities are very limited for modeling and radar tracking of small, high-speed munitions at significant ranges and altitudes. Development of a munitions mounted GPS receiver with the capability to telemeter real-time position data to mission control appears to offer a substantial technology leap in test and evaluation capability. The technical challenge is to produce a very low drag, rugged, miniature, aerodynamic GPS receiver and telemetry kit which would not break lock during munitions maneuvers.

PHASE I: Determine hardware and software requirements of the MMAGRET system, research appropriate technologies and accomplish design trade-offs, and prepare validation test plans.

PHASE II: Design, develop and produce a flight worthy prototype MMAGRET instrumentation system. Validate the system through verification testing and document results.

POTENTIAL COMMERCIAL MARKET: Commercial aircraft, surveying, oil and mining, intelligent automotive, and emergency medical/ search & rescue industries.

REFERENCES:
1. Abstract: "Carrier Phase Time Space Position Information Demonstration (CAPTIDE)."
2. Abstract: "Navigation and GPS Lessons Learned from the EGDE Program."

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AF97-229 TITLE: **Multi-Spectral Airborne Common Calibration Source (MACCS)**

Category: Engineering Development

OBJECTIVE: Develop a multi-spectral airborne calibration source, with wavelength generation capability ranging from 0.2 to 15 micrometers.

DESCRIPTION: The technology shortfall exists in providing quality multi-spectral airborne target signature data to airborne sensors under test. This effort will address the problem of absolute calibration of airborne measurement instrumentation in the Ultraviolet/Visible/Infrared wavelengths. All current measurement instrumentation is calibrated in the ground lab environment. The instrumentation is then subject to changes in pressure, vibration and temperature when brought to altitude where data are collected. The current practice is to compensate for instrument changes with out-of-focus onboard sources; success has been limited. The need is for a pod based calibration source traceable to the standards of the National Institute of Standards and Technologies (NIST) that is capable of being flown on target aircraft. This calibrated source must be measurable on both the ground and in the air; instrumentation changes that occur between ground to air and from day to day must be monitored and tracked. This capability would aid in the evaluation of sensors such as radiometers, spectrometers and imagers measuring in the same wavelength region by providing a common calibration source in flight and offering continuity from instrument to instrument. Additionally, this common calibration source would benefit in the test and evaluation of several weapon system sensors such as Lantirn, ASSRAM and AIM-9X by creating a standard for their performance evaluation.

AF-189
PHASE I: Determine hardware and software requirements of the MACCS system, research appropriate technologies and accomplish design trade-offs, and prepare validation test plans.

PHASE II: Design, develop and produce a flight worthy prototype MACCS system. Validate the system through verification testing and document the results.

POTENTIAL COMMERCIAL MARKET: Commercial uses include all industries using sensors requiring calibration, such as intelligent transportation, environmental monitoring, and medical equipment.

REFERENCES:

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

Category: Engineering Development

OBJECTIVE: Develop a simulation of an inertial measurement unit, capable of electronic signal injection into a GPS guidance receiver.

DESCRIPTION: Current munition GPS receivers use an inertial measurement unit for updating position data during periods of highly dynamic flight. A need exists to simulate the function of the inertial measurement unit and to electronically inject the output into a GPS guidance receiver. This process would be used during installed systems ground testing in an anechoic chamber facility located at Eglin AFB, Florida. Current GPS receiver testing is accomplished without simulation of the aircraft or munition inertial motion. The purpose of this simulation is to predict alignment accuracy between the aircraft and the carried munition. Flight motion tables that move the aircraft or munition during simulated flight in an installed systems environment are not a viable solution. The simulated forces and torques that represent platform forces and torques in the three axes would be generated by an existing six degree of freedom (6DOF) flight simulator. The 6DOF simulator also provides synchronized state vector data to the real-time GPS Satellite Constellation RF Simulator. A method must be devised to inject these simulated forces and torques into the GPS receiver to simulate the measured forces and torques of the receiver’s inertial measurement unit. The design must provide the least intrusive method of signal injection and be applicable to a wide range of GPS guidance receivers.

PHASE I: Determine hardware and software requirements of a system capable of electronic signal injection of inertial forces and torques into GPS guidance receivers. Research appropriate technologies, accomplish design trade-offs, and prepare validation test plans.

PHASE II: Design, develop and produce the necessary hardware and software to accomplish system requirements. Validate the system through verification testing and document the results.

POTENTIAL COMMERCIAL MARKET: Inertial measurement simulation input capability would be useful to many commercial applications, such as aviation, trucking, shipping, and surveying.

REFERENCES:

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AF-190
TITLE: Time-Space-Position-Information (TSPI) and Terrain Three Dimensional (3-D) Visualization (TT3DV)

Category: Advanced Development

OBJECTIVE: Develop the capability to visualize TSPI and terrain data on a three dimensional (3D) display system in real-time.

DESCRIPTION: TSPI visualization systems used today at the Air Force Development Test Center (AFDTC) and the Air Force Flight Test Center (AFFTC) utilize two dimensional (2D) display systems for both real-time and post-mission data analysis. Examples are monitors and large screen projection systems. Some TSPI visualization systems generate 3D data as outputs, but the 3D data are translated so that it's compatible with 2D display systems. Currently, 3D volumetric display systems are being utilized by the Federal Aviation Administration (FAA) for monitoring air traffic in 3D without the 3D goggles; the aircraft's position information is derived from radars. The AFDTC needs a similar system for ISTR using simulated TSPI as a data source. AFFTC needs a similar system for OAR testing utilizing the Global Positioning System (GPS) as the source of position information. The system should be capable of displaying realistic terrain, structures, vehicle models and physical test configurations along with data overlays. The ability to display TSPI in real-time on a 3D display system makes it possible for test engineers to observe resource utilization continuously as the mission develops. Quicker turn-around time in the decision process will lead to more efficient use of limited test resources and will increase the information content of the data being collected. Success in this endeavor, if its results in the development of affordable products, will eventually produce cost savings for AFDTC and AFFTC customers. Proposed solutions might consider improvements in 3D volumetric display systems.

PHASE I: Conduct a feasibility analysis and prepare a recommended system design.
PHASE II: Construct a prototype system and demonstrate it at the AFDTC.

POTENTIAL COMMERCIAL MARKET: This capability is applicable to the testing of both military and commercial aircraft. 3D volumetric systems can be used for a wide variety of applications for scientific, commercial and military purposes.

REFERENCES:

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

TITLE: Operation of Diesel Engines on Low Lubricity/Low Viscosity Fuels

Category: Exploratory Development

OBJECTIVE: Develop fuel injection system modifications needed to minimize the problems associated with the use of low lubricity/low viscosity fuels.

DESCRIPTION: The problem of operating vehicles on low lubricity and/or low viscosity fuels is currently shared by both commercial and military vehicle users. As new Environmental Protection Agency (EPA) regulations require the commercial market to use low-sulfur diesel fuel, and as the Department of Defense (DoD) is adopting the use of JP-8 fuel (referred to as DF-8 when used as a ground fuel) as a "Single Battlefield Fuel," it is apparent that all of our vehicles will be subjected to the problems associated with using low lubricity/low viscosity fuels. Both low-sulfur diesel fuel and DF-8 fuel present various problems for current engines in use, as shown in military field operations. This task will require the contractor to evaluate the associated low lubricity and low viscosity characteristics of the new low-sulfur diesel and DF 8 and their resulting effects on engine performance and component life. Because engine components are lubricated and cooled by the fuel, the fuel injector pump operation and failure rates, which result from the use of such fuels is a primary concern. The ultimate goal of this effort is to develop a modification, replacement, or relocation of the fuel injection system that will operate using DF-8 or low-sulfur diesel fuel without significantly reducing engine performance or component life as a result of the fuel used. San Antonio Air Logistics Center (ALC) is the center primarily responsible for fuels and engines, while the Warner Robins ALC Vehicle Management Directorate (WR-ALC/LV) is the prime for the support and operation of Air Force vehicles. LV is the Air Force
lead on solving this problem.

PHASE I: This phase of the effort should identify exactly how such low lubricity/low viscosity affect the components of vehicle fuel injector systems. In addition, the effort should delineate the resulting degradation of component mean-time-between-failure (MTBF) and system operation. The relative impact of low lubricity versus low viscosity should be identified for each fuel injection system component affected. Finally, conclusions should be drawn which identify the feasibility of proposed solution(s) to this problem, given the results of the Phase I effort.

PHASE II: This phase of the effort will require the contractor fully research and develop the proposed solution(s) to this problem. If the proposed solution is a replacement issue, a prototype should be developed, tested, evaluated and be subjected to a form, fit, and function verification. If the proposed solution is a modification or relocation issue, such a solution should be researched, implemented, and tested.

POTENTIAL COMMERCIAL MARKET: Both low-sulfur diesel fuels, used in commercial vehicles, and DF-8, used in military vehicles, share the problems associated with the use of such low lubricity/low viscosity fuels. Both commercial and military vehicles would benefit from a solution to this problem.

REFERENCES:

AF97-234 TITLE: On-Aircraft Radio Test Set

Category: Exploratory Development

OBJECTIVE: Develop a compact, lightweight, carry-on, and self-contained test set for on-aircraft, noninflight evaluation of common radio communications equipment.

DESCRIPTION: Past U.S. Air Force maintenance philosophy allowed for "Three-Level Maintenance," in which very simple equipment tests were conducted on the aircraft, in-depth equipment tests and minor repairs were handled at an intermediate maintenance shop, and major repairs were handled at maintenance depots (not collocated with the operation site). The U.S. Air Force maintenance philosophy is now looking more toward "Two-Level Maintenance," which eliminates the intermediate maintenance shop, thus precluding in-depth minimum performance and functionality testing of aircraft electronic equipment, such as radio communications equipment. As a result, the aircraft maintenance technician must now, with no method of evaluating on-board equipment other than intuition and talk tests, decide if the on-board equipment should be removed, repaired, and replaced with a functioning unit. When the unit is removed, it is then sent to the central depot maintenance facility for testing and repair, if necessary. Too often, the equipment is not defective and returned to the field, resulting in unnecessary expense for transportation, depot evaluation, and replacement. A radio test set should be developed that is lightweight, rugged, self-contained, and simple to use on common aircraft radio communications equipment not inflight (i.e. AN/ARC-164 UHF receiver-transmitter) to test only essential functional characteristics and determine if the equipment should be replaced.

PHASE I: This effort should identify essential tests and system interference considerations, determine the feasibility of technical methods of producing and analyzing signals, determine the feasibility of the proposed technological solution(s), explore innovative packaging concepts.

PHASE II: This effort should be focused on the development, test, and evaluation of a prototype test set.

POTENTIAL COMMERCIAL MARKET: Not only will the development of such a test set benefit the U.S. Air Force, as outlined above, but such development will also enable commercial providers of radio communications equipment to provide their customers with quick, inexpensive tests to determine if their equipment is functional. The tester also has potential applications for testing cellular telephones, cordless telephones, citizen's band radios, pagers, and commercial walkie-talkies, in which simple tests of salient characteristics will determine if indepth repair is required.

AF-192
AF97-235 TITLE: Remote Positioning Capability for Accurate Placement of Test Assets

Category: Advanced Development

OBJECTIVE: Develop a system to accurately locate, in six dimensions, test assets in a large Anechoic Chamber.

DESCRIPTION: Testing of installed, integrated Avionics requires stimulation of multiple sensors, having one or more apertures on a System Under Test (SUT). Performing this testing in a large Anechoic Chamber requires the placement of testing assets in various locations around the SUT. These test objects will include, but not be limited to individual antennas and antenna arrays for RF stimulation, and light and heat sources for IR Stimulation. The SUT itself and its adjuncts are testing assets. The placement of the SUT can be anywhere inside large Anechoic chambers (264 feet x 250 feet x 70 feet), including suspended on a sling from one of two hoists.

This requirement is for a device and its necessary adjuncts that accurately record the positions and orientations of testing assets within six dimensions (X, Y, Z, Roll, Pitch, and Yaw) in a repeatable configuration. The recording should be an archiveable digital data file. Test repetitions must be able to use the same device, together with the archived recording, to determine correct test assets placement. It should be able to show individual asset repositioning errors using graphical visualization.

PHASE I: Should result in a feasibility analysis and a proposed system design and cost analysis. Trade-off of various methods and placement and installation of these devices is desired.

PHASE II: Develop a system capable of measuring, recording, and logging hundreds of objects which may be located in the anechoic chamber. Each object's position and orientation error will be presented numerically and graphically.

POTENTIAL COMMERCIAL MARKET: This technique is directly applicable to testing of military and commercial aircraft as well as ground vehicles to accurately determine orientation of stimulators on RF and IR signatures. This system could be used to position object in stage setup and other operations which require objects to be removed and replaced in a given orientation. Configuration control of general test setup would be maintained with this system.

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AF97-237 TITLE: Automatic Telemetry Stream Data Format Generation

Category: Engineering Development

OBJECTIVE: Develop an algorithm or a process based automatic telemetry stream data format generation system.

DESCRIPTION: Designing a telemetry data format is a manual, expertise-intensive, time-consuming task. Frequent revisions are discouraged. Even though different tests have different data requirements, designing different telemetry formats to accommodate those requirements efficiently are typically not done. Instead, flexible, inefficient formats are designed and modified slightly to avoid gross inefficiencies. Currently, Flight Test Instrumentation Engineers manually create the telemetry frame format. The format must accommodate the test's required sampling rates for specific measurements on-board the aircraft. It must also accommodate the sampling capabilities of the instrumentation system. For example, the aircraft longitude, latitude, altitude may only need to be sampled once per second, while more safety-critical parameters like pitch, roll, and airspeed may be required at 10 or 20 samples per second. The instrumentation system may require data settling time or recovery time before another sample from a transducer’s data channel can be processed. Instrumentation Engineers use their knowledge of test requirements, transmission bandwidth restrictions, and instrumentation system capabilities to design the data format. The design process involves trade-offs and compromises, requiring the application of logic and reasoning. If an algorithmic or a process-oriented solution for designing telemetry formats could be devised, it could revolutionize the Flight Test Instrumentation business. If a unique format could be produced satisfying the constraints of the instrumentation system, requirements of the testers, and limitations of transmission bandwidth significant cost reduction would result. Not only would requirements and constraints balancing be automated, saving staff-hours, but the significant amount of communication and coordination between airborne and ground systems about telemetry format details could be eliminated. This reduction in coordination and communication would make both ground and airborne systems less complex and easier to operate and maintain. Finding an algorithm or process to automate telemetry data format design will require the creative and innovative application of technology.
and a deep understanding of the telemetry process.

PHASE I: Assess current instrumentation system data requirements and constraints; bandwidth considerations and restrictions. Develop metrics to evaluate different algorithms and processes.

PHASE II: Develop the automatic telemetry stream data format generation system.

POTENTIAL COMMERCIAL MARKET: The problem of designing telemetry data formats is universal among telemetry users, especially where bandwidth is at a premium and large quantity of telemetering is required. This research has broad applicability across several industries including airframe manufacturing, automobile manufacturing, medical telemetry equipment manufacturing, space and satellite communication system manufacturers and operators, and other telemetry users. The products of this research have broad dual-use potential.

Notice: Only government personnel will evaluate proposals. However, base support contractors may monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AF97-238 TITLE: Optical Slip-Ring Connector (OSRC)

Category: Advanced Development

OBJECTIVE: Develop advancements in optical rotary connector technology by developing and demonstrating an affordable replacement alternative to copper slip-ring and wave-guide rotary connectors.

DESCRIPTION: Current ground-based electro-optic tracking systems at DoD test and training ranges use copper slip-rings; cable wrap, and wave-guide rotary-joints for the conduction of electrical power; ground; and signals between the electro-optic imaging sensors located on the rotating platform and other system elements at fixed locations relative to the sensors. Existing connection methods impose severe limitations on the operational capabilities of these systems. In the case of copper slip-rings, noise severely impacts the quality of data at higher rates. Cable wrap techniques limit the ability of the tracking system to track continuously without dropping track and "unwrapping" the cables. Rotary wave-guide joints are only used for the transmission of radio-frequency signals through the axes of the mount. Most ground-based tracking systems at the AFFTC use mounts with two orthogonal axes, an elevation axis that is constrained to approximately 180 degrees of motion, and an azimuth axis. Some systems use cable wrap connections that limit rotation in azimuth to about 360 degrees, while others use rotary joints and slip-rings that allows them to rotate freely. New technological changes use electro-optical sensors are smaller, lighter, and provide higher performance than their predecessors. There is a tendency to add more sensors to existing mounts resulting in an increased number of data streams at higher rates. High definition color video and infrared sensors are among the new packages being installed on tracking systems that generate high-rate data streams. A reliable method of transmitting the higher data rates is required without impacting the data quality or limiting the tracking capabilities of the system. An optical approach would provide a high bandwidth, low noise transmission path without limiting the rotational capability of range instrumentation systems. Optical rotary connectors must be capable of duplex transmission of multiple high-rate electro-optic sensor data streams and control signals between the rotating and stationary parts of the system. A robust, affordable, solution to the current limitations in slip-ring/wave-guide rotary connectors could have wide applicability across all DoD test and training ranges.

PHASE I: Conduct a feasibility analysis and prepare a recommended system design.

PHASE II: Construct a prototype system and demonstrate at the Air Force Flight Test Center (AFFTC).

POTENTIAL COMMERCIAL MARKET: This technology is directly applicable to numerous commercial applications involving the transmission of large amounts of data to and from moving platforms. Potential applications include robotics (as used in the fabrication of automobiles and aircraft); surveillance systems (as used in monitoring aircraft and automobile traffic); instrumentation and observation systems located on rotating platforms (such as turbines and jet engines); and multi-spectral vision systems located on automobiles and aircraft.

REFERENCES:

Notice: Only government personnel will evaluate proposals. However, base support contractors may monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AF-194
AF97-239 TITLE: Standard Automatic Test System (ATS) Interface

Category: Engineering Development

OBJECTIVE: Develop the capability to rehost Test Program Sets (TPSs) more cost effectively.

DESCRIPTION: The DoD spends billions of dollars each year rehosting older TPSs to newer, more modernized ATS due to hardware obsolescence and supportability problems. One of the primary driving cost factors in rehosting TPSs is the ATS Interface Test Adapter (ITA). In the past, weapon system managers have acquired proprietary test systems with unique interfaces to support their TPS requirements, greatly adding to the long term costs of maintaining the TPSs, when rehosting is required. Review of commercial ITA products indicates that standardization is possible, representing a tremendous opportunity to cut these long term supportability costs. The DoD currently uses commercial product standards to meet ITA requirements, which has helped in some degree to reduce TPS rehost cost. The DoD's ITA requirements can be expressed in a commercial standard, eliminating dependence on single sources, increasing competition, and stimulating market growth by allowing multiple vendors to participate in manufacturing products for market. Consensus exists within the DoD and industry to formulate an ITA standard which would drastically cut TPS rehost costs. Initial contacts with industry concerning the development of such a standard has been very positive. The goal of this project would be to migrate existing products standards (i.e. vendor specific products) to a single commercial standard (i.e. an open specification). The proposed standard would ultimately be sponsored under the Institute of Electrical Engineers (IEEE) forum.

PHASE I: Development of the ITA standard/specification and preparation for submittal to the IEEE as a standard. The submittal would encompass the formation in a industry technical forum (existing DoD commercial ITA vendors) to resolve any technical design and manufacturing issues. The successful completion of Phase I would be successful submission of the standard for balloting within the IEEE community for trial use.

PHASE II: Ballot resolution and publication of the standard, with parallel development of a full-up product as specified by the IEEE standard. The primary goal of this phase would be to manufacture at least two ITA assemblies based on the IEEE standard and demonstrate the rehost potential on selected DoD ATS. Successful completion of phase II would conclude with a compatibility demonstration of the ITA assemblies across different selected DoD ATS.

POTENTIAL COMMERCIAL MARKET: This project has the potential to revolutionize the commercial ATS market as we currently know it. The standardization of ITA assemblies will be quickly embraced by the DoD and the commercial airline industry. Successful demonstration of the IEEE standard would serve as a springboard to other standards forums including the International Electrotechnical Commission (IEC - European Countries) and the International Standards Organization (ISO - Worldwide). International ITA standardization would also strengthen NATO functions where weapon systems could be tested on other allied systems.

REFERENCES:
1. IEEE 1226 - A Broad Based Environment For Test (ABBET) Longueneare Memo, dated 29 April 94, "DoD Policy for Automatic Test Systems"
2. SECDEF Memorandum, dated 29 June 94, "Specifications and Standards - A New Way of Doing Business"
3. USD (A&T) Memorandum, dated 29 November 94, "Acquisition of Weapons Systems Electronics Using Open Systems Specifications and Standards"

AF97-241 TITLE: Robotic Test Probe

Category: Engineering Development

OBJECTIVE: Develop a x-y robot probe with camera to embed in a VXI test system, to automate probing during test.

DESCRIPTION: In many automatic test programs it is necessary to manually probe the circuit card to measure signals and voltages inaccessible from the card connector. If the test fixture contained an x-y robotic probe, this probing could be automated as part of the test program procedure. A visual image of the probe points could be captured and mapped, so that the test programmer calls up the image during test generation and indicates the probe point. The robot probe point is then directed during test to that point to pick off the signal of interest. With the proper support software and controller, this can make test points normally inaccessible without manual probing available, greatly enriching the capability of the test program developer.
PHASE I: Contractor will identify available off-the-shelf hardware and software that can be applied to prototyping this capability on a VXI test station. The prototype will be demonstrated to show that automatic control is possible during test execution.

PHASE II:
1. Produce a working model test fixture:
 a. The appropriate interfaces and routines are developed to embed the test development capability in a commercial mainstream test development environment (like LabView or HP VEE).
 b. Users can interactively call up the visual image of the circuit card and specify the location to probe. The robotic probe accurately probes the required test points and measures the signal.
 c. The robot controller is constructed and integrated into the VXI test system.
2. Extensively test the robotic test fixture and test development/execution capability.
 a. The test fixture is demonstrated to be usable with a variety of interface test adapters.
 b. The fixture is demonstrated to provide consistent and acceptable measurement of the desired signal. Variations due to different probe pressure applied or poorly placed contact are not acceptable.
 c. The software must be well integrated into the test development/execution environment.
 d. The robot controller electronics must be successfully integrated into the VXI system, matching the VXI physical and electrical interfaces.

POTENTIAL COMMERCIAL MARKET: This test tool has the potential of greatly increasing the flexibility of the test program developer, by fully automating the test program and by making all signal points accessible to the test system.

AF97-242 TITLE: Nonintrusive System for Replication of Interlayer Printed Electronic Circuit Patterns

Category: Engineering Development

OBJECTIVE: Develop a nonintrusive method and system for replication of interlayer printed electronic circuit patterns from multilayer printed circuit boards.

DESCRIPTION: Sophisticated electronic and computer circuitry used in military weapon systems is being compacted into high density printed circuits interlayered together into multilayered printed circuit boards. Miniaturized electronic components are mounted on these boards. These fully assembled printed circuit boards are central to the function, performance and reliability of their associated weapon systems. With an aging arsenal, the Department of Defense (DOD) is in constant need of maintaining systems where past suppliers are not willing to continue their supply role or parts have become obsolete. Both situations lead to the need to modify system electronics. Presently, boards must be delaminated to determine the circuit patterns in the absence of technical data. Development of a nonintrusive method and system for replication of interlayer printed electronic circuit patterns from multilayer printed circuit boards would be of significant benefit to the DoD. This SBIR effort will develop a nonintrusive method and system including software for replication of interlayer printed electronic circuit patterns from multilayer printed circuit boards. The method and system will be evaluated using multilayers up to 30 layers and circuit spacings down to 5 mil. Additionally, this effort will develop a prototype commercializable system that will allow for the nonintrusive replication of printed circuit cards. The prototype tool will be designed such that it can be integrated with any required commercial analyzing or imaging tools.

PHASE I: Provide a detailed description and design of the proposed method for achieving nonintrusive printed electronic circuit replication of multiple layer printed circuit boards as described above including materials, components, interface requirements, limitations, and expected performance criteria. Details shall include particular subsystems to be enhanced, programs to be utilized, proposed hardware and software development platforms, software development methodologies, as well as any necessary interaction with existing systems. Details shall also be provided as to the proposed method for integrating the developed system and findings into existing systems. A clear path to a Phase II should be established.

PHASE II: Develop a working prototype of the system and implement a proof of concept demonstration. The prototype should be able to fully demonstrate the benefits of the proposed technology. Perform system analysis to determine the performance benefits of the technology. Cost, time, and manpower savings shall be quantified.

POTENTIAL COMMERCIAL MARKET: Development of a nonintrusive method and system for replication of interlayer printed electronic circuit patterns from multilayer printed circuit boards would be of significant benefit to the DoD and its contractors in the private sector. With an aging arsenal, the DoD is in constant need of maintaining systems where past suppliers are not willing to continue their supply role or parts have become obsolete. Both situations lead to the need to modify system
electronics. Presently, boards must be delaminated to determine the circuit patterns in the absence of technical data. Nearly every department of the military faces this need regularly.

REFERENCES:

AF97-243 TITLE: Carboxyl-Terminated Plybutadiene (CTPB) Process for ANB-3066 Solid Rocket Propellant

Category: Engineering Development

OBJECTIVE: Develop a new process for the Air Force to make Carboxyl Terminated Polybutadiene (CTPB) that can be qualified for a use as a binder in ANB-3066 solid rocket propellant.

DESCRIPTION: ANB-3066 and other solid rocket propellants use CTPB as the polymeric binder during propellant manufacture. This polymer is one of the key ingredients that affects the overall processing ballistic and mechanical properties of the propellant. Therefore, it is very critical to the propellant manufacturing process that the chemical and physical properties of the CTPB material meet the standards of Aerojet specification ASPC-34242. The chemical and physical properties that are controlled with this specification and molecular weight, water content, acid content, viscosity, volatiles, refractive index, antioxidant, ash, unsaturation type, viscosity ratio, and carbon tetrachloride insolubles. An effort in the past tried to qualify an existing CTPB product to the Aerojet specification, but was unable to meet the requirements. It is the intent of this effort to develop a new manufacturing process for CTPB, on a laboratory scale, and qualify the material to the Aerojet specification. Once the standard is met, the process will be scaled-up to produce enough CTPB to be mixed with subscale propellant batches and cured. The cured propellant will then be tested to the Aerojet propellant specification SPC-36392AF. It is envisioned that, for this effort, all propellant processing and testing will be subcontracted out to one of the major solid propellant manufacturers who are qualified to process ANB-3066 propellant.

Currently there is only one manufacturer that is qualified to produce the CTPB polymer for use in ANB-3066 propellant, and their process is proprietary. Due to known and projected cost increases and potential programmatic risks of having only one source, it is in the best interest of the Air Force to develop an alternate process and qualify a second source to produce this product.

PHASE I: This effort will develop a new process to manufacture CTPB and qualify it to the Aerojet specification ASPC-34242. This will be done at a laboratory scale initially, manufacturing only enough CTPB to support the specification testing.

PHASE II: This phase will involve the effort to qualify the new CTPB material in ANB-3066 propellant. The contractor will be required to scale up the manufacturing process to produce enough CTPB to support small subscale propellant qualification batches. It is envisioned that the small business contractor would then subcontract the effort to process and test propellant, using the new CTPB material, with one of the current producers of solid rocket propellant. As part of this effort, the small business contractor would work with the propellant manufacturer during the propellant evaluation. Working together, contractors will modify processes as needed to qualify the new CTPB material.

POTENTIAL COMMERCIAL MARKET: CTPB is primarily used in the defense industry in several different solid rocket motors and across several different weapon systems. In addition to the defense usage, some commercial rocket motors for satellite launches also use this material.

REFERENCES:
1. Aerojet Specification ASPC-34242, Notice 1, 17 Jan 72, Polybutadiene, Carboxyl-Terminated.

NOTE: All references are unclassified, but have some limited distribution requirements.
AF97-244 TITLE: Advanced Test Software Technologies

Category: Basic Research

OBJECTIVE: Develop a more reliable test method to detect electronic failures using innovative software techniques; and using existing and/or planned future Air Force computer testing hardware.

DESCRIPTION: Newly developed and future generations of avionics and electronic equipment planned for use in Air Force applications will be significantly more complex than present systems, and rely exclusively on existing test software methods for repair. Also, the use of imbedded and distributed systems within aircraft pose additional testing challenges. Current test software methods that rely exclusively on the algorithmic analysis of digital patterns and analog signals will require too much processing time and computational power to determine the operational status of these equipment in a timely manner. New approaches for testing utilizing alternative software technologies must be created and/or applied to meet the testing requirements of these new equipment and systems throughout the complete development lifecycle.

PHASE I: The goal of Phase I is to identify and assess candidate technologies and approaches for improving test performance, accuracy, and reliability. Recommendations will be provided as to the potential usefulness of these technologies in specific application areas.

PHASE II: During Phase II further investigation into the most promising technologies and approaches will be made, including the design and prototype development of experimental applications to evaluate their effectiveness.

POTENTIAL COMMERCIAL MARKET: Successful results of this topic can be applied to improving failure detection in the entire commercial electronics/photonics community. Current avionics technology in the commercial aviation industry would directly benefit by allowing more repair and less replacement of complex and costly circuitry. Functional analysis and quality assurance/control in the commercial computer manufacturing industry could be greatly improved by providing the ability to detect faults in circuitry too complex for current fault detection. Techniques developed as a result of this topic could even be used in analyzing failure modes in communication networks, medical systems, and other areas of commerce.

REFERENCES:

AF97-245 TITLE: Adhesive-Sealable Barrier Material

Category: Basic Research

OBJECTIVE: Develop an easily sealed recyclable barrier material that approaches or meets the requirements of MIL-B-131 and MIL-B-117.

DESCRIPTION: A highly WVP barrier material, which can be made into large or small bags with high strength seams, and sealed without special pre-treatment, equipment, or electricity (in the field) is needed for packaging sensitive items at packaging lines in both warehouses and in the field. The best barrier material currently available is MIL-B-131 which consists of aluminum foil between two thermoplastic layers. The plastic layers add puncture resistance and allow the material to be heat-sealed. Bags made from this material, in accordance with MIL-B-117, are water-vapor-proof (WVP) with strong WVP seals, have high strength seams and are used to package items which are easily damaged by low levels of humidity. Because it's highly WVP, items can often be packaged without further preservation (coatings or desiccant). However, this material is not recyclable, and requires special equipment and electricity to seal, making its use difficult in field conditions where dirt and no electricity prevent sealing. An ideal material would meet the requirements of MIL-B-131 and MIL-B-117; minimum requirements would still include high water vapor resistance of the sealed bags and puncture resistance. The ideal material would also be easily recyclable.

The AFPTETF has found that using aluminum foil sealed with double-sided tape is promising. Many double-sided tapes with strong adhesion to metals exist and uncoated aluminum foil would be easily recyclable. However, aluminum foil requires cleaning before tape adhesion is maximized and an easy, effective cleaning method is unknown. Also, dirt may prevent an adequate seal with tape. Another barrier material, or a different sealing method for uncoated aluminum foil would be acceptable as long as the resulting barrier bags approach or meet the above specification requirements.

PHASE I: End products shall include proposed water-vaporproof (or resistant) barrier material(s), proposed sealing
method(s), test methods (if those in referenced specifications are not suitable to proposed materials and methods) for both materials and sealed bags, and preliminary test results or manufacturer data for material(s) and sealed bags. Materials and methods shall be chosen based on the ability to meet both technical requirements and ease of use.

PHASE II: End products shall include test results for sealed barrier bags using proposed material(s) and sealing method(s), and results of field testing of material(s), method(s) and sealed bags at selected DoD warehouses and field activities. Field testing shall include ease of use and how readily material(s) and method(s) may be formed into sealed barrier bags which meet requirements.

POTENTIAL COMMERCIAL MARKET: In general, any commercial process needing to package items in a water vapor proof bag, in areas where dirt or access to electricity make heat sealing difficult may be interested in a new barrier bag technology. Agricultural, food and drug companies who need to package seed, plants or chemicals in barrier bags to prevent moisture loss or absorption, manufacturers of gaskets or bare metal parts with high tolerance surfaces may be potential prime users of these bags.

REFERENCES:
1. MIL-B-131, MIL-B-117

AF97-246 TITILE: Environmentally Safe, In Situ Surface Protection of Carbon Steel Structures

Category: Exploratory Development

OBJECTIVE: Develop the "Laser Induced Surface Improvements" (LISI) surface alloying concept into an economically viable, for specific applications, and environmentally safe capability.

DESCRIPTION: Trends in turbine engine performance capabilities, made possible through improvements in component efficiency, have increased sensitivity of turbine engines to flow quality. In particular, increases in turbine inlet temperatures and the advent of fine blade cooling passages have increased the emphasis on providing flow, free from contamination, in ground test facilities. Corrosion of aging carbon steel ductwork can introduce undesired particulates, typically iron oxide, that can melt and adhere to engine hot-section components or clog cooling passages. The potential for turbine engine performance degradation, unrepresentative of flight, or even component damage has elevated this aspect of flow quality to one of Arnold Engineering Development Center's (AEDC's) top test-facility issues.

AEDC has initiated a program to implement methods that ensure the Engine Test Facility (ETF) meets current and future flow purity needs. The University of Tennessee Space Institute (UTSI) recently introduced a "Laser Induced Surface Improvements" (LISI) surface alloying concept, patent pending (Patent Application Serial Number 08/587,553), as a technique to extend the longevity of the existing plant air supply ducts while meeting future air purity needs. The technique uses heat generated by the absorption of a high-powered laser beam to coalesce metallic compounds that are introduced at the surface of a base metal. The method forms an alternate alloy with desirable characteristics in a thin surface layer. In the AEDC application, the addition of chromium produces a corrosion resistant surface alloy.

AEDC and UTSI recently engaged in an experimental feasibility investigation focused on determining the applicability of the method in the ETF environment. Although, the investigation addressed proof of concept, AEDC requires the development of an efficient and cost effective LISI system, optimized to the ETF plant environment, prior to large-scale application. The ETF plant environment contains approximately two miles of air supply ducting with diameters ranging from 24 inches to 108 inches, as well as valves, elbows, and expansion joints. The interior surfaces contain irregularities produced by welded seams or existing corrosion. A limited number of strategically placed 18 inch diameter ports provide access to the interior of the ductwork. ETF test requirements limit the time available for system installation and utilization. The developed LISI system must be portable, able to be rapidly put in place, and capable of modifying large and irregular surface areas. Typical access times to areas requiring repairs will be less than three days.

A system for implementing the LISI technique at AEDC must include the following: (1) a remotely-operated robot capable of traversing the ductwork, (2) a laser beam delivery unit on the robot capable of precisely focusing the laser beam and scanning the beam over predetermined patterns, and (3) an alloying element delivery unit that operates in conjunction with the beam delivery unit. It is desirable to position the laser external to the duct; a method for delivering the laser beam to a remote site inside the duct from an externally positioned laser (e.g., a fiberoptic cable) is needed.

The development must provide an increase in the demonstrated application rate of 10 sq ft/hr by at least a factor of two. Higher application rates are desirable. The economic viability issue will center on the application rate. A robotic unit that can be rapidly deployed and removed must be developed to permit quick response to the AEDC operational schedule.
PHASE I: A demonstration and evaluation of the proposed technique or process will be performed.
PHASE II: Phase II should result in a fully functional prototype capability for use by the Air Force.

POTENTIAL COMMERCIAL MARKET: The commercial market for this capability is extensive. Chemical refineries, power plants, ocean shipping facilities, bridges, and any steel structures exposed to the environment will benefit from this technology. The useful design life of these critical structures will be greatly increased. The replacement of aged and corrosion damaged structures can be avoided or postponed. The cost of fabricating new corrosion resistant structures will be reduced dramatically.

REFERENCES:

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business

AF97-247 TITLE: Tunable IR Laser for Spectroscopic Use

Category: Exploratory Development

OBJECTIVE: Develop a compact uncooled tunable mid-infrared laser source for use in engine emission, gas diagnostics, laboratory spectroscopic, and environmental applications.

DESCRIPTION: Accurate techniques are required for gas diagnostics and emission measurements in high temperature flow environments. A narrow line width source is required to separate the various spectral features required for accurate quantification of exhaust gases. A noninvasive optical technique such as laser spectroscopy offers the possibility of highly accurate low-concentration specie determination. Current laser technology does not readily allow obtaining in situ spectral data on several compounds simultaneously due to limited tuning range, limited output power, and/or physical constraints such as high operating powers or cryogenic cooling requirements.

A laser source with an output power of 1 to 2 milliwatts in a single mode with a spectral width of approximately 10-3 cm⁻¹ is required to isolate specie specific spectral features. The tunable range of the laser should be no less than 5 cm⁻¹ with a tuning rate of at least 10kHz over the 5 cm⁻¹ spectral region. The high tuning rate will allow for the use of frequency modulated spectroscopy. The laser source should not require cryogenic cooling and should be packaged in a unit of no more than 2' × 2' × 2'.

PHASE I: Analytically and experimentally investigate the feasibility of a tunable mid-infrared laser system.
PHASE II: Produce a marketable tunable laser-source for in situ and analytical laboratory applications.

POTENTIAL COMMERCIAL MARKET: The commercial market for such a device is extensive. This device would have use as a key component in gaseous phase monitors for air quality measurements and chemical process monitoring. Uses will include automobile emission measuring and monitoring devices, smoke-stack emission monitors, and commercial building air-quality monitors.

REFERENCES:

AF-200
Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AP97-248
TITLE: Nonintrusive Smoke Measurement

Category: Exploratory Development

OBJECTIVE: Develop an optical instrument for evaluating turbojet engine smoke.

DESCRIPTION: Current turbojet smoke measurements require drawing a sample of the exhaust gases through a filter. These techniques, besides being very time consuming, are subject to question due to the agglomeration and loss of particulates in the sampling system. A diagnostic instrument that will utilize a nonintrusive technique, such as laser induced incandescence, to map the soot mass flow across the engine exhaust plane is needed.

The instrument must be capable of measuring the total mass fraction of soot in the exhaust plume and it is desirable to determine the particle size distribution. The jet engine plume conditions would typically fall within the following range: temperature from 1000 to 1800 F, Static pressure of 2 to 14 psia, and equivalence ratios of 0.5 to 0.8. The instrument should be capable of measuring soot mass loading of 100 micrograms per cubic meter of combustion products, to within a desired accuracy of ± 10%. For the Phase I effort, there are no restrictions on the instrument size or weight.

PHASE I: A demonstration and evaluation of the proposed techniques will be performed.

PHASE II: A prototype system, configured to an AEDC test cell that will be selected during Phase I, will be built, tested, and installed at AEDC.

POTENTIAL COMMERCIAL MARKET: Operators of all types of oil fired engines, both stationary and mobile, are in need of diagnostic instruments to quickly and accurately measure the soot levels in the exhaust gases. Currently, various standards exist requiring invasive techniques and are not readily applicable or directly interpretable in terms of mass release rates. Potential customers also include those organizations responsible for environmental monitoring and compliance.

REFERENCES:

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business.

AP97-249
TITLE: Combined Total Integrated Scatter (TIS) and Retro-Reflectance Instrument for Hyperspectral and Laser Line Sources

Category: Exploratory Development

OBJECTIVE: Develop a portable instrument with the capability to measure both total integrated scatter (TIS) and retro-reflectance (or opposition effect) data for laser or hyperspectral sources.

DESCRIPTION: An instrument is needed that will provide the capability to measure total integrated scattered (TIS) radiation and the simultaneous measurement of the retro-reflected scatter component. Since both laser and noncoherent sources are of interest, capabilities for both types of source measurement must be included in the design. The instrument must also have the capability to obtain angular data (from normal incidence to 75 degrees off-normal) and data for both the parallel and perpendicular polarization components for both the TIS and Retro Reflection measurement modes.

This instrument will be used to augment thermal radiative-property data required for the measurement of hardbody signatures. Target surfaces are associated with surveillance, interceptors, camouflage, targets, and decoys. The retro-reflectance capability of the instrument also will be used for detecting backscattered radiation from hot particles in gaseous flows. The proof-of-concept laboratory version of the instrument will be upgraded to a portable prototype during Phase II.

AF-201
PHASE I: A demonstration and evaluation of the proposed techniques will be performed.
PHASE II: A marketable portable-prototype system for general application to instrumentation requirements for both field and laboratory applications will be produced, tested, and delivered to AEDC.

POTENTIAL COMMERCIAL MARKET: The commercialization potential for such a device appears to be high. As electro-optical instrumentation manufacturers seek to refine their products and expand capabilities, the ability to calibrate their devices to known standards becomes more critical. This device will aid in the calibration phase of product testing. Remote sensing and noncontact measurement devices made for use in high-speed manufacturing processes will also benefit from this technology.

REFERENCES:

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business

AF97-250 TITeL: Long Taper Hone

Category: Exploratory Development

OBJECTIVE: Develop a device that can hone bores with a taper over lengths up to 100 feet.

DESCRIPTION: A honing device is needed that can efficiently hone long tube bores with a taper. The subject tubes range in bore size between 2.5 inches and 8.0 inches in diameter and lengths up to 100 feet. The tubes are threaded together at regular intervals. The use of corrosive electrolytic fluids that may seep into the threaded joints during honing is not permissible. It is desirable to taper their bore with a taper ranging from 0.0 - 0.100 inch over their lengths. Small discrete steps are permissible but not desirable. The device should be one system with interchanged heads and either completely replace the existing honing system or mate with the existing system. It should have as a minimum an "in situ" bore measurement device, a linear distance measurement device, and a load feed mechanism that provides feedback to a control system for full automation of the hone control process. It is desirable to have the control system adaptable to other hone systems. The device should occupy approximately the same space as the current 100-foot hone system and provide similar capability for moving into and out of position for honing so that it does not interfere with normal testing operations. The dimensions of the current device are 30 inches wide by 30 inches high by 115 feet long. It should provide substantial savings in time over the current method in use; e.g., 40 hours for a honing taper of 0.045 inch over 68 feet in a 2.5-inch- diameter bore tube. The device should be rugged, reliable, and usable in an industrial application. It should also be usable for daily maintenance honing operations to maintain the taper as the bore diameter grows over time.

PHASE I: Phase I should develop the concept for the hone and demonstrate the concept on a 10-foot length of steel tubing with a bore of at least 2.5 inches.
PHASE II: Phase II should result in a fully functional prototype device for use at AEDC.

POTENTIAL COMMERCIAL MARKET: This honing device will have commercial application in the precision machining of short and long tubular products.

REFERENCES:
2. Astrop, A.W., "DEVELOPMENTS IN IN-LINE TRANSFER HONING MACHINES" Machinery and Production Engineering, v126 n 3240; Jan 8,1975;P 18-22.

Notice: Only government personnel will evaluate proposals. However, base support contractors may be used to monitor contract performance and testing. Any contract award may require a nondisclosure agreement between base support contractors and awarded small business

AF-202
AF97-252 TITLE: Airborne Monitoring of Ground Vehicle Motion

Category: Engineering Development

OBJECTIVE: Develop methods of detecting and maintaining track of ground vehicles during their periods of travel and rest.

DESCRIPTION: Airborne radars are capable of detecting both stationary and moving ground targets. Stationary targets can be detected with high resolution Synthetic Aperture Radars (SARs), while moving targets can be detected and tracked with Moving Target Indicator (MTI) radars. However, joint SAR/MTI operations are needed to detect and maintain continuous track of subject vehicles which intermittently travel and rest. Our ability to meet this goal is currently frustrated by the limited ability of SARs to distinguish stationary targets of interest from background clutter; and by the limited ability of MTI radars to distinguish moving targets of interest from other background traffic, particularly in regions of high-traffic density.

PHASE I: Identify concepts by which airborne radars can locate and maintain continuous track of vehicles of interest, in motion and at rest, over long periods of time. Show the feasibility of implementing the concept with current and/or advanced technologies.

PHASE II: Design a system to implement the concept derived in Phase I. Develop the key technologies needed to implement the design.

POTENTIAL COMMERCIAL MARKET: This research could yield important results for the military and commercial sector. The detection, identification, and tracking of critical mobile targets (such as mobile missile launchers, artillery, etc.) is of major importance to the military. Similarly, the detection, identification, and tracking of civilian vehicles is needed in support of border patrol, counter-drug enforcement, and counter-proliferation. For these activities we need to be able to monitor subject vehicles over long periods of time. The ability to observe the origins, destinations, and travel routes of suspect vehicles would be immensely valuable for identifying illegal activities and for rapid apprehension of the offending parties. The commercial sector would produce the radars, the airborne platforms (aircraft or lighter-than-air craft) to carry the radars, and the computer hardware/software to implement the desired detection and tracking system.

REFERENCES:

AF97-253 TITLE: Assessing Environmental Impacts on the Life Cycle of a System

Category: Advanced Development

OBJECTIVE: Develop a methodology and process to consider and analyze the environmental impacts throughout the life cycle of a weapon system.

DESCRIPTION: Both military and civilian system developers face the problem of design, manufacturing, maintaining, and disposing of systems while adhering to environmental laws, budgetary constraints and minimizing risks. Currently there are no accepted techniques, tools or valid metrics to treat the impacts or trade offs of hazardous materials (Haz Mat) on the life cycle of a system. A real vacuum exists in attempting to treat the Haz Mat problems during the early stages of a system concept. For example, Public Law 103-337, Section 815 requires analyzing as early in the process as feasible the life cycle environmental costs for major defense acquisition programs. A methodology, especially a quantitative one, that treats environmental impacts from system inception to system disposition is needed for both DoD and the commercial private sector.

PHASE I: Develop a prototype process for treating environmental effects on a weapon system (or commercial system), considering concept design, manufacturing, life cycle cost, and risk. Develop a prototype methodology and perform a feasibility demonstration.

PHASE II: Extend prototype into a working model, detailed process or toolset. Demonstrate the technique on an agreed-to-system concept to illustrate potential trade-offs while showing possible impacts on selected metrics including cost,
schedule, performance and impacts on the environment.

POTENTIAL COMMERCIAL MARKET: Process, technique, computer model or tool kit will have direct application to the commercial sector or DoD.

REFERENCES:
2. Environmental Consequence Analysis of Major Defense Acquisition Programs, P.L. 103-337, Section 815.

AF97-254 TITLE: Application of Genetic Algorithm to Optimization Problems

Category: Exploratory Development

OBJECTIVE: Develop methods to demonstrate the utility of the genetic algorithm or other suitable machines that learn techniques to solve commercial and DoD problems.

DESCRIPTION: The ever increasing processing speed of modern digital computers make the application of genetic algorithm practical alternatives toward solving problems that require optimization of an objective function. The utility of these algorithms have been demonstrated to solve transportation and queuing problems. One possible use of the genetic algorithm is to apply it to evolve better tactics for air-to-air combat. Solutions to the problem have been solved only for simple cases such as one participant versus another (1 vs 1). Few solutions have been demonstrated at the many-on-many level (M vs N). One objective of this effort is to optimize one opponents' exchange ration (red kills/blue losses) while the other opponent is performing to the best of its ability. Real-time operation is not required.

PHASE I: Perform a proof of principle application of the genetic algorithm and demonstrate its utility by a demonstration.

PHASE II: Develop a detailed process, apply the genetic algorithm to a large scale M vs N air-to-air combat and write the necessary software to interface with selected Air Force air-to-air combat models.

POTENTIAL COMMERCIAL MARKET: Many commercial applications in the area of transportation, checkout lines and others, have been demonstrated. This could extend the realm of application to fields where the two sides react to each other including bio-medical fields.

REFERENCES:

AF97-255 TITLE: C4I Systems/Subsystems

Category: Exploratory Development

OBJECTIVE: Develop innovative concepts for improving or increasing the capability of Air Force command, control, communication, computer, and information systems or subsystems.

DESCRIPTION: Proposals may address any aspect of C4I systems not specifically covered by other SBIR topics. Areas of interest include, but are not limited to, innovative approaches to accomplishing the following: Employing commercial off-the-
shelf communications technology; definition and development of qualitative and quantitative metrics and exit criteria associated with developing and producing C4I-related products and technologies; C4I concepts for fixed and mobile command centers, tactical operations, and special forces operations; tools for modernization of base-level business processes. In addition, the following areas are of particular interest:

1. ATMOSPHERIC PROFILE ALGORITHMS: Computer algorithms which will be able to ingest and apply meteorological information provided by various weather sensor suites to DOD atmospheric prediction models, to allow determination of how horizontal profiles can be used to enhance forecast models.

2. BUSINESS PROCESS RE-ENGINEERING TOOLS AND METHODS: Innovative tools and methodologies which support Business Process Re-engineering, including the use/reuse of IDEF-0 and IDEF-1x models for: process simulation, performing workflow analysis, creating IDEF-3 (Process Description Capture Method) models, linking to domain analysis/Object Oriented methodology, leveraging Groupware concepts in developing IDEF models and repositories for IDEF models data manipulation.

3. IMPROVED PHASED ARRAYS FOR MOBILE PLATFORMS OPERATING OVER COMMERCIAL Ku-BAND SATELLITES: Improved cross-polarization discrimination within the terminal antenna to minimize interference and simplify the polarization tracking process. Low-loss electronic means to perform dual-linear polarization alignment, with update rate determined based upon platform dynamic motion characteristics.

4. IMPROVED UHF MOBILE ANTENNAS: UHF SATCOM antenna which provides greater low-angle gain without sacrificing high-angle gain, is lightweight, and minimizes modifications to the platform.

5. TECHNOLOGY TO TAKE ADVANTAGE OF THE ASYMMETRIC DIGITAL SUBSCRIBER LINE STANDARD (ANSI T1.413 category 1): Allow multi-megabit per second download with kilobit per second uplink on plain old telephone service (POTS) lines, to accommodate the asymmetrical bandwidth requirements between echelons.

6. AIR-GROUND-AIR INTERNET PROTOCOL CONNECTIVITY: Method to distribute the common view of the battlespace (e.g., Air Tasking Order, Threat Assessments) from command and control centers to platforms such as the Airborne Warning And Control System and Airborne Battlefield Command and Control Center.

7. INTERACTIVE WIDE SCREEN DISPLAYS: Large format display to support planning teams and allow situation monitoring by groups as needed. Display must interface with known open system computer environments, and include a means for the team to interact with supporting software through or at the screen and adjustment of display parameters.

8. CORRELATION OF MOVING TARGET INDICATOR (MTI) DATA: Robust technique for associating and correlating MTI radar-derived data to establish a unified ground picture of moving vehicles and to predict future locations and traffic densities. Must accommodate different update rates and differing accuracies and resolutions of vehicle location; must operate in near real-time relative to the radar scan rates, and be tolerant to lost reports caused by line-of-sight blockages to the vehicle.

PROPOSAL TITLES MUST REFLECT THE SPECIFIC C4I PROBLEM BEING ADDRESSED.

PHASE I: Provide a report which describes the proposed concept in detail and shows its viability and feasibility.

PHASE II: Fabricate and demonstrate a prototype device or subsystem or software program.

POTENTIAL COMMERCIAL MARKET: All solutions proposed must have potential for use/application in the commercial as well as military sector, and potential commercial applications must be discussed in the proposal.

AF97-256 TITLE: Advanced Distributed C4I Simulation Capabilities

Category: Exploratory Development

OBJECTIVE: Develop M&S technology for use in analysis, training, and acquisition based modeling

DESCRIPTION: Historically, Modeling and Simulation (M&S) programs have been developed to serve particular purposes, with little or no attention to later integration or interoperability. The Air Force has recognized these deficiencies and is now emphasizing the definition of standard architectures, frameworks, etc. The goals are to reduce the number of models and simulations employed, and to maximize re-use, interoperability, and utility. The research proposed under this topic may address different domains of simulation, such as training, analysis, test and evaluation, etc., and varying degrees of resolution. Or, the research may span interoperability questions across varying domains or levels of resolution. Unique and innovative applications of existing commercial tools will be considered. Following are specific areas of interest.

ADVANCED VIRTUAL BATTLESPACE SYNTHETIC ENVIRONMENT: The use of advanced visual and distributed computing techniques to provide synthetic battlespace feeds to real C4I, such as those which enhance the operation of the ESC Command and Control Unified Battlespace Environment (CUBE).

INTER-DOMAIN SIMULATION INTEROPERABILITY: The integration of various M&S capabilities, initially
intended for a specific purpose (e.g., training, analysis, etc.) and now interoperating in a high level architecture, into common frameworks for the future.

MULTI-LEVEL SIMULATION INTEROPERABILITY: Correlation of models which currently represent various levels (e.g., system, engagement, mission, theater) of war within a given domain of modeling and simulation.

ADVANCED EXERCISE SCENARIO GENERATION: Advanced visual toolsets which enhance the capability to provide scenario generation capability, e.g., system laydown, geographical representation, weather effects, etc.

ADVANCED EXERCISE AFTER ACTION REVIEW AND ANALYSIS (AARA): Tools which can be used for AARA, such as statistical analysis, plotting, etc.

PHASE I: In Phase I the contractor is expected to survey and analyze the modeling and simulation state, specifically relative to C4I issues, and provide a report containing the results of the survey and analysis, and recommendations.

PHASE II: In Phase II, the contractor will develop a prototype of the recommended tool.

POTENTIAL COMMERCIAL MARKET: The modeling and simulation area is significantly ripe for both commercialization and dual use applications. Modeling and simulation is currently used extensively in the private sector, for both business and pleasure (games, amusement parks, etc.). The tools, prototypes, and research developed under this topic will be broadly applicable to the commercial sector with application to games, business use, the medical community, etc.

AF97-257	TITLE: Improved Satellite Data Communications

Category: Exploratory Development

OBJECTIVE: Develop new protocols and techniques to improve capability and performance of communication over satellite links

DESCRIPTION: The military’s expanded use of computers is resulting in expansion of the data networks supporting communications between the computers and the interconnection of local area networks (LANs) to form wide area networks (WANs) using satellite systems. This is resulting in problems and inefficiencies. Innovative approaches are desired to provide the following added capabilities. Proposals may be submitted addressing any one of these subtopics. The proposal title should identify the particular subtopic.

a. ON-THE-FLY, LOSSLESS DATA COMPRESSION The data rates on the WAN links are generally far less than required to support the timely transfer of perishable data. The data subsystem does not have sufficient time to format and file the perishable data for compression processing. This limitation leaves only one alternative for increasing transfer rates other than increased use of satellite resources: On-the-fly data compression within the data network. The challenge for the innovator is to develop an inexpensive, lossless compression system that will not adversely affect either the current (TCP/IP) networking protocols or future (ATM) protocols.

b. DATA LINK CONTROL PROTOCOL. Local area networks are being interconnected to form wide area networks using satellite systems. The standard networking protocols in use by the commercial-off-the-shelf computers and networking equipment do not tolerate the bit error rates and delays that are typical of satellite links. This results in the inefficient use of satellite resources. The challenge for the innovator is to develop a data link control protocol that will work with the current (TCP/IP) networking protocols or future (ATM) protocols and allow these protocols to operate efficiently over satellite links.

c. SELECTIVE RETRANSMISSION APPLICATION LAYER PROTOCOL. The defense community’s standard transport protocol, transmission control protocol (TCP) does not perform well over satellite links with large delay bandwidth products. Standard commercial protocol stacks generally support both TCP and the user datagram protocol (UDP). An application layer protocol using UDP would require users to install an additional application on their existing computers. This application would use UDP to establish one-way connections between computers transferring information. The application layer protocol would use the UDP connections to transfer the information efficiently regardless of delay or link bit error rate since only corrupted data packets would be retransmitted unlike TCP where all the packets in the sliding window are retransmitted.

PHASE I: In Phase I, the contractor should produce a conceptual design of the relevant system or protocol and identify the system’s effects on or interaction with standard networking protocols. The contractor would also identify interface requirements between satellite systems and cryptographic equipment (subtopic a), or perform analyses comparing satellite resource use when the proposed protocol is in use and when only standard networking protocols are in use. A report will be provided containing a description of the design and the results of the analysis.

PHASE II: In phase II, the contractor would develop and demonstrate a working prototype of the system or protocol software.
POTENTIAL COMMERCIAL MARKET: Commercial satellite communications providers are entering the nomadic computing market and also wrestling with the problem of efficient use of satellite resources for network connectivity. A lossless data compression system would be useful in circuit switched networks where bandwidth limitations also exist. The development of a new efficient data link control protocol would benefit both commercial satellite and networking service providers. The development of a new application layer protocol providing selective retransmission of corrupted packets would allow the continued use of the installed network infrastructure.

AF97-258 TITLE: Lightweight, Portable Tactical Weather Terminal

Category: Exploratory Development

OBJECTIVE: Develop a lightweight, portable weather tactical terminal that provides an interactive meteorological satellite data analysis capability without reliance on surface communications.

DESCRIPTION: The criticality of supplying complete, on-line weather data to the Department of Defense (DoD) and commercial organizations alike continually increases. A primary source of the data is the Defense Meteorological Satellite Program (DMSP). The mission of DMSP is to collect and disseminate global visible and infrared cloud data and other specialized meteorological, oceanographic and solar-geophysical data. This capability is required to support worldwide DoD operations and other high-priority programs. The Meteorological Satellite Basic Small Tactical Terminal (B-STT) is a major element of the DMSP user segment. Currently this system consists of a 480 pound (including power supply) portable weather terminal that provides an interactive meteorological satellite data analysis capability without reliance on surface communications. The B-STT ingests, processes, stores and displays: a) Real-time Data Smooth (RDS) data transmission (at 2207-2268 MHz) from the DMSP satellites; b) Automatic Picture Transmission (APT) data transmitted (at 137-138 MHz) from the National Oceanic and Atmospheric Administration (NOAA) satellites; the Television Infrared Observations Satellites (TIROS); the Chinese FENG YUN satellites and the Russian METEOR satellites and c) Weather Facsimile (WEFAX) data transmitted (at 1690-1695 MHz) from the Geostationary Meteorological Satellite (GMS), METEOSAT, the Geostationary Operational Environmental Satellite (GOES) and GOES-NEXT geostationary satellites. B-STT major system functions include: 1) Receiver/Antenna equipment including antennas, pedestals, controllers, down converters, low noise amplifiers and receivers; 2) Classified DMSP decryption devise (size of a CD ROM Drive and weighs less than four pounds) 3) Processing equipment including central processing unit, memory, data storage, data display, keyboard, mouse, input/output devices and hard copy devise; 4) Auxiliary equipment, including power distribution, power generation equipment (portable generator, 120 volt/60 Hz, 240 volt/50 Hz, 24 volt DC) and 5) System software including Unix based operating system, system control, satellite tracking and receiving, data reduction and processing, display generation and application software. The need is to innovatively package items 1,2,3,4 and 5 above into a maximum 100 pound (targeted 20 pound) portable, lap top computer type, back pack unit capable of single person unhindered transport and operation. Items 2 and 5 will be controlled/supplied by the Air Force.

PHASE I: Develop complete familiarity with current B-STT. Produce an operational prototype that defines required miniaturization. Provide proof of concept, including preliminary chip designs, selected non developmental items, etc. that clearly demonstrate the feasibility of building a lightweight, B-STT.

PHASE II: Build five lightweight, ruggedized B-STT prototypes and test under actual conditions in conjunction with the Air Force.

POTENTIAL COMMERCIAL MARKET: Development of a miniaturized, portable weather terminal, capable of providing the spectrum of on-line weather information, as is required to be provided through the B-STT Air Force terminal, would be in high demand by organizations involved in agriculture, commercial fishing, terrestrial/marine transportation, commercial/general aviation, sports, etc.

REFERENCES:
AF97-259

TITLE: Electro Magnetic Suspension Two Axis Gimbal Satellite Antenna System

Category: Exploratory Development

OBJECTIVE: Develop a non-contacting, friction free, no lubrication, fault tolerant, electromagnetic suspension, two axis satellite antenna gimbal system.

DESCRIPTION: Electro-Mechanical satellite antenna gimbal systems currently in use display mechanical wear and vibration, require lubricants, and have limited life. As payload functions continuously expand in complexity and mission life is dramatically extended the need for precise vibration free antenna gimbal mounting functionality and reliability similarly increases. The recent advances in electromagnetic suspension technology portend potential application for improvement in the area of satellite antenna gimbal mounting. One potential solution (among others) to improved antenna gimbal mounts is the development of a small, non-contacting, friction free, no lubrication, fault tolerant, electromagnetic suspension, two axis satellite antenna gimbal system. Generalized system requirements to handle a typical antenna payload of 300 pound (feet)2 (mass properties) includes azimuth and elevation excursions of minus 10 degrees to plus 10 degrees, at a slew rate of 0.40 degrees per second. Positioning error must be less than 0.008 degrees. Operational life is at least ten years. Total gimbal assembly weight is less than 22 pounds and volume is less than 1.9 cubic feet. Power requirements are in the range of 6 watts per axis (normal) and 12 watts (maximum). Required output torque per axis is greater than 22 foot pounds. Operational temperature span is minus forty to plus one hundred seventy degrees Fahrenheit. Materials from which the gimbal assembly is fabricated must not display outgassing characteristics greater than 1 percent total weight loss and 0.1 percent volatile condensable materials in a vacuum of 1X10-5 torr or less. The resulting two axis gimbal system must include a lock down launch mechanism capable of withstanding 15 g's launch vibration for a period of 3 minutes. A two axis gimbal mount design capable of meeting the above criteria should be capable of being up sized or down sized to meet additional application requirements.

PHASE I: 1) Through cooperation with Air Force, develop complete familiarity with current satellite gimbal designs and requirements, 2) develop preliminary two axis gimbal design, complete with documentation that will provide proof of functionality, 3) produce/demonstrate "small breadboard operational prototype" to ensure proof of basic design concept.

PHASE II: 1) Complete/finalize two axis gimbal design, 2) build/demonstrate full scale operational prototype of final design to mutually agreed upon Air Force specifications.

POTENTIAL COMMERCIAL MARKET: Development of a long life, vibration/maintenance free, operationally reliable antenna gimbal mount will have high DoD/NASA/Commercial demand for use in satellite, air and ground based radar, and communication antenna applications and security surveillance equipment. Technology developed through this topic will lay the basis for light weight, machine platforms capable of 10-100 fold increase in freedom from vibration, movement accuracy, and range of velocity/motion, required for the next generation of terrestrial and high vacuum (space based) precision manufacturing technologies. Immediate application in: single point diamond turning of mirrors, lenses, precision metallic components; high density storage laser scanning systems; force feed back mechanisms for micro assembly processes and two and three axes gyro's, are apparent.

REFERENCES:

AF97-260

TITLE: Environmentally Conscious Solder Process for Manual/Bench Applications

Category: Exploratory Development

OBJECTIVE: Develop an environmentally conscious replacement lead based solder process for manual bench operations.
DESCRIPTION: Lead is one of the Environmental Protection Agency’s (EPA) 17 materials targeted for industrial reduction. Although elimination of lead in solder is a target, the amount of lead involved in the soldering process is small. Equally important environmental hazards in the solder process are contained in the pre-cleaning and post-cleaning operations. The chemicals used in these operations are major contributors to environmental pollution and hazards to worker’s health. DoD specific electronic assemblies, and countless commercial products, currently rely on lead based connection processes ranging from automated surface mount technology to manual bench operations. Nonhazardous automated, high volume soldering processes are under development in many areas. A high priority need exists, however, for innovative development of environmentally acceptable manual/bench top soldering processes, as a replacement for current hazardous solvent/flux/lead based solder processes. The need is for a conductive material soldering process which will allow environmentally conscious, rapid, simple, low temperature, wide latitude processing. The successful process/materials must be oxide tolerant, insure complete flux removal (if flux is required) and require no environmentally objectionable solvent cleaning. In addition the conductive material solder alternatives must be cost effective, tractable, capable of manual application, have similar joint strength as current lead solder techniques and not have any negative impacts to performance of hardware.

PHASE I: Will include analysis of the State-of-the-Art materials compatible with the requirements of environmentally conscious manual soldering processes, development of candidate formulations, down select tests to identify the most promising materials, and laboratory simulated manual production application demonstration of selected candidates.

PHASE II: This phase will optimize selected formulations, conduct applicable production/process/application/performance tests to prove feasibility, and provide prototype demonstrations of applicability to manual processing/performance requirements.

POTENTIAL COMMERCIAL MARKET: Current electronic fabrication methods require the use of solvent/flux/lead based soldering processes in applications from surface mount technology to manual operations. Although lead is an objectionable component in these processes, other environmental hazards in the solder process are contained in the pre-cleaning and post-cleaning operations. DoD and commercial industry alike require an environmentally acceptable substitute for current manual/bench top soldering processes; a successful substitute will have enormous application in all areas of the DoD/commercial electronics industry, DoD/commercial electronic/electric repair and remanufacturing operations, as circuit board implants, and small quantity electronics production.

REFERENCES:
DARPA's charter is to help maintain U.S. technological superiority over, and to prevent technological surprise by, its potential adversaries. Thus, the DARPA goal is to pursue as many highly imaginative and innovative research ideas and concepts with potential military and dual-use applicability as the budget and other factors will allow.

DARPA has identified 49 technical topics, numbered DARPA SB971-001 through DARPA SB971-049, to which small businesses may respond in the first fiscal year (FY) 97 solicitation (97.1). Please note that these topics are UNCLASSIFIED and only UNCLASSIFIED proposals will be entertained. These are the only topics for which proposals will be accepted at this time. A list of the topics currently eligible for proposal submission is included, followed by full topic descriptions. The topics originated from DARPA technical offices.

DARPA Phase I awards are limited to $99,000. DARPA Phase II proposals must be invited by the respective Phase I technical monitor. Phase II proposals are encouraged at the amount of $375,000 with additional funding available for optional tasks. The entire Phase II effort should not exceed $750,000.

The responsibility for implementing DARPA's SBIR Program rests with the Office of Administration and Small Business (OASB). The DARPA SBIR Program Manager is Ms. Connie Jacobs. DARPA invites small businesses to send proposals directly to DARPA at the following address:

DARPA/OASB/SBIR
Attention: Ms. Connie Jacobs
3701 North Fairfax Drive
Arlington, VA 22203-1714
(703) 522-1754

Additional information regarding DARPA and the DARPA SBIR Program may be found on the World Wide Web DARPA Home Page at http://www.darpa.mil. During the Pre-Solicitation period (approximately 6 weeks before the solicitation opens) DARPA Program Managers may be contacted to discuss technical issues related to their topics. For a list of the Topic Points of Contact, please see the Pre-Solicitation release. E-mail is the most effective means of communicating with DARPA Program Managers. The e-mail address for all DARPA employees is (First initial of First Name) (Last Name) @darpamil. If you have trouble reaching a designated POC, please contact Connie Jacobs directly at cjacob@darpa.mil.

SBIR proposals submitted to DARPA will be processed by DARPA OASB and distributed to the appropriate technical office for evaluation and action.

DARPA selects proposals for funding based upon technical merit and the evaluation criteria contained in this solicitation document. As funding is limited, DARPA reserves the right to select and fund only those proposals considered to be superior in overall technical quality and highly relevant to the DARPA mission. As a result, DARPA may fund more than one proposal in a specific topic area if the technical quality of the proposal(s) in question is deemed superior, or it may fund no proposals in a topic area. Each proposal submitted to DARPA must have a topic number and must be responsive to only one topic.

In order to ensure an expeditious award, cost proposals will be considered to be binding for a period of 180 days from the date of closing of this solicitation. Please note that one original and 4 copies of each proposal must be mailed or hand-carried; DARPA will not accept proposal submissions by electronic facsimile (fax). A checklist has been prepared to assist small business activities in response to DARPA topics. Please use this checklist prior to mailing or hand-carrying your proposal(s) to DARPA. Do not include the checklist with your proposal.
1) Proposal Format
 a. Cover Sheet - Appendix A (identify topic number)
 b. Project Summary - Appendix B
 c. Identification and Significance of Problem or Opportunity
 d. Phase I Technical Objectives
 e. Phase I Work Plan
 f. Related Work
 g. Relationship with Future Research and/or Development
 h. Potential Post Applications
 i. Key Personnel
 j. Facilities/Equipment
 k. Consultant
 l. Prior, Current, or Pending Support
 m. Cost Proposal (see Appendix C of this Solicitation)
 n. Prior SBIR Awards

2) Bindings
 a. Staple proposals in upper left-hand corner.
 b. Do not use a cover.
 c. Do not use special bindings.

3) Page Limitation
 a. Total for each proposal is 25 pages inclusive of cost proposal and resumes.
 b. Beyond the 25 page limit do not send appendices, attachments and/or additional references.

4) Submission Requirement for Each Proposal
 a. Original proposal, including signed RED Appendices A and B.
 b. Four photocopies of original proposal, including signed Appendices A and B.
 c. One additional photocopy of Appendices A and B only.
INDEX OF DARPA FY97.1 TOPICS

DARPA SB971-001 Rapid Design and Prototyping of Advanced Alloys or Composites via Solid Freeform Fabrication (SFF)
DARPA SB971-002 Tissue Regeneration
DARPA SB971-003 Materials and Processes for High Performance Electromechanical Actuation
DARPA SB971-004 Molecular Therapeutics for Modulation of Pathogenesis
DARPA SB971-005 Clean Fuel Sources for Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cells (SOFC)
DARPA SB971-006 System and Security Management Tools
DARPA SB971-007 Tools for Software System Understanding and Transformation
DARPA SB971-008 Tools for Safe, Efficient Mobile Code in Heterogeneous Networked Environments
DARPA SB971-009 Adaptive Network Security Management
DARPA SB971-010 Scalable and Robust Implementations of Tools and Environments for High Performance Systems
DARPA SB971-011 Rapidly Deployable Nomadic Routers
DARPA SB971-012 Low-Cost Technique for Measuring Distributed Strain and Temperature in Long Optical Fibers
DARPA SB971-013 Spatial Light Modulator (SLM) with Independent Phase and Amplitude Modulation
DARPA SB971-014 Efficient External Modulators for Radio Frequency (RF) Photonic Systems
DARPA SB971-015 Wideband Photonic Radio Frequency (RF) Signal Processors
DARPA SB971-016 Stand Off Chemical and Biological (Chem/Bio) Hazard Detection
DARPA SB971-017 Aerostat Survivability
DARPA SB971-018 Low-Cost, Miniature Unattended Sensor Systems
DARPA SB971-019 Mortar or Rifle Launched, Low-Cost, Miniature Ballistic and Glided Flight Surveillance Sensor Systems
DARPA SB971-020 Advanced Propulsion and Power Technologies for Micro Air Vehicle (μAV) Systems
DARPA SB971-021 Diver-Held Sonar
DARPA SB971-022 Antenna Element Location Measurement System for Millimeter Wave, Airborne Antennas
DARPA SB971-023 Robust Guidance, Navigation, and Control (GN&C)
DARPA SB971-024 Unique Concepts for Rotorless High-Speed Vertical Takeoff and Landing (VTOL) Aircraft
DARPA SB971-025 Innovative Concepts For Space-Based Remote Sensing
DARPA SB971-026 Precise Attitude Measurement
DARPA SB971-027 Advanced Synthetic Aperture Radar (SAR) Waveforms

DARPA-3
DARPA SB971-028 Scalable, Multifunction Communications Controller
DARPA SB971-029 Rapid Model Development
DARPA SB971-030 Hyperspectral and Synthetic Aperture Radar (SAR) Fusion for Concealed Target Detection
DARPA SB971-031 Foliage Penetration (FOPEN) Interferometric Synthetic Aperture Radar (IFSAR) Techniques
DARPA SB971-032 Electromagnetic Interference (EMI) Mitigation in Multiband, Multifunction Communications Nodes
DARPA SB971-033 Dynamic Database (DDB) Technology for Battlefield Awareness
DARPA SB971-034 Architectural Components for Semantic Interoperability
DARPA SB971-035 Nonlinear Warfare Initiative
DARPA SB971-036 Technology for Mixed-Initiative Information Exchange and Coordination in Collective Activities
DARPA SB971-037 Visual Tracking of Human Figures
DARPA SB971-038 Design of Global Positioning Satellite (GPS) Receiver Module on a Single Silicon Chip
DARPA SB971-039 Solid-State Imaging Sensors
DARPA SB971-040 Volumetric Three-Dimensional (3-D) Display Technologies
DARPA SB971-041 Multifunctional Optoelectronics Integration for Information Processing Systems
DARPA SB971-042 Simulation, Modeling and Computer Aided Design (CAD) Tools for Optoelectronics Components
DARPA SB971-043 Advanced Vertical Cavity Surface Emitting Laser (VCSEL) Technology
DARPA SB971-044 High-Speed Fiber Optic Network Access Modules (NAMs)
DARPA SB971-045 Innovative Research in the Area of Digital Receivers for Radar, Electronic Warfare, and Communications Applications
DARPA SB971-046 Semiconductor Nanostructure Modeling
DARPA SB971-047 Nanoelectronic Structures and Devices
DARPA SB971-048 In-Situ Tools for Molecular Beam Epitaxy (MBE) Process Control
DARPA SB971-049 Nanoprobes for Advanced Device Processing

DARPA-4
SUBJECT/WORD INDEX TO THE DARPA FY97.1 TOPICS

<table>
<thead>
<tr>
<th>Subject/Keyword</th>
<th>Topic Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D Imaging</td>
<td>40</td>
</tr>
<tr>
<td>A/D Converter</td>
<td>45</td>
</tr>
<tr>
<td>Accelerometers</td>
<td>22</td>
</tr>
<tr>
<td>Acoustic Sensors</td>
<td>18</td>
</tr>
<tr>
<td>Acoustic Transduction</td>
<td>3</td>
</tr>
<tr>
<td>Adaptive</td>
<td>22</td>
</tr>
<tr>
<td>Adaptive Security</td>
<td>9</td>
</tr>
<tr>
<td>Advanced Fuels</td>
<td>20</td>
</tr>
<tr>
<td>Aerostat</td>
<td>17</td>
</tr>
<tr>
<td>Air Vehicles</td>
<td>19</td>
</tr>
<tr>
<td>Aircraft</td>
<td>26</td>
</tr>
<tr>
<td>Antenna(s)</td>
<td>14, 15, 22, 23</td>
</tr>
<tr>
<td>Architecture</td>
<td>34</td>
</tr>
<tr>
<td>ATR</td>
<td>29</td>
</tr>
<tr>
<td>Automatic Target Recognition</td>
<td>29</td>
</tr>
<tr>
<td>Ballistic and Controlled Flight Air Delivery Systems</td>
<td>18, 19</td>
</tr>
<tr>
<td>Batteries</td>
<td>20</td>
</tr>
<tr>
<td>Beryllium Alloys</td>
<td>1</td>
</tr>
<tr>
<td>Binary Editing</td>
<td>8</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>2</td>
</tr>
<tr>
<td>Biomimetic</td>
<td>2</td>
</tr>
<tr>
<td>C3</td>
<td>35</td>
</tr>
<tr>
<td>Centers of Gravity</td>
<td>35</td>
</tr>
<tr>
<td>Chem/Bio</td>
<td>16</td>
</tr>
<tr>
<td>Chemical and Biological Sensors</td>
<td>16</td>
</tr>
<tr>
<td>Chemical Sensors</td>
<td>18, 19</td>
</tr>
<tr>
<td>Classification</td>
<td>21</td>
</tr>
<tr>
<td>Co-Site Interference</td>
<td>32</td>
</tr>
<tr>
<td>Code Optimization</td>
<td>8</td>
</tr>
<tr>
<td>Command, Control and Communications</td>
<td>35</td>
</tr>
<tr>
<td>Communications Controller</td>
<td>28</td>
</tr>
<tr>
<td>Compact Power</td>
<td>5</td>
</tr>
<tr>
<td>Compilers</td>
<td>8, 10</td>
</tr>
<tr>
<td>Composite Structures</td>
<td>12</td>
</tr>
<tr>
<td>Computing</td>
<td>34</td>
</tr>
<tr>
<td>Coordination</td>
<td>36</td>
</tr>
<tr>
<td>Critical Node</td>
<td>35</td>
</tr>
</tbody>
</table>

Data Fusion 30
Data Fusion Algorithms 18
Data Radios 11
Database Management 33
Debuggers 10
Design Recovery 7
Diagnostics 49
Digital Elevation 31
Digital Receiver 45

DARPA-5
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Signal Processor</td>
<td>45</td>
</tr>
<tr>
<td>Displays</td>
<td>40</td>
</tr>
<tr>
<td>Distance Measurement</td>
<td>22</td>
</tr>
<tr>
<td>Distributed Computing</td>
<td>10</td>
</tr>
<tr>
<td>Diver</td>
<td>21</td>
</tr>
<tr>
<td>Document Exchange</td>
<td>36</td>
</tr>
<tr>
<td>Dynamic Code Generation</td>
<td>8</td>
</tr>
<tr>
<td>Earth Penetration Systems</td>
<td>18</td>
</tr>
<tr>
<td>Electric Motors</td>
<td>20</td>
</tr>
<tr>
<td>Electro-Optical</td>
<td>25, 26</td>
</tr>
<tr>
<td>Electro-Optics</td>
<td>14</td>
</tr>
<tr>
<td>Electroceramics</td>
<td>1</td>
</tr>
<tr>
<td>Electromagnetic Interference</td>
<td>32</td>
</tr>
<tr>
<td>Electromechanical Actuators</td>
<td>3</td>
</tr>
<tr>
<td>Electrostrictors</td>
<td>12</td>
</tr>
<tr>
<td>Embedded Optical Fibers</td>
<td>32</td>
</tr>
<tr>
<td>EMI Mitigation</td>
<td>18, 19</td>
</tr>
<tr>
<td>Environmental Sensors</td>
<td>25, 26</td>
</tr>
<tr>
<td>EO</td>
<td>48</td>
</tr>
<tr>
<td>Evolution</td>
<td>7</td>
</tr>
<tr>
<td>Failure Diagnosis</td>
<td>6</td>
</tr>
<tr>
<td>Feature Based Classifiers</td>
<td>18</td>
</tr>
<tr>
<td>Feedback Control</td>
<td>48</td>
</tr>
<tr>
<td>Fiber Optic Bobbin</td>
<td>12</td>
</tr>
<tr>
<td>Fiber Optic Strain Sensor</td>
<td>12</td>
</tr>
<tr>
<td>Foliage Penetration</td>
<td>30, 31</td>
</tr>
<tr>
<td>FOPEN</td>
<td>30, 31</td>
</tr>
<tr>
<td>Fuel Cells</td>
<td>5, 20</td>
</tr>
<tr>
<td>Fuel Processing</td>
<td>5</td>
</tr>
<tr>
<td>Fusion-Bonding</td>
<td>41, 42</td>
</tr>
<tr>
<td>Gas Turbines</td>
<td>20</td>
</tr>
<tr>
<td>Genetic Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Geographical Information</td>
<td>33</td>
</tr>
<tr>
<td>Geographical Information</td>
<td>37</td>
</tr>
<tr>
<td>Gesture Recognition</td>
<td>22, 23, 26</td>
</tr>
<tr>
<td>Global Positioning System</td>
<td>22, 23, 26, 38</td>
</tr>
<tr>
<td>Global Positioning Satellite</td>
<td>38</td>
</tr>
<tr>
<td>GPS</td>
<td>22, 23, 26, 38</td>
</tr>
<tr>
<td>Growth</td>
<td>48</td>
</tr>
<tr>
<td>Heterojunctions</td>
<td>47</td>
</tr>
<tr>
<td>High-Frequency</td>
<td>21</td>
</tr>
<tr>
<td>High Performance Computing</td>
<td>10</td>
</tr>
<tr>
<td>High-Speed Digital</td>
<td>38</td>
</tr>
<tr>
<td>Holographic Imaging</td>
<td>13</td>
</tr>
<tr>
<td>HPC</td>
<td>10</td>
</tr>
<tr>
<td>Human-Computer Interface</td>
<td>37</td>
</tr>
<tr>
<td>Hyperspectral Imaging</td>
<td>30</td>
</tr>
<tr>
<td>IFSAR</td>
<td>26, 31</td>
</tr>
<tr>
<td>Image Understanding</td>
<td>37</td>
</tr>
</tbody>
</table>

DARPA-6
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging Sensors</td>
<td>18, 19</td>
</tr>
<tr>
<td>Immunology</td>
<td>4</td>
</tr>
<tr>
<td>In-Situ</td>
<td>48</td>
</tr>
<tr>
<td>Infectious Disease</td>
<td>4</td>
</tr>
<tr>
<td>Information Management</td>
<td>33</td>
</tr>
<tr>
<td>Information Warfare</td>
<td>35</td>
</tr>
<tr>
<td>Interferometric Synthetic Aperture Radar</td>
<td>26, 31</td>
</tr>
<tr>
<td>Interferometry</td>
<td>26, 31</td>
</tr>
<tr>
<td>Internetworking</td>
<td>11</td>
</tr>
<tr>
<td>Interoperability</td>
<td>34</td>
</tr>
<tr>
<td>Interpreters</td>
<td>8</td>
</tr>
<tr>
<td>Intrusion Detection</td>
<td>6</td>
</tr>
<tr>
<td>IW-Based Battle Management</td>
<td>35</td>
</tr>
<tr>
<td>Java</td>
<td>8</td>
</tr>
<tr>
<td>Languages</td>
<td>8</td>
</tr>
<tr>
<td>Lasers</td>
<td>14, 15, 22</td>
</tr>
<tr>
<td>Lift-Off Technology</td>
<td>41, 42</td>
</tr>
<tr>
<td>Lighter-than-Air</td>
<td>17</td>
</tr>
<tr>
<td>Lithography</td>
<td>49</td>
</tr>
<tr>
<td>LNA</td>
<td>45</td>
</tr>
<tr>
<td>Low-Light Level Imaging</td>
<td>39</td>
</tr>
<tr>
<td>Low Noise Amplifier</td>
<td>45</td>
</tr>
<tr>
<td>Low-Power Electronics</td>
<td>18, 19</td>
</tr>
<tr>
<td>Low Probability of Detection and Intercept Communications</td>
<td>18</td>
</tr>
<tr>
<td>Magnetic Sensors</td>
<td>18</td>
</tr>
<tr>
<td>Magnetostrictors</td>
<td>3</td>
</tr>
<tr>
<td>MBE</td>
<td>48</td>
</tr>
<tr>
<td>MCM</td>
<td>45</td>
</tr>
<tr>
<td>MEMS</td>
<td>20</td>
</tr>
<tr>
<td>Microbolometers</td>
<td>39</td>
</tr>
<tr>
<td>Microelectromechanical Systems</td>
<td>20</td>
</tr>
<tr>
<td>Microelectronics</td>
<td>47</td>
</tr>
<tr>
<td>Microwave</td>
<td>38</td>
</tr>
<tr>
<td>Millimeter Wave</td>
<td>22</td>
</tr>
<tr>
<td>Mission Rehearsal</td>
<td>37</td>
</tr>
<tr>
<td>Mobile Code</td>
<td>8</td>
</tr>
<tr>
<td>Model-Based Vision</td>
<td>29</td>
</tr>
<tr>
<td>Modeling</td>
<td>46</td>
</tr>
<tr>
<td>Modeling and Simulation</td>
<td>35, 46</td>
</tr>
<tr>
<td>Modulators</td>
<td>14</td>
</tr>
<tr>
<td>Molecular Beam Epitaxy</td>
<td>48</td>
</tr>
<tr>
<td>Molecular Therapeutics</td>
<td>4</td>
</tr>
<tr>
<td>Multiband</td>
<td>28, 32</td>
</tr>
<tr>
<td>Multichip Module</td>
<td>45</td>
</tr>
<tr>
<td>Multifunctional Antennas</td>
<td>32</td>
</tr>
<tr>
<td>Multihop Routing</td>
<td>11</td>
</tr>
<tr>
<td>Multimode Radios</td>
<td>28, 32</td>
</tr>
<tr>
<td>NAM</td>
<td>44</td>
</tr>
<tr>
<td>Nanoelectronics</td>
<td>46, 47, 48, 49</td>
</tr>
<tr>
<td>Nanofabrication</td>
<td>47</td>
</tr>
<tr>
<td>Nanolithography</td>
<td>49</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Nanoprobe</td>
<td>49</td>
</tr>
<tr>
<td>Network Access Modules</td>
<td>44</td>
</tr>
<tr>
<td>Network Management</td>
<td>6</td>
</tr>
<tr>
<td>Network Security</td>
<td>9</td>
</tr>
<tr>
<td>Nomadic Routing</td>
<td>11</td>
</tr>
<tr>
<td>Nonlinear Effects</td>
<td>35</td>
</tr>
<tr>
<td>Object Sharing</td>
<td>36</td>
</tr>
<tr>
<td>Optical Networks</td>
<td>44</td>
</tr>
<tr>
<td>Optical Packaging</td>
<td>44</td>
</tr>
<tr>
<td>Optical Processing</td>
<td>13</td>
</tr>
<tr>
<td>Optoelectronics</td>
<td>14, 15, 46</td>
</tr>
<tr>
<td>Optoelectronics Integrated Circuits</td>
<td>41, 42</td>
</tr>
<tr>
<td>Oxide Defined VCSEL Cavity</td>
<td>43</td>
</tr>
<tr>
<td>Parallel Computing</td>
<td>10</td>
</tr>
<tr>
<td>Pathogenesis</td>
<td>4</td>
</tr>
<tr>
<td>PEM</td>
<td>5</td>
</tr>
<tr>
<td>Phase and Amplitude Modulation</td>
<td>13</td>
</tr>
<tr>
<td>Photonic Integrated Circuits</td>
<td>41, 42</td>
</tr>
<tr>
<td>Piezoelectrics</td>
<td>3</td>
</tr>
<tr>
<td>Planning</td>
<td>35</td>
</tr>
<tr>
<td>Polarimetry</td>
<td>31</td>
</tr>
<tr>
<td>Power</td>
<td>20</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>45</td>
</tr>
<tr>
<td>Precision Clocks</td>
<td>23</td>
</tr>
<tr>
<td>Processing</td>
<td>47</td>
</tr>
<tr>
<td>Projectiles</td>
<td>19</td>
</tr>
<tr>
<td>Propulsion</td>
<td>20</td>
</tr>
<tr>
<td>Proton Exchange Membrane</td>
<td>5</td>
</tr>
<tr>
<td>Quantum Confinement</td>
<td>46</td>
</tr>
<tr>
<td>Quantum Devices</td>
<td>46, 47, 48, 49</td>
</tr>
<tr>
<td>Quantum Finite-Element Modeling</td>
<td>46</td>
</tr>
<tr>
<td>Radar</td>
<td>25, 26, 30, 31, 45</td>
</tr>
<tr>
<td>Radar Processing</td>
<td>31</td>
</tr>
<tr>
<td>Radio Frequency</td>
<td>14, 15, 38, 45</td>
</tr>
<tr>
<td>Reengineering</td>
<td>7</td>
</tr>
<tr>
<td>RF</td>
<td>14, 15, 38, 45</td>
</tr>
<tr>
<td>RF Digital Filter</td>
<td>45</td>
</tr>
<tr>
<td>Real-Time Signal Processing Algorithms</td>
<td>18</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>16</td>
</tr>
<tr>
<td>Reverse Engineering</td>
<td>1, 7</td>
</tr>
<tr>
<td>Sandboxing</td>
<td>8</td>
</tr>
<tr>
<td>SAR</td>
<td>26, 27, 29, 31</td>
</tr>
<tr>
<td>Satellite</td>
<td>25, 27</td>
</tr>
<tr>
<td>Satellite Networking</td>
<td>11</td>
</tr>
<tr>
<td>Scanning Tunneling Microscope</td>
<td>49</td>
</tr>
<tr>
<td>Security</td>
<td>6</td>
</tr>
<tr>
<td>Security Management</td>
<td>6, 9</td>
</tr>
<tr>
<td>Seismic Sensors</td>
<td>18</td>
</tr>
<tr>
<td>Semantics</td>
<td>34</td>
</tr>
</tbody>
</table>

DARPA-8
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductors</td>
<td>46, 47, 48, 49</td>
</tr>
<tr>
<td>Sensor Systems</td>
<td>19</td>
</tr>
<tr>
<td>Sensor(s)</td>
<td>21, 25</td>
</tr>
<tr>
<td>SFF</td>
<td>1</td>
</tr>
<tr>
<td>Shallow Water</td>
<td>21</td>
</tr>
<tr>
<td>Shape Memory Alloys</td>
<td>3</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>15</td>
</tr>
<tr>
<td>Silicon</td>
<td>38</td>
</tr>
<tr>
<td>Simulation</td>
<td>37, 46</td>
</tr>
<tr>
<td>SOFC</td>
<td>5</td>
</tr>
<tr>
<td>Software</td>
<td>7, 34</td>
</tr>
<tr>
<td>Software Fault Isolation</td>
<td>8</td>
</tr>
<tr>
<td>Solid Freeform Fabrication</td>
<td>1</td>
</tr>
<tr>
<td>Solid Oxide Fuel Cells</td>
<td>5</td>
</tr>
<tr>
<td>Sonar</td>
<td>21</td>
</tr>
<tr>
<td>Space</td>
<td>25</td>
</tr>
<tr>
<td>Spatial Light Modulator</td>
<td>13</td>
</tr>
<tr>
<td>STM</td>
<td>49</td>
</tr>
<tr>
<td>Strain Distribution Measurements</td>
<td>12</td>
</tr>
<tr>
<td>Structural Ceramics</td>
<td>1</td>
</tr>
<tr>
<td>Survivability</td>
<td>17</td>
</tr>
<tr>
<td>Synthetic Aperture Radar</td>
<td>26, 27, 29, 31</td>
</tr>
<tr>
<td>System Management</td>
<td>6</td>
</tr>
<tr>
<td>Target Detection</td>
<td>30</td>
</tr>
<tr>
<td>Temperature Distribution Measurements</td>
<td>12</td>
</tr>
<tr>
<td>Terabrakes</td>
<td>18</td>
</tr>
<tr>
<td>Thermal-Bonding</td>
<td>41, 42</td>
</tr>
<tr>
<td>Thin Ferroelectric Material</td>
<td>39</td>
</tr>
<tr>
<td>Three-Dimensional Imaging</td>
<td>40</td>
</tr>
<tr>
<td>Tissue Regeneration</td>
<td>2</td>
</tr>
<tr>
<td>Titanium Alloys</td>
<td>1</td>
</tr>
<tr>
<td>Toxins</td>
<td>4</td>
</tr>
<tr>
<td>Transplantation</td>
<td>2</td>
</tr>
<tr>
<td>Type Safety</td>
<td>8</td>
</tr>
<tr>
<td>Ultra-Fast Computing</td>
<td>46</td>
</tr>
<tr>
<td>Uncooled Infrared Sensors</td>
<td>39</td>
</tr>
<tr>
<td>Underwater</td>
<td>21</td>
</tr>
<tr>
<td>VCSEL</td>
<td>43</td>
</tr>
<tr>
<td>Vertical Cavity Surface Emitting Lasers</td>
<td>43</td>
</tr>
<tr>
<td>Vertical Takeoff and Landing</td>
<td>24</td>
</tr>
<tr>
<td>Vibration Control</td>
<td>3</td>
</tr>
<tr>
<td>Video Exploitation</td>
<td>37</td>
</tr>
<tr>
<td>Video Tracking</td>
<td>37</td>
</tr>
<tr>
<td>Virtual Reality</td>
<td>37</td>
</tr>
<tr>
<td>Visualization Tools</td>
<td>10</td>
</tr>
<tr>
<td>VTOL Aircraft</td>
<td>24</td>
</tr>
<tr>
<td>Wake-up Sensors</td>
<td>18</td>
</tr>
<tr>
<td>Waveforms</td>
<td>27</td>
</tr>
<tr>
<td>Wavelength Division Multiplexing</td>
<td>43</td>
</tr>
<tr>
<td>Wavelength Tuning</td>
<td>43</td>
</tr>
<tr>
<td>Weapons of Mass Destruction</td>
<td>16</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Wireless</td>
<td>45</td>
</tr>
<tr>
<td>Wireless Communications</td>
<td>18</td>
</tr>
<tr>
<td>Wireless Network Relay</td>
<td>28</td>
</tr>
<tr>
<td>Wireless Networking</td>
<td>11</td>
</tr>
<tr>
<td>WMD</td>
<td>16</td>
</tr>
<tr>
<td>Workflow</td>
<td>36</td>
</tr>
<tr>
<td>Year 2000</td>
<td>7</td>
</tr>
</tbody>
</table>
DARPA 97.1 TOPIC DESCRIPTIONS

DARPA SB971-001 TITLE: Rapid Design and Prototyping of Advanced Alloys or Composites via Solid Freeform Fabrication (SFF)

CATEGORY: 6.2 Exploratory Development; Manufacturing Science and Technology

OBJECTIVE: Demonstrate the machine capability to build advanced alloy or composite components from computer aided design (CAD) files without part-specific tooling or operator intervention.

DESCRIPTION: SFF capabilities are of great interest to DoD for reducing the time and cost of prototyping components and low-volume production. SFF approaches, such as Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM), Stereo Lithography (SLA), Scanning Laser Sintering (SLS), and 3-D Printing, have been developed to make components for "form and fit," and are increasingly being used to manufacture soft tooling for low-volume manufacture and, more recently, components with "form, fit, and function." This topic seeks to expand the component capability of advanced materials which can be made by SFF techniques. Advanced alloys of interest include, but are not limited to, titanium and beryllium. SFF capability for fabrication of metal matrix composites, or functionally graded materials or porous metals or devices will also be entertained under this topic.

PHASE I: Demonstrate the feasibility of the chosen SFF technique to produce components with the same properties as comparable, commercially produced components.

PHASE II: Demonstrate the rapid design, prototyping, test, and evaluation of components with both defense and commercial relevance based on the capabilities developed in Phase I.

COMMERCIAL POTENTIAL: SFF manufacturing capabilities are ideally suited to prototyping and small-volume production of advanced materials which lack a high volume manufacturing base. These niche markets are particularly attractive to small, agile firms.

DARPA SB971-002 TITLE: Tissue Regeneration

CATEGORY: 6.1 Basic Research; Biomedical

OBJECTIVE: Discover new biomimetic materials and cellular constructs with the potential to replace tissue loss from combat wounds by tissue regeneration.

DESCRIPTION: Casualties and permanent disabilities occur from loss of vital structures (tissues, organs, etc.) as a result of traumatic combat wounds. Today there exists the potential to exploit emerging biomimetic materials alone or in conjunction with cellular biotechnologies (e.g., stem cells) in order to provide temporary homeostasis and wound coverage immediately after wounding, and to initiate the wound healing and tissue regeneration process while still on the battlefield. In the future, rear echelon medical care would include materials/cells which provide replacement of lost tissues (e.g., muscles, bones, cartilages) or even organ systems (e.g., liver, kidney, etc.). This will require integration of the latest breakthrough technologies in biomaterials for scaffolding (e.g., self-replication, self-assembly, etc.), and in biotechnology for tissue replacement and regeneration (e.g., stem cells, genetic engineering, etc.).

PHASE I: Identify biomimetic materials and cell lines suitable to replace tissue loss from combat wounds by tissue regeneration. Develop biomaterials as substrate/scaffold for tissue growth.

PHASE II: Develop an organ level tissue requiring integration of multiple cell lines, biomaterials, and intricate three dimensional framework.

COMMERCIAL POTENTIAL: In trauma and ablative surgery (e.g., cancer, massive infections, etc.), a tissue or organ replacement will provide a return to near normal functioning when massive amounts of tissues or organs are lost. Organ transplantation is the fastest growing area in medicine today; however, this requires donors. Tissue or organ replacement can provide a substitute for transplantation and help meet the enormous demand for tissue and organs today.

DARPA SB971-003 TITLE: Materials and Processes for High Performance Electromechanical Actuation

CATEGORY: 6.2 Exploratory Development; Materials, Processes and Structures

OBJECTIVE: An innovative material or material processing regimen that results in improved performance of electromechanical

DARPA-11
actuators.

DESCRIPTION: Development efforts will address synthesis and processing of the materials (piezoelectrics, electrostrictors, magnetostrictors, shape memory alloys, etc.) that lie at the heart of electromechanical actuators, performing the essential task of converting electrical energy to mechanical. The materials technology developed will improve one or more actuator performance characteristic, for example, larger displacements, higher force levels, greater energy efficiency, or faster response times. While the development focuses on the material and its processing, proposed efforts should target candidate actuator devices or systems that will capitalize on the material’s property enhancement.

PHASE I: Establish feasibility of proposed materials synthesis route or processing regimen, and identify candidate device/systems application where this innovation will result in higher performance electromechanical actuation.

PHASE II: Develop materials synthesis or processing, fabricate enhanced electromechanical actuator, and demonstrate improved performance in targeted devices/systems.

COMMERCIAL POTENTIAL: High performance electromechanical actuators are key components in realizing a great variety of advanced defense systems (e.g., helicopter rotor control, airfoil shape control, and shipboard vibration control) and commercial systems (e.g., machine tool control, aircraft cabin noise control, and automobile suspensions). Emerging applications such as these provide substantial markets for an advanced material technology that opens an affordable route to meeting their demanding actuation requirements.

DARPA SB971-004 TITLE: Molecular Therapeutics for Modulation of Pathogenesis

CATEGORY: 6.1 Basic Research; Biomedical

OBJECTIVE: Demonstrate the feasibility of infectious disease therapeutics based on targeting shared virulence mechanisms.

DESCRIPTION: This topic seeks to demonstrate the feasibility of new intervention or treatment modalities for exposure to highly virulent pathogens or toxins. Because the pathogen often may not be immediately identified, approaches to affect underlying pathogenic mechanisms that may be common to many severe infections, or approaches that might be effective on a broad class of pathogens are of special interest. Examples might include manipulation of cytokines to alter pathogenesis, modulation of the expression or activity of virulence factors in-vivo, or passive immunotherapeutics. Improved vehicles, devices, or mechanisms for delivery of molecular therapeutic agents are also of interest.

PHASE I: Identify a suitable candidate target (or targets) and determine the feasibility of the chosen approach.

PHASE II: Demonstrate feasibility in-vivo and determine suitable means of therapeutic administration.

COMMERCIAL POTENTIAL: There are currently few interventions for many severe infections and therefore no existing competition in this market. The underlying principles are also likely to be applicable to other types of diseases with large potential markets such as autoimmune disease and a wide variety of less severe infections.

DARPA SB971-005 TITLE: Clean Fuel Sources for Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cells (SOFC)

CATEGORY: 6.2 Exploratory Development; Materials, Processes and Structures

OBJECTIVE: Starting from logistics fuels, e.g., JP-8, DF-2, develop fuel processing technology for PEM and SOFC in the 50 W to 1 kW range.

DESCRIPTION: DoD has considerable interest in compact power sources that can exceed the endurance of batteries by a significant margin. To this end, several DARPA sponsored programs have focused on the development of fuel cells spanning the size range from tens of watts to tens of kilowatts. Applications include, but are not restricted to, individual soldier power, battery chargers, diesel generator replacements, auxiliary power units, and mobile electric power. Operation on logistics fuels is a requirement for the larger systems, as acceptance of a new fuel by the logistics chain is highly unlikely. Alternative fuels, e.g., methanol, may be acceptable on the short term for smaller systems because, from a logistics standpoint, it can be packaged and handled like a primary battery pack. Ultimately, fuel cells operating on logistics fuels will be needed to meet future requirements. This topic seeks proposals that will significantly improve logistics fuel processing technology for small fuel cells (PEM and SOFC) in the power range of 50 W to 1 kW. The following issues should be addressed in the proposal: 1) system size and weight; 2) operational complexity and maintenance; 3) compatibility with existing PEM or SOFC technology, with respect to load following, fuel purity, startup and shutdown; 4) safety; and 5) efficiency.
PHASE I: Demonstrate a proof-of-concept logistics fuel processor for small PEM or SOFCs in the 50 W to 1 kW power range.

PHASE II: Demonstrate an integrated logistics fuel processor with a PEM or SOFC in the 50 W to 1 kW power range.

COMMERCIAL POTENTIAL: The development of compact fuel cell technology that operates on logistics fuels will enable the development of highly efficient, quiet, environmentally compliant power sources for consumer applications, e.g., lawn mowers, emergency power units, and recreational activities (camping, boating, etc.).

DARPA SB971-006 TITLE: System and Security Management Tools

CATEGORY: 6.2 Exploratory Development; Computing and Software

OBJECTIVE: Enhance and/or expand the set of administrative, diagnostic, and system management tools available to network managers and system administrators to securely manage large, complex, heterogeneous networked and distributed systems in the presence of ordinary failure and possible malicious activity.

DESCRIPTION: The intent of this topic is to solicit research and development leading to system management tools with broad applicability to today’s widely fielded, heterogeneous systems. Of particular interest are tools that combine functions of security monitoring and intrusion detection with those of system failure diagnosis and repair. The diagnostic functions should enable the determination of the source and scope of the problem, discrimination among kinds of problems, diagnosis in the face of limited information, distributed diagnosis, and scalable diagnosis in very large heterogeneous networks. Among functions that could be considered for such tools are configuration checking (to ensure a system configuration is secure), intrusion detection (continuous monitoring and detection of suspicious activity), self-test and diagnostics (identifying root causes of perceived problems), penetration analysis (for rapid damage assessment and system recovery), and control functions (for reconfiguration, maintenance and correction/repair). Tools for instrumentation of systems and networks for the collection of appropriate data for analysis are also needed.

Of special interest are tools that allow a system to be reconfigured to adapt to changes due to failures, attack, or normal system evolution. Tools to be developed might allow a system to have an anticipatory reaction (based on predicting where the problem will strike next, or the next stage of an attack), problem isolation and containment, and warm or cold restart. Also of interest are standardized Application Program Interfaces (APIs) for testing and sharing management information across administrative domains. Novel approaches are desired for tools that will: 1) improve the capture of relevant information in real-time, with reductions in both system processing overhead and human intervention; 2) reduce the labor-intensive operations associated with system management, security management, and incident response; and 3) improve testing of the effectiveness and efficiency of system safeguards. Proposals must clearly state the analytical methods to be employed and must include a task that evaluates the success of the methods for the application. Earlier techniques and tools that were taken as far as the proof-of-concept stage may be reused and extended. Proposals to enhance existing tools, to make them more broadly applicable, will also be considered. The capabilities of these new or enhanced tools should go well beyond what has previously been done. Solutions must be scalable for use in extremely large heterogeneous computing and communications networks. Special attention must be paid to ease of use. Proposals must clearly state the scale of the system targeted.

PHASE I: In detail, define the application, the analytical techniques or algorithms to be used, the approach to and limits of scalability, and quantify the expected benefits. Produce a detailed design of the tool to be implemented. Relevant tools are those which will bring greater efficiency and security to system operations and management. From experiences with current tools, it is becoming clear that such tools need to be easier to manage, provide more automated diagnosis and intervention/repair, and provide better instrumentation for data collection and control/response.

PHASE II: Produce a prototype of the tool, its documentation, and an experimental evaluation of its effectiveness. Complete documentation of test cases and results must be delivered. The documented experimental evidence should make it clear whether there is a marked increase in continuous operations and security as a result of the tool, as well as demonstrate the improvement in the tool’s ease of use. Such demonstrations may require the use of test subjects to develop necessary supporting statistics. The tool developer should provide estimates regarding the acquisition costs and operational performance costs of using the tool, including hardware and software costs, processing overhead, storage and bandwidth requirements, and management costs.

COMMERCIAL POTENTIAL: The development of scalable, easy-to-use system security and management tools that can be used to analyze and manage very large, heterogeneous computing and communications systems will help feed the growing market for tools to safeguard systems from attack by internal or external penetrators, and to help system managers perform their jobs without need for extensive security expertise. These tools can help to establish new markets for management tools and services. For example, tools to check security configuration can be used by a commercial security certification service; tools for damage

DARPA-13
assessment and incident recovery can be used by a commercial incident response service. Making such tools more cost effective and easier to use should enhance making any potential commercial security analysis service a profitable endeavor.

DARPA SB971-007 TITLE: Tools for Software System Understanding and Transformation

CATEGORY: 6.2 Exploratory Development; Computing and Software

OBJECTIVE: Demonstrate software technology that supports the evolution and modification of legacy software systems by "reverse engineering" of the system into an evolvable, architecturally-oriented description.

DESCRIPTION: This topic seeks to develop semi-automated tools to design recovery of legacy software systems and their restructuring into evolvable systems. For a system to be evolvable it must be annotated with a structured, machine processible description which: 1) represents the system at an architectural level with appropriately modularized components, 2) relates these to standard programming clichés and architectural patterns, and 3) captures the rationale for the structure of the system. Tools and techniques relevant to this overall goal include: 1) domain specific software architectures and reuse repositories which reduce development cost and time by allowing the use of "plug compatible" software components; 2) design representations and tools that reduce the cost and risk of reusing existing components by maintaining a "design record" to explain a component's structure, behavior, and constraints on its use; and 3) reverse engineering tools to support design recovery and restructuring of existing software assets. These include slicing and related analysis techniques, software pattern matching tools, cliché recognition techniques, etc.

PHASE I: In detail, define the domain of applicability of the tool and the set of techniques to be employed, and analyze their limitations. Conduct exploratory implementations. Produce a detailed design of the final tool.

PHASE II: Produce a prototype implementation of the tool set, its documentation, and experimental demonstrations of its effectiveness.

COMMERCIAL POTENTIAL: A specific opportunity for such tools is management of the Year 2000 problem. Large volumes of commercial and DoD software have been written using limited sized fields to represent dates. Many of these programs will fail as the turn of the century approaches. Often the dates are not explicitly tagged as such. In addition, it is difficult to determine where computations on dates are performed in the system. Tools of this type can help identify and fix these problems. More generally, there exist billions of dollars worth of legacy code, written in obsolete programming languages, for which the design rationale has long been lost. Tools which can help recover structure and rationale will find a very large market.

DARPA SB971-008 TITLE: Tools for Safe, Efficient Mobile Code in Heterogeneous Networked Environments

CATEGORY: 6.2 Exploratory Development; Computing and Software

OBJECTIVE: Demonstrate robust prototypes of tools to compile, optimize, verify, and/or instrument mobile code for safe, efficient execution on networked heterogeneous hosts.

DESCRIPTION: The emergence of large-scale, heterogeneous networked computing environments and the World Wide Web has created a demand for programs that execute safely and efficiently on arbitrary host architectures, regardless of the source of the code. The Java solution is biased toward safety, requiring such programs to be written in a particular language, and ensuring safety through the type system of that language, local verification of the byte-code intermediate form, and interpretation rather than execution. These safeguards, while imperfect, ensure some degree of protection of the local system at the expense of efficiency and scalability to large programs. While commercial byte-code compilers promise to address efficiency concerns, they may do so by sacrificing safety and ignoring the complex tradeoffs among safety, compilation time, execution time, and interpretation time that can only be made dynamically.

Advanced tools are required to: verify the safety of mobile code; instrument that code to detect memory errors, unauthorized resource access, or system calls; efficiently compile and optimize code for best performance on the user's host machine; make dynamic decisions on whether compilation or interpretation is the best strategy (including possible hybrid interpretation/incremental compilation approaches); and dynamically recompile segments of the code using run-time dependence information. Languages of interest are not limited to Java, but may include other familiar languages such as C, C++, and ML, or annotated dialects thereof.

PHASE I: Identify target source and intermediate language(s), requirements, and high-level design of tool suite. Demonstrate proof-of-concepts on at least two different host platforms (architecture/OS). Demonstrate validity of safety and verification claims.

PHASE II: Complete reference implementation of tool set. Port to, and demonstrate on, at least three different host
platforms. Demonstrate scalability and dynamic features.

COMMERCIAL POTENTIAL: The explosion of the World Wide Web has generated substantial commercial interest in mobile code as a means of providing flexible, extensible, enhanced web services for information dissemination and electronic commerce. The technology described here will greatly expand the scope of feasible services by addressing the critical issues of safety and efficiency, enabling deployment of more complex applications, and instilling greater confidence in the end user.

DARPA SB971-009 TITLE: Adaptive Network Security Management

CATEGORY: 6.2 Exploratory Development; Computing and Software

OBJECTIVE: Design and develop software for configuring security mechanisms in response to stress situations in the management of computer networks.

DESCRIPTION: The Internet environment poses many threats to connected systems. Firewalls and other strong access controls help mitigate the risks, but there are no perfect mechanisms. When the security of a system (LAN, enclave, virtual network, etc.) is breached, a response must be initiated. In the current state-of-the-art, these responses are initiated by system managers on an ad-hoc basis, in response to some anomaly or advisory. Significant effort is being invested in the detection of security anomalies via intrusion detection and various emergency bulletins from centralized organizations. There has been less work in developing detailed response scenarios for affected organizations, yet there are a number of mechanisms available to system administrators that can adjust the "openness" of the security mechanisms in order to protect organizational resources. Examples include increasing audit logging, selectively disabling remote services, and disabling selected accounts.

An environment that allows a system administrator to easily manage the mapping between security alerts, and response scenarios that reconfigure the network system security mechanisms into an appropriately defensive stance, would increase the survivability of systems to new or newly discovered vulnerabilities in network software. Allowing administrators to tailor the responses to their particular environments would give them the flexibility to introduce new protective mechanisms and deploy them appropriately. This adaptation increases the utility of the system overall by allowing it to remain as accessible as is appropriate under the changing environmental conditions.

PHASE I: Develop three components of the adaptive management system in a detailed design: 1) a characterization of the interfaces for receiving prerequisite and classifying security alarm information from human or automated intrusion detection; 2) a characterization of the response mechanisms, their purposes, and their interdependencies with critical systems services; and 3) scenarios developed as scripts (for example) that form a coordinated response, ranging from such possible examples as simple one-step e-mail messages, to establishing removing all remote access to a LAN. An easily manipulated user interface for creating and installing alert/response mappings should also be detailed.

PHASE II: Develop the detailed design as a fully operational software system on a commercially-available platform, including Internet services and firewall technology.

COMMERCIAL POTENTIAL: This adaptive response mechanism can be incorporated into LAN configuration tools and system security administration tools. It can be used to protect legacy systems and to interact with new software that is more security savvy than older systems.

REFERENCES:

DARPA SB971-010 TITLE: Scalable and Robust Implementations of Tools and Environments for High Performance Systems

CATEGORY: 6.2 Exploratory Development; Computing and Software

OBJECTIVE: Creation or robust implementation of software tools and environments which can reduce the time to enable and improve the quality of implementation of high performance computing and data intensive applications.

DESCRIPTION: The intent of this topic is to solicit research and development leading to prototype tools supporting the development needs of high performance applications, such as the ones developed under the federal High Performance Computing and Communications (HPCC) Program. Efforts may encompass the development of novel software tools or the creation of robust implementations of existing prototypes of software tools and environments geared to address the needs of high
performance applications characterized by numerically-intensive computational requirements, as well as communication and I/O requirements. Such tools and environments include, but are not limited to, language preprocessors, compilers, code schedulers, code transformers, software library managers, debuggers, application development visualization tools, and performance analysis visualization tools. Easy to use, robust and scalable implementations are highly desirable, as well as implementations that deal with porting said applications on heterogeneous distributed computing environments. Special emphasis will be placed on tools and environments that support large scale parallel systems and those that can support (heterogeneous) distributed systems.

PHASE I: In detail, define the tool or environment to be developed, the software architecture, the technical approaches, interfaces, tradeoffs, and enhancements over current approaches or existing tools, together with feasibility analysis, identifying the testbed applications, and providing measurable criteria of the validity and success of the approach.

PHASE II: Prototype, develop, demonstrate, evaluate, and deliver software development tools and integrated support environments for porting and executing high performance applications, along with evidence that demonstrates the enhancements made by this work. Provide the associated documentation for using the tool or environment.

COMMERCIAL POTENTIAL: Lack of adequate, and in particular robust and scalable, software tools has hampered the wider use and exploitation of today’s high performance parallel and distributed systems. The present effort can contribute toward creating tools that remain robust at the range of large numbers of processors, which will aid and expedite the porting of DoD critical applications on today’s parallel and distributed high performance machines.

DARPA SB971-011 TITLE: Rapidly Deployable Nomadic Routers
CATEGORİ: 6.2 Exploratory Development; Computing and Software
OBJECTIVE: Creation of routers that can be rapidly and easily deployed in areas with little or no fixed infrastructure.
DESCRIPTION: The intent of this topic is to solicit research and development leading to the creation of small routers capable of connecting into a wireless internetwork. Efforts may address any combination of single or multihop wireless radio technology, satellite networks, or cellular telephone systems. Efforts may either build upon existing routing and access algorithms for multihop wireless communications and nomadic routing, or may propose to develop new algorithms. In all cases, proposals must clearly state the throughput goals; geographic coverage targets; and projected size, weight, and power requirements for the routers.

PHASE I: In detail, define the specification for a proposed wireless, nomadic router and produce a design.
PHASE II: Create a set of nomadic routers capable of deployment within a campus or metropolitan size region. Demonstrate that the routers meet the performance goals established in the Phase I proposal. Complete documentation of test cases and results must be delivered.

COMMERCIAL POTENTIAL: The development of rapidly deployable wireless routers will expand the commercial market for access to information sources and content across a fixed infrastructure. Timely access to such information will become possible from remote areas. Such access should benefit dual-use applications, such as deployment of resources to rapidly respond to unpredictable crises of either a military or emergency nature.

DARPA SB971-012 TITLE: Low-Cost Technique for Measuring Distributed Strain and Temperature in Long Optical Fibers
CATEGORİ: 6.2 Exploratory Research; Electronics
OBJECTIVE: Develop a low-cost fiber optic sensor that is capable of accurately measuring the strain distribution in optical fibers that are (1) wound for high-speed payout applications [e.g. U.S. Army Missile Command projects such as Extended Range Fiber Optic Guided Missile (EFOGM) and Long Range Fiber Optic Guided Missile (LONFOG)], and (2) embedded in various composite structures. Develop a strain sensor that can resolve strains in dynamic environments such as precision-wound bobbins undergoing temperature variations in buildings and lifeline facilities (e.g. bridges) in the presence of passing seismic waves.

DESCRIPTION: Optical fibers have been precision-wound for high-speed deployment in a variety of fiber optic tethered vehicles and weapon systems for more than a decade. The wound fiber pack must maintain mechanical stability during long-term storage and operation (high-speed payout) over military environments. The issue of residual tensions throughout the wound pack becomes more critical as the required number of layers increases, and the system demands for increased speed and range grow. The number of layers required for next generation fiber optic guidance systems have more than tripled. A low-cost, non-destructive measurement technique that can provide a strain/temperature profile along the entire length of fiber during the
winding process and in a storage environment (temperature cycling and ramps) is needed. The measurement technique must be capable of resolving the strain and strain changes between the individual layers. Strain sensitivities less than 10^-8 with a time resolution of 10 Hz are required. The sensor should be capable of resolving less than 1°C temperature changes along the fiber length. The outcome of this project should provide the fiber optic bobbin designer with a non-destructive measurement technique to aid in optimizing the winding tension profile required to uniformly distribute the energy throughout the pack upon the completion of the winding process.

PHASE I: Investigate various fiber optic strain sensing techniques for measuring distributed strain and temperature in long (up to 50 km) optical fibers. Provide detailed analysis of all feasible solutions. Recommend a low-cost approach that will meet the criteria described above.

PHASE II: Develop and demonstrate the selected fiber strain/temperature sensing technique from Phase I. Perform testing to verify the performance of the fiber optic sensor system. Provide detailed description of the equipment and materials. Provide a laboratory demonstration of the system/equipment. Provide test data.

COMMERCIAL POTENTIAL: This SBIR project is intended to investigate optical techniques to accurately measure the strain and strain changes in each individual layer of wound fiber in a fiber optic dispenser. The sensor technique has direct application to measuring strains/temperatures in various composite smart structures (containing embedded optical fibers), at sites coincident with seismometers, in bridges, in buildings undergoing seismic waves, across active faults, down-hole through glaciers, etc.

DARPA SB971-013 TITLE: Spatial Light Modulator (SLM) with Independent Phase and Amplitude Modulation

CATEGORY: 6.1 Basic Research; Electronics

OBJECTIVE: Further the development of SLM technology by providing a device with independent control of phase and amplitude modulation. This capability is extremely critical in both optical processing and holographic imaging.

DESCRIPTION: The critical component in many optical processing architectures is the SLM. The SLM is usually employed both in the input plane and in the filter or programming plane of the system. Many electronically controlled SLMs have the capability to independently modulate either the amplitude or the phase of the incident coherent light. Some of these modulators also exhibit a coupled phase and amplitude response. No modulator currently exists, however, with independent control of both phase and amplitude. This has limited the performance of optical processing systems by forcing a "best fit" approach rather than actually realizing the fully complex design of most filters. It also limits the resolution and image quality of holographic display systems based on SLMs. Recent advances in the technology offer the possibility of achieving the ability to control phase and amplitude independently on a pixel by pixel basis.

PHASE I: Demonstrate a small array (at least 4 x 4) of electronically controlled pixels capable of modulating a coherent light source. Each pixel should provide the ability to independently control the phase and amplitude of the exit beam at rates exceeding 10 kHz. Phase I will be used to provide the design of the individual pixel, provide a system architecture for a full scale device with at least 512 x 512 pixels and a 1 kHz frame rate, and demonstrate a proof-of-concept small array.

PHASE II: Fabricate, demonstrate, and deliver a full scale device based on lessons learned in Phase I. This device should have at least 512 x 512 pixels and provide a 1 kHz frame rate.

COMMERCIAL POTENTIAL: Commercial interest in optical processing applications, such as machine vision and security, has been demonstrated by several companies. The successful completion of this SBIR will have a tremendous impact on the performance of the prototype systems currently under development, and should result in increased interest. Holographic imaging systems based on this device also have potential in the medical and topographical imaging arenas.

DARPA SB971-014 TITLE: Efficient External Modulators for Radio Frequency (RF) Photonic Systems

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications; Electronic Warfare

OBJECTIVE: Develop highly efficient electro-optic modulators to enable near-lossless conversion of analog electronic signals to the optical domain for RF photonic systems.

DESCRIPTION: The intent of this topic is to solicit research and development leading to electro-optic modulators capable of high efficiency conversion of RF carrier-based signals to optical carrier-based signals. Efficiency is defined by modulation depth: 10% optical modulation depth equals 10% efficiency; 100% modulation depth equals 100% efficiency. Linearity of conversion is of paramount importance. Conversion (modulation) must be performed without the use of electronic amplifiers. Operation at 1.3 or 1.55 microns is of interest. Polarization independent operation is also of interest. Modulators that convert
analog RF signals to optical intensity (magnitude squared of field) or to optical amplitude are both of interest. Frequency of operation from 1 GHz to 100 GHz is desirable. Military systems influenced include antenna systems, RF receivers, satellite communications, electronic warfare (EW) systems, and electronic signals intelligence (ELINT) systems.

PHASE I: Tradeoff design approaches and develop electro-optic modulators with limited breadboarding.

PHASE II: Implement most promising modulator designs and incorporate into an optical RF link for evaluation.

COMMERCIAL POTENTIAL: Major applications to the commercial market are in satellite receiver systems for distributed RF signals over large distances with high signal quality; remoting of cellular radio systems by high-quality, low-loss RF photonics without the need for complicated and expensive digital processing equipment; and LANs for low distortion distribution of RF signals in large building complexes, aircraft, and television network systems.

DARPA SB971-015 TITLE: Wideband Photonic Radio Frequency (RF) Signal Processors

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications; Electronic Warfare

OBJECTIVE: Develop new concepts and approaches for wideband RF signal processing utilizing photonic devices and architectures.

DESCRIPTION: The intent of this topic is to solicit research and development leading to signal processors capable of wideband (megahertz) operation directly, without RF signal up/down conversion. Processors will be compact by virtue of their operation at the optical frequency and wideband, requiring no RF conversion, local oscillator distribution or intermediate frequency (IF) operation. Candidate areas of investigation are wideband signal detection and processing, antenna beamforming, jammer null steering, and multipath mitigation. Frequencies of interest are from 100 MHz-100 GHz. System applications are antenna systems, receivers, satellite communications, radar surveillance, electronic warfare (EW), and electronic signals intelligence (ELINT) systems.

PHASE I: Tradeoff concepts and designs to develop wideband RF processors with limited breadboarding.

PHASE II: Implement the most promising designs and incorporate into a system application.

COMMERCIAL POTENTIAL: Applications to the commercial market are in satellite receiver systems, cellular radio systems, and television receiver distribution systems.

DARPA SB971-016 TITLE: Stand Off Chemical and Biological (Chem/Bio) Hazard Detection

CATEGORY: 6.2 Exploratory Development; Chemical and Biological Defense

OBJECTIVE: Concept development and prototype design specifications for airborne chem/bio agent detection system.

DESCRIPTION: The technology to manufacture and employ chem/bio weapons is widely available to potential adversaries of future conflicts. The use, even threat of use, of these agents severely impacts military planning and fighting effectiveness. The development of a robust sensor system that would provide rapid information about the presence and nature of a biological threat to the battlefield commanders, within a short time line, will be required for future battlefield awareness. The ability to rapidly survey areas of potential or actual chem/bio weapon use will reduce the planning uncertainty, facilitate medical response to treat friendly forces, and perhaps deter or dissuade development of these weapons of mass destruction (WMD).

A sensor suite, which can be mounted on an aircraft or an unmanned aerial vehicle (UAV), could provide this wide-area, rapid-reaction chem/bio hazard surveillance. The ability to detect a wide array of potential threat substances at low concentrations and at long stand off ranges will require development of devices with significant increases in performance over technologies currently available.

PHASE I: Provide sensor system performance predictions for the recommended technologies. Perform concept definition study to address sensor integration with airborne platforms. Address size, weight, power, and processing requirements.

PHASE II: Provide detailed airborne sensor system designs. Develop and test breadboard component hardware which can lead to fieldable system hardware.

COMMERCIAL POTENTIAL: Successful conclusion of this development effort could lead to important sensing capabilities for civil defense, disaster response, seismic monitoring, and air quality monitoring.

DARPA-18
DARPA SB971-017 TITLE: Aerostat Survivability

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications

OBJECTIVE: Explore and develop advanced techniques to improve the survivability of small and large aerostat systems.

DESCRIPTION: Tethered aerostats are receiving increasing attention for military use as a sensor host platform. One factor limiting their acceptance within the Services is survivability. Survivability threats to the aerostat (as a system) can be directed at either the airborne vehicle or the ground mooring station, and can include threats such as surface-to-air missiles (SAMs), cruise missiles, theater ballistic missiles (TBMs), strike aircraft, and special operations forces. This topic seeks to investigate innovative concepts and technologies to increase aerostat survivability. Examples might include mooring station hardening techniques for larger aerostat systems, or reduction of the observability of smaller, forward deployed aerostat platforms. Effectiveness analysis comparing baseline systems to proposed concepts would be expected of any winning proposal.

PHASE I: Propose and evaluate innovative concepts for survivability. Determine improvement factors over current approaches. Assess feasibility of implementation. Some limited component level demonstrations may be appropriate.

PHASE II: Build and test a prototype system to demonstrate the value of the proposed approach.

COMMERCIAL POTENTIAL: U.S. aerostat manufacturers serve an established market domestically and internationally for both military and commercial applications. For example, commercial systems have been sold to Korea, Iran, and Nigeria as communications nodes, and for TV and radio broadcast. Aerostats have also been proposed as long endurance environmental monitoring systems. Innovative ideas resulting from this SBIR such as lightweight systems, redundancy, ruggedization techniques, or innovative mobility concepts will improve the capability of aerostats to deploy to remote locations and thus expand the commercial market potential.

DARPA SB971-018 TITLE: Low-Cost, Miniature Unattended Sensor Systems

CATEGORY: 6.3 Advanced Development; Sensors

OBJECTIVE: Develop and demonstrate novel concepts for detecting, localizing, and classifying targets with arrays of low-cost, miniature, interneted, unattended ground and littoral sensor systems.

DESCRIPTION: The intent of this topic is to solicit research and development leading to the design and demonstration of novel, advanced, unattended sensor systems for the detection, localization, and classification of air, ground, and shallow water time-critical targets. Efforts may address individual miniature sensor systems, such as acoustic, seismic, chemical, environmental, orientation, geolocation, imaging, and magnetic systems; however, multisensor systems with local signal processing, data fusion, and an internetted communications capability are also of interest. Low-power, autonomous wake-up, and command wake-up capabilities for these unattended systems are required. Efforts of interest also include: low-power, extended-life, high-resolution sensors; efficient real-time, feature-based classifiers; environmental models for real-time transformation of sparse sensed data to predictions of area weather and propagation related parameters; decision aids to enable optimum configuration and processing of data from sensor arrays; and technologies to precision air deliver individual and arrays of unattended sensor systems from tactical aircraft, unmanned air vehicles, mortars, or artillery shells, including packaging of these sensor systems in submunition-sized configurations compatible with area denial missile systems, such as MLRS and ATACM systems. Parameters of interest that will be utilized to evaluate proposed sensor concepts are projected cost; size; weight; reconfigurability through modular design; power consumption; covert operations; and detection, localization, and classification performance. Aggregate metrics, such as dollars per kilometer squared detection coverage-hours of life, without battery change, will be utilized to compare proposed concepts. Parameters of interest that will be utilized to evaluate proposed aircraft and unmanned air vehicle delivery system concepts are projected cost, size, weight, stowage capability, altitude and delivery range capability, precision of delivery (CEP), and, for earth penetrating concepts, the capability to penetrate in varying soil conditions while still maintaining communications and in-situ sensing capability after delivery.

PHASE I: Develop concept description and initial design of sensor related system with clear description and quantification of key predicted performance parameters. A sensitivity analysis indicating the predicted performance of alternate proposed system configurations, including identification of highest risk aspects of the proposed design is required. Risk mitigation demonstrations and/or simulations of key high-risk aspects of the proposed design, to demonstrate proof-of-concept, is also required.

PHASE II: Develop final design and demonstration of the proposed sensor related system with post-demonstration analysis sufficient to demonstrate proof-of-performance for the proposed system. Complete design and demonstration documentation must be delivered.
COMMERCIAL POTENTIAL: The development of low-cost, high performance, modular, miniature sensor and related sensor delivery systems will expand the commercial markets for home and industrial security systems, industrial process monitoring systems, and environmental monitoring systems. Increased performance; component modularity for optimum domain specific tailoring of sensor configurations; and the dramatic reduction in size, weight, and cost of these sensor systems will increase the range of potential applications for these products.

DARPA SB971-019 TITLE: Mortar or Rifle Launched, Low-Cost, Miniature Ballistic and Glided Flight Surveillance Sensor Systems

CATEGORY: 6.3 Advanced Development; Sensors

OBJECTIVE: Develop and demonstrate low-cost, miniature, surveillance sensor systems that are ground deployed from either a mortar launcher or a rifle, and are retrievable.

DESCRIPTION: Small, highly mobile, dispersed forces need an organic capability to deploy and retrieve over-the-horizon capable (greater than 30 kilometers), miniature sensor systems to provide near real-time threat and terrain related information. Specifically, this topic seeks research and development leading to the design and demonstration of novel, rifle and mortar launched and retrievable surveillance sensor systems for the over-the-horizon detection, localization, and classification of ground and shallow water, time critical targets. Efforts may address individual miniature system components, such as advanced propulsion systems or sensor systems, as payloads for these ballistic and glided flight vehicles; however, concepts for complete mortar and rifle launched systems are preferable. The use of conformal and deployable wings and control surfaces is required to insure compact stowage and ballistic tube launching of these sensor systems. Parameters of interest that will be utilized to evaluate proposed concepts are projected cost, size, weight, flight duration, maximum altitude, effective trajectory path length from launch to return for recovery, stowage capability, reconfigurability through modular design, power consumption, covert operations, and sensor performance. Aggregate metrics, such as dollars per kilometer squared surveillance coverage, will be utilized to compare proposed concepts.

PHASE I: Develop concept description and initial design of the miniature, integrated sensor and vehicle system, with an imaging subsystem payload configuration with clear description and quantification of key predicted performance parameters. A sensitivity analysis indicating the predicted performance of alternate proposed system configurations, including identification of highest risk aspects of the proposed design, is also required. Risk mitigation demonstrations and/or simulations of key high-risk aspects of the proposed design, to demonstrate proof-of-concept, is also required.

PHASE II: Develop final design and demonstration of the proposed miniature, integrated sensor and vehicle system with post-demonstration analysis sufficient to demonstrate proof of performance for the proposed system. Complete design and demonstration documentation must be delivered.

COMMERCIAL POTENTIAL: Such technology would have tremendous commercial/dual-use applicability. The idea is to produce very small, lightweight sensors that could be projected out to ranges in excess of 10 kilometers in a simple and cost-effective manner, and then retrieved by having the sensor system return to the point of origin (like a boomerang).

This technology may be used for physical security systems for monitoring large complexes or areas such as airports, industrial plants, farms, forest areas, ranches, beaches, port operations, etc. Such systems would also be particularly useful for fire or disaster relief monitoring, where there is a need for small retrievable systems to provide a periodic air surveillance capability at relatively long ranges for large area or long perimeter searches.

By constraining the system to a miniature size, it could be projected into the air using a variety of means, such as ballistic launch from a medium sized tube (such as a mortar launching tube) or a very small tube (such as a rifle using a charge ranging from a bullet propellant charge to a larger, rifle propelled grenade sized charge of propellant). For purely commercial systems, an electric rail gun or a compressed gas system could be used to initially propel the sensor system into the air. Once in the air, these systems will have a recoverable and rechargeable propulsion system that will enable the sensor system to travel 10 plus kilometers and then return to the point of origin.

DARPA SB971-020 TITLE: Advanced Propulsion and Power Technologies for Micro Air Vehicle (μAV) Systems

CATEGORY: 6.2 Exploratory Development; Air Vehicles, Aerospace Propulsion and Power

OBJECTIVE: Identify and develop promising propulsion and power technologies for μAV systems and applications.

DESCRIPTION: The growth and maturation of μAV systems will be paced by improvements in propulsion and power technologies. Range, endurance and speed are parameters dominated by propulsion and power capabilities. The small size of
the μAV requires consideration of high heat release and high-power density concepts. This topic is directed at innovative propulsion and power systems, and concepts that can provide significant new capabilities including fuels, powerplants, thermo-chemical systems, and battery and fuel cell concepts. Innovative, high-payoff ideas involving new technologies, as well as improvements to a variety of current schemes, will be explored.

PHASE I: Conduct preliminary design analyses and definition studies based on proposed propulsion/power schemes. Describe the potential, and outline how the concept(s) will be developed and matured. Identify the critical technology, design, and integration issues, and describe a plan to address them.

PHASE II: Develop the proposed concept/technology to a level sufficient to confirm the potential and assure adaptability to μAV applications. Conduct performance demonstrations. Growth and maturation requirements will also be identified and discussed.

COMMERCIAL POTENTIAL: Micro propulsion and power generation systems, especially those stressing energy conversion efficiency, have a wide variety of potential commercial and consumer applications. These include portable power sources/supplies in such applications as plant power and heating, system control devices, remote control devices, security systems, etc.

DARPA SB971-021 TITLE: Diver-Held Sonar

CATEGORY: 6.2 Exploratory Development; Sensors

OBJECTIVE: Develop a small hand-held combat diver sonar for shallow water search.

DESCRIPTION: Shallow waters are murky, harsh sonar environments with many false targets. It is well known that marine mammals can easily accomplish the identification of objects in murky waters. These sonars operate in the 50-150 kHz range, demonstrating that sonar is a feasible approach. This topic seeks to develop, build, and test a sonar small enough to be hand-held, with a microprocessor and display. The sonar parameters are a range of 30 meters in a water depth of 10 to 30 meters, a source level of 200 dB re (one micro-Pascal squared second), a size of the transducer of approximately 0.4 meters, and a processor in a helmet or strapped to the diver's arm. The total air weight should be approximately 10 lbs.

PHASE I: Develop the design and supporting sonar analysis of a diver-held sonar that meets the 30 meter range. Show that the design is feasible by the use of standard sonar analysis of the SW wave guide and computer simulation of the processor and display.

PHASE II: Based on the results of Phase I, construct a diver-held sonar prototype and demonstrate its utility in at-sea test.

COMMERCIAL POTENTIAL: The commercial potential for law enforcement search and rescue personnel is large. Currently, sonar technologies for lakes, rivers, and marshes are nonexistent. The search for objects and bodies requires a small mobile sonar.

DARPA SB971-022 TITLE: Antenna Element Location Measurement System for Millimeter Wave, Airborne Antennas

CATEGORY: 6.2 Exploratory Development; Electronics

OBJECTIVE: Develop distributed distance measuring technology to locate the relative location of antenna phase centers to enable large linear aperture, airborne antennas.

DESCRIPTION: The intent of this topic is to solicit research and development leading to the demonstration of a method to measure and compensate for the relative motion of aircraft mounted antenna elements in real-time. To maximize the aperture size of airborne antennas, it is desirable to locate antenna elements along the wings and/or the fuselage. However, flexing of the wings, fuselage, and other aircraft parts where the antenna elements are located can be rapid and large in amplitude, thus, introducing large phase uncertainties and spoiling antenna performance. It is impractical to make these aircraft structures rigid enough for millimeter wave antennas. The desired motion correction system will calculate, in real-time, the relative motion of each antenna element and calculate a phase offset to be applied to each antenna's signal to compensate for the antenna motion. The accuracy of the correction needs to be suitable for antenna operation up to 90 GHz.

PHASE I: Perform tradeoffs between different candidate approaches. Analyze and design the most promising measurement system. Conduct bench top tests and demonstrations to validate concept performance.

PHASE II: Field test a multi-antenna element, airborne antenna system with a sufficient number of antenna elements, to prove proper phase correction due to structure motion.
COMMERCIAL POTENTIAL: The development of large aperture, narrow beam width, millimeter wave antennas for vehicles (air and land) has many commercial applications, including collision avoidance, high bandwidth communications, and environmental remote sensing. Current systems have an aperture size limited to several feet, in part because of stability issues. With the proposed motion compensation system, an order of magnitude increase in aperture size would be practical.

DARPA SB971-023 TITLE: Robust Guidance, Navigation, and Control (GN&C)

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications

OBJECTIVE: Develop a broad range of advanced technologies to ensure highly reliable GN&C over a broad range of military mission scenarios and over the full spectrum of expected stressing battlefield environmental conditions.

DESCRIPTION: DARPA is pursuing technologies that will lead to improved Warfighter situational awareness, navigation, and self-location. These improvements can be manifested in a number of ways: increased capability for direct access of Global Positioning System (GPS) P(Y) coded waveforms, greater immunity to GPS receiver jamming, military applications of carrier phase tracking, lower energy (<1 joule) positional fixes of GPS C/A and P(Y) codes, etc. Pursuant to these objectives, improvements are sought at both the technology and system levels. Example technologies are those that can perform massive, parallel correlations at low-energy; antenna systems that can form multiple simultaneous nulls (<-60 dB); signal processing that offers order of magnitude improvements in time, energy efficiency, or performance; advances in all aspects of time/frequency standards, etc.

PHASE I: Identify, study, analyze, and justify the various technologies to be pursued for robust GN&C. Where necessary, preliminary measurements and limited experimentation will be performed. At the completion of this phase, the program will be focused on defined, quantified goals, and on those areas where the most payoff can be achieved.

PHASE II: Assemble and integrate the various technologies into areas for demonstration. Each area will include those technologies that focus on an overall goal. As an example, an overall goal for anti-jam protection may require antenna nulling, massive correlation, and precision timing. These demonstration areas will be pursued to achieve defined goals.

COMMERCIAL POTENTIAL: The development of low-energy GPS receiver systems; low-power and highly accurate time/frequency sources; and low-power, massively parallel correlators will add to the growing potential for the already ubiquitous GPS market.

DARPA SB971-024 TITLE: Unique Concepts for Rotorless High-Speed Vertical Takeoff and Landing (VTOL) Aircraft

CATEGORY: 6.2 Exploratory Development; Air Vehicles

OBJECTIVE: Conduct conceptual designs and critical technology validation of unique VTOL concepts with potential application for civil and military transportation of personnel and cargo.

DESCRIPTION: The intent of this topic is to solicit testing of technologies enabling later flight demonstration of VTOL concepts in the high subsonic speed regime. Unique concepts which go beyond the traditional helicopter rotor system approach are sought. Efforts may address any testing and simulation activities; for example, demonstration of propulsion system components, wind tunnel testing, or control system simulation, deemed critical to reducing technical risk.

PHASE I: In detail, define the aircraft application and develop conceptual design to support component testing and technology validation activities.

PHASE II: Conduct validation design and supporting model testing and simulation activities.

COMMERCIAL POTENTIAL: A VTOL aircraft without the range-reducing and passenger-disturbing effects of a rotor system will be attractive for short and medium length commercial passenger routes.

DARPA SB971-025 TITLE: Innovative Concepts For Space-Based Remote Sensing

CATEGORY: 6.2 Exploratory Development; Sensors

OBJECTIVE: Develop innovative techniques and concepts for high-resolution, electro-optical, or radar imaging of the earth’s surface.

DARPA-22
DESCRIPTION: Low-cost, innovative concepts for high-resolution space-based imaging of the earth’s surface are needed. Short revisit times are required to track dynamic events, while at the same time coverage of relatively large areas is important to both commercial and military applications. These needs, taken together, currently imply very expensive solutions, which require either a few very large systems in high-altitude earth orbit (HEO) and/or a large number of systems in low-altitude earth orbit (LEO). Concepts employing technology available over the next 10 years, that significantly reduce costs, are needed.

PHASE I: Develop novel space-based concept(s) that can image the earth at high-resolution (less than 1 meter). Produce defensible performance and cost figures, taking into account all aspects of system production, launch, and operation. Indicate areas where technology development is needed.

PHASE II: Produce next level of design detail and cost models, and work with one or more aerospace companies to refine and red-team the results.

COMMERCIAL POTENTIAL: This technology has potential application to space remote earth sensing systems.

DARPA SB971-026 TITLE: Precise Attitude Measurement

CATEGORY: 6.2 Exploratory Development; Sensors

OBJECTIVE: Develop techniques for precisely measuring aircraft attitude.

DESCRIPTION: Measurement of absolute geo-coordinates of objects and features on the ground is an important capability. Electro-optical (EO) and radar remote sensing techniques exist for accomplishing these measurements, and both typically require precise attitude measurement ranging from 10 to 100 microradians at bandwidths of 1 Hz or greater. New, reliable, versatile, techniques are needed that push toward greater measurement accuracy and higher bandwidths. For example, solutions applicable to interferometric synthetic aperture radar (IFSAR) call for an ability to measure the attitude of a line passing through the phase centers of two or more antennas, which can be in motion due to flexure of the airframe. Solutions applicable to EO sensors might have to cope with flexure as well.

PHASE I: Develop affordable, robust, high-accuracy measurement techniques employing Global Positioning System (GPS), angle sensors, etc., capable of dynamically measuring aircraft attitude on the range from 10 to 100 microradians at 1 Hz or greater bandwidth.

PHASE II: Implement attitude-measurement technique on test aircraft to demonstrate accuracy.

COMMERCIAL POTENTIAL: This technology has potential application to airborne and possibly space-based, earth remote sensing systems.

DARPA SB971-027 TITLE: Advanced Synthetic Aperture Radar (SAR) Waveforms

CATEGORY: 6.2 Exploratory Development; Sensors

OBJECTIVE: Develop innovative SAR waveforms that address range ambiguity problems encountered with high-area-coverage-rate systems; e.g., low-earth-orbit (LEO) satellites with large-swath-width coverage.

DESCRIPTION: SAR systems capable of imaging large areas from space are of interest to both military and commercial users. Such systems operating in LEO must be designed so that range ambiguities resulting from large-swath-width coverage do not impact image quality. Solutions to this problem, such as backscanning, both limit area coverage rate, and impact the complexity and cost of SAR systems. Digital waveform generators allow the employment of innovative waveforms and signal-processing schemes to address this problem and potentially reduce system costs.

PHASE I: Design and simulate waveform(s) and processing algorithm(s) enabling useful improvements in SAR performance. Waveforms must be realizable with available or emerging digital waveform generation technology.

PHASE II: Implement waveform(s) and processing algorithm(s) in flight tests and demonstrations.

COMMERCIAL POTENTIAL: This technology has potential application to space remote earth sensing systems

DARPA SB971-028 TITLE: Scalable, Multifunction Communications Controller

CATEGORY: 6.2 Exploratory Development; Electronics
OBJECTIVE: Develop a scalable communications controller to function with software reconfigurable multiband, multimode radios that provide unattended, wireless network relay services for dynamic environments.

DESCRIPTION: Multiband, multimode radios are being developed that provide local area network users and/or application servers with the capability to access multiple, simultaneous wireless networks. This capability is being applied to terrestrial systems as well as to airborne vehicles. However, the inability to access the communications payload during long missions, when equipment fails, or when missions change offers unique challenges for reconfiguration or maintenance of systems in an airborne environment. An intelligent, scalable communications controller is needed to provide gateway, router, and bridging services to communication payloads of varying complexity. This capability is particularly needed by communications payloads, such as the Airborne Communications Node. A controller operating in this environment will be required to change gateway, routing, and bridging configurations during a long endurance mission. This controller will also be required to function with various payload configurations, connection response times, bus loading, multilevel security requirements, and data rates. The controller must be scalable to implement a broad range of functions using a variable selection of resources for each mission.

PHASE I: Define a system level approach for achieving the scalable communication controller and produce a preliminary design. Estimate the expected level of performance of the controller and develop a detailed Phase II plan.

PHASE II: Fabricate elements or modules of the controller and integrate into a device capable of demonstrating attainable performance.

COMMERCIAL POTENTIAL: Communications controllers are needed to enable terrestrial and satellite-based wireless Personal Communication System (PCS) and cellular services to provide the personalized mobile network management capabilities envisioned.

DARPA SB971-029 TITLE: Rapid Model Development

CATEGORY: 6.2 Exploratory Development; Modeling and Simulation

OBJECTIVE: Reduce the model construction, validation, and insertion time by a factor of 10, and reduce the cost by a factor of 5.

DESCRIPTION: Current technology for constructing and validating ground order of battle target models for use in high-frequency, high-resolution, synthetic aperture radar (SAR) template-based and model-based automatic target recognition (ATR) systems is a time consuming, labor intensive process. Innovative model construction and validation tools, techniques, and processes that facilitate the rapid insertion of new or modified target models into fielded ATR systems are desired for completely accessible targets and inaccessible targets for which models must be developed by remote sensing means. Improvements in each part of the process, including model construction, data collection, data reduction, and data analysis to support validation, or the process as a whole, taken from an integrated model building and validation system perspective, are solicited. Innovative ideas that significantly reduce the time and cost required to rapidly construct, validate, and insert models in response to new or modified target threats are of particular interest.

PHASE I: Develop and implement rapid target construction, validation, and insertion methods, tools, and concept of operation. Benchmark the time and cost of current model development and insertion processes.

PHASE II: Apply and validate the Phase I rapid model development methodology by producing a minimum of five high fidelity, validated ground target models. Demonstrate that the new process meets stated time and cost objectives.

COMMERCIAL POTENTIAL: An advanced, rapid model development process has significant potential for commercial object recognition systems. In particular, this technology can be straightforwardly applied to automated roadway vehicle detection and recognition systems.

DARPA SB971-030 TITLE: Hyperspectral and Synthetic Aperture Radar (SAR) Fusion for Concealed Target Detection

CATEGORY: 6.2 Exploratory Development; Sensors

OBJECTIVE: Create and implement techniques for target detection using SAR and hyperspectral imagers.

DESCRIPTION: The intent of this topic is to solicit development of techniques for exploitation of multispectral and multisensor data to detect targets, particularly those targets concealed by foliage and man-made obscuration. Emphasis should be placed on algorithms for exploitation of image data from several platforms, including ultrawideband foliage penetration (FOPEN) radar and hyperspectral visible through short wave infrared imagers. Techniques should consider spatial and spectral adaptive filtering,
geolocation and image registration techniques, change detection, and multisensor data correlation in order to fully exploit the differences between sensors for detection and identification of man-made objects. Because the sensors may be operated on separate platforms, particular attention should be paid to object detection and false alarm probabilities, and the attendant effect on bandwidth of information transfer to remote image exploitation centers. Assessment of algorithm processing requirements and implementation on high performance computers is important in understanding practical implementation of techniques in real-time surveillance systems.

PHASE I: Develop or identify unique data fusion and correlation techniques. Assess the feasibility of the techniques developed on actual and simulated ultrawideband SAR data and hyperspectral visible through short wave infrared data.

PHASE II: Develop prototype software for demonstration tests. Test operation in conjunction with radar and hyperspectral data collections.

COMMERCIAL POTENTIAL: The quantity of radar and hyperspectral data available in the commercial sector is soon to increase rapidly with the commercial availability of hyperspectral instruments and the launching of a number of new radar satellites. This will increase the demand for better algorithms to extract useful information from a large quantity of imagery. Also, image understanding techniques have tended to concentrate on a single data source. Techniques developed under this topic will be applicable to the problem of extracting useful information from this mass of data and exploiting the complementary capabilities of the different imaging systems.

DARPA SB971-031 TITLE: Foliage Penetration (FOPEN) Interferometric Synthetic Aperture Radar (IFSAR) Techniques

CATEGORY: 6.2 Exploratory Development; Sensors

OBJECTIVE: Develop processing techniques to improve performance of FOPEN IFSAR systems in mapping applications.

DESCRIPTION: The intent of this topic is to solicit development of techniques to exploit IFSAR data for terrain height estimation, land use and target classification, and other mapping and geographic information system applications. It has been shown that synthetic aperture radar (SAR) images from two apertures can be used to estimate height and provide accurate digital elevation maps (DEM). By lowering the frequency of the IFSAR images to the UHF band while retaining necessary bandwidth, significant FOPEN can be obtained, providing the potential for DEM at true ground level. New ultrawideband processing techniques are needed to exploit this FOPEN IFSAR technology for rapid estimation of the terrain elevation, and for utilization of fully polarimetric returns from IFSAR images for classification of the biomass, terrain features, and man-made objects. These processing techniques should consider the need for simultaneous versus repeat pass IFSAR on the accuracy and fidelity of DEMs and classification. It is anticipated that representative data will be made available to verify processing techniques developed under this project.

PHASE I: Describe innovative processing techniques. Where possible, explore the feasibility of techniques with existing SAR imagery. Extrapolate performance-to-performance with single-pass FOPEN IFSAR. Describe relative benefits of innovative technique over current practice.

PHASE II: Implement a prototype of the new processing technique. Demonstrate performance with recorded SAR imagery from commercial or military data collection platforms.

COMMERCIAL POTENTIAL: These processing techniques will be applicable to UHF radars currently under development and may have wider application to a number of higher frequency systems in current commercial operation. Turn-around time is critical for some commercial operations and is primarily limited by processing time. Therefore, techniques developed under this topic that utilized distributed or parallel workstations could find wide application in both the civilian and military sectors.

DARPA SB971-032 TITLE: Electromagnetic Interference (EMI) Mitigation in Multiband, Multifunction Communications Nodes

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications

OBJECTIVE: Develop technology/tools to analyze/mitigate EMI in co-sited multifunction communications nodes.

DESCRIPTION: Highly capable multiband, multifunction radios and modern computer technology will soon be available, giving the military capability of establishing remote, autonomous, possibly airborne, communications nodes. Airborne communications nodes, in particular, will require remote/autonomous operation. It will be possible to simultaneously link multiple, diverse units through the communications node only if the multiple systems do not interfere with each other at the node. EMI from co-siting
is expected to be a major problem.

The goal of this topic is to define and develop one or more technologies to mitigate EMI in communications nodes. This topic encompasses the necessary analysis, trade studies, design, and development activities to address the issues resulting from simultaneous operation of multiple transceivers and/or simultaneous multichannel operation. These modes of operation introduce simultaneous, multiple modulations and frequency-hopping sets across HF, VHF, UHF, and SHF bands, and the associated issues of intermodulation, receiver desensitization and co-site interference. Mutual interference is anticipated from proximity of transmit frequencies to receive bands, receiver characteristics, harmonics/spurs and noise produced by transmitters and circuits available at the communications node. A comprehensive approach is required at the outset, particularly for airborne nodes, to determine and solve EMI problems.

Candidate EMI mitigation techniques include, but are not limited to, the following: 1) a comprehensive frequency management plan, 2) over the air control of operating frequency for operation in changing environments, 3) antenna design and placement to minimize co-site interference, 4) design and use of multifunctional antennas, 5) design and location of filters and multicouplers/receiver isolation, 6) interference cancellation techniques/adaptive nulling technologies, 7) dynamic antenna allocation for operational flexibility, 8) power budgeting to establish effective minimum radiation, and 9) receiver blanking during transmission.

PHASE II: Carry out/analyze the full mitigation effort.

COMMERCIAL POTENTIAL: Personal wireless communications and networking will require efficient bandwidth management and co-sited systems. Technologies to enhance capabilities of these systems will be increasingly important. In addition to application in military airborne communication nodes, EMI and co-site interference mitigation techniques have direct application in commercial communication systems, including improvement of existing cellular communication systems and the airport tower replacement program for vehicular installation of a mix of seven VHF and UHF radios to support disaster contingency plans.

DARPA SB971-033 TITLE: Dynamic Database (DDB) Technology for Battlefield Awareness

CATEGORY: 6.2 Exploratory Development; Computing and Software

OBJECTIVE: Create the information management technology to enable a dynamic, shared, distributed repository for information about all aspects of the battlespace, including terrain, buildings, vehicles, and forces, in a common geospatial and temporal reference frame.

DESCRIPTION: The intent of this topic is to solicit research and development leading to the creation of a dynamic battlefield database capable of supporting hypothesis, model, and terrain updates; responding to ad hoc queries; and publishing tailored products for selected users. The approach is to establish DDB as a continually updated, electronic model of relevant portions of a battlespace. The DDB will allocate available memory to maintain coverage, granularity, and ambiguity at a level consistent with changing user needs. Work is needed on: memory-efficient data representations and time-efficient search techniques for massive amounts of battlefield information; extended query languages to handle spatial, temporal, and uncertainty characteristics in user’s queries; archive management to allocate and de-allocate memory as information ages and users’ foci of attention change; integrity controls to eliminate erroneous updates and allow recovery in case of hardware failure; pedigree management to maintain source histories for individual facts and hypotheses in the database; and techniques to update and predict terrain attributes from whatever data may be available, including maps, digital Defense Mapping Agency (DMA) products, electro-optical stereo pairs, synthetic aperture radar (SAR) imagery, interferometric synthetic aperture radar (IFSAR) elevation maps, and commercial imagery.

PHASE I: Define, in detail, the application, algorithm, and approach to providing one or more of above software capabilities.

PHASE II: Create the software system which delivers the functional capabilities defined in Phase I. Complete documentation of test cases and results must be delivered.

COMMERCIAL POTENTIAL: The development of efficient information management techniques for dynamically updating and managing massive databases of geospatial information has enormous commercial potential. With the advent of commercial satellite imagery services and the growth of geographical information systems for a wide variety of commercial services, there is a growing market for more sophisticated information management products tailored to the management of massive amounts of dynamically changing geospatial information.

DARPA-26
DARPA SB971-034 TITLE: Architectural Components for Semantic Interoperability

CATEGORY: 6.3 Advanced Development; Computing and Software

OBJECTIVE: Develop a semantic-based approach to sharing and understanding information within a very large, multiservice, multiple echelons of command, heterogenous system of systems.

DESCRIPTION: Current DoD Command, Control, Communications, Computers, and Intelligence (C4I) systems deal with extremely large volumes of data with complex requirements in very heterogeneous hardware, software, and communications environments. Future DoD systems are likely to be much larger and more complex than today’s, supporting a wide range of diverse user requirements over all four Services, multiple echelons of command, and multiple mission areas, such as Planning, Mission Rehearsal, and Operations. Both Coalition, Joint, and individual Service needs must be addressed.

Current approaches to achieving interoperability among these diverse systems have serious limitations. Specifying standards (RS-232, IEEE 802.3, Posix) or message syntax (Internet Protocol, Distributed Interactive Simulation protocol, Aggregate Level Simulation Protocol) are the most common approaches, since computers are extremely good at interpreting standards and syntax. However, the semantics for a computer system are usually implicit in the mind(s) of the designer(s). Extremely heterogeneous systems imply few assumptions that are valid over the entire system, leaving little room for implicit semantics because there is no shared context among the sub-system developers. The Semantics Challenge is the following: how can one create explicit semantics which are structured enough for computer-based analysis, yet expressive enough for DoD problems?

PHASE I: Create a detailed design which shows how semantic interoperability might be achieved in a large scale, extremely heterogeneous environment.

PHASE II: Create an initial implementation, illustrating semantic interoperability among a diverse set of components which does not rely on shared context among the developers, but instead deals with semantic issues explicitly, providing for computer-based analysis and composition.

COMMERCIAL POTENTIAL: Current business models already use a wide variety of contractors to develop multiple components which must ultimately interact in a coherent fashion to produce an integrated system. This approach is difficult to scale because of the large number of interfaces which must be managed and semantic issues which must be resolved through face-to-face interactions of the human designers. If the software components could self-describe their operations in a way amenable to computer interpretation, much larger systems could be composed automatically, opening entirely new business areas and fostering the growth of virtual consortiums to rapidly create new products.

DARPA SB971-035 TITLE: Nonlinear Warfare Initiative

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications; Modeling and Simulation

OBJECTIVE: Develop capability to model and predict nonlinear effects of actions taken to achieve military and national goals.

DESCRIPTION: The information-based Revolution in Military Affairs, as well as modern, information-driven business practices, operates on the premise that acting on the right information at the right time will enable highly leveraged, "nonlinear" effects to be achieved in a market or against a competitor’s or adversary’s key weaknesses (centers-of-gravity). There are currently no useful measures of effectiveness (MoEs) for nonlinear effects in business practice or military operation. Neither are there useful methods or tools for analyzing systems and situations to identify significant adversary's weaknesses that could be exploited using relatively little energy (e.g., adding a specifically defined feature, getting to market first, or destroying a critical communication node). Little exists for analyzing vulnerabilities that could be similarly exploited. A variety of methods can be used to achieve nonlinear effects. In business, these might include product positioning strategies, risk management techniques, and image management. For the military, these include precision munitions, small maneuverable forces, and information warfare (IW).

This topic will focus on scenarios to: 1) develop methods for modeling and reasoning about nonlinear effects, 2) identify and exploit competitive opportunities, 3) develop extensions to planning tools to include IW-based battle management (including active IW, Defensive Information Warfare (DIW), and perception management) and precision munitions effects, 4) develop MoEs and analysis methods for nonlinear warfare and identification of centers-of-gravity, and 5) apply MoEs to Course of Action (COA) analysis for nonlinear effects (positive and negative). Results from this program will be used at several levels to guide future technology development and acquisition decisions, create plans that coordinate the employment of actions that will bring about nonlinear effects, and evaluate friendly situations and plans for possibly catastrophic weaknesses.

PHASE I: Investigate basic methods for modeling and reasoning about nonlinear effects using a scenario-based approach and develop MoEs for nonlinear effects.

DARPA-27
PHASE II: Select the most promising methods for development resulting from Phase I investigation and explore extensions to planning tools to include IW-based battle management, precision munitions effects, and perception/image management. Phase II will also apply MoEs developed in Phase I to analysis of COAs for nonlinear effects.

COMMERCIAL POTENTIAL: This technology will allow analysis of business opportunities and COAs. It could also be used to estimate potential catastrophic effects of natural forces (hurricanes, earthquakes), environmental accidents (oil spills, toxic emissions), and financial changes (bank failures).

DARPA SB971-036 TITLE: Technology for Mixed-Initiative Information Exchange and Coordination in Collective Activities

CATEGORY: 6.2 Exploratory Development; Command, Control and Communication; Computing and Software; Human Systems Interface

OBJECTIVE: Develop protocols and sample implementations supporting sharing, exchange, and coordination of information in settings combining human and automated processes in distributed workgroups.

DESCRIPTION: The intent of this topic is to solicit research and development on protocols that support coordination and control of activities in distributed work systems in settings that combine automated processing with computer-mediated human processing.

The goal is to create a shared work environment distributed over the Internet, or intranets based on the Internet, that supports the widest possible range of modes of working for distributed organizations. This means the environment should support both synchronous and asynchronous cooperation between people and other people, between people and automated processes, and between process-to-process. It should support an open hypertext structure with shared data and objects. In addition to informal cooperation, the environment should also support structured processes and workflow. The environment must be relatively open because the participants who must be coordinated cannot necessarily be identified in advance.

Key technical developments lie in the protocols that support such systems and enable them to be comprised of interoperating components (including both new components, and legacy components which have been wrapped with software compliant with the protocols). Three areas of development are of interest:

1. Mechanisms supporting sharing, exchange, and integration of information at the document level and/or object level by building upon, extending, or integrating protocols such as COM/DCOM, OLE/ActiveX, CORBA, OpenDoc/CyberDog, HTML, HTTP, Protocol Extension Protocol (PEP), JAVA RMI, and JavaBeans;

2. Mechanisms supporting distributed process control and workflow, by building upon, extending, or integrating protocols such as Process Interchange Format (PIF), Mail API Workflow Framework (MAPI-WF), and products of the Workflow Management Consortium such as Process Definition Metamodel and Workflow Process Definition Language (WPDL), Client Application APIs, Process Definition Interchange, and Workflow Administration and Monitoring Standards; and

3. Mechanisms supporting "agent-based" computing (characterized by processes which may persist across interactive sessions, may accept tasks to perform described at a relatively high level, may perform semi-autonomous planning to determine how to perform their tasks, and/or may negotiate with other processes to determine whether and how sub-tasks will be performed by those other processes). Work in this area involves building upon, extending, or integrating protocols such as OMG Mobile Agents facility, JAVA, TeleScript, and Knowledge Query and Manipulation Language (QKML).

Advances and extensions in any of the three areas listed above are of interest. However, because the goal requires systems that combine the virtues of multiple approaches, developments that bridge across two or more of these areas are of even greater interest. Although not areas of specific interest, efforts should show sensitivity to emerging protocols for information discovery (e.g., the Harvest summary object interchange format or Dublin metadata specification) and security (e.g., S-HTTP, SSL, OSF/DCE).

PHASE I: Identify feasible extensions/integrations of existing protocols and document benefits.

PHASE II: Develop, test, and document proof-of-concept implementations.

COMMERCIAL POTENTIAL: The technology developments sought will speed the development and acceptance of Intranets that serve to link members of distributed organizations, thus speeding and enhancing their information exchange. Specifically, these developments will enhance the capabilities offered by such Intranets, while simultaneously providing a bridge that integrates enhanced process and workflow capabilities into them. Thus, work in this area will bring together two markets (Intranet tools and process/workflow technology), each of which is independently expected to expand by two orders of magnitude in the next decade. Tools that bridge those markets also have direct applications in DoD initiatives in intelligence, crisis management, and logistics.
DARPA SB971-037 TITLE: Visual Tracking of Human Figures

CATEGORY: 6.2 Exploratory Development; Human Systems Interface

OBJECTIVE: Design, build, and demonstrate a system to track human motions as a means for interacting with virtual worlds, for controlling computer systems, or for detecting human activities from overhead reconnaissance video.

DESCRIPTION: Detection and tracking of human figures in dynamic scenes is an emergent technology fostered by past image understanding (IU) research and the advent of multimedia in the commodity markets. Current systems can track moving figures in a scene to varying degrees of reliability. The impact of this technology will increase significantly as methods for recognizing temporal events in tracking data become available. Examples would include techniques for recognizing and classifying suspicious behavior events for security applications, or gestural events for advanced video communications and visual interfaces. Exploitation of reconnaissance video will be enhanced by the ability to identify, track, and recognize the movements of people automatically.

PHASE I: Perform implemented feasibility studies of the key components of a system for tracking the movements or gestures of one or more humans. Identify key technology gaps. Formulate system development plan.

PHASE II: Build, demonstrate, and evaluate the system. Demonstrations should permit live interaction with selected subjects from the audience. Evaluation should compare reliability, accuracy, and flexibility with that attainable from nonvisual devices.

COMMERCIAL POTENTIAL: Interaction with virtual reality systems and other entertainment products is hampered by dependence upon cumbersome electronic devices involving wires attached to the subject or the required installation of equipment in the room. Visual tracking of motions and gestures would permit more flexible monitoring of human activities. These devices have a ready market in the entertainment industry, as well as the military simulation and visualization industry. Additional applications of the underlying technology include automatic search in video databases and very low bit-rate compression.

DARPA SB971-038 TITLE: Design of Global Positioning Satellite (GPS) Receiver Module on a Single Silicon Chip

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications; Electronics

OBJECTIVE: Complete circuit design, including simulation of circuit performance, to the point just prior to initiation of fabrication.

DESCRIPTION: The operating speed of silicon digital circuitry is approaching the radio frequency (RF) range. In the near future, it may be possible to exploit this performance to transfer to silicon certain electronic functions currently done in III-V compounds. This offers a higher level of integration of circuit functions such as a single chip that provides all the functions in a GPS receiver. This will lead to a reduction in cost, and generate new applications as an embedded component in a wide range of electronic systems.

PHASE I: Explore the circuit design approach and define transistor parameters, device design, and wafer processing sequence to meet the RF requirements. Explore the availability of fabrication lines having compatible wafer processing.

PHASE II: Do a detailed circuit design, simulate circuit performance, and provide layout design of the circuit. Breadboard test circuit elements to verify required operational capabilities in critical design areas.

COMMERCIAL POTENTIAL: The civilian market for such circuits has been established for some time; their costs are in the range of $200-$500. The GPS module has numerous applications in areas such as guidance in airplanes and ships, surveying, and even location aids in rental cars. The availability of smaller, cheaper units will dramatically increase the number of applications. The all-silicon version will greatly expand its usefulness as an embedded component. It can then be readily combined with controller, memory, and computational functions for an endless variety of commercial, industrial, and civilian uses.

DARPA SB971-039 TITLE: Solid-State Imaging Sensors

CATEGORY: 6.2 Exploratory Development; Sensors, Electronics

OBJECTIVE: Demonstrate new concepts for solid-state sensors with spectral response in the near- to far-infrared (one to ten microns).
DESCRIPTION: Sensors with spectral response in the near- to far-infrared are necessary to extend the range of current imaging systems. Sensors with response in this spectral range have the potential to detect targets at long ranges in cluttered environments. For the long wavelength infrared sensors, the next level of performance requires dramatic improvements in the infrared material quality, design of novel structures used to support the detector, and low noise signal processing to address the detector and read-out multi-element arrays. Thin films of infrared sensitive material are necessary to provide the low thermal mass necessary to meet imaging system requirements in the long wavelength infrared. The thin film material must be deposited on structures which thermally isolate the detector and, at the same time, provide electrical contact to the low noise input amplifier. Material deposition requirements must be compatible with the signal processing fabrication technology. In the near-infrared (one micron to two micron), the higher spectral radiance, relative to the visible, can provide improved night vision capability. Unique target characteristics in this spectral region can also provide imaging capability, and possibly target discrimination, not possible in other spectral regions. However, high-density, two-dimensional, solid-state, one to two micron arrays, with the performance required for military night vision, are not available. The primary limitation is unavailability of background limited sensitivity in large format two dimensional arrays. This program addresses sensors in both the near- and far-infrared; these may be demonstrated as an individual sensor or as part of an integrated imaging system.

PHASE I: For the far-infrared sensors, define the approach to material deposition and thermal isolation structure design. The potential for material meeting the program goals will be established through deposition on existing thermal isolation structures. For the near-infrared sensors, demonstrate test structures with sensitivity in the one to two micron spectral region. The devices will be characterized for signal to noise, responsivity, and spectral characteristics.

PHASE II: Design and fabricate a two-dimensional imaging array. The array will be integrated into a broad band optical system for imaging in the near- to far-infrared.

COMMERCIAL POTENTIAL: Uncooled infrared sensors have numerous potential commercial applications. These include non-destructive evaluation, preventive maintenance, police use, fire fighting, and border patrol. Improvements made in this program establish the technology for these applications, especially in the development of small pixels with high sensitivity.

DARPA SB971-040 TITLE: Volumetric Three-Dimensional (3-D) Display Technologies

CATEGORY: 6.2 Exploratory Development; Electronics; Materials Processes and Systems; Human Systems Interface; Command, Control and Communications

OBJECTIVE: Demonstrate 3-D display technologies which allow multiple viewers to perceive objects with a real-time, realistic, volumetric perspective.

DESCRIPTION: Various approaches to 3-D technology today have met with limited success. This includes the use of stereoscopic displays based on differential polarization, liquid crystal shutters, and multiple image planes projected in a time sequential fashion. What is truly desired by the DoD user is a 3-D rendering that can be observed by multiple users in an unencumbered fashion that displays real-time data. Applications include air traffic control, medical uses, and submarine navigation, as well as command post "sand tables" to depict entire battlefields. Early prototypes of such systems have been produced either through holographic projections or laser illumination of spinning elements, but each of these need higher resolutions to be more widely applicable.

PHASE I: Define and test concepts needed to demonstrate volumetric 3-D imaging, including image sources, viewing characteristics, and system size. It is not necessary during Phase I to demonstrate viewing of real-time data; however, the capability of such a system to demonstrate this should be rigorously addressed. Preliminary experimental characterization of concepts during Phase I is desirable.

PHASE II: Fabricate and characterize a 3-D volumetric display prototype to demonstrate the operational characteristics of the proposed systems. Demonstration in one of the application formats described above is required. The prototype device may be monochrome, although color is preferable. Estimation of total system costs in production are also required.

COMMERCIAL POTENTIAL: The development of a 3-D volumetric imaging system would have many direct analogs in the commercial world, particularly in navigation and medical systems. Given sufficient reduction in system cost, broader acceptance in commercial products, such as computing and television applications, are also possible.

DARPA SB971-041 TITLE: Multifunctional Optoelectronics Integration for Information Processing Systems

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications; Computing and Software; Electronics

OBJECTIVE: Develop and demonstrate technology to "integrate" silicon-based electronic and optoelectronic components at
the chip level to achieve multifunctional integration. In particular, two new technologies, lift-off and thermal-, or fusion-, bonding, which integrate at the "chip"/"wafer" level, have emerged which promise to not only significantly reduce the cost, but also the size, weight, and volume of the integrated function while effectively providing functional integration with little or no deterioration in performance.

DESCRIPTION: The focus of this topic is to develop and demonstrate prototype fabrication processes of multifunctional integrated circuits targeted to application areas which have high-payoff to the military and commercial applications. The areas of primary interest are optoelectronic interconnect transceivers and switches for military and commercial applications below 10 meters, and uncooled integrated sensors and detectors/emiters for ultraviolet (UV) missile threat warning.

There is a rapidly increasing need to integrate disparate materials to achieve higher degrees of functional integration - Multifunctional Integration. This is particularly true for information processing with the need to bring together optoelectronics, and analog and digital technologies to enable the new multimedia systems of the future. Several efforts to achieve monolithic integration have been pursued in the past with only limited success. While multichip module (MCM) packaging addresses similar needs, new technologies which integrate at the "chip"/"wafer" level have emerged recently and are demonstrating significant promise to provide cost-effective, functional integration, with little or no deterioration in performance. Two examples of these new technologies include lift-off and thermal-bonding.

PHASE I: Perform research and development into assessing the limits of lift-off and thermal/fusion-bonding in terms of area/array size that could integrate silicon circuits with vertical cavity surface emitting laser (VCSEL) and detector technology, and develop cost models with integration complexity. Demonstrate preliminary experimental concept regarding the capability of using these two "integration" technologies to integrate VCSEL emitters and detector with silicon electronics.

PHASE II: Extend techniques developed in Phase I to develop and demonstrate a viable transceiver/smart pixel array technology incorporating VCSEL emitter and driver, detector and receiver amplifier integrated on silicon integrated circuit. The extent of the array size to be demonstrated will depend on the required logic in the pixel or smart transceiver array and the specific application. It is important to demonstrate the potential of the approach to scale up to full-scale production and demonstration of the transceiver link.

COMMERCIAL POTENTIAL: Demonstration of the full potential of this technology and development of the processing and fabrication technology promises to provide significant payoff in a very broad spectrum of applications having major commercial significance. Applications include computer data communication, local area networks, fiber-to-the home (the last mile), commercial and military avionic networks and backplanes, smart displays and head/helmet mounted displays, and smart pixel-based focal plane array sensors. The exploitation of lift-off and fusion-bonding technology has been limited, as the processes to "integrate" lasers and to perform integration over large arrays on silicon has only recently been developed.

DARPA SB971-042 TITLE: Simulation, Modeling and Computer Aided Design (CAD) Tools for Optoelectronics Components

CATEGORY: 6.2 Exploratory Development; Command, Control and Communications; Computing and Software; Electronics

OBJECTIVE: Design and develop new optoelectronic devices and integrated circuits through optimization of computer simulation and modeling of semiconductor materials and device structures for applications in high-speed signal processing and computation.

DESCRIPTION: Combining optical and electron devices into optoelectronic systems has emerged as the methodology of choice for enhancing the speed performance of signal processing, computation, and telecommunications. Significant advantages in speed, power, weight, and size appear if monolithic integration of the electron and optic devices on a single semiconductor substrate is achieved. Different materials' properties for the separate electronic and optical devices make it difficult to design and optimize the performance of the devices and circuits. Computer simulation methods have emerged as a critical element in the process of designing electronic devices and circuits. Numerical simulations need to be developed for optical devices such as lasers, modulators, waveguides, and detectors for design and optimization of optoelectronic, integrated circuits. Such simulation and modeling will greatly reduce the development costs and assist designers in optimizing circuit designs.

PHASE I: Numerical simulation methodologies will be chosen and developed for computer modelling of integrated semiconductor optoelectronic devices and circuits, in which device physics and circuit performance are addressed and optimized with respect to threshold current, output power, efficiency, and modulation frequency.

PHASE II: The procedures developed in Phase I will be extended to consideration of devices in which small dimensions leading to quantum effects are dominant. These results will be validated by coordination with experimental programs at commercial, university, and government laboratories. Designs will be proposed which lead to the highest speed circuits of interest to telecommunications, computation, and signal processing.

Computer programs developed will be optimized and packaged for use on varied computer platforms available to broad
classes of research interests at the research level, in engineering design, and in commercial fabrication. Such computer platforms include supercomputers and engineering workstations.

COMMERCIAL POTENTIAL: Development of CAD optoelectronic tools will significantly enhance the capability of U.S. industry to exploit the full potential of optoelectronics technology. Development of these tools promises to provide significant payoff in a very broad spectrum of applications having major commercial significance. Applications include computer data communication, local area networks, fiber-to-the home (the last mile), commercial and military avionic networks and backplanes, smart displays and head/helmet mounted displays, and smart pixel based focal plane array sensors. The exploitation of lift-off and fusion bonding technology has been limited as the processes to "integrate" lasers and perform integration over large arrays on silicon has only recently been developed.

DARPA SB971-043 TITLE: Advanced Vertical Cavity Surface Emitting Laser (VCSEL) Technology

CATEGORY: 6.2 Exploratory Development; Electronics

OBJECTIVE: Develop VCSEL device designs that address methods of improving laser performance for specific applications.

DESCRIPTION: This topic seeks to accelerate the further development and military availability of VCSELS which have emerged as an approach to laser diode design that have many advantages for information systems applications. While substantial progress has been made for short wavelength devices utilizing Gallium Arsenide materials, there are substantial remaining issues that require further development to meet the requirements for specific systems applications. These include designs that enable operation at wavelengths compatible with fiber optic communications systems (those operating in the 1300-1500 nm range); designs that provide wavelength control, both static and dynamic (wavelength tuning); and methods for incorporating oxide materials for reducing threshold current and providing improved laser mode control.

PHASE I: Demonstrate a proof-of-concept design, either through fabrication of prototype diodes or by detailed modeling, for a practical means to achieve any of the cited improved performance objectives.

PHASE II: Develop and demonstrate a fully functional prototype capable of demonstrating critical functionality, and provide design documentation for a full-scale implementation.

COMMERCIAL POTENTIAL: There is expanding interest in VCSELS for information processing systems ranging from optical data links to printers and displays. The development of robust designs addressing the issues cited above would open the potential market for these devices to fiber optical communications, wavelength division multiplexed systems, and other applications where the performance of current devices is limited.

DARPA SB971-044 TITLE: High-Speed Fiber Optic Network Access Modules (NAMs)

CATEGORY: 6.3 Advanced Development; Electronics

OBJECTIVE: Accelerate the development and availability of high-speed fiber optic NAMs.

DESCRIPTION: This topic seeks to leverage recent advances in packaging of high-speed electronics, and high-speed, low-cost-to-manufacture laser transmitters or optical modulators to enable a compact, robust, hybrid package providing an interface between high performance electronic systems and fiber optic communications links. Candidate technologies include high-speed, heterojunction, bipolar transistor electronics and advanced integrated laser arrays, and/or efficient, high-speed, optical modulators. Of particular interest is the possibility of polymer-based modulators capable of meeting the full range of military specifications for robust operations.

PHASE I: Demonstrate a proof-of-concept NAM design including laser package, receiver and drive electronics, and optoelectronic modulator, either through fabrication of prototype components or by detailed modeling of designs based on demonstrated performance of existing components.

PHASE II: Develop and demonstrate a fully functional prototype NAM capable of demonstrating critical functionality, and provide design documentation for a full-scale implementation.

COMMERCIAL POTENTIAL: There is a growing market for information system links based on robust NAMs that permit easy interconnection between high-speed, high performance electronic systems and fiber optical networks.
Innovative Research in the Area of Digital Receivers for Radar, Electronic Warfare, and Communications Applications

6.2 Exploratory Development; Electronic Warfare, Sensors

Objective: Develop novel ideas to extend the performance and integration of several, miniaturized subsections for a digital receiver to be contained on a large multichip module (MCM) or small printed wiring board (PWB).

Description: The intent of this topic is to solicit research and development of innovative ideas for a digital receiver (spurious free dynamic range of at least 80 dB) to be fully contained on a large MCM or PWB, and to contain several miniaturized, interconnected subsections. Efforts should address novel ideas that would extend the performance and integration in module functional areas such as: 1) a tunable radio frequency (RF) front end (either digital or analog, with center frequencies between 20 MHz and 18 GHz, and bandwidths of at least 1 MHz) containing a noise shaping/anti-aliasing filter and low noise amplifier (LNA), 2) a high-speed A/D converter and demultiplexer module, 3) a backend digital signal processor (using COTS devices if available), and 4) a power conditioner and direct digital synthesizer for the tunable or frequency agile implementations. Efforts of interest might include networking techniques, digital filters and their variations, LNAs and front end filtering, direct digital synthesizers, Fast Fourier Transform (FFT), digital RF memories, power supplies or power conditioning, and techniques for noise suppression.

Phase I: Provide a detailed digital receiver subsection or component design and simulation demonstrating feasibility of the approach as it pertains to integration into a digital receiver.

Phase II: Construct a prototype version of the Phase I subsection or component design and fully test for comparison with simulations.

Commercial Potential: Development of digital receivers will further enhance the capability, performance, and cost effectiveness of several applications including computer networks, Global Positioning System (GPS), and cellular and satellite communications. Programmability, and size and weight reductions, enabled by the integrated MCM format, will have important implications for portable electronic products. Individual subsections may ultimately become standard products for integration and enhancement of larger systems.

Semiconductor Nanostructure Modeling

Category: 6.1 Basic Research; Command, Control and Communications; Electronics; Materials, Processes and Structures; Manufacturing Science and Technology; Modeling and Simulation

Objective: Develop commercial software for the design and modeling of quantum effects influencing the transport and optical properties of semiconductor nanostructures, which will have impact on advanced microelectronics.

Description: Layered quantum semiconductor structures, such as quantum wells, superlattices, and double barrier resonant tunneling structures, are evolving to the prototype stage and need to be incorporated into electronic VLSI structures and photonic (optoelectronic) structures. The behavior of mobile carriers in semiconductor heterostructures, with layering and patterning at the nanoscale, is influenced by the quantum confinement effects. The energy bandgap and localization of the carrier wavefunction, which is controlled through the geometry of the heterostructure, profoundly influences optical and transport properties in such "subdimensional" structures. Computational modeling, including quantum effects through the use of a multiband description, effects of modulation doping, and external fields, provides feedback into: 1) in situ monitoring of crystal growth in molecular beam epitaxy (MBE) machines and the analysis of device characterization experiments, 2) the design of new structures, 3) active device modeling, 4) clarification of basic quantum concepts and their implementation in semiconductor devices, and 5) a means for implementing the incorporation of such structures into commercial VLSI CAD-CAM. The software should be capable of including material properties of the group IV, III-V, and I-VI semiconductors placed in layer, quantum wire, and quantum dot (subdimensional) geometries. The finite element and tight-binding algorithms must be computationally efficient, minimizing CPU time and using dynamic memory allocation. The software should be capable of giving energy levels and wavefunctions of carriers, overlap integrals and optical matrix elements, tunneling currents, effects of quantum confinement of carriers on dielectric properties and optical waveguiding. The effort will primarily be evaluated on its impact on nanoelectronics.

Phase I: Develop the basic algorithms and the core of the calculation to show proof-of-concept by formulating tight-binding models and a finite-element algorithm for treating layered structures with arbitrary semiconducting materials in the layers. Authenticate implementation of boundary conditions by comparing results with other quantum computational methods and experimental results.

Phase II: Develop a fully general, finite-element algorithm for treating structures with arbitrary geometry along all
three spatial dimensions with arbitrary semiconducting materials. Include computation of transport and optical properties of such structures.

COMMERCIAL POTENTIAL: Continued microminiaturization makes inevitable the need to include quantum effects in chip design. The new class of optoelectronic devices based on quantum effects require novel methods for their modeling. While the immediate market for such a package is within the electronics and optoelectronics research and development groups in industry, government, and universities, there is a potentially much larger market in the chip manufacturing industry. A powerful computational package will provide a major impetus to device design and subsequent subsystem development.

DARPA SB971-047 TITLE: Nanoelectronic Structures and Devices

CATEGORY: 6.1 Basic Research; Command, Control and Communications; Electronics; Materials, Processes and Structures; Manufacturing Science and Technology; Modeling and Simulation

OBJECTIVE: Develop electronic devices with critical feature sizes well below 100 nanometers to accelerate the development and military availability of high-speed, low-power electronics for advanced digital radar; digital elit receivers; and secure, high data rate, digital networks.

DESCRIPTION: Recent advances in materials processing and fabrication techniques have made it possible to produce device structures with characteristic dimensions down to a few atomic layers. New classes of devices are emerging or being conceived. Many of these manifest quantum mechanical effects, such as tunneling, quantum phase interference, or coherence. Proposals are invited addressing processing, fabrication, characterization, and modeling of quantum devices. It is important that fundamental issues be addressed while concentrating on devices with realistic potential for DOD applications. Room temperature operation is sought. Particularly relevant are devices with possible low-power and high-frequency or high-speed applications. In modeling efforts, proposals are encouraged that incorporate self-consistency and dissipation as well as realistic boundary conditions. Material efforts are encouraged to explore heterojunction systems for silicon-based nanoelectronics, and chemical self-assembly for its potential in nanoelectronics.

PHASE I: Clearly demonstrate the feasibility of the proposed approach and its relevance toward processing, fabricating, and implementing sub 100 nm devices and circuits for enabling microelectronics beyond current trends in integrated circuit semiconductor technology. Clear indication needs to be given as to how the particular approach and concept will improve performance characteristics in speed, power, and/or density.

PHASE II: Build upon Phase I work and ultimately demonstrate the properties, characteristics, and performance of device structures and circuits in the nanometer regime (well below 100 nm) and how it will lead to substantially improved performance in Phase III plans for system insertion and application is such areas as digital radar, elit receivers, signal processing, and electronics for communications networks.

COMMERCIAL POTENTIAL: This technology could lead to new concepts in advanced electronic devices and new device architectures, and be the basis for high-frequency signal generation, high-speed switching, and multivalued data storage.

DARPA SB971-048 TITLE: In-Situ Tools for Molecular Beam Epitaxy (MBE) Process Control

CATEGORY: 6.1 Basic Research; Command, Control and Communications; Electronics; Materials, Processes and Structures; Manufacturing Science and Technology; Modeling and Simulation

OBJECTIVE: Develop in-situ monitoring techniques and process control for reliable, reproducible growth of nanoelectronic devices.

DESCRIPTION: Advances in material processing and fabrication techniques have made it possible to produce device structures, well into the quantum regime, with characteristic dimensions down to several atomic layers. MBE is the pre-eminent technique for growth of these state-of-the-art electronic device structures. The use of MBE for growth of elemental and compound semiconductor structures has resulted in improved microelectronic device performance, and has spawned entirely new classes of novel materials and structures which continue to extend the limits of technology. These advances result from the capabilities of MBE to achieve very abrupt junctions in complex layered structures; to fabricate ultra-thin semiconductor layers with well-defined thickness and composition; and to grow compositionally uniform alloys of binary, ternary, and quaternary semiconductor materials. Continued demands for improved device performance and simultaneous reduction in production costs have made MBE-process reproducibility and reliability, and device yield, vital technological imperatives. These considerations dictate that the use of in-situ sensing and feedback control of the MBE process is essential.

DARPA-34
The focus should be on producing low-cost systems, including sensors, control algorithms, and hardware. Redesign of the MBE hardware for better control capability is also allowed under this topic. Especially encouraged are new in-situ monitoring techniques and approaches which will allow epitaxial layer control down to atomic dimensions. Non-destructive techniques are of interest which obtain data on layer thickness and uniformity, alloy composition and uniformity, dopant concentration and uniformity, substrate and epitaxial layer temperature, strain, source/flux characteristics, and other pertinent characteristics.

PHASE I: Select an approach and demonstrate its feasibility in allowing epitaxial layer control for advanced electronic devices with dimensions well below 100 nanometers. Cost, non-destructive nature, ease of implementation, sensitivity, and simplicity of the approach will be considered.

PHASE II: Construct, assemble, fabricate, manufacture, or retrofit the sensor/s, diagnostics, or hardware. Demonstrate the approach to grow reliably and reproducibly thin epitaxial layers. Demonstrate applicability of technique on advanced electronic device structure. Efforts addressing control must demonstrate replacement of conventional “dead-reckoning” approaches to MBE with a true real-time, feedback controlled system. Software commercialization needs to be addressed. Ideally, Phase II would address in-situ sensing and feedback control of the MBE process in producing specific quantum devices (especially silicon-based).

COMMERCIAL POTENTIAL: This technology will assist in the automation and more cost-effective growth of advanced material structures, reliable electronic and optoelectronic device structures, improved high-frequency electronics, and quantum well detectors and emitters.

DARPA SB97-049 TITeL: Nanoprobes for Advanced Device Processing

CATEGORY: 6.1 Basic Research; Command, Control and Communications; Electronics; Materials, Processes and Structures; Manufacturing Science and Technology; Modeling and Simulation

OBJECTIVE: Develop nanoprobes for nanoelectronic device diagnostics and/or high throughput scanning tunneling microscopy (STM) for ultra small structure and device processing.

DESCRIPTION: STM has recently been shown to be an excellent tool for lithography to 0.1 micrometer dimensions. This region is currently inaccessible to optical and e-beam lithographic techniques. STM, on the other hand, is capable of atomic level resolution and is surprisingly easy to operate in the nanometer resolution regime. This reduced scale opens up a new area of device physics and technology. Entirely new families of quantum devices can potentially be processed onto existing chips with this technique. Concurrently, as we go to smaller device structures, there is a need for diagnostic tools, both spatially and temporally.

PHASE I: Define the operational criteria that will allow STM to become an effective high throughput tool to current device processing equipment and/or define and develop diagnostic “nano-tools” which will enhance the ability to characterize advanced device structures well below 0.1 micrometer.

PHASE II: Construct/fabricate the nanoprobe diagnostic tools and/or high throughput STM that will be retrofitted into existing processing equipment. The device will be qualified by the production of quantum device structures on the surface of silicon.

COMMERCIAL POTENTIAL: This technology could possibly accelerate the utilization of quantum devices in advanced electronic circuits. The nanoprobe tools would allow for new commercial diagnostic equipment and would increase the fundamental understanding of extremely small structures - electronic, optical, and mechanical. This technology may leverage the development of maskless lithography which would be of benefit to the commercial integrated circuits industry, which has annual world sales in the billions of dollars.
DEFENSE SPECIAL WEAPONS AGENCY

The Defense Special Weapons Agency (DSWA) is seeking small businesses with a strong research and development capability and experience in nuclear weapon effects, phenomenology, operations and counterproliferation. (Note we are not interested in nuclear weapon design or manufacture.) DSWA invites small businesses to send proposals to the following address:

Defense Special Weapons Agency
ATTN: AM/SBIR
6801 Telegraph Road
Alexandria, VA 22310-3398

The proposals will be processed and distributed to the appropriate technical offices for evaluation. Questions concerning the administration of the SBIR program and proposal preparation should be directed to:

Defense Special Weapons Agency
ATTN: AM/SADBU, Mr. Bill Burks
6801 Telegraph Road
Alexandria, VA 22310-3398
Tel: (703) 325-5021

DNA has identified 23 technical topics numbered DSWA96-001 through DSWA96-023. These are the only topics for which proposals will be accepted. The current topics and topic descriptions are included below. These topics were initiated by the DNA technical offices which manage the research and development in these areas. Several of the topics are intentionally broad to ensure any innovative idea which fits within DSWA’s mission may be submitted. Proposals do not need to cover all aspects of these broad topics. Questions concerning the topics should be submitted to:

Defense Special Weapons Agency
ATTN: PMX, Mr. Ronald Yoho
6801 Telegraph Road
Alexandria, VA 22310-3398
Tel: (703) 325-6475

DSWA selects proposals for funding based on the technical merit, criticality of the research, and the evaluation criteria contained in this solicitation document. As funding is limited, DSWA reserves the right to select and fund only those proposals considered to be superior in overall technical quality and filling the most critical requirements. As a result, DSWA may fund more than one proposal under a specific topic or it may fund no proposals in a topic area. Proposals which cover more than one DSWA topic should only be submitted once.
DEFENSE SPECIAL WEAPONS AGENCY
FY1997 SBIR TOPIC INDEX

SURVIVABILITY AND HARDENING
DSWA97-001 Nuclear Weapon Effects Phenomenology
DSWA97-002 Simulation of Nuclear Weapon Effects on Communication, Sensor Operability and Signal Propagation
DSWA97-003 Nuclear Weapon Effects on Electronics
DSWA97-004 Nuclear Weapon Effects on Communication, Sensor Operability, and Signal Propagation
DSWA97-005 Nuclear Hardening and Survivability
DSWA97-006 Radiation Hardening of Microelectronics
DSWA97-007 Nuclear Weapon Effects Simulation Technology
DSWA97-008 Instrumentation
DSWA97-009 X-Ray Effect Simulation Technology
DSWA97-010 Distributed Interactive Simulation of Nuclear Weapons Effects
DSWA97-015 Directed Energy Effects
DSWA97-017 Advanced Lethality Technologies
DSWA97-018 Field Expedition Hardening

SENSORS
DSWA97-012 Verification Technology Development
DSWA97-013 Counterproliferation Technology

COMMUNICATIONS NETWORKING
DSWA97-011 Operational Planning and Targeting Technology

ENERGY STORAGE
DSWA97-014 Pulsed Power Technology

ENVIRONMENTAL EFFECTS
DSWA97-016 Forecasting Environments in the Troposphere and Space (FORETS)

ELECTRONIC DEVICES
DSWA97-006 Radiation Hardening of Microelectronics

NUCLEAR RELATED TECHNOLOGY
DSWA97-020 Nuclear Weapons Systems Safety Assessments
DSWA97-021 Multi-Source Data Fusion for Monitoring to Detect Nuclear Tests
DSWA97-022 Tracking Atmospheric Plumes Based on Stand-Off Sensor Data
DSWA97-023 Multi-Dimensional Visualization of Data to Identify Seismic Events or for Other Complex, Multi-Dimensional Data Problems

PROPULSION AND ENERGY CONVERSION
DSWA97-019 Advanced Space Nuclear Power and Propulsion Technology
Subject Index for the DSWA SBIR Solicitation

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>Topic Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airblast</td>
<td>001, 005, 007, 008</td>
</tr>
<tr>
<td>Arms Control</td>
<td>012</td>
</tr>
<tr>
<td>Blackout</td>
<td>001, 002, 003, 004</td>
</tr>
<tr>
<td>Calculations</td>
<td>001, 002, 004, 016</td>
</tr>
<tr>
<td>CTBT</td>
<td>021, 022, 023</td>
</tr>
<tr>
<td>CTBT monitoring</td>
<td>021</td>
</tr>
<tr>
<td>CTBT verification</td>
<td>021</td>
</tr>
<tr>
<td>Communications</td>
<td>001, 002, 003, 004, 016</td>
</tr>
<tr>
<td>Counterproliferation</td>
<td>013</td>
</tr>
<tr>
<td>Cratering</td>
<td>001, 005, 007, 008</td>
</tr>
<tr>
<td>Database</td>
<td>021</td>
</tr>
<tr>
<td>Data Fusion</td>
<td>021</td>
</tr>
<tr>
<td>Debris</td>
<td>001, 002, 004-009</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>007-010</td>
</tr>
<tr>
<td>Dust</td>
<td>001, 005, 007, 008</td>
</tr>
<tr>
<td>Electromagnetic Pulse (EMP)</td>
<td>001, 002, 005, 007, 008, 018</td>
</tr>
<tr>
<td>Electronics</td>
<td>005, 006, 009, 010</td>
</tr>
<tr>
<td>Electro-optics</td>
<td>003, 005, 006</td>
</tr>
<tr>
<td>Fallout</td>
<td>001, 005, 007, 008</td>
</tr>
<tr>
<td>Fallout Prediction</td>
<td>022</td>
</tr>
<tr>
<td>Ground Shock</td>
<td>001, 005, 007, 008</td>
</tr>
<tr>
<td>Hardening</td>
<td>001-010, 016, 017, 018</td>
</tr>
<tr>
<td>Intelligent Monitoring System</td>
<td>023</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>008-010</td>
</tr>
<tr>
<td>Multi-Variate</td>
<td>023</td>
</tr>
<tr>
<td>Neutron</td>
<td>001, 002, 005-008</td>
</tr>
<tr>
<td>Nuclear testing</td>
<td>021</td>
</tr>
<tr>
<td>Nuclear Weapon Effect</td>
<td>001-008, 017</td>
</tr>
<tr>
<td>Plasma</td>
<td>004, 009</td>
</tr>
<tr>
<td>Plumes</td>
<td>022</td>
</tr>
<tr>
<td>Pulsed Power</td>
<td>009, 014</td>
</tr>
<tr>
<td>Radiation</td>
<td>001, 002, 005-009</td>
</tr>
<tr>
<td>Radionuclides</td>
<td>022</td>
</tr>
<tr>
<td>Redout</td>
<td>001, 003, 004</td>
</tr>
<tr>
<td>Seismic</td>
<td>023</td>
</tr>
<tr>
<td>Sensors</td>
<td>012, 013</td>
</tr>
<tr>
<td>Shock</td>
<td>001, 005, 007, 008</td>
</tr>
<tr>
<td>Signal Propagation</td>
<td>001, 002, 003, 004, 016</td>
</tr>
<tr>
<td>Simulation</td>
<td>002, 007-009</td>
</tr>
<tr>
<td>Structures</td>
<td>005, 013</td>
</tr>
<tr>
<td>Survivability</td>
<td>001-010, 015, 017, 018</td>
</tr>
<tr>
<td>Targeting</td>
<td>011</td>
</tr>
<tr>
<td>Test</td>
<td>007-010</td>
</tr>
<tr>
<td>Thermal Radiation</td>
<td>001, 005, 007, 008</td>
</tr>
<tr>
<td>Transient Radiation Effects on Electronics (TREE)</td>
<td>001-008</td>
</tr>
<tr>
<td>Transport Modeling</td>
<td>022</td>
</tr>
<tr>
<td>Treaties</td>
<td>012, 013</td>
</tr>
<tr>
<td>Verification</td>
<td>012, 013</td>
</tr>
<tr>
<td>Visualization</td>
<td>023</td>
</tr>
<tr>
<td>X-ray</td>
<td>001, 003-009, 014</td>
</tr>
<tr>
<td>Weapons of Mass Destruction (WMD)</td>
<td>013</td>
</tr>
<tr>
<td>Weather</td>
<td>016</td>
</tr>
</tbody>
</table>

DSWA-3
DSWA TOPIC DESCRIPTIONS

DSWA 97-001
TITLE: Nuclear Weapon Effects Phenomenology

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Develop innovative algorithms to improve our understanding of nuclear weapon effects and the implementation of these algorithms

DESCRIPTION: To improve the understanding of the impact of nuclear weapons under battlefield conditions, we require more accurate, efficient, user-friendly methods of calculating and displaying the affects of nuclear scenarios and their operational impact. Areas of interest include: improved accuracy even as calculational times are minimized; reliance on basic physical principles validated by measured test results; faster running calculations; and new improved ways to enable users (be they advanced nuclear weapons effects researchers, weapon systems developers, or managers with limited nuclear weapons effects experience) to calculate, estimate, and appreciate nuclear weapon effects and their system impacts. Nuclear weapon effects include airblast, ground shock; water shock; cratering; thermal radiation; neutron, gamma and x-ray radiation; electromagnetic pulse; fallout; blueout; blackout; redout; and dust cloud formation.

Improved methods are required for the management of technical information that relates to archival of nuclear weapon phenomenology and test data as well as input to and retrieval of such data archives. Methods for developing unifying test data standards devised with application beyond just nuclear test effects are needed to improve data processing efficiency and reduced hardware and software specific requirements.

PHASE I: The research will demonstrate the feasibility of the proposed approach to improve the understanding of nuclear weapon effects or the archival and ease of use of stored data.

PHASE II: The research concepts developed in Phase I will be further developed and incorporated into appropriate codes.

COMMERCIAL POTENTIAL: Computer codes related to earthquake effects, pollution transport, signal propagation, data archival, and test standards for data.

REFERENCES:
(1) DNA EM-1, Capabilities of Nuclear Weapons
(2) Glasstone, The Effects of Nuclear Weapons

DSWA 97-002
TITLE: Simulation of Nuclear Weapon Effects on Communication, Sensor Operability, and Signal Propagation

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Investigate the simulation of effects of nuclear weapon explosions on electromagnetic and optica/signals, and the subsequent impact on the performance of communications and sensor systems.

DESCRIPTION: The Defense Special Weapons Agency (DSWA) is interested in the basic physical processes which describe the interaction of nuclear weapons with the atmosphere, which create environments that degrade the propagation of communication and radar signals and the contain optical clutter backgrounds which degrade optical sensor systems. Part of DSWA's mission is to simulate effects on and determine mitigation methods for DoD systems such as satellite communications, VLF/LF communications, HF/VHF/UHF communications, radar systems, and optical sensor systems. Areas of interest include the development of improved communications and sensor methods to mitigate atmospheric effects on systems and the development of application of simulators to test DoD systems in stressed environments.

PHASE I: Demonstrate the feasibility of the proposed investigation to advance the understanding of any of the areas described above.

PHASE II: Continue the investigation to develop a product or result that can be incorporated into the existing technology base.

DSWA-4
COMMERCIAL POTENTIAL: Commercial communication systems and space systems and space sensors, and predictions of operational effects produced by solar events.

REFERENCES:
(1) EM-1, Capabilities of Nuclear Weapons
(2) Glassstone, the Effects of Nuclear Weapons

DSWA 97-003 TITLE: Nuclear Weapon Effects on Electronics

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Explore the effects produced by nuclear radiation and electromagnetic pulse on electronics

DESCRIPTION: The nature and magnitude of the effects produced by the interaction of nuclear-weapon produced radiation on electronics, electronic systems, opto-electrical devices, and sensors in the phenomenology areas of: a) Transient Radiation Effects on Electronics (TREE); b) High Altitude Electromagnetic Pulser; (HEMP); c) System Generated EMP (SGEMP); and d) Source Region EMP (SREMP) are of interest to DSWA. Particular areas of concern include: methods by which designers of space, strategic and tactical systems can assess their susceptibility to these effects; technologies to reduce the susceptibilities of electronic systems and microelectronic devices (especially those with submicron feature sizes) to acceptable levels; and methods to demonstrate survivability under specified threat criteria. Concepts and techniques to model the nuclear radiation and electromagnetic system effects in the distributed interactive simulation (DIS) format are required. Concepts and techniques to improve the survivability (decrease the response) of systems against these nuclear weapons effects are required.

PHASE I: Initial feasibility studies will be completed to demonstrate the viability of the proposed approach.

PHASE II: Continue the investigation which was begun in Phase I to fully develop and demonstrate the proposed approach.

COMMERCIAL POTENTIAL: Commercial satellites and electromagnetic interference/ compatibility.

REFERENCES:
(1) DNA EM-1, Capabilities of Nuclear Weapons, TREE
(2) Glassstone, The Effects of Nuclear Weapons

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Investigate the modeling of effects of nuclear weapon explosion on electromagnetic and optical/signals, and the subsequent impact on the performance of communication and sensor systems.

DESCRIPTION: The Defense Special Weapons Agency (DSWA) is interested in the basic physical processes which describe the interaction of nuclear weapons with the atmosphere, which create environments that degrade the propagation of communication and radar signals and that contain optical clutter backgrounds which degrade optical sensor systems. Part of DSWA’s mission is to predict effects on and determine mitigation methods for DoD systems such as satellite communications, VLF/LF communications, HF/VHF/UHF communications, radar systems, and optical sensor systems. Areas of interest include mechanisms for the coupling of nuclear weapons energy to the atmosphere; the development of structure in weapon produced plasmas and molecular emitters; the chemical processes which give rise to the optical emissions; the transport and final deposition of nuclear debris; the effects of degraded signal propagation on the performance of communication systems and radars; and the prediction of the effects of optical clutter backgrounds on the performance of optical sensor systems.

PHASE I: Demonstrate the feasibility of the proposed investigation to advanced the understanding an any of the areas described above.

PHASE II: Continue the investigation to develop a product or result that can be incorporated into the existing technology base.
COMMERCIAL POTENTIAL: Commercial communication systems and space sensors, and predictions of operational effects produced by solar events.

REFERENCES:
(1) EM-1, Capabilities of Nuclear Weapons
(2) Glasstone, The Effects of Nuclear Weapons

DSWA 97-005 TITLE: Nuclear Hardening and Survivability

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Develop innovative technologies to improve the nuclear hardening and survivability of DoD systems

DESCRIPTION: Improved techniques for nuclear hardening and survivability of weapon systems, against nuclear weapons effects are required. These techniques should protect the system against the effects of blast, thermal, nuclear radiation, and electromagnetic pulse. In particular, the ability to harden communications facilities and surveillance sensors against electromagnetic pulse if of interest. Systems include planned and operational, strategic and tactical, ground mobile, missile, aircraft, ships and submarines and space systems and their subsystems and components.

PHASE I: Demonstrate the feasibility and usefulness of the proposed technique.
PHASE II: Fully develop the proposed technique and characterize its usefulness in both technical and cost terms

COMMERCIAL POTENTIAL: Improved buildings, electronics, aircraft, satellites and better electromagnetic shielding.

REFERENCES:
(1) Mil-Std-188-125
(2) Mil-Hdbk-423
(3) DSWA EM-1, Capabilities of Nuclear Weapons
(4) Glasstone, The Effects of Nuclear Weapons

DSWA 97-006 TITLE: Radiation Hardening of Microelectronics

CATEGORY: Exploratory Development, Electronic Devices

OBJECTIVE: Develop and demonstrate technology to: (1) radiation harden; (2) improve reliability and electrical performance; (3) improve radiation hardness and reliability assurance methods; and (4) develop radiation - performance predictive device and circuit model and (5) characterize the radiation and reliability response of semiconductor devices (microelectronics and opto-electronics) including warm and cold operation metal oxide semiconductor (MOS), bipolar, and compound material technologies.

DESCRIPTION: The trend in semiconductor integrated circuits and sensors is toward increasingly higher levels of integration density, higher speeds, higher on-chip circuit complexity, lower voltage and power, and larger die size. All of these trends have exacerbated the problems associated with radiation hardening reliability, and testability. In addition, improvements in material science have lead to the introduction of a wide variety of compound semiconductor materials into microelectronic and opto-electronic applications. The radiation and reliability responses of these materials is lacking or unknown.

Thus, it is the objective of this topic to develop and demonstrate innovative technology and methods to: (1) ensure that these devices can operate in a radiation or other stressing environment (e.g., very high or low temperatures); (2) improve device reliability; (3) improve producibility and yield; (4) develop cost-effective hardness and reliability assurance methods; (5) develop radiation performance predictive models for devices and circuits; (6) investigate and characterize the radiation response and reliability performance of these devices and associated materials; and, (7) maintain device performance without degrading robustness. The development of technologies which enhance reliability, producibility, and yield will support the commercial semiconductor sector. In addition, the development of methods to improve the survivability of microelectronics in severe stressing environments is directly related to the commercial semiconductor and electronics industries.

PHASE I: The research will demonstrate the feasibility of the proposed technology and methods concepts.
PHASE II: The research concepts developed in Phase I will be demonstrated or reduced to engineering practice.
COMMERCIAL POTENTIAL: Robust microelectronics, satellites, high temperature sensors.

DSWA 97-007 TITLE: **Nuclear Weapon Effects Simulation Technology**

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Improve the state-of-the-art in nuclear weapon effects simulation technologies.

DESCRIPTION: Simulators are needed to provide experimental data for development of numerical simulations of nuclear weapons effects; simulate one or more nuclear weapons effects at laboratory size scale; and improve weapon system test capability. Simulation requirements include airblast over various surface conditions, dusty flow, dust lofting, shock propagation in rock, water shock, thermal radiation, EMP, and nuclear radiation.

Existing large scale simulators are often expensive and time consuming to operate, and require travel to an explosive test site. Small scale simulators are needed to provide extensive data to supplement the limited amount of data available from the large scale simulators. Innovative simulators are needed which are economical and simple to operate. Innovative ideas are needed on how to use very small scale simulators to produce useful information.

PHASE I: Demonstrate the basic simulator concept.

PHASE II: Demonstrate a laboratory scale simulator and produce useful data.

COMMERCIAL POTENTIAL: Numerical analysis, metrology, earthquake, hurricane and tornado survivability.

DSWA 97-008 TITLE: **Instrumentation and Diagnostics**

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Advance the state-of-the-art in nuclear and conventional weapon effects instrumentation.

DESCRIPTION: Instrumentation is used for measuring nuclear and conventional weapon effects including: phenomenology parameters and the response of test items exposed to conventional or simulated nuclear weapon effects. The instrumentation should be capable of operating under very harsh conditions, such as might be encountered in blast and shock tests, or tests involving high levels of X-ray, gamma, or neutron radiation. Instrumentation is needed for the following types of tests: airblast, ground shock, dusty flow, dust lofting, water shock, shock propagation in rock, High Explosive (HE), nuclear radiation (x-rays and gamma rays), thermal radiation, electromagnetic pulse (EMP) (high altitude or systems generated) and for improved data acquisition (transmission and recording). Desirable improvements include costs, ease of use, precision, accuracy, reliability, ease of calibration (preferably on site) and maintainability. Some current problems are the ability to make airblast and thermal measurements in explosive debris environment and machine explosive characterization measurements inside the high explosive itself during detonation, an do full characterization of debris (size and momentum) from encased explosive detonations.

PHASE I: Build a prototype instrument or instrument system and demonstrate its performance in laboratory scale testing.

PHASE II: Design build and test a full-scale instrument system demonstrating its performance in its intended working environment. This may involve coordination with DSWA to schedule testing in a simulator.

COMMERCIAL POTENTIAL: Metrology, blasting operations, earthquake studies, radiation testing/monitoring, large structure (e.g., buildings, dams, and mines) integrity, fire protection, lightning protection, hazardous waste containment.

REFERENCES:
(1) DNA INWET conference Announcement Brochure, 1993 and 1991
(2) Glastone and Dolan, The Effects of Nuclear Weapons, 1977
(3) EM-1, Capabilities of Nuclear Weapons

DSWA-7
TITLE: X-Ray Effect Simulation Technology

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Develop innovative technologies for the production of x-ray radiation.

DESCRIPTION: Future requirements for x-ray nuclear weapon effects testing will require vast improvements in existing radiation source capability as well as new concepts for producing soft x-rays (1-5keV), warm x-rays (5-15keV), and hot x-rays (>15keV). Soft x-rays are used for optical and optical coatings effects testing. Warm x-rays are used for thermomechanical and thermostructural response testing; and hot x-rays are used for electronics effects testing. The proposer should be familiar with the present capability to produce x-rays for weapon effects testing.

Present Plasma Radiation Source (PRS) generate copious amounts of debris (material, atomic charged particles, sub-keV photons). Debris production is an even greater concern for the simulators currently under development. New measurement and analysis technologies are required to characterize the source and the debris generated from wire array and z-pinchPRS to better understand debris sources and mitigation. Existing debris shield technologies are not adequate to support larger exposure areas and cleaner test environments while minimizing fluence degradation. New methods, or combination of methods, need to be developed to stop, mitigate, and/or delay debris generated for radiation simulators.

New technologies to measure plasma parameters for simulator sub-systems such as plasma opening switches and plasma sources are of interest. Test response diagnostic technologies are required to measure the full time and spectral history of the radiation pulse across the breadth and width of the test asset as well as the response of the test asset during and after irradiation. Pulsed power diagnostic technologies are required for accurate, in-situ measurement of voltages and currents within the various simulator subsystms in order to monitor and characterize simulator performance. Diagnostic systems include required sensors/detectors, cabling, recording equipment and media, and if necessary, computer systems and software.

New concepts for compact x-ray sources for component level nuclear weapons effects x-ray testing are also of interest. DSWA is seeking innovative approaches for cost effective, compact pulsers with low end point voltage x-rays (100-500keV) for possible operation at service customer production facilities.

PHASE I: Demonstrate the feasibility of the proposed concept.

PHASE II: Develop, test and evaluate proof-of-principle hardware in its working environment on a radiation simulator. This will involve coordination with DSWA to schedule testing in an above ground test simulator.

COMMERCIAL POTENTIAL: Nuclear instrumentation, very fast closing valves and bright x-ray sources.

TITLE: Distributed Interactive Simulation of Nuclear Weapons Effects

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Incorporate nuclear weapons effects and adapted nuclear effects technology into the Distributed Interactive Simulation (DIS) protocol

DESCRIPTION: Nuclear Survivability testing of new acquisitions and design modifications can be accomplished prior to 'bending metal' through the use of the Distributed Interactive Simulation protocols and battlefield synthetic environment "testing". However, such assessments require validated systems models, nuclear environments and response algorithms; all capable of operating within the approved set of DIS protocol data units (PDUs).

Improved methods for nuclear environmental and effects representation within the DIS protocol are needed to calculate and assess such nuclear effects on systems (equipment and personnel) as prompt radiation (gamma, s-ray and neutron), protracted radiation, airblast, ground shock, water shock, cratering, thermal radiation, electromagnetic pulse, blackout and redout.

There have also been adaptations of nuclear effects technology to non-nuclear applications. Included are disaster planning tools for such natural disasters as hurricanes and earthquakes. Improved methods for representation of natural disaster damage and its impacts within the DIS protocol are needed to facilitate visual representation of the disaster and to train emergency managers/responders for appropriate responses.

PHASE I: The research will demonstrate the feasibility of the proposed approach to represent nuclear environments and effects in the DIS protocol.
PHASE II: The research concepts developed in Phase I will be further developed, tested, validated and submitted for inclusion into the IEEE PDU standards.

COMMERCIAL POTENTIAL: Emergency Management Training

DSWA 97-011 TITLE: Operational Planning and Targeting Technology

CATEGORY: Exploratory Development, Communications Networking

OBJECTIVE: Improved ability of US nuclear commanders to plan for nuclear engagements and target nuclear weapons.

DESCRIPTION: The nuclear employment planning capabilities of operational commanders in tactical, strategic and integrated warfare environments require improvement. These improvements include development of automated planning systems; technologies to determine target damage objective and criteria; post strike target damage assessment capabilities; and automated nuclear weapon employment codes. Techniques to account for electromagnetic effects in operational planning and exercises are also desired.

PHASE I: Develop the proposed technology in sufficient detail to demonstrate its feasibility.

PHASE II: Continue the development of the proposed technology to the point it can be incorporated into existing planning/targeting methodologies

COMMERCIAL POTENTIAL: Logistics planning, shipping route planning.

DSWA 97-012 TITLE: Verification Technology Development

CATEGORY: Advanced Development, Sensors

OBJECTIVE: Improve/develop US technical capability to verify/monitor compliance with existing and potential future arms control treaties, agreements, and confidence and security building measures, e.g., START, INF, CW, CFE, NTT, SNF, CTBT, CCWC, Open Skies and Presidential Initiatives

DESCRIPTION: New arms control measures are being negotiated. New verification technologies and methods will be required to accurately monitor compliance to the provisions of any treaties or agreements that could result from the on-going negotiations or provide confidence building information. One problem will involve being able to distinguish between permitted activities and prohibited activities where the technical signatures between the two could be very minor. Another might include providing information to reduce tensions or intervene in crises.

PHASE I: Demonstrate the feasibility of the proposed technology in relation to potential arms control or confidence building application.

PHASE II: Develop a proof of design to demonstrate the proposed technology.

COMMERCIAL POTENTIAL: Inventory Systems, Chemical Monitoring Systems

REFERENCES: Program Plan for Research, Development, Test and Evaluation for Arms Control Cooperative Inspection FY93-95, OUSD(A), 4 Jan 93

DSWA 97-013 TITLE: Counterproliferation Technology

CATEGORY: Exploratory Development, Sensors

OBJECTIVE: Develop new technologies for countering the proliferation of weapons of mass destruction

DESCRIPTION: In support of the Department of Defense counterproliferation initiative, the Defense Special Weapons Agency (DSWA) is interested in identifying and integrating proven and maturing technologies to develop and demonstrate an operational
capability to counter the proliferation of nuclear, biological, and/or chemical (NBC) weapons of mass destruction (WMD) located in a spectrum of facilities. Specifically, DSWA is interested in initiatives in the following technical areas:

Hardened Target Defeat. Develop physical/functional lethality criteria for conventional weapons, including precision guided munitions, and advanced non-nuclear weapon payloads. Of particular interest are the development of shaft and portal vulnerability models. The models will be validated via weapon testing against simulated NBC targets.

Proliferation Path Analysis. Develop analytical models to predict the activities needed for development of NBC weapons programs by rogue nations. The model will alert DoD to potential proliferation activities and identify vulnerable chokepoints in the proliferation process for option development possible exploitation.

Enhanced Conventional Weapons Payload Concepts. Develop concepts for the use of non-nuclear payloads delivered by penetrating weapons and released inside hardened NBC research/production/storage facilities to provide a significant increase in effectiveness (i.e., functional kill) over current conventional high explosive warheads. Of particular interest are payload concepts limiting the production of blast and high pressure gases, reducing collateral damage or nuclear/biological/chemical agent dispersal.

Collateral Effects Prediction Technology. Develop technology to define and predict weapon and target environments that cause unintended casualties. Of particular interest are improved atmospheric transport and dispersal models to provide significantly improved meteorological predictions along with embedded source terms and transport models. The effort will also provide validated models to rapidly assess the effects of a strike on a NBC facility. End product will be a deployable collateral effects assessment capability for planners, decision makers, and users.

Targeting Technical Assistance. Develop technology to assist the theater user in conducting pre-attack weapon targeting (including collateral effects prediction/mitigation) and post-attack battle damage assessment. Areas of emphasis include development of tools for proliferation path analysis, target planning, and collateral effects prediction/mitigation. End product will be a deployable expert system for operational planners using analytic prediction tools, multimedia hypertext databases, and technical manuals in concert with applied research, with possible sensor data use for condition updates.

Target Signature Evaluation. Develop sensor technology and analytical procedures for NBC target pre-attack characterization by understanding the operational aspects of target facility missions, architecture, prime mission equipment, critical subsystems, and functional vulnerabilities. The sensors must also provide data on weapon performance and reliable battle damage assessment. Of particular interest are air-dropped or man-emplaced unattended ground sensors, including hyper-spectral, seismic, thermal, electromagnetic, acoustic, gravimetric, and chemical.

Agent Neutralization. Provide a basic understanding of chemical and biological weapons response to weapons environments. Specifically, provide data and models describing the neutralization of threat agents to thermal, shock, and ionizing radiation environments. In addition, define the collateral effects source terms (quantity of agent released in viable form) of downed hostile cruise missiles carrying biological agent payloads.

Counterproliferation Advanced Concept Technology Demonstration (ACTD) Phase I, DSWA will continue its basic research to complete the development of codes and analytical models for weather, collateral effects, target/weapon interaction described above.

Phase II, DSWA will identify promising technologies to be used.

Phase III, the end-to-end ACTD will be conducted. The ACTD will feature pre-attack site characterization using sensors and analytic tools. High-fidelity targets (simulating hardened WMD targets) will be attacked using a variety of advanced conventional payloads to evaluate penetration, lethality, and collateral effects. Sensors will also be used to determine weapon performance and battle damage assessment.

REFERENCES:
(1) Presidential Decision Directive/NSC-13 (Classified Subject)
(2) SECDEF remarks to the National Academy of Sciences Committee on International Security and Arms Control, 7 Dec 1993 ("The Five Dangers").
TITLE: Pulsed Power Technology and Applications

CATEGORY: Exploratory Development, Energy Storage

OBJECTIVE: Dramatic improvements in energy storage, switching, and power conditioning technologies.

DESCRIPTION: Future requirements for systems employing pulsed power will necessitate improvements in efficiency, energy density, reliability, repeatability and overall performance over the existing state-of-the-art. Innovative approaches for component or subsystems development are sought to meet future demands for radiation simulators and other pulsed power applications. Examples include more efficient pulse forming technologies, high energy density capacitors, more efficient insulators, improved and more reliable switching technologies, and improved power flow electrical circuit models. Pulsed Power applications include operation at kilovolts to megavolts, kiloamperes to megaamperes, and repetition rates from single pulse to 10 kilohertz. New diagnostics used to enhance the operation of the various pulsed power elements are required.

Recent advances in energy storage and switching technologies now make possible the application of DSWA pulsed power technology to such areas as armor/anti-armor; electromagnetic/electrothermal guns; mine-countermine; air, surface, and subsurface systems; high power microwave weapons; etc. Concepts for new applications of pulsed power should be highly innovative and make full use of the emerging pulse power technology.

PHASE I: Demonstrate the feasibility of the proposed concept.
PHASE II: Develop, test, and evaluate proof-of-principle hardware.

COMMERCIAL POTENTIAL: Compact power devices to clean up smoke stack effluents and environmental pollution control, metal cutting and electric vehicles.

REFERENCES:
(1) Pulsed Power Symposium
(2) EML Symposium

TITLE: Directed Energy Effects

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Investigate the effects of directed energy and develop survivability technologies to mitigate these effects.

DESCRIPTION: The effects of directed energy sources such as lasers, neutral particle beams and charged particle beams on materials, structures and systems are of interest to DSWA. Of particular interest are the establishment of the correlation between nuclear weapons effects and directed energy effects, the identification of materials which are capable of withstanding both nuclear weapons effects and directed energy effects, and the interaction mechanisms of directed energy sources actually interact with target materials/structures.

PHASE I: Demonstrate the feasibility of the proposed investigation.
PHASE II: Characterize the effects of directed energy on materials, structures, etc.

COMMERCIAL POTENTIAL: High energy welding

TITLE: Forecasting Environments in the Troposphere and Space (FORETS)

CATEGORY: Exploratory Development, Environment Effects

OBJECTIVE: To investigate the effects of the natural and disturbed environments on atmospheric and space forecasting methods. Develop techniques to mitigate these effects, account for physical processes contributing to chaotic environments, and improve performance predictions.

DESCRIPTION: The Defense Special Weapons Agency (DSWA) is interested in the basic physical process which describes the effects of the natural and disturbed environment on the employment of various weapon systems. These environments may create situations that degrade the propagation of communication and radar signals, optical sensor systems, and weapons system
employment. Part of DSWA's mission is to predict effects the environment will have on these systems. Areas of interest include development of models and model predictions to forecast the effects of clouds on the theater of operations: the identification and streamlining of a model for support of theater operation: the development of a coupled space weather model to predict particle fluences and spectra; and the development of cloud and scintillation climatologies.

PHASE I: Demonstrate the feasibility of the proposed areas of investigation to advance the understanding in any one of the areas.

PHASE II: Continue the investigation leading to the development of models/products that can be incorporated into the existing technology base.

COMMERCIAL POTENTIAL: Weather prediction.

REFERENCES:
(1) Journal of Atmospheric Sciences
(2) Journal of Geophysical Review
(3) Radio Science
(4) Weather Review

DSWA 97-017 TITLE: Advanced Lethality Technologies

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Demonstrate innovative applications of advanced non-nuclear technologies for enhanced target lethality or nuclear effects simulations

DESCRIPTION: Of interest to DSWA is the development and demonstration of capabilities which may significantly extend weapons range-to-effect or enhance lethality against hard targets. The response of a hardened bunker complex or of intrinsically hard ballistic missile sub-munition warhead payloads are of particular interest. Novel applications of explosives technology, hyperkinetic technologies, or directed energy (DE) concepts will be of interest.

PHASE I: The research will develop concept feasibility through either analysis or laboratory scale demonstration.

PHASE II: The concepts will be further developed through more definitive experiments and/or sophisticated computational analyses.

COMMERCIAL POTENTIAL: Hypervelocity, advanced explosives.

DSWA 97-018 TITLE: Field Expedient Hardening

CATEGORY: Exploratory Development, Survivability and Hardening

OBJECTIVE: Develop innovative methods that would temporarily harden military and civilian equipment to nuclear weapon effects.

DESCRIPTION: Innovative methods to temporarily harden military and essential civilian equipment to the effects of nuclear weapons are of interest. Installation should be relatively easy and quick (hours to a few days) an provide protection for several months to a year. Such hardening methods must be practical for field equipment and allow operation of the system.

During Phase I the research will develop concept feasibility through either analysis or laboratory scale demonstration.

During Phase II the concepts will be further developed through more definitive experiments and/or field demonstrations.

COMMERCIAL POTENTIAL: Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) protection, lightning protection.

DSWA-12
REFERENCES:
(1) Mil-Std-188-125
(2) Mil-Hdbk-423
(3) EM-1, Capabilities of Nuclear Weapons
(4) Glasstone, The effects of Nuclear Weapons

DSWA 97-019 TITLE: Advanced Space Nuclear Power and Propulsion Technology

CATEGORY: Exploratory Development, Propulsion and Energy Conversion

OBJECTIVE: Demonstrate innovative approaches to space power and propulsion technologies that use space nuclear reactors as the power source. Nuclear fuel technology is excluded from this effort.

DESCRIPTION: The Defense Special Weapons Agency (DSWA) is interested in the development and demonstration of capabilities that extend the maturity of the U.S. space nuclear power and propulsion technology base. Technologies supporting power-only, propulsion-only, and bi-modal (power+ propulsion) are of interest. Particular interest for power technologies is in static conversion processes. System level research is no included in this effort, nor is nuclear fuel technology.

 During Phase I the research will develop material, component, or sub-component feasibility through analysis or laboratory scale demonstrations.
 During Phase II material, component or sub-component will be further developed through more definitive experiments, analysis and/or life testing.

COMMERCIAL POTENTIAL: Supports high-powered (>10kWe) satellites, space-tug concepts, launch vehicle step-downs for massive satellites.

DSWA 97-020 TITLE: Nuclear Weapon System Safety Assessments

CATEGORY: Exploratory Development, Nuclear Related Technologies

OBJECTIVE: Improved safety of US nuclear and other weapons

DESCRIPTION: Quantifying, reducing, and managing the risks associated with the life-cycle management of US weapons is of vital importance. New and innovative concepts to improve on traditional probabilistic risk assessment techniques and methodologies, as well as operations are desired to increase the overall safety of these assets. Abnormal environments that may be encountered include mechanical insults (e.g., drops, vehicle accidents), thermal insults (e.g., fuel fires), electrical insults (e.g., lightning, electrical power), and combinations of these environments. Long range program thrusts include characterizing these abnormal environments, analyzing human factors and developing quick running models to allow decision makers to manage safety risks. Concepts should employ innovative ideas and make use of new and emerging technologies. Work will include measurement improvements, risk reduction techniques, and advanced algorithms for improved quick-look capabilities.

 Measures to improve the safety of nuclear and other weapons against all possible abnormal environments are required. Safety enhancement measures include prediction of events through characterization of initiators and eliminating/mitigating such initiators. Proposals should describe how they will improve protection against known and predicted risks and should emphasize risk elimination/reduction where appropriate.

 PHASE I: Demonstrate the feasibility and potential usefulness of the proposed safety technologies/techniques.
 PHASE II: Fully develop the proposed technologies/techniques so they can be compared to existing techniques.

COMMERCIAL POTENTIAL: Data risk assessment and management models potential for adaptation to a variety of users. Risk models can be used in evaluating manufacturing alternatives, optimizing safety budgets and equipment, to reducing risks in the home or comparing potential alternate decisions.

REFERENCES:
(1) Joint DoD/DOE Surety Plan, August 1991
(2) Report of the Panel on Nuclear Weapons Safety, DEC 1990

DSWA-13
TITLE: Multi-Source Data Fusion for Monitoring to Detect Nuclear Tests

CATEGORY: Comprehensive Nuclear Test Ban Treaty (CTBT)

OBJECTIVE: Prototype innovative techniques for detecting and characterizing patterns of interest across large, heterogeneous databases to improve the capability to monitor for violations of the Comprehensive Nuclear Test Ban Treaty.

DESCRIPTION: The impending completion of the Comprehensive Nuclear Test Ban Treaty (CTBT) has focused attention on the technical challenges of monitoring to detect evasively conducted nuclear tests, and discriminating between such tests and other events, such as earthquakes or mining activities. Monitoring the CTBT, which prohibits testing in all environments, will require the acquisition, management, fusion, interpretation, and presentation of data from heterogeneous sources and of heterogeneous types. The resulting databases will include the following classes of data: time and space series, imagery, text and speech, and more complex types (e.g., video, analog data, etc.). DSWA seeks a prototype system to support robust data fusion, including the detection and characterization of interesting temporal and spatial patterns across these data classes. The prototype should focus initially on the four components of the International Monitoring System (i.e., seismic, hydroacoustic, infrasound, and radionuclide monitoring) and be extensible to broader databases, including satellite imagery, EMP, HUMINT, etc. The prototype should operate initially within, and take advantage of, the systems infrastructure of the prototype International Data Center (IDC) being developed by the Nuclear Treaty Program Office, and be extensible to final IDC in Vienna, Austria. Techniques in the related areas of data fusion, knowledge discovery, database mining, and data visualization should be considered. Prototypes that demonstrate automated and/or interactive (human driven or assisted) data fusion and decision support are of interest.

COMMERCIAL POTENTIAL: Data fusion techniques to support areas involving high volumes of disparate data, e.g., the airline, mining, or medical industries. A potential military application would be for battlespace management.

REFERENCES:
(2) Conference on Disarmament Working Papers on the International Data Center, CD/NTB/WP.293, 294, and 312.

TITLE: Tracking Atmospheric Plumes Based on Stand-Off Sensor Data

CATEGORY: Comprehensive Nuclear Test Ban Treaty (CTBT)

OBJECTIVE: Develop an approach to identifying and locating the source of nuclear events that generate atmospheric plumes by backtracking their atmospheric plumes.

DESCRIPTION: An essential element of the International Monitoring System (IMS), being established to monitor compliance as part of implementing the Comprehensive Nuclear Test Ban Treaty (CTBT), is the radionuclide subsystem. The collection component of the stations of the subsystem will continuously sample the atmosphere. Periodically (e.g., every six hours) a sample will be completed and analyzed by the radionuclide detectors and their supporting systems. The results of the analysis will be transmitted to regional and/or national data centers, and/or on to the International Data Center (IDC). Analysts and/or their support systems need to be able to determine the source of those samples of interest; i.e., those that contain either certain radioactive products and/or abnormally high levels of other radioactive products. The source includes the identification and location of the nuclear-related activity that produced the radionuclide(s).

This research initiative seeks solutions (or contributions there to) to determining the likely location of the source with an immediate accuracy of within an area as small as 1,000 sq. kms (ultimately perhaps as small as .5 kms by .5 kms).

Solutions should incorporate those characteristics related to nuclear materials/products (e.g., their weight, fractionation, and recombinant potential) and the parameters associated with weather and/or climate (e.g., velocity and direction of wind currents, temperature gradients and rain) that appear to control or influence the transport and dispersal of nuclear materials/products.

It is anticipated that solutions will leverage past work on fallout and atmospheric modeling. Fallout analysis and prediction work, particularly that done during the period when atmospheric nuclear tests were allowed (approximately 1946 to 1962) and perhaps additional work related to leaks during underground testing as well as from such unfortunate events as the Three Mile Island (in Pennsylvania, USA)and Chernobyl (Russia) accidents, should be considered. Atmospheric transport models should be identified and reviewed to see what factors they use as inputs and how up to date they appear to be, etc.
Solutions may automate the integration of meteorological and climatological data with quantitative data from stand-off sensors (biological, chemical, nuclear, etc.) to rapidly detect hazardous material plumes, characterize plume morphology, backtrack to the plume's source, and predict future plume propagation.

An added dimension will be determining the availability of historical data as well as current data collection activities, particularly as related to monitoring areas of interest to the United States.

COMMERCIAL POTENTIAL: Environmental monitoring, including power generation plants (both nuclear and non-nuclear) and weather, and air travel safety.

DSWA 97-023 TITLE: Multi-Dimensional Visualization of Data to Identify Seismic Events or for Other Complex, Multi-Dimensional Data Problems

CATEGORY: Comprehensive Nuclear Test Ban Treaty (CTBT)

OBJECTIVE: Develop a visualization subsystem for the discrimination of different types of detected seismic events; test the subsystem with the Nuclear Treaty Programs Office's (NTPO's) Intelligent Monitoring System; and demonstrate the subsystem's potential application to other multi-dimensional data problems.

DESCRIPTION: NTPO is developing a global system for monitoring nuclear proliferation activities and for potential use in verifying compliance with a Comprehensive Nuclear Test Ban Treaty (CTBT). The system will collect data from a worldwide network of seismic stations and arrays, as well as sensors deployed for air, particulate, and other types of environmental sampling. The seismic system alone will have to process data from several hundred monitoring stations for tens of thousands of detected earthquakes and explosions per year. Results of the final analysis must be available within 24-48 hours of the occurrence of the events. Achieving this goal within the available resources will require automatic data processing and an enhanced data interpretation capability. NTPO is exploring technologies such as machine learning, machine discovery, and visualization methods to aid in the data interpretation.

This initiative seeks subsystems implementing novel visualization techniques and components to aid in interpreting the results of multi-variate seismic discrimination analysis, particularly for small seismic events detected at regional distances out to 2,000 km. The subsystems will be installed in the Intelligent Monitoring System at NTPO's Center for Monitoring Research (CMR) located in Rosslyn, Virginia, and tested with data acquired and processed by the Intelligent Monitoring System. The performer will demonstrate how the visualization techniques can be applied to the general problem of monitoring the proliferation of weapons of mass destruction by demonstrating that it is capable of aiding human analysts in interpreting data from the global seismic monitoring system. The performer will also demonstrate how the techniques can be used to solve other problems involving such data.

COMMERCIAL POTENTIAL: Visualization subsystem to aid in the solution of generic multi-dimensional or multi-variate problems. This could include topics ranging from environmental monitoring to air traffic control.

REFERENCES:
(2) Conference on Disarmament Working Papers on the International Data Center, CD/NTB/WP.293, 294, and 312.
BALLISTIC MISSILE DEFENSE ORGANIZATION (BMDO)
SMALL BUSINESS INNOVATION RESEARCH PROGRAM
Submitting Proposals

Send Phase I proposals (six copies of the full proposal, PLUS one copy of Appendices A and B only) by US mail to:

For Administrative Help ONLY: Call 800-937-3150

Proposals delivered by other means (commercial delivery service or handcarry) must be delivered to Room 1D110, The Pentagon, Washington, D.C. WARNING: Only persons with access to the interior of the Pentagon building can reach Room 1D110. Delivery to a Pentagon entrance is not sufficient. (NOTE: Only a few courier services have access to the Pentagon.) BMDO will acknowledge receipt of proposals only if the proposal includes a self-addressed stamped envelope and a form (like Reference B) that needs only a signature by BMDO.

BMDO seeks the most innovative technology that might enable a defense against a missile in flight - lighter, faster, smarter, more reliable components. Proposers need not know details of possible BMDO systems.

BMDO seeks to invest seed-capital, to supplement private capital, in a product with a future market potential (preferably private sector) and a measurable BMDO benefit. BMDO SBIR will not further develop concepts already mature enough to compete for private capital or for government development funds. Phase I will show the concept feasibility and the merit of a Phase II for a prototype or at least a proof-of-principle. Phase I proposals will be judged mostly on degree of technology innovation. Phase II competition will also be judged intensely on future market potential. Phase II proposals may be submitted anytime after Phase I starts. Projects showing time sensitivity or submitted under the Fast Track will be considered for Phase II start-up funding and Phase I proposals may include a post-Phase I optional task that will permit rapid start-up if the Phase II or Fast Track application is approved. Principal Investigators who are tenured faculty are not considered primarily employed by a small firm if they receive compensation from the university while performing the SBIR contract; any waiver must be requested explicitly with a justification showing a compelling national need; BMDO expects to grant no waivers.

BMDO intends Phase I to be only an examination of the merit of the concept with an average cost under $60,000. Although proposed cost will not affect selection for negotiation, contracting may be delayed if BMDO reduces the cost ceiling. Do not submit the same proposal (or variations) to more than one topic; each idea will be judged once in an open competition among all proposals.

Because BMDO seeks the best nation-wide experts in innovative technology, proposers may suggest technical government reviewers by enclosing a cover letter with the name, organization, address and phone number (if known), and a rationale for each suggestion. BMDO promises only to consider the suggestion.

BMDO-1
BALLISTIC MISSILE DEFENSE ORGANIZATION TOPICS

BMD097-001 Directed Energy Concepts and Components
BMD097-002 Kinetic Energy Kill Vehicles
BMD097-003 Sensors
BMD097-004 Unit Cost Reduction
BMD097-005 Non-Nuclear Power and Power Conditioning
BMD097-006 Propulsion and Logistics
BMD097-007 Thermal Management
BMD097-008 Survivability
BMD097-009 Lethality and Vulnerability
BMD097-010 Computer Architecture, Algorithms, and Models & Simulations
BMD097-011 Optical Computing and Optical Signal Processing
BMD097-012 Structural Concepts
BMD097-013 Structural Materials
BMD097-014 Electronic Materials
BMD097-015 Superconductive Materials
BMD097-016 Surprises and Opportunities
BMD097-001
TITLE: Directed Energy Concepts and Components

DESCRIPTION: Innovative and applied research in the generation, propagation, and detection of directed energy in all forms. Dual-use systems under consideration include, but are not limited to, solid state lasers (i.e., diode lasers), chemical lasers, excimer lasers, IR/Vis/UV lasers, x-ray lasers, gamma-ray lasers, free electron lasers, quantum lasers, particle beams, radio-frequency (RF) and millimeter wave (MMW), and other unique hybrid approaches. As well as, any component or sub-component that is utilized by any of these systems. Included are such topics as beam control, target acquisition, tracking and pointing, mirrors, beam propagation and steering, optics, conversion methods, countermeasures and coatings, and micro-optical devices incorporating these aspects.

BMD097-002
TITLE: Kinetic Energy Kill Vehicles

DESCRIPTION: Kinetic energy (KE) weapons candidates presently include a variety of ground and space based interceptor concepts including their propulsion sub-system components. System elements include ground-based launchers, axial and divert motors/nozzles, smart projectile components, and endo/exoatmospheric guidance and control mechanisms. Technology challenges for KE systems include: finding the booster hardbody within the plume, high performance axial and divert propulsion sub-systems especially very low mass divert systems), miniature inertial navigation units, array image processing, C.G. Control algorithms, fast frame multicolor and ultra-violet Seekers, acquisition and track; target discrimination, seeker operational environments, lethality/miss distance; aero-optical effects, guidance and fuzing accuracy, shroud separation, window thermal-structural integrity, non-nuclear kill warhead performance, target acquisition in a hostile environment, performance and survivability of electronics in hostile environments; firing rate, projectile guidance and control and projectile launch survivability; and, common among all systems reliability; producibility, safety (non-hazardous operation), maintainability, and low cost/low mass; aeroshell ablation control; electromagnetic launches.

BMD097-003
TITLE: Sensors

DESCRIPTION: Sensors and their associated systems will function as the "eyes and ears" for ballistic missile defense system, providing early warning of attack, target identification, target tracking, and kill determination. New and innovative approaches to these requirements using unconventional techniques are encouraged across a broad band of the electromagnetic spectrum, from radar to gamma-rays. Passive, active, and interactive techniques for discriminating targets from backgrounds, debris, decoys and other penetration aids are sought. Sensor-related device technology is also needed. Examples of some of the specific areas are: cryogenic coolers (open and closed systems), cryogenic heat transfer, superconducting focal plane detector arrays (for both the IR and sub-mm spectral regions), signal and data processing algorithms (for both conventional focal plane and interferometric imaging systems), low-power optical and sub-mm wave beam steering, range-doppler lidar and radar, passive focal plane imaging (long wavelength infrared to ultra-violet; novel information processing to maximize resolution while minimizing detector element densities) interferometry (both passive and with active illumination), gamma-ray detection, neutron detection, intermediate power frequency agile lasers for diffractive beam steering and remote laser induced emission spectroscopy, lightweight compact efficient fixed frequency radiation sources for space-based BMD application (uv through sub-mm wave), new optics and optical materials. Entirely new approaches are also sought. Please indicate the particular subtopic identifying letter your specific proposal/technology addresses:

- **BMD097-003A** - Acoustic and Seismic
- **BMD097-003B** - Radar and MMW
- **BMD097-003C** - UV (<0.3 microns)
- **BMD097-003D** - Visible (0.3 - 0.9 microns)
- **BMD097-003E** - IR (>0.9 microns)
- **BMD097-003F** - Gamma/X-Ray
- **BMD097-003G** - Other
TITLE: Unit Cost Reduction

DESCRIPTION: BMDO seeks drastically lower unit cost of components through manufacturing revolutions that will lead to high volume production from commercial sales. Thus BMDO will consider proposals that offer such a huge unit cost reduction that a heretofore purely anti-missile military technology would become a high volume commercial item. Whereas all other topics seek first and foremost a revolution in the military capability of the technology, this topic seeks only a revolution in the unit cost. BMDO seeks herein only projects that are too risky for ordinary capital investment by the private sector. The proposals must include and will be judged in part on an economic analysis of the expected market impact.

TITLE: Non-Nuclear Power and Power Conditioning

DESCRIPTION: New technologies for providing power which provide substantial improvements in lower recurring cost, lower mass, and/or smaller size are sought for all applications. New concepts for power sources and power conditioning devices for transportable or mobile systems at 200 kW to 1 MW also need to have high efficiency, low signatures, and high reliability. Power generation and power conditioning devices that operate at cryogenic temperatures for use in a new concept for all cryogenic systems are sought. Power conditioning devices of interest include, but are not limited to, capacitors, inductors, and switches. Space assets' power sources in the 0.5 to 5 kW power range, including solar arrays and their photovoltaic cells, need to tolerate high natural radiation levels. Satellite energy storage systems must provide cycle lifetimes up to 40,000 cycles in low earth orbit sensor satellites. Onboard power sources for interceptor missiles need to be periodically testable and have a quick start-up capability. Power conditioning systems and components for space assets should provide very high efficiency.

TITLE: Propulsion and Logistics

DESCRIPTION: In general, missile defense places unprecedented demands on all types of propulsion systems; launch to low earth orbit, orbit transfer, orbit maneuvering, and station keeping. Specifically, advancements are needed to achieve major reductions in the costs of placing and maintaining payloads in desired locations. Approaches leading to techniques, methods, processes, and products in support of these propulsion and logistics objectives are sought. Propulsion approaches include liquid, solid, and electric. Advancements are needed in propulsion-related areas, e.g., extending storage time of cryogenic fluids (e.g., H₂ and Xe), reduction of contamination from effluents, and sensors and controls for autonomous operation. Areas of interest include the entire spectrum of space transportation and support: efficient launch systems for small technological payloads as well as full system payloads, assembly, and control systems; expendable and recoverable components; improved structures and materials; and increased propulsion efficiency. In anticipation of solar power demonstration missions incorporating electric thrusters, BMDO seeks high power electric thruster modules (e.g., electrodes, insulators, ignition systems, propellant control, command and control system, thermal management system, and power conditioning unit). With the advent of small surveillance satellites, low power (0.5 to 2 kW) electric propulsion is being considered for station keeping and orbit transfer; for such systems emphasis is being placed on achieving higher power densities for components of the integrated system (thrustor, power conditioning unit, fuel control, gimbals, and fuel storage). Low mass interceptors require advances in divert (small thrusters) propulsion systems (either solid or liquid).

TITLE: Thermal Management

DESCRIPTION: High power levels of various assets must dissipate heat at state-of-the-art capabilities for waste thermal energy acquisition, transport, and dissipation to space. Technology advancements are required in thermal management for both power generation systems, space platform payloads, and all electronics. Some space platforms will require years of storage of large amounts of cryogens with minimum cryogen loss and high cryogen delivery rates under condition of zero-g, concept and devices for all types of space-based power cycles, and can satisfy these projected space platform requirements.

TITLE: Survivability

DESCRIPTION: Missile defense elements must operate and survive against determined attacks. Threat actions can generate a reasonable set of hostile man-made environments before and during operations. Collateral environments and natural space environments (atomic oxygen, space radiation and micrometeorites/debris) provide additional challenges which also affect civilian
assets. Survivability engineering technology is needed to achieve a cost-effective, integrated solution to a dynamic and diverse set of hostile environments with a focus toward improving aspects of threat sensing, hardening, passive defense, and camouflage, concealment and deception (CCD).

Sensors enable the defense elements to detect nuclear events, laser and radio frequency weapon attacks, and to respond appropriately. Sensors which can characterize the threat according to direction of attack, and spectral characteristics are under consideration. Technologies to enhance passive defense of missile systems, space assets, and support equipment are needed to operate against the threat support sensors, including radar, passive visible/IR sensors and seekers, and laser radar.

Passive hardening against the nuclear, laser, RF, ballistic and debris environments is needed, in addition to novel hardening technologies and approaches against the natural space environments. Sensor systems, communications antennas (RF and laser), attitude sensors, solar power, propulsion, structure and thermal control are all directly exposed to nuclear, laser, RF and debris in addition to the natural space environments. Materials and component designs which are intrinsically hard to these environments, and/or protective devices are needed, specifically with dual-use commercialization applications. A key BMD area of consideration is seeker/sensor sub-systems, the components of which (baffle materials, mirrors, optics, structures, focal plane arrays, read out electronics, and processing) must survive the laser, nuclear, IR, and natural environments. Nuclear and laser hard concepts, materials, and devices for protection against unknown or agile lasers and rejection of RF energy. Structures and coatings providing appropriate thermal characteristics, stability under mechanical impulses and hardness to laser and RF radiation are needed. Processors capable of operating in unique hostile environments presented by the strategic applications while retaining full functionality are desired. Long term space (commercial and government) applications are direct beneficiaries of these advanced technology developments.

Countermeasures and integration of CCD technologies are particular useful to the operational forces and, in general, attempt to incorporate the latest military and commercial technologies to ensure an effective response to any advanced threat. A new class of weapons technologies are evolving incorporating non-lethal methods. These have a broad range of applications as a survivability countermeasure or must themselves be countered to assure full operability. The non-lethal technology efforts in this area have dual-use applications with law enforcement techniques.

BMDO97-009 TITLE: Lethality and Vulnerability

DESCRIPTION: A major factor in determining the effectiveness of a ballistic missile defense is the lethality of the directed energy and/or kinetic energy devices used against responsively hardened targets, bulk powder, and submunition targets. Battlefield by-products of post-intercept events are under consideration. New concepts and technologies which produce a much higher probability of hit-to-kill intercepts is required to support applications. Ground and Point-of-Intercept technologies, instrumentations, concepts, and methodologies are under consideration for cost effective incorporation into lethality efforts. Additionally, novel concepts and techniques which reduce the vulnerability of BMD systems will increase the operational confidence level of dedicated assets. Commercial applications may benefit from the incorporation of the techniques utilized in cost-reduction, measurement and diagnostics, and meteorology instrumentation packages.

BMDO97-010 TITLE: Computer Architecture, Algorithms, and Models & Simulations

DESCRIPTION: Missile defense systems for battle management demand order-of-magnitude advances. A system must acquire and track thousands of objects with hundreds of networked sensors and data processors, direct weaponry to intercept targets, and determine the degree of kill. Areas of interest are:

- New computer architectures which are robust, compact, and fault-tolerant, but allow for the extremely rapid processing of data. Architectures may be implemented by new designs or innovative applications of existing technologies, such as optical signal processing, systolic arrays, neural networks, etc.

- Very high-level language (VHLL) design for both the development and testing of extremely large software systems.

- Novel numerical algorithms for enhancing the speed of data processing for sensing, discrimination, and systems control. These may be specifically tailored to a particular task (for instance, the execution of a phase retrieval algorithm for interferometric imaging). Includes neural networks.

- Language design to develop code optimized for highly parallel processed architectures.

BMDO-5
- Testing techniques that will provide a high level of confidence in the successful operation of concurrent, real-time, distributed large-scale software systems. Examples include sensitivity analysis, data flow testing, mutation testing, static concurrency analysis, and dependency analysis.

- Computer network and communications security. R&D for trusted computer systems in accordance with DoD 5200.28-STD; integration of COMPUSEC with COMSEC (DoD 5200.5).

- Self-adaptive processing and simulation. Algorithms and architectures for advanced decision making.

- Neurocomputing and Man-Machine Interface - rule-based AI and neural networks combined for decision making flexibility and system robustness; development of decision trees and information display for highly automated, short response time, training adaptive high volume scenarios.

- Software architectures for embedded computer networks that especially facilitate incremental system and software integration, hardware and software maintenance, and system evolution, without significant performance degradation.

- Hardware and software self-diagnostic capabilities for monitoring the operational readiness and performance of space and ground systems incorporating embedded computer networks.

- Virtual environments to allow diverse groups to interact in real time in increasingly realistic ways over large distances to include hostile environments definition and ground effects modeling and simulation efforts.

BMD097-011

TITLE: Optical Computing and Optical Signal Processing

DESCRIPTION: Dense computing capability is sought in all architectural variations, from all optic to hybrid computers. Specific examples of areas to be addressed include, but are not limited to, high speed multiplexing, monolithic optoelectronic transmitters, holographic methods, reconfigurable interconnects, optoelectronic circuits, and any other technology contributing to advances in intra-computer communications, optical logic gates, bistable memories, optical transistors, and power limiters. Non-linear optical materials advancements and new bistable optical device configurations.

BMD097-012

TITLE: Structural Concepts

DESCRIPTION: Minimum weight structures are needed to withstand high-g loading, acoustic and thermal environment of ground based interceptors and to provide solid bases for space systems pointing and tracking. Such structures will benefit from: (1) innovative vibration control techniques, (2) innovative fabrication approaches to cut structure cost, and (3) innovative use of advanced materials and/or design approaches to minimize structure weight. For instance, techniques and experimental verification are needed for active and/or passive methods to measure and control vibrations caused by thermo-mechanical flutter, thruster firing or structure borne noise caused by on-board mechanisms. "Active" structural elements containing materials and electronics to provide predictable mechanical displacement in response to applied electrical signals are of interest. Maximization of displacement, mechanical strength, and reliability; parameter stability over extended temperature ranges; and minimization of driving voltage, power, and weight of these elements are desired. Productivity improvements for curved actuator elements, flexextensional, and other integrated motion amplifiers are of interest. Fabrication approaches that provide minimum weight with reduced assembly, inspection, and scrap rates for conventional, advanced composite, and "active" structures are needed to reduce costs. Of course, clever design and material usage to reduce structure weight while maintaining or increasing capability are always desirable goals.

BMD097-013

TITLE: Structural Materials

DESCRIPTION: Many of the anticipated structural advances sought in Topic 97-012 will depend on major improvements in material properties and cost effectiveness. Space structures supporting seekers and antenna must accommodate retargeting maneuvers without detrimental jitter from vibrations and thermo-mechanical flutter. Surface launched interceptors must
withstand high g loads, aerothermal heating and structural vibration without compromising tracking accuracy. Lightweight materials are very beneficial for both ground and spaced based systems.

Specific goals require advanced techniques and processes that include imparting oxidation resistance and damage tolerance to composites and creating high elastic modulus composites for use over a broad range of temperatures. The following are sought: (1) innovative manufacturing methods for producing high modulus, fiber-reinforced glass, light metal (i.e., aluminum or magnesium), or resin matrix composites; (2) innovative procedures for the production of instrumentation, sensors and software for on-line process monitoring and evaluation of high modulus, fiber-reinforced composites during fabrication; (3) novel approaches to tailor fiber/matrix interfaces to maximize capability in advanced composites; (4) novel methods to cut fabrication cost of metallic and/or composite spacecraft and interceptor structures; (5) innovative tooling techniques for near-net shape production of advanced composites; (6) novel low-to-no outgassing joining/bonding techniques for advanced composites; (7) innovative surface modifications to promote wear resistance; (8) new methods for integrating instrumentation (e.g., embedded sensors) into advanced composite materials and structures; and (9) novel instrumentation for determination and telemetry of material properties and data from space. Advances are also sought in materials for optical system components, mechanical moving assemblies, and protective coatings.

BMDO97-014 TITLE: Electronic Materials

DESCRIPTION: The necessary advances in electronics for the many missile defense applications will require advances in electronics materials. Primary emphasis lies in advancing the capability of integrated circuits, detectors, sensors, large scale integration, radiation hardness, and all electronic components. Novel quantum-well/superlattice structures which allow the realization of unique elective properties through "band gap engineering" are sought as are new organic and polymer materials with interesting electronic characteristics. In addition, exploitation of the unique electronic properties of gallium nitride is of considerable interest. Among the many BMD electronic needs are advances in high frequency transistor structures, solid state lasers, optical detectors, low dielectric constant packaging materials, tailored thermal conductivity, microstructural waveguides, multilayer capacitors, metallization methods for repair of conducting paths in polyceramic systems, and sol-gel processing for packaging materials.

BMDO97-015 TITLE: Superconductive Materials

DESCRIPTION: BMD wants to demonstrate both high temperature superconductor (HTS) and low temperature superconductor (LTS) devices to enable or improve strategic defenses. Emphasis in HTS technology is in components integrated with state-of-the-art cryoelectronics for communications systems at K- and S-bands and radar systems in the X-band power and inductive energy storage. The demonstration of HTS materials to BLIP limited detection of radiation in the optical, IR, MWR, and LWIR bands as well as for signal processing applications is also of interest. The emphasis in LTS technology is the development and demonstration of high sensitivity detectors, digital electronics and memory enabling on-focal plane array signal processing and operating at temperature greater than 10K. Efforts should address packaging and interface issues and systems integration with cryocoolers and stored cryogens.

BMDO97-016 TITLE: Surprises and Opportunities

DESCRIPTION: Since BMD is an exploration at technology's leading edge, it recognizes that surprises and opportunities may arise from creative minds. BMD will consider proposals in other technologies where they present an unusual opportunity for BMD. The proposer should take special care to describe the technology in complete detail and why BMD would benefit from exploring its implications. Proposers should note that proposals in this topic will receive preliminary screening that may reject them as too far afield without the benefit of a full technical review received by proposals in the topics already listed. It is recommended that proposers focus their submission toward one of the specific outlined topics unless the technology proposed is truly an unquestionable innovation. This full and open call is for new technology, not for recycling of old ideas.
UNITED STATES SPECIAL OPERATIONS COMMAND
Proposal Submission

The United States Operations Command's (USSOCOM) missions include developing and acquiring unique special operations forces (SOF) equipment, material, supplies and services. Desired SOF operational characteristics for systems, equipments and supplies include: lightweight and micro-sized; reduced signature and low observable; built-in survivability; modular, rugged, reliable, maintainable and simplistic; operable in extremes temperature environments; water depth and atmosphere pressure proof; transportable by aircraft, ship and submarine, and deplorable by airdrop; LLPI/LPD jam resistant C3I, electronic warfare capable of disruption and deception; near real-time surveillance, intelligence and mission planning; highly lethal and destructive; low energy/power requirements; and compatible with conventional force systems. USSOCOM is seeking small businesses with a strong research and development capability and understanding of the necessity for consideration of these SOF operational characteristics for systems. The topics on the following pages represent a portion of the problems encountered by SOF in fulfilling its mission.

USSOCOM invites the small business community to send proposals directly to the following address:

United States Special Operations Command
Attn: SOAC/KB-SBIR Program, Topic No. SOCOM 97.1-00
2408 Florida Keys Avenue, 2nd Floor
MacDill Air Force Base, Florida 33621-5316

The proposals will be distributed to the appropriate technical office(s) for evaluation. Inquires of a general nature or questions concerning the administration of the SBIR program and proposal preparation should be addressed to:

United States Special Operations Command
Attn: SOSP/ Ms. Karen L. Pera
7701 Tampa Point Blvd.
MacDill Air Force Base, Florida 33621-5316

USSOCOM has identified 3 technical topics for the solicitation released during FY 97 by DOD, to which small businesses may respond. The topics listed are the only topics for which proposals will be accepted. The topics were initiated by USSOCOM technical offices that manage the research and development in these areas. Scientific and technical information assistance may be requested by using the DTIC SBIR Interactive Technical Information System (SITIS).

Firms are encouraged to submit a proposal for an optional task which would be performed during the period between Phase I completion and Phase II contract award. The optional task provides the opportunity to reduce the gap between Phase I and II. The maximum amount of SBIR funding used for an USSOCOM Phase I award is $100,000. Proposals that include the option task shall not exceed $70,000 for Phase I and $30,000 for Phase I Option. Any option proposal must be submitted at the same time and place as the basic Phase I proposal and not be included in the basic Phase I proposal page limitation. The basic Phase I proposal shall be evaluated exclusive of the option task and must be proposed and priced separately. The option portion of the proposal shall not exceed 10 pages, not exceed $30,000, not exceed three months in duration, and be evaluated using the same evaluation criteria as Phase I proposals. The transition option work shall be included as an option in the Phase I contract and evaluated for USSOCOM unilateral exercise at any time after Phase I award through the conclusion of the basic Phase I contract. Exercise of any option shall be at the sole discretion of USSOCOM and shall not obligate USSOCOM to make a Phase II award.

Selection of proposals for funding is based upon technical merit and the evaluation criteria included in this solicitation. As funding is limited, USSOCOM reserves the right to select and fund only those proposals considered to be superior in overall technical quality and most critical. As a result, USSOCOM may fund more than one proposal in a specific topic area if the technical quality of the proposals is deemed superior, or it may fund no proposals in a topic area.
USSOCOM
FY 1997 SBIR TOPIC INDEX

Human Systems Interface

SOCOM 97.1-001 Advanced Diving Systems/Components

SOCOM 97.1-002 Helmsman’s Recording Accelerometer

Surface Vehicles

SOCOM 97.1-003 Emerging Outboard Engine Technology
<table>
<thead>
<tr>
<th>Keywords</th>
<th>Topic Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerometer</td>
<td>002</td>
</tr>
<tr>
<td>Closed-Circuit Diving</td>
<td>001</td>
</tr>
<tr>
<td>CO2 Scrubbing</td>
<td>001</td>
</tr>
<tr>
<td>Compact Outboard Engines</td>
<td>003</td>
</tr>
<tr>
<td>Decompression Monitor</td>
<td>001</td>
</tr>
<tr>
<td>Diving Systems</td>
<td>001</td>
</tr>
<tr>
<td>Displays and Alarms</td>
<td>001</td>
</tr>
<tr>
<td>Gas Sensors</td>
<td>001</td>
</tr>
<tr>
<td>Hull Fatigue</td>
<td>002</td>
</tr>
<tr>
<td>Lightweight</td>
<td>003</td>
</tr>
<tr>
<td>Mixed Gas Diving</td>
<td>001</td>
</tr>
<tr>
<td>Multi-fuel</td>
<td>003</td>
</tr>
<tr>
<td>Outboard Engines</td>
<td>003</td>
</tr>
<tr>
<td>Recording Accelerometer</td>
<td>002</td>
</tr>
<tr>
<td>Shock</td>
<td>002</td>
</tr>
</tbody>
</table>
USSOCOM SBIR 97.1 TOPIC DESCRIPTIONS

SOCOM 97.1-001 TITLE: Advanced Diving Systems/Components

CATEGORY: Engineering Development; C08, K05

OBJECTIVE: Develop an advanced diving system or new components for existing systems to provide Special Operations Force (SOF) Combat Swimmers with closed-circuit, mixed gas capability with extended endurance. Develop advanced sensors and other components to improve the functionality, performance and life cycle cost of existing SOF diving systems.

DESCRIPTION: SOF Combat Swimmers presently use the MK 16 and Draeger LAR V diving systems for training and real world missions. Although capable of adequately performing assigned SOF missions, these systems have not incorporated state of the art technologies in recent years. Improvements in SOF combat swimmer operational capability can be made by incorporating new technologies that provide improvements in functionality, performance and life cycle cost. New technologies, methods and improvements are sought in, but not limited to, the following areas: oxygen and carbon dioxide gas partial pressure sensing, carbon dioxide; scrubbing, diver display and alarms, automated decompression monitoring and dive-loadable dive profile recording, improved closed circuit rig endurance, minimized electronics; and power requirements, low and no magnetic signatures, full face mask compatibility, Swimmer Delivery Vehicle compatibility, reduced operating and maintenance costs, minimal breathing resistance, operating in a wide range of water temperatures, and switching between breathing mixtures.

Phase I: Investigate technologies and devices suitable for use in an existing or new SOF Combat Swimmer Diving System.

Phase II: Develop and test a prototype SOF Combat Swimmer Diving System or upgrades; to existing systems.

Phase III: Transition tested SOF Combat Swimmer Diving System/Components to limited production or Planned Product Improvements.

COMMERCIAL POTENTIAL: The commercial and recreational diving industry provide tremendous application for this technology to improve existing systems or to develop new systems that could aggressively create a niche commercial market and then support a larger recreational market.

SOCOM 97.1-002 TITLE: Helmsman’s Recording Accelerometer

CATEGORY: Engineering Development; C08, K05

OBJECTIVE: Develop a Helmsman’s Recording Accelerometer for console instrumentation on MSW RIB and MK V SOC to provide the craft helmsman with real time quantitative acceleration data and provide a record of craft accelerations to improve rough water operation and hull fatigue analysis.

DESCRIPTION: A Helmsman’s Recording Accelerometer will provide the helmsman with valuable real time information on craft vertical accelerations when operating in rough water. This will assist the helmsman in choosing speeds and headings to reduce perceived roughness during SOF missions to reduce fatigue on passengers and the hull structure. The accelerometer recording will assist in post-mission analysis and in hull fatigue analysis to improve hull maintenance planning and for long-term analysis of hull structures. Technology related to this requirement include aircraft accelerometers and air-bag accelerometers.

Phase I: Investigate technologies and devices suitable for use in a Helmsman’s Recording Accelerometer.

Phase II: Develop and test prototype Helmsman’s Recording Accelerometer.

Phase III: Transition tested Helmsman’s Recording Accelerometer design to limited production.

COMMERCIAL POTENTIAL: Application in commercial and recreational boating industry to provide real -time data to improve rough water operation and historical acceleration data for hull fatigue analysis.
OBJECTIVE: This topic focuses on expanding, adapting and applying emerging commercial engine technology to outboard engine applications. The objective is to produce outboard engines with improved power to weight and power to size ratios when compared to current and immediate future outboard engines.

DESCRIPTION: Special Operations Forces (SOF) are tasked to perform overt and covert missions including mine and countermine operations. Currently, combat rubber raiding crafts (CRRC) are used to transport personnel and equipment from the insertion site to the objective area. The distance traveled can be quite extensive and it is likely that minefields will be encountered while en route. SOF outboard engine inventory is currently comprised of two-cycle gasoline outboard engines. These in most cases have a weight/size to power ratio that makes the engine difficult to physically handle quickly and accurately. These engines often require more than one SOF operator to set up vice the desired single SOF operator. This proposed Emerging Outboard Engine Technology topic is intended to pursue innovative ideas, concepts and techniques to develop a family (30 hp, 55 hp and 70 hp) of lightweight, compact multi-fuel, submersible outboard engines. These new lightweight compact outboard engines must have adequate power to propel and plane SOF inflatable and other applicable boats carrying the required crew with equipment and fuel in Sea State 2 or less. The weight/size of the engines must improve the performance of the various boats and enhance the operator’s abilities to effectively and easily handle and operate them. A successful development program will include the achievement of the following technical objectives:

a. Demonstrate operation of outboard engines with power to weight/size ratios twice that (as an initial goal) of current outboard engines.

b. Demonstrate reliability and longevity comparable to current engines.

c. Incorporate high quality design and manufacturing practices/standards that produce quality engines and inhibit corrosion when operated in SOF mission environments.

d. Demonstrate mechanical designs that are capable of being hand carried and mounted by a single SOF operator onto a boat transom with dimensional and angular requirements accepted in the boating industry.

e. Other desirable outboard engine characteristics targeted for improvement are reduced heat, acoustic, and magnetic signatures, multi-fuel operation, improved fuel economy and reduced life cycle costs.

Phase I: Analyze outboard engine systems/concepts to prove that weight/size reduction of 50% (as an initial goal) is achievable. Conduct engineering demonstrations that produce the desired lightweight/compact outboard engine capabilities. The deliverable of this phase will be investigative engineering reports.

Phase II: Advanced development of the lightweight/compact outboard engine. Two prototypes (30 hp and 55 hp lightweight/compact outboard engines) will be fabricated and contractor tested to demonstrate the concept in a fully operational system. Both prototypes will be delivered to the government after contractor tests are reported to the government. Other deliverables will include engineering specifications and drawings, and test reports.

Phase III: Engineering development of lightweight/compact outboard engines. Detailed engine design, production engineering and logistic support of the family of engines will be completed. Several production representative engines will be produced, tested and delivered to the government for operational testing.

COMMERCIAL POTENTIAL: There is high potential for lightweight/compact outboard engines in the recreational boating industry for a number of reasons - increased fuel efficiency, ease of handling, ease of storage, and reduced cost of initial purchase and maintenance are examples.
9.0 SUBMISSION FORMS AND CERTIFICATIONS

Section 9.0 contains:

Appendix A: Proposal Cover Sheet
Appendix A (or photocopy) must be included with each proposal submitted.

Appendix B: Project Summary Form
Appendix B (or photocopy) must be included with each proposal submitted. Don’t include proprietary or classified information in the project summary form.

Appendix C: Cost Proposal Outline
A cost proposal following the format in Appendix C must be included with each proposal submitted.

Appendix D: Fast Track Application Form
A new DoD pilot program that provides interim funding and DoD’s highest priority for Phase II award to projects that attract third party investors.

Appendix E: Company Commercialization Report
A report that identifies each Phase II SBIR and/or STTR project your firm has received. All Phase I and Phase II proposals must include a Company Commercialization Report.

Reference A: Proposal Receipt Notification Form
Reference B: DTIC Information Request Form
Reference C: Directory of Small Business Specialists
Reference D: SF 298 Report Documentation Page
Reference E: DoD SBIR/STTR Mailing List Form
TOPIC NUMBER: ________________________________

PROPOSAL TITLE: __

__

FIRM NAME: ___

MAIL ADDRESS: __

__

CITY: ________________________ STATE: _______ ZIP: ________

PROPOSED COST: ______________________________ PHASE I OR II: PROPOSAL PROPOSED DURATION: ____________

IN MONTHS

BUSINESS CERTIFICATION:

☐ Are you a small business as described in paragraph 2.2?

☐ Are you a socially and economically disadvantaged business as defined in paragraph 2.3? (Collected for statistical purposes only)

☐ Are you a woman-owned small business as described in paragraph 2.4? (Collected for statistical purposes only)

☐ Have you submitted proposals or received awards containing a significant amount of essentially equivalent work under other DoD or federal program solicitations? If yes, list the name(s) of the agency or DoD component, submission date, and Topic Number in the spaces below.

__

☐ Number of employees including all affiliates (average for preceding 12 months): ______________________

PROJECT MANAGER/PRINCIPAL INVESTIGATOR CORPORATE OFFICIAL (BUSINESS)

NAME: ________________________________ NAME: ________________________________

TITLE: ________________________________ TITLE: ________________________________

TELEPHONE: ________________________________ TELEPHONE: ________________________________

For any purpose other than to evaluate the proposal, this data except Appendix A and B shall not be disclosed outside the Government and shall not be duplicated, used or disclosed in whole or in part, provided that if a contract is awarded to this proposer as a result of or in connection with the submission of this data, the Government shall have the right to duplicate, use or disclose the data to the extent provided in the funding agreement. This restriction does not limit the Government’s right to use information contained in the data if it is obtained from another source without restriction. The data subject to this restriction is contained on the pages of the proposal listed on the line below.

PROPRIETARY INFORMATION: __

SIGNATURE OF PRINCIPAL INVESTIGATOR DATE SIGNATURE OF CORPORATE BUSINESS OFFICIAL DATE

Nothing on this page is classified or proprietary information/data
Proposal page No. 1
INSTRUCTIONS FOR COMPLETING APPENDIX A

AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

Courier 12,10 or 12 pitch
Courier 71 10 pitch
Elite 71
Letter Gothic 10 or 12 pitch
OCR-B 10 or 12 pitch
Pica 72 10 pitch
Prestige Elite 10 or 12 pitch
Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underlines as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: D Tic-SBIR
8725 John J Kingman Road, Suite 0944
Pt. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
PROPOSAL COVER SHEET
Failure to fill in all appropriate
spaces may cause your proposal to be disqualified

TOPIC NUMBER: __________________________

PROPOSAL TITLE: __________________________

FIRM NAME: __________________________

MAIL ADDRESS: __________________________

CITY: __________________________ STATE: ______ ZIP: ______

PROPOSED COST: __________________________ PHASE I OR II: ______ PROPOSED DURATION: ______ IN MONTHS

BUSINESS CERTIFICATION:

☐ Are you a small business as described in paragraph 2.2? YES NO

☐ Are you a socially and economically disadvantaged business as defined in paragraph 2.3? (Collected for statistical purposes only) NO

☐ Are you a woman-owned small business as described in paragraph 2.4? (Collected for statistical purposes only) NO

☐ Have you submitted proposals or received awards containing a significant amount of essentially equivalent work under other DoD or federal program solicitations? If yes, list the name(s) of the agency or DoD component, submission date, and Topic Number in the spaces below. NO

☐ Number of employees including all affiliates (average for preceding 12 months): __________

PROJECT MANAGER/PRINCIPAL INVESTIGATOR CORPORATE OFFICIAL (BUSINESS)

NAME: __________________________ NAME: __________________________

TITLE: __________________________ TITLE: __________________________

TELEPHONE: __________________________ TELEPHONE: __________________________

For any purpose other than to evaluate the proposal, this data except Appendix A and B shall not be disclosed outside the Government and shall not be duplicated, used or disclosed in whole or in part, provided that if a contract is awarded to this proposer as a result of or in connection with the submission of this data, the Government shall have the right to duplicate, use or disclose the data to the extent provided in the funding agreement. This restriction does not limit the Government’s right to use information contained in the data if it is obtained from another source without restriction. The data subject to this restriction is contained on the pages of the proposal listed on the line below.

PROPRIETARY INFORMATION: __

SIGNATURE OF PRINCIPAL INVESTIGATOR DATE SIGNATURE OF CORPORATE BUSINESS OFFICIAL DATE

Nothing on this page is classified or proprietary information/data
Proposal page No. 1
INSTRUCTIONS FOR COMPLETING APPENDIX A

AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

Courier 12,10 or 12 pitch
Courier 71 10 pitch
Elite 71
Letter Gothic 10 or 12 pitch
OCR-B 10 or 12 pitch
Pica 72 10 pitch
Prestige Elite 10 or 12 pitch
Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underlines as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
PROPOSAL COVER SHEET
Failure to fill in all appropriate
spaces may cause your proposal to be disqualified

TOPIC NUMBER: ____________________________

PROPOSAL TITLE: __
__
__

FIRM NAME: ___
__
__

MAIL ADDRESS: __
__
__

CITY: __________ STATE: ______ ZIP: __________

PROPOSED COST: ____________________________ PHASE I OR II: PROPOSAL
PROPOSED DURATION: ______ IN MONTHS

BUSINESS CERTIFICATION:

▸ Are you a small business as described in paragraph 2.2? YES NO

▸ Are you a socially and economically disadvantaged business as defined in paragraph 2.3?
(Collected for statistical purposes only) NO

▸ Are you a woman-owned small business as described in paragraph 2.4?
(Collected for statistical purposes only) NO

▸ Have you submitted proposals or received awards containing a significant amount of essentially
equivalent work under other DoD or federal program solicitations? If yes, list the name(s) of
the agency or DoD component, submission date, and Topic Number in the spaces below.

__

▸ Number of employees including all affiliates (average for preceding 12 months):

__

PROJECT MANAGER/PRINCIPAL INVESTIGATOR

NAME: ____________________________ TITLE: ____________________________

TELEPHONE: ____________________________

CORPORATE OFFICIAL (BUSINESS)

NAME: ____________________________ TITLE: ____________________________

TELEPHONE: ____________________________

For any purpose other than to evaluate the proposal, this data except Appendix A and B shall not be disclosed outside the Government
and shall not be duplicated, used or disclosed in whole or in part, provided that if a contract is awarded to this proposer as a result of or
in connection with the submission of this data, the Government shall have the right to duplicate, use or disclose the data to the extent
provided in the funding agreement. This restriction does not limit the Government’s right to use information contained in the data if it is
obtained from another source without restriction. The data subject to this restriction is contained on the pages of the proposal listed on
the line below.

PROPRIETARY INFORMATION:

__

SIGNATURE OF PRINCIPAL INVESTIGATOR DATE

SIGNATURE OF CORPORATE BUSINESS OFFICIAL DATE

Nothing on this page is classified or proprietary information/data
Proposal page No. 1
INSTRUCTIONS FOR COMPLETING APPENDIX A
AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

- Courier 12,10 or 12 pitch
- Courier 71 10 pitch
- Elite 71
- Letter Gothic 10 or 12 pitch
- OCR-B 10 or 12 pitch
- Pica 72 10 pitch
- Prestige Elite 10 or 12 pitch
- Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underlines as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
PROPOSAL COVER SHEET

Failure to fill in all appropriate spaces may cause your proposal to be disqualified

TOPIC NUMBER: _______________________

PROPOSAL TITLE: __

FIRM NAME: __

MAIL ADDRESS: ___

CITY: ___________________________ STATE: _______ ZIP: ______________

PROPOSED COST: ________________ PHASE I OR II: ______ PROPOSED DURATION: ____
IN MONTHS

BUSINESS CERTIFICATION:

☑ Are you a small business as described in paragraph 2.2?

☑ Are you a socially and economically disadvantaged business as defined in paragraph 2.3?
(Collected for statistical purposes only)

☑ Are you a woman-owned small business as described in paragraph 2.4?
(Collected for statistical purposes only)

☑ Have you submitted proposals or received awards containing a significant amount of essentially equivalent work under other DoD or federal program solicitations? If yes, list the name(s) of the agency or DoD component, submission date, and Topic Number in the spaces below.

☑ Number of employees including all affiliates (average for preceding 12 months):

PROJECT MANAGER/PRINCIPAL INVESTIGATOR CORPORATE OFFICIAL (BUSINESS)

NAME: ______________________________________ NAME: ____________________

TITLE: ______________________________________ TITLE: ____________________

TELEPHONE: _____________________________ TELEPHONE: __________________

For any purpose other than to evaluate the proposal, this data except Appendix A and B shall not be disclosed outside the Government and shall not be duplicated, used or disclosed in whole or in part, provided that if a contract is awarded to this proposer as a result of or in connection with the submission of this data, the Government shall have the right to duplicate, use or disclose the data to the extent provided in the funding agreement. This restriction does not limit the Government’s right to use information contained in the data if it is obtained from another source without restriction. The data subject to this restriction is contained on the pages of the proposal listed on the line below.

PROPRIETARY INFORMATION:

__

SIGNATURE OF PRINCIPAL INVESTIGATOR SIGNATURE OF CORPORATE BUSINESS OFFICIAL

DATE DATE

Nothing on this page is classified or proprietary information/data
Proposal page No. 1
INSTRUCTIONS FOR COMPLETING APPENDIX A
AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

Courier 12, 10 or 12 pitch
Courier 71 10 pitch
Elite 71
Letter Gothic 10 or 12 pitch
OCR-B 10 or 12 pitch
Pica 72 10 pitch
Prestige Elite 10 or 12 pitch
Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underlines as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
TOpIC NUMBER: __________________________

PROPOSAL TITLE: __

FIRM NAME: __

PHASE I or II PROPOSAL: __

Technical Abstract (Limit your abstract to 200 words with no classified or proprietary information/data.)

Anticipated Benefits/Potential Commercial Applications of the Research or Development.

List a maximum of 8 Key Words that describe the Project.

__

__

__

__

__

__

Nothing on this page is classified or proprietary information/data
Proposal page No. 2
INSTRUCTIONS FOR COMPLETING APPENDIX A

AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

Courier 12,10 or 12 pitch
Courier 71 10 pitch
Elite 71
Letter Gothic 10 or 12 pitch
OCR-B 10 or 12 pitch
Pica 72 10 pitch
Prestige Elite 10 or 12 pitch
Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underline as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
P. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)

APPX B
U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
PROJECT SUMMARY
Failure to fill in all appropriate
spaces may cause your proposal to be disqualified

TOPIC NUMBER: __________________________

PROPOSAL TITLE: __

FIRM NAME: ___

PHASE I or II PROPOSAL: ___

Technical Abstract (Limit your abstract to 200 words with no classified or proprietary information/data.)

Anticipated Benefits/Potential Commercial Applications of the Research or Development.

List a maximum of 8 Key Words that describe the Project.

Nothing on this page is classified or proprietary information/data
Proposal page No. 2
INSTRUCTIONS FOR COMPLETING APPENDIX A
AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

Courier 12,10 or 12 pitch
Courier 71 10 pitch
Elite 71
Letter Gothic 10 or 12 pitch
OCR-B 10 or 12 pitch
Pica 72 10 pitch
Prestige Elite 10 or 12 pitch
Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underlines as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)

APPX B
U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
PROJECT SUMMARY

Failure to fill in all appropriate
spaces may cause your proposal to be disqualified

TOPIC NUMBER: __________________________

PROPOSAL TITLE: __

__

FIRM NAME: __

PHASE I or II PROPOSAL: ______

Technical Abstract (Limit your abstract to 200 words with no classified or proprietary information/data.)

Anticipated Benefits/Potential Commercial Applications of the Research or Development.

List a maximum of 8 Key Words that describe the Project.

__

__

__

__

__

__

Nothing on this page is classified or proprietary information/data
Proposal page No. 2
INSTRUCTIONS FOR COMPLETING APPENDIX A

AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

Courier 12, 10 or 12 pitch
Courier 71 10 pitch
Elite 71
Letter Gothic 10 or 12 pitch
OCR-B 10 or 12 pitch
Pica 72 10 pitch
Prestige Elite 10 or 12 pitch
Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underlines as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Fl. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)

APPX B
TOPIC NUMBER: ______________________

PROPOSAL TITLE: ___

FIRM NAME: ___

PHASE I or II PROPOSAL: _________

Technical Abstract (Limit your abstract to 200 words with no classified or proprietary information/data.)

Anticipated Benefits/Potential Commercial Applications of the Research or Development.

List a maximum of 8 Key Words that describe the Project.

__
__
__
__
__
__
INSTRUCTIONS FOR COMPLETING APPENDIX A

AND APPENDIX B

General:

DOD Components employ automated optical devices to record SBIR proposal information. Therefore the proposal cover sheet (Appendix A) and the project summary (Appendix B) should be typed without proportional spacing using one of the following typestyles:

Courier 12,10 or 12 pitch
Courier 71 10 pitch
Elite 71
Letter Gothic 10 or 12 pitch
OCR-B 10 or 12 pitch
Pica 72 10 pitch
Prestige Elite 10 or 12 pitch
Prestige Pica 10 Pitch

Whenever a numerical value is requested type the numerical character (i.e. in "Proposed Duration" type 6 NOT six).

When typing address information use the two alphabet characters used by the Post Office for the state, DO NOT SPELL OUT THE FULL STATE NAME (i.e. type NY not New York or N.Y.).

Complete and submit the Appendix A and B forms as pages 1 and 2 of each proposal plus (4) complete copies must be submitted (see Section 6).

Carefully align the forms in the typewriter using the underlines as a guide. The forms are printed to accommodate standard typewriter spacing.

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
APPENDIX C

U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
COST PROPOSAL

Background:
The following items, as appropriate, should be included in proposals responsive to the DoD Solicitation Brochure.

Cost Breakdown Items (in this order, as appropriate):
1. Name of offeror
2. Home office address
3. Location where work will be performed
4. Title of proposed effort
5. Topic number and topic title from DoD Solicitation Brochure
6. Total dollar amount of the proposal
7. Direct material costs
 a. Purchased parts (dollars)
 b. Subcontracted items (dollars)
 c. Other
 (1) Raw material (dollars)
 (2) Your standard commercial items (dollars)
 (3) Interdivisional transfers (at other than cost dollars)
 d. Total direct material (dollars)
8. Material overhead (rate %.% x total direct material = dollars)
9. Direct labor (specify)
 a. Type of labor, estimated hours, rate per hour and dollar cost for each type
 b. Total estimated direct labor (dollars)
10. Labor overhead
 a. Identify overhead rate, the hour base and dollar cost
 b. Total estimated labor overhead (dollars)
11. Special testing (include field work at government installations)
 a. Provide dollar cost for each item of special testing
 b. Estimated total special testing (dollars)
12. Special equipment
 a. If direct charge, specify each item and cost of each
 b. Estimated total special equipment (dollars)
13. Travel (if direct charge)
 a. Transportation (detailed breakdown and dollars)
 b. Per diem or subsistence (details and dollars)
 c. Estimated total travel (dollars)
14. Consultants
 a. Identify each, with purpose, and dollar rates
 b. Total estimated consultants costs (dollars)
15. Other direct costs (specify)
 a. Total estimated direct cost and overhead (dollars)
16. General and administrative expense
 a. Percentage rate applied
 b. Total estimated cost of G&A expense (dollars)
17. Royalties (specify)
 a. Estimated cost (dollars)
18. Fee or profit (dollars)
19. Total estimate cost and fee or profit (dollars)
20. The cost breakdown portion of a proposal must be signed by a responsible official, and the person signing must have typed name and title and date of signature must be indicated.
21. On the following items offeror must provide a yes or no answer to each question.
 a. Has any executive agency of the United State Government performed any review of your accounts or records in connection with any other government prime contract or subcontract within the past twelve months? If yes, provide the name and address of the reviewing office, name of the individual and telephone extension.
 b. Will you require the use of any government property in the performance of this proposal? If yes, identify.
 c. Do you require government contract financing to perform this proposed contract? If yes, then specify type as advanced payments or progress payments.
22. Type of contract proposed, either cost-plus-fixed-fee or firm-fixed price.
FAST TRACK PROGRAM QUALIFICATIONS (see Section 4.5 of the solicitation for detailed explanation)
To qualify for the SBIR Fast-Track, a company must submit the following items, within **120 days** after the start of its Phase I project, to the same address the company would send its Phase II proposal (see back):
(1) This application form, completed (please also send a copy to OSD SBIR -- see back);
(2) A commitment letter from an independent third-party investor indicating that the third-party investor will match both interim and Phase II SBIR funding, in cash, at the matching rate noted below (under Business Certification);
(3) A concise statement of work for the Interim SBIR effort (if an interim option was not negotiated on the Phase I contract) -- under 4 pages in length;
(4) A concise report on the status of the Phase I project (if required by the DoD component that is funding the project) -- under 4 pages in length;
In addition:
(1) The company must submit its Phase II proposal no later than 30 days prior to completion of its Phase I project (unless a different deadline for submission of fast-track Phase II proposals is specified in the Phase II proposal instructions of the sponsoring DoD component).
(2) If the company receives an interim and/or Phase II SBIR award from DoD, its matching funds must arrive before corresponding installments of SBIR funds are released (see Section 4.5 for explanation)

TOPIC #: ____________________________ **CONTRACT #:** ____________________________ **PHASE I COMPLETION DATE:** ________________

PHASE I TITLE: __

FIRM NAME: ___

MAIL ADDRESS: ___

CITY: ____________________________ **STATE:** ______ **ZIP:** ______

BUSINESS CERTIFICATION:
- Do you have 10 or fewer employees and have never received a Phase II SBIR award from the federal government (including DoD)?
 (If YES, the minimum Third Party matching rate is **25 cents for every SBIR dollar**)
 YES **NO** **MATCHING RATE**
 | 25¢:1¢ |
- Have you received 5 or more Phase II SBIR awards from the federal government (including DoD)?
 (If YES, the minimum Third Party matching rate is **$1 for every SBIR dollar**)
 YES **NO** **MATCHING RATE**
 | $1:$1 |
 If you answered NO to both questions, the minimum Third Party matching rate is **50 cents for every SBIR dollar**.

DOD SBIR AGENCY: ____________________________ **THIRD PARTY:** ____________________________

PROPOSED INTERIM COST: ________________ **3RD PARTY INTERIM FUNDING:** ________________

PROPOSED PHASE II COST: ________________ **3RD PARTY PHASE II FUNDING:** ________________

FIRM CORPORATE OFFICIAL
NAME: ____________________________ **THIRD PARTY CORPORATE OFFICIAL**
NAME: ____________________________

TITLE: ____________________________ **TITLE:** ____________________________

TELEPHONE: ____________________________ **TELEPHONE:** ____________________________

SIGNATURE OF FIRM CORPORATE OFFICIAL **DATE** **SIGNATURE OF THIRD PARTY CORPORATE OFFICIAL** **DATE**

Nothing on this page is classified or proprietary information/data
INSTRUCTIONS FOR COMPLETING APPENDIX D

General:

The Fast Track Application Form (Appendix D) should be typed in either a 10 or 12 characters per inch font.

Carefully align the forms in the typewriter using the underlines as a guide.

When typing address information use the two alphabet characters used by the Post Office for the state (i.e. type NY not New York).

Submission:

Submit all items to the same address you would send your Phase II proposal. This will be listed in the Phase II proposal instructions sent to you at the start of your Phase I project. (If you do not yet have the Phase II proposal instructions, please contact your DoD contracting officer.)

IMPORTANT: Please also send a copy of this application form, when completed, to OSD SBIR, 3061 Defense Pentagon, Room 2A338, Washington, DC 20301-3061. Do not submit other items to OSD SBIR.

Request for Copies:

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
FAST TRACK PROGRAM QUALIFICATIONS (see Section 4.5 of the solicitation for detailed explanation)
To qualify for the SBIR Fast-Track, a company must submit the following items, within 120 days after the start of its Phase I project, to the same address the company would send its Phase II proposal (see back):
(1) This application form, completed (please also send a copy to OSD SBIR -- see back);
(2) A commitment letter from an independent third-party investor indicating that the third-party investor will match both interim and Phase II SBIR funding, in cash, at the matching rate noted below (under Business Certification);
(3) A concise statement of work for the Interim SBIR effort (if an interim option was not negotiated on the Phase I contract) -- under 4 pages in length;
(4) A concise report on the status of the Phase I project (if required by the DoD component that is funding the project) -- under 4 pages in length;
In addition:
(1) The company must submit its Phase II proposal no later than 30 days prior to completion of its Phase I project (unless a different deadline for submission of fast-track Phase II proposals is specified in the Phase II proposal instructions of the sponsoring DoD component).
(2) If the company receives an interim and/or Phase II SBIR award from DoD, its matching funds must arrive before corresponding installments of SBIR funds are released (see Section 4.5 for explanation)

TOPIC #: ___________________ CONTRACT #: ___________________ PHASE I COMPLETION DATE: __________

PHASE I TITLE: __

FIRM NAME: __

MAIL ADDRESS: ___

CITY: ___________________ STATE: _____ ZIP: ________

BUSINESS CERTIFICATION:
☐ Do you have 10 or fewer employees and have never received a Phase II SBIR award from the federal government (including DoD)?
☐ YES ☐ NO MATCHING RATE
☐ (If YES, the minimum Third Party matching rate is 25 cents for every SBIR dollar)

☐ Have you received 5 or more Phase II SBIR awards from the federal government (including DoD)?
☐ YES ☐ NO MATCHING RATE
☐ (If YES, the minimum Third Party matching rate is $1 for every SBIR dollar)

If you answered NO to both questions, the minimum Third Party matching rate is 50 cents for every SBIR dollar.

DOD SBIR AGENCY: ___________________ THIRD PARTY: ___________________

PROPOSED INTERIM COST: ___________________ 3RD PARTY INTERIM FUNDING: ___________________

PROPOSED PHASE II COST: ___________________ 3RD PARTY PHASE II FUNDING: ___________________

FIRM CORPORATE OFFICIAL
NAME: __
TITLE: __
TELEPHONE: _____________________________________

THIRD PARTY CORPORATE OFFICIAL
NAME: __
TITLE: __
TELEPHONE: _____________________________________

SIGNATURE OF FIRM CORPORATE OFFICIAL DATE SIGNATURE OF THIRD PARTY CORPORATE OFFICIAL DATE

Nothing on this page is classified or proprietary information/data
INSTRUCTIONS FOR COMPLETING APPENDIX D

General:

The Fast Track Application Form (Appendix D) should be typed in either a 10 or 12 characters per inch font.

Carefully align the forms in the typewriter using the underlines as a guide.

When typing address information use the two alphabet characters used by the Post Office for the state (i.e. type NY not New York).

Submission:

Submit all items to the same address you would send your Phase II proposal. This will be listed in the Phase II proposal instructions sent to you at the start of your Phase I project. (If you do not yet have the Phase II proposal instructions, please contact your DoD contracting officer.)

IMPORTANT: Please also send a copy of this application form, when completed, to OSD SBIR, 3061 Defense Pentagon, Room 2A338, Washington, DC 20301-3061. Do not submit other items to OSD SBIR.

Request for Copies:

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
FAST TRACK APPLICATION FORM
Failure to fill in all appropriate spaces may cause your application to be disqualified

FAST TRACK PROGRAM QUALIFICATIONS (see Section 4.5 of the solicitation for detailed explanation)
To qualify for the SBIR Fast-Track, a company must submit the following items, within 120 days after the start of its Phase I project, to the same address the company would send its Phase II proposal (see back):

1. This application form, completed (please also send a copy to ODD SBIR -- see back);
2. A commitment letter from an independent third-party investor indicating that the third-party investor will match both interim and Phase II SBIR funding, in cash, at the matching rate noted below (under Business Certification);
3. A concise statement of work for the Interim SBIR effort (if an interim option was not negotiated on the Phase I contract) -- under 4 pages in length;
4. A concise report on the status of the Phase I project (if required by the DoD component that is funding the project) -- under 4 pages in length;

In addition:
1. The company must submit its Phase II proposal no later than 30 days prior to completion of its Phase I project (unless a different deadline for submission of fast-track Phase II proposals is specified in the Phase II proposal instructions of the sponsoring DoD component).
2. If the company receives an interim and/or Phase II SBIR award from DoD, its matching funds must arrive before corresponding installments of SBIR funds are released (see Section 4.5 for explanation)

TOPIC #: __________________ CONTRACT #: __________________

PHASE I TITLE: __________________

FIRM NAME: __________________

MAIL ADDRESS: __________________

CITY: __________________ STATE: ______ ZIP: ______

BUSINESS CERTIFICATION:

☐ Do you have 10 or fewer employees and have never received a Phase II SBIR award from the federal government (including DoD)?
☐ Yes ☐ No MATCHING RATE
☐ (If YES, the minimum Third Party matching rate is 25 cents for every SBIR dollar)
☐ $25:$1 ☐

☐ Have you received 5 or more Phase II SBIR awards from the federal government (including DoD)?
☐ Yes ☐ No
☐ (If YES, the minimum Third Party matching rate is $1 for every SBIR dollar)
☐ $1:$1 ☐

If you answered NO to both questions, the minimum Third Party matching rate is 50 cents for every SBIR dollar.

☐ $0.50:$1 ☐

DOD SBIR AGENCY: __________________ THIRD PARTY: __________________

PROPOSED INTERIM COST: __________________

3RD PARTY INTERIM FUNDING: __________________

PROPOSED PHASE II COST: __________________

3RD PARTY PHASE II FUNDING: __________________

FIRM CORPORATE OFFICIAL

NAME: __________________ TITLE: __________________

TELEPHONE: __________________

THIRD PARTY CORPORATE OFFICIAL

NAME: __________________ TITLE: __________________

TELEPHONE: __________________

SIGNATURE OF FIRM CORPORATE OFFICIAL DATE SIGNATURE OF THIRD PARTY CORPORATE OFFICIAL DATE

Nothing on this page is classified or proprietary information/data
INSTRUCTIONS FOR COMPLETING APPENDIX D

General:

The Fast Track Application Form (Appendix D) should be typed in either a 10 or 12 characters per inch font.

Carefully align the forms in the typewriter using the underlines as a guide.

When typing address information use the two alphabet characters used by the Post Office for the state (i.e. type NY not New York).

Submission:

Submit all items to the same address you would send your Phase II proposal. This will be listed in the Phase II proposal instructions sent to you at the start of your Phase I project. (If you do not yet have the Phase II proposal instructions, please contact your DoD contracting officer.)

IMPORTANT: Please also send a copy of this application form, when completed, to OSD SBIR, 3061 Defense Pentagon, Room 2A338, Washington, DC 20301-3061. Do not submit other items to OSD SBIR.

Request for Copies:

Additional forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
U.S. Department of Defense
Small Business Innovation Research (SBIR) Program
Company Commercialization Report

Failure to fill in all appropriate spaces may cause your proposal to be disqualified

Firm Name:

Mail Address:

City:

State:

Zip:

- How many Phase II SBIR or STTR awards has your firm received from the Federal Government (including DoD)? (The answer "none" will not affect your ability to obtain an SBIR award.)
- If your firm has received 5 or more Phase II SBIR and/or STTR awards from the Federal Government and the first award was received prior to Jan. 1, 1991, what percentage of your firm's revenues during your last fiscal year is Federal SBIR and/or STTR funding?
- Identify each Phase II SBIR and/or STTR project your firm has received and, for each project, provide the total revenue to date from resulting sales of new products to DoD or its prime contractors, other government agencies, and private sector customers. Also provide total non-SBIR, non-STTR funding received from government and private sector sources to further develop the SBIR technology (including R&D, manufacturing, marketing, etc.). Apportion sales revenue and non-SBIR, non-STTR funding among the various Phase II projects without double-counting. (See back for further instruction.)

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD/PRIMES SALES</td>
<td>Other Gov't Sales</td>
<td>Private Sector Sales</td>
</tr>
<tr>
<td>Non-SBIR/STTR Gov't Funds</td>
<td>Non-SBIR/STTR Private Sector Funds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD/PRIMES SALES</td>
<td>Other Gov't Sales</td>
<td>Private Sector Sales</td>
</tr>
<tr>
<td>Non-SBIR/STTR Gov't Funds</td>
<td>Non-SBIR/STTR Private Sector Funds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD/PRIMES SALES</td>
<td>Other Gov't Sales</td>
<td>Private Sector Sales</td>
</tr>
<tr>
<td>Non-SBIR/STTR Gov't Funds</td>
<td>Non-SBIR/STTR Private Sector Funds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD/PRIMES SALES</td>
<td>Other Gov't Sales</td>
<td>Private Sector Sales</td>
</tr>
<tr>
<td>Non-SBIR/STTR Gov't Funds</td>
<td>Non-SBIR/STTR Private Sector Funds</td>
<td></td>
</tr>
</tbody>
</table>

Firm Corporate Official

Name:

Telephone:

Title:

Fax:

Signature of Firm Corporate Official

Date:

(Page of)
INSTRUCTIONS FOR COMPLETING APPENDIX E

General:

The Company Commercialization Report (Appendix E) shall NOT be counted toward proposal page count limitations.

Appendix E should be the last page(s) of your proposal.

Use as many Appendix E forms as needed to report ALL Phase II projects. (Make black and white copies of this form, if necessary.) If multiple pages are submitted, fill in the "Page__of__" in the lower right corner.

Type in either a 10 or 12 characters per inch font.

Carefully align the forms in the typewriter using the underlines as a guide.

Use the Post Office two-letter abbreviation for the state (i.e. type NY not New York).

Definitions:

Sales - sales of products resulting from the technology associated with this Phase II project. Sales also includes the sale of technology or rights. Specify the sales revenue in dollars (1) to the DoD and/or DoD prime contractors, (2) to other government agencies (federal, state, local and/or foreign), and (3) to the private sector. Include sales made by your firm as well as by other firms that may have acquired the SBIR-developed technology.

non-SBIR/STTR funding - non-SBIR/non-STTR government or private sector funds to further develop the technology (including R&D, manufacturing, marketing, etc.) associated with this Phase II project.

Apportion sales/funding - If two or more Phase II projects contributed to a single products or technology right that has been sold or received non-SBIR, non-STTR funding, divide proportionately the sales or funding among the contributing projects. For example, Phase II projects A and B lead to the sale of a new product "Widget" to the Army for a total of $10 million and to retail software stores for $12 million. Under the heading "DoD/Primes Sales:" put $5 million and under the heading "Private Sector Sales:" put $6 million for both Phase II projects A and B.

Submission:

ALL Phase I and Phase II proposals must include a Company Commercialization Report (Appendix E). Please do not submit supplemental material.

Request for Copies:

Black and white copies of this form are acceptable. Additional original red forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)

APPX E
U.S. DEPARTMENT OF DEFENSE
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
COMPANY COMMERCIALIZATION REPORT
Failure to fill in all appropriate spaces may cause your proposal to be disqualified

FIRM NAME: ____________________________

MAIL ADDRESS: ____________________________

CITY: ____________________________ STATE: _______ ZIP: _______

- How many Phase II SBIR or STTR awards has your firm received from the Federal Government (including DoD)?
 (The answer "none" will not affect your ability to obtain an SBIR award.)
- If your firm has received 5 or more Phase II SBIR and/or STTR awards from the Federal Government and the first award was received prior to Jan. 1, 1991, what percentage of your firm's revenues during your last fiscal year is Federal SBIR and/or STTR funding?
- Identify each Phase II SBIR and/or STTR project your firm has received and, for each project, provide the total revenue to date from resulting sales of new products to DoD or its prime contractors, other government agencies, and private sector customers. Also provide total non-SBIR, non-STTR funding received from government and private sector sources to further develop the SBIR technology (including R&D, manufacturing, marketing, etc.). Apportion sales revenue and non-SBIR, non-STTR funding among the various Phase II projects without double-counting. (See back for further instruction.)

<table>
<thead>
<tr>
<th>Agency: ____________________________</th>
<th>Topic Number: _______</th>
<th>Contract Number: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title: ____________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DoD/Primes Sales: ___________</td>
<td>Other Gov’t Sales: ___________</td>
<td>Private Sector Sales: ___________</td>
</tr>
<tr>
<td>non-SBIR/STTR Gov’t Funds: ___________</td>
<td>non-SBIR/STTR Private Sector Funds: ___________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency: ____________________________</th>
<th>Topic Number: _______</th>
<th>Contract Number: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title: ____________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DoD/Primes Sales: ___________</td>
<td>Other Gov’t Sales: ___________</td>
<td>Private Sector Sales: ___________</td>
</tr>
<tr>
<td>non-SBIR/STTR Gov’t Funds: ___________</td>
<td>non-SBIR/STTR Private Sector Funds: ___________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency: ____________________________</th>
<th>Topic Number: _______</th>
<th>Contract Number: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title: ____________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DoD/Primes Sales: ___________</td>
<td>Other Gov’t Sales: ___________</td>
<td>Private Sector Sales: ___________</td>
</tr>
<tr>
<td>non-SBIR/STTR Gov’t Funds: ___________</td>
<td>non-SBIR/STTR Private Sector Funds: ___________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency: ____________________________</th>
<th>Topic Number: _______</th>
<th>Contract Number: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title: ____________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DoD/Primes Sales: ___________</td>
<td>Other Gov’t Sales: ___________</td>
<td>Private Sector Sales: ___________</td>
</tr>
<tr>
<td>non-SBIR/STTR Gov’t Funds: ___________</td>
<td>non-SBIR/STTR Private Sector Funds: ___________</td>
<td></td>
</tr>
</tbody>
</table>

FIRM CORPORATE OFFICIAL

NAME: ____________________________

TITLE: ____________________________

TELEPHONE: ____________________________

FAX: ____________________________

SIGNATURE OF FIRM CORPORATE OFFICIAL

DATE ____________________________

(Page ______ of ______)
INSTRUCTIONS FOR COMPLETING APPENDIX E

General:

The Company Commercialization Report (Appendix E) shall NOT be counted toward proposal page count limitations.

Appendix E should be the last page(s) of your proposal.

Use as many Appendix E forms as needed to report ALL Phase II projects. (Make black and white copies of this form, if necessary.) If multiple pages are submitted, fill in the "Page ___ of ___" in the lower right corner.

Type in either a 10 or 12 characters per inch font.

Carefully align the forms in the typewriter using the underlines as a guide.

Use the Post Office two-letter abbreviation for the state (i.e. type NY not New York).

Definitions:

Sales - sales of products resulting from the technology associated with this Phase II project. Sales also includes the sale of technology or rights. Specify the sales revenue in dollars (1) to the DoD and/or DoD prime contractors, (2) to other government agencies (federal, state, local and/or foreign), and (3) to the private sector. Include sales made by your firm as well as by other firms that may have acquired the SBIR-developed technology.

non-SBIR/STTR funding - non-SBIR/non-STTR government or private sector funds to further develop the technology (including R&D, manufacturing, marketing, etc.) associated with this Phase II project.

Apportion sales/funding - If two or more Phase II projects contributed to a single products or technology right that has been sold or received non-SBIR, non-STTR funding, divide proportionately the sales or funding among the contributing projects. For example, Phase II projects A and B lead to the sale of a new product "Widget" to the Army for a total of $10 million and to retail software stores for $12 million. Under the heading "DoD/Primes Sales:" put $5 million and under the heading "Private Sector Sales:" put $6 million for both Phase II projects A and B.

Submission:

ALL Phase I and Phase II proposals must include a Company Commercialization Report (Appendix E). Please do not submit supplemental material.

Request for Copies:

Black and white copies of this form are acceptable. Additional original red forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM
COMPANY COMMERCIALIZATION REPORT

Failure to fill in all appropriate spaces may cause your proposal to be disqualified.

Firm Name:

Mail Address:

City:

State:

Zip:

- How many Phase II SBIR or STTR awards has your firm received from the Federal Government (including DoD)?

- If your firm has received 5 or more Phase II SBIR and/or STTR awards from the Federal Government and the first award was received prior to Jan. 1, 1991, what percentage of your firm's revenues during your last fiscal year is Federal SBIR and/or STTR funding?

- Identify each Phase II SBIR and/or STTR project your firm has received and, for each project, provide the total revenue to date from resulting sales of new products to DoD or its prime contractors, other government agencies, and private sector customers. Also provide total non-SBIR, non-STTR funding received from government and private sector sources to further develop the SBIR technology (including R&D, manufacturing, marketing, etc.). Apportion sales revenue and non-SBIR, non-STTR funding among the various Phase II projects without double-counting. (See back for further instruction.)

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD/Primes Sales</th>
<th>Other Gov’t Sales</th>
<th>Private Sector Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-SBIR/STTR Gov’t Funds</th>
<th>non-SBIR/STTR Private Sector Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD/Primes Sales</th>
<th>Other Gov’t Sales</th>
<th>Private Sector Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-SBIR/STTR Gov’t Funds</th>
<th>non-SBIR/STTR Private Sector Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD/Primes Sales</th>
<th>Other Gov’t Sales</th>
<th>Private Sector Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-SBIR/STTR Gov’t Funds</th>
<th>non-SBIR/STTR Private Sector Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD/Primes Sales</th>
<th>Other Gov’t Sales</th>
<th>Private Sector Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-SBIR/STTR Gov’t Funds</th>
<th>non-SBIR/STTR Private Sector Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Topic Number</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD/Primes Sales</th>
<th>Other Gov’t Sales</th>
<th>Private Sector Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-SBIR/STTR Gov’t Funds</th>
<th>non-SBIR/STTR Private Sector Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Firm Corporate Official

Name:

Telephone:

Title:

Fax:

Signature of Firm Corporate Official

Date

(Page of)
GENERAL:

The Company Commercialization Report (Appendix E) shall NOT be counted toward proposal page count limitations.

Appendix E should be the last page(s) of your proposal.

Use as many Appendix E forms as needed to report ALL Phase II projects. (Make black and white copies of this form, if necessary.) If multiple pages are submitted, fill in the "Page__of___" in the lower right corner.

Type in either a 10 or 12 characters per inch font.

Carefully align the forms in the typewriter using the underlines as a guide.

Use the Post Office two-letter abbreviation for the state (i.e. type NY not New York).

DEFINITIONS:

Sales - sales of products resulting from the technology associated with this Phase II project. Sales also includes the sale of technology or rights. Specify the sales revenue in dollars (1) to the DoD and/or DoD prime contractors, (2) to other government agencies (federal, state, local and/or foreign), and (3) to the private sector. Include sales made by your firm as well as by other firms that may have acquired the SBIR-developed technology.

non-SBIR/STTR funding - non-SBIR/non-STTR government or private sector funds to further develop the technology (including R&D, manufacturing, marketing, etc.) associated with this Phase II project.

Apportion sales/funding - If two or more Phase II projects contributed to a single products or technology right that has been sold or received non-SBIR, non-STTR funding, divide proportionately the sales or funding among the contributing projects. For example, Phase II projects A and B lead to the sale of a new product "Widget" to the Army for a total of $10 million and to retail software stores for $12 million. Under the heading "DoD/Primes Sales:" put $5 million and under the heading "Private Sector Sales:" put $6 million for both Phase II projects A and B.

SUBMISSION:

ALL Phase I and Phase II proposals must include a Company Commercialization Report (Appendix E). Please do not submit supplemental material.

REQUEST FOR COPIES:

Black and white copies of this form are acceptable. Additional original red forms may be obtained from your State SBIR Organization (Reference D) or:

Defense Technical Information Center
ATTN: DTIC-SBIR
8725 John J Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
(800) 363-7247 (800 DOD-SBIR)
TO:

Fill in firm's name and mailing address

SUBJECT: SBIR Solicitation No. 97.1
Topic No.

Fill in Topic No.

This is to notify you that your proposal in response to the subject solicitation and topic number has been received by

Fill in name of organization to which you will send your proposal.

Signature by receiving organization
Date

REF 1
To: SBIR Participants

SMALL BUSINESS INNOVATION RESEARCH PROGRAM REQUEST FOR DTIC SERVICES

For assistance in the preparation of informed proposals addressing the topics presented in the DoD SBIR Program Solicitation, you are encouraged to request annotated bibliographies of technical reports from the Defense Technical Information Center (DTIC). The cited reports cover selected prior DoD-funded work in related areas. Reasonable numbers of these reports may be obtained at no cost from DTIC under the SBIR Program. You will also receive information on related work-in-progress, and references to other information resources.

Complete the request form, fold, stamp and mail. Please bear in mind that significant mailing delays can occur, please order early.

DTIC authorization to provide this service expires January 8, 1997, the DoD SBIR Program Solicitation No. 97.1 closing date.

REQUESTER

Name

ORGANIZATION NAME

ADDRESS

Street

PHONE

City State Zip Code Area Code/Number

Send technical reports bibliographies on the following SBIR topics:

<table>
<thead>
<tr>
<th>TOPIC NUMBER</th>
<th>TOPIC NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

PLEASE TYPE OR PRINT IN THE ORDER TOPICS APPEAR IN THE SOLICITATION

Topic 11-20

Company Status: I confirm that the business identified above meets the SBIR qualification criteria presented in Section 2.2 of the DoD Program Solicitation.

This is our first request during the current solicitation: yes no

Signature of Requester

REF 3
Associate Directors of Small Business assigned at Defense Contract Management Districts (DCMD) and Defense Contract Management Area Operations (DCMAO):

DCMD WEST
ATTN: Renee Deavens
222 N. Sepulveda Blvd., Suite 1107
El Segundo, CA 90245-4394
(800) 233-6521 (Toll Free CA Only)
(800) 624-7372 (Toll Free-AK,HI,IL,MT,NV,OR,WA)
(310) 335-3260
(310) 335-4443 (FAX)

DCMC San Francisco
ATTN: Joan Fosbery
1265 Borregas Ave.
Sunnyvale, CA 94089
(408) 541-7042

DCMC San Diego
ATTN: Marvlin Bowlin
7675 Dagget Street, Suite 100
San Diego, CA 92111-2241
(619) 637-4922

DCMC Seattle
ATTN: Alice Toms
3009 112th Ave., NE, Suite 200
Bellvue, WA 98024-8019
(206) 889-7317/7318

DCMC Santa Ana
ATTN: Laura Robello
34 Civic Center Plaza, PO Box C-12700
Santa Ana, CA 92172-2700
(714) 836-2913 (ext. 659 or 661)

DCMC Van Nuys
ATTN: Dianne Thompson
6230 Van Nuys Boulevard
Van Nuys, CA 91401-2713
(818) 756-4444 (ext. 201)

DCMC St. Louis
ATTN: William Wilkins
1222 Spruce Street
St. Louis, MO 63103-2811
(314) 331-5476
(800) 325-3419

DCMC Phoenix
ATTN: Clarence Fouse
The Monroe School Building
215 N. 7th Street
Phoenix, AZ 85034-1012
(602) 379-6170 (ext 231 or 229)

DCMC Chicago
ATTN: Greg Wynne
O'Hare International Airport
10601 W. Higgins Road, PO Box 66911
Chicago, IL 60666-0911
(312) 825-6021

DCMC Denver
ATTN: Robert Sever
Orchard Place 2, Suite 200
5975 Greenwood Plaza Blvd.
Englewood, CO 80110-4715
(303) 843-4381
(800) 722-8975 (ext 165)

DCMC Twin Cities
ATTN: Otto Murry
3001 Metro Drive, Suite 200
Bloomington, MN 55425-1573
(612) 335-2003

DCMC Wichita
ATTN: George Luckman
U.S. Courthouse Suite D-34
401 N. Market Street
Wichita, KS 67202-2095
(316) 269-7137

DCMC Dallas
ATTN: Jerome W. Anderson
1200 Main St., Rm. 640
P.O. Box 50500
Dallas, TX 75202-4399
(214) 670-9205

DCMC San Antonio
ATTN: Thomas J. Bauml
615 E. Houston St.
P.O. Box 1040
San Antonio, TX 78294

REF 5
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1.	**Agency Use Only (Leave blank).**
Block 2.	**Report Date.** Full publication date including day, month, and year, if available (e.g. 1Jan88). Must cite at least the year.
Block 3.	**Type of Report and Dates Covered.** State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10Jan87 - 30Jun88).
Block 4.	**Title and Subtitle.** A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
Block 5.	**Funding Numbers.** To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:
	C - Contract PR - Project
	G - Grant TA - Task
	PE - Program WU - Work Unit
	Element Accession No.
Block 6.	**Author(s).** Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
Block 7.	**Performing Organization Name(s) and Address(es).** Self-explanatory.
Block 8.	**Performing Organization Report Number.** Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
Block 9.	**Sponsoring/Monitoring Agency Name(s) and Address(es).** Self-explanatory.
Block 10.	**Sponsoring/Monitoring Agency Report Number.** (If known)
Block 11.	**Supplementary Notes.** Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.
Block 12a.	**Distribution/Availability Statement.** Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORM, REL, ITAR).
DOD	- See DoDDS230.24, "Distribution Statements on Technical Documents."
DOE	- See authorities.
NTIS	- Leave blank.
Block 12b.	**Distribution Code.**
DOD	- Leave blank.
DOE	- Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
NASA	- Leave blank.
NTIS	- Leave blank.
Block 13.	**Abstract.** Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.
Block 14.	**Subject Terms.** Keywords or phrases identifying major subjects in the report.
Block 15.	**Number of Pages.** Enter the total number of pages.
Block 16.	**Price Code.** Enter appropriate price code (NTIS only).
Blocks 17-19.	**Security Classifications.** Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
Block 20.	**Limitation of Abstract.** This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
The DoD SBIR Mailing List

The DoD SBIR Program Office maintains a computerized listing of firms that have requested to be sent copies of the DoD SBIR Solicitations on a regular basis. If you would like to be remain or be added to this listing, please mail in this form.

☐ YES, Include my name and address on the DoD SBIR Mailing List
☐ NO, Remove my name and address from the DoD SBIR Mailing List

NAME: __

COMPANY: ______________________________________

ADDRESS: ______________________________________

CITY: _______________ STATE: _______ ZIP: ______

PHONE: (_____)______________________________

To send: Remove this page, fold along the marked lines on the reverse side, seal with tape or staple, and affix postage.

Is this a new address? ☐ YES ☐ NO

Old Address: ______________________________________

__

__

REF 11
NATIONAL SBIR/STTR CONFERENCES

R&D OPPORTUNITIES
FOR
TECHNOLOGY INTENSIVE FIRMS

Sponsored by:
Department of Defense and National Science Foundation
in Cooperation with
All Federal SBIR Departments and Agencies

• Marketing Opportunities for R&D and Technology Projects from Federal Agencies and Major Corporations

• Techniques and Strategies for Commercializing R&D through Venture Capital, Joint Ventures, Partnering, Subcontracts, Licensing, International Markets

• Management Seminars in Marketing, Business Plans, Starting and Financing a Small Technology Firm, Procurement, Negotiations, Government Accounting and Audit, Market Research, and Competitive Intelligence

WASHINGTON, DC OCT 28-30, 1996
ANAHEIM, CA NOV 13-15, 1996
ORLANDO, FL APR 2-4, 1997

For Registration Information, contact:
(360) 683-5742
http://www.zyn.com/sbir/