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Abstract

A new methodology is presented for conducting numerical simulations of electromagnetic scattering
and wave-propagation phenomena on massively parallel computing platforms. A process is constructed
which is rooted in the Finite-Volume Time-Domain (FVTD) technique to create a simulation capability that
is both versatile and practical. In terms of versatility, the method is platform independent, is easily modifi-
able, and is capable of solving a large number of problems with no alterations. In terms of practicality, the
method is sophisticated enough to solve problems of engineering significance and is not limited to mere aca-

demic exercises.

In order to achieve this capability, techniques are integrated from several scientific disciplines includ-
ing computational fluid dynamics, computational electromagnetics, and parallel computing. The end result
is the first FVTD solver capable of utilizing the highly flexible overset-gridding process in a distributed-
memory computing environment. In the process of creating this capability, work is accomplished to conduct
the first study designed to quantify the effects of domain-decomposition dimensionality on the parallel per-
formance of hyperbolic partial differential equations solvers; to develop a new method of partitioning a com-
putational domain comprised of overset grids; and to provide the first detailed assessment of the

applicability of overset grids to the field of computational electromagnetics.

Using these new methods and capabilities, results from a large number of wave propagation and scat-
tering simulations are presented. The overset-grid FVTD algorithm is demonstrated to produce results of
comparable accuracy to single-grid simulations while simultaneously shortening the grid-generation process
and increasing the flexibility and utility of the FVTD technique. Furthermore, the new domain-decomposi-
tion approaches developed for overset grids are shown to be capable of producing partitions that are better
load balanced and require less interprocessor communication than did previously used overset-grid decom-
position methods. This results in parallel efficiencies routinely in excess of 90 percent, even for relatively

small problems and large numbers of processors.

XX




L. Introduction and Problem Motivation

This study is dedicated to advancing the scientific community’s ability to conduct accurate electro-
magnetic wave-propagation and scattering simulations for complex geometries. It is grounded in a philoso-
phy which emphasizes commonality between various design disciplines and generality in its applicability to
a wide range of problem types. This first chapter discusses the motivation behind the research and formu-

lates the problem statement and work objectives that carry throughout the document.

1.1 Historical Perspective on Aircraft Design

Before the use of radar became commonplace during World War II, little or no consideration was paid
on the part of the airframe designer to the electromagnetic signature properties of an aircraft. Indeed, even
after the viability of radar had long been established, aircraft were typically not constructed with radar cross
section (RCS) reduction in mind. Instead, the threat of detection was met with efforts that included “elec-
tronic jamming, window, ‘spoofs’, and where possible, avoidance” [31]. This philosophy continued nearly
unchanged from World War II through the development of such high-performance aircraft as the F-15 and
F-16 which were designed to be highly maneuverable and aerodynamically capable rather than electromag-
netically “stealthy.” Although this design philosophy produced some of the most successful military aircraft
in history, continued improvements to radar and missile technology have forced the realization that superior
aerodynamic performance alone does not provide sufficient survivability enhancement in a modern combat
environment. Thus, aircraft designers have been motivated to consider the electromagnetic-signature issue
early in the design process. The reason for doing so is eloquently expressed by Fuhs {41] who states, “The
advantage of a certain ECM (electronic countermeasures) technique can be nullified in a week or two. The

advantage of a built-in low RCS requires a decade for the opponent to nullify.” (parentheses added)

Although the importance of considering signature issues early in the aircraft-design phase is now well
understood, these issues often conflict with aerodynamic design requirements. The same rounded wing lead-
ing edge that reduces electromagnetic signature can dramatically increase aerodynamic wave drag at super-
sonic speeds; the wing sweep angle designed for optimum aerodynamic performance may result in an
unacceptable RCS spike; or the radar-absorbent material (RAM) that diminishes radar returns may exact a

substantial weight penalty [41]. Clearly, the considerations are different when designing for aerodynamic or
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electromagnetic performance, and in today’s environment, it can be dangerous to promote one exclusively at
the expense of the other. Given the potentially conflicting design requirements, an efficient design environ-
ment becomes quite critical. Even in the absence of electromagnetic signature considerations, the design-
optimization portion of the production process can be extremely labor intensive. The configuration develop-
ment of the Lockheed L-1011 required over two-million man hours solely for the determination of the opti-
mum aircraft design [119]. Simultaneously considering signature and aerodynamic issues would seem to
exacerbate the already labor-intensive process. Thus, a high degree of cooperation between electromagneti-
cists and aerodynamicists is necessary during all design phases. As noted by Chawla [29], such a design phi-
losophy can be expected to yield superior results to one in which the optimized design of a single discipline

serves as the primary driver to the remaining disciplines of a system.

1.2 New Design Approaches

Recognizing the need to develop new design methodologies, researchers from the computational fluid
dynamics (CFD) community have recently begun to apply CFD-based numerical techniques to the field of
computational electromagnetics (CEM) [97,98,100,101,123]. Their ability to do so stems from the fact that
the governing equations for the inviscid-limiting behavior of fluid flow—the Euler equations—and for the
propagation of electromagnetic waves—the Maxwell equations—are both hyperbolic séts of partial differential
equations (PDEs). The efforts of the CFD researchers have produced the Finite-Volume Time-Domain
(FVTD) technique which utilizes direct time integration of the Maxwell Equations, a dramatic departure
from the frequency-domain solution methods of the past. The FVTD approach has several advantages: first,
it brings to bear on the Maxwell equations the large arsenal of hyperbolic PDE solution techniques devel-
oped for the Euler equations, and second, (and perhaps more importantly) it offers the potential for an inte-

grated algorithmic approach to solving both the aerodynamic and electromagnetic problems.

Despite the potential advantages of the FVTD technique, acceptance of the method by the CEM com-
munity has been limited because of several shortcomings. To begin, because the method solves the Maxwell
equations instead of an approximation to them, it is computationally intensive. At present, generating a sin-
gle monostatic RCS profile for a complicated, three-dimensional geometry can easily consume days or even
weeks of supercomputer time. Furthermore, the method requires the generation of a volumetric grid sur-

rounding the body of interest. Generating an acceptable grid is often a difficult procedure and is typically
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one of the most time-consuming aspects of the entire solution process. Finally, the FVTD codes produced to
date are often highly specialized and lack user-friendly features, thus making it difficult to apply the codes to

a wide range of geometries.

1.3 Problem Statement

Although the viability of the FVTD approach has been firmly established!, evolving the methodology
into a product that can be effectively utilized as a multi-disciplinary design tool requires overcoming the lim-
itations identified in the previous section. The shortfall thus addressed by the present study can be succinctly

stated as follows:

Current time-domain electromagnetic simulation implementations do not fully capi-
talize on technologies which could offer the promise of significant capability enhance-
ments.

In order to address this problem, innovations having roots in other disciplines such as computer sci-
ence and fluid dynamics should be incorporated into the FVTD methodology. Two of the more promising

technologies are discussed in the following section.

1.4 Promising Technological Areas
1.4.1 Parallel Computing

The evolution of supercomputer design and capability has been nothing short of astounding. During
the 1970s and 1980s, supercomputing was dominated by vector machines from companies such as CDC and
Cray. As the name “vector supercomputer” implied, these machines operated most efficiently when com-
puter codes contained a large number of array- or vector-based operations. To this end, scientists and engi-
neers quickly learned how to construct their computer codes (written largely in FORTRAN) to exploit this
type of architecture. Towards the end of the 1980s, however, vector machines began to reach physical limita-
tions in terms of clock speeds, and thus designers shifted paradigms to one of quantity by applying more pro-
cessors to solve a given problem. The recent dramatic advances in commodity processors and high-speed

networks have enabled designers to construct computing machines comprised of several hundred to several

1. A more detailed discussion of the viability of the FVTD approach appears in Chapter 2.
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thousand very powerful microprocessors and thereby produce machines capable of performance exceeding

that of the vector supercomputer [7,36,136].

One particular feature which makes parallel machines such a potential benefit to CFD-based CEM
algorithms is their expandability, both in terms of memory and processor numbers. This feature makes these
machines viable platforms for attacking problems of very large size and complexity. This advantage is
potentially offset, however, because the programming environment for these machines is much more com-
plex than that of the more traditional serial or shared-memory vector computers in that the user cannot sim-
ply rely on compiler optimizations to achieve efficient utilization of the machine. Furthermore, the memory
structure of these machines does not necessarily lend itself to the same vector—programming paradigm that
served so well with the Cray-class computers. Thus, although the machines offer great promise, considerable
effort is required in order to achieve that promise. At this time, the scientific community is only beginning to
develop the algorithms and programming techniques necessary to realize the full potential of these plat-

forms.

1.4.2 Advanced Grid-Generation Techniques

Although parallel computing has the potential to shorten computer run times, the problem-solving
process is often dominated by aspects other than the computation phase. As mentioned previously, grid gen-
eration for a complex geometry can be one of the most labor-intensive portions of a numerical investigation.
Consequently, researchers have devoted significant effort to developing new methods for simplifying the
grid-generation process. One technique originally developed for the CFD community that is especially note-
worthy is the concept of overset or Chimera grids [11-13]. In this method, a complex geometry is divided
into a set of component objects, and a structured, body-conformal grid is generated around each component.
The structured grids are allowed to arbitrarily overlap and are thus combined to form the computational
domain. Cells comprising the grid are updated either via application of the governing equations or by inter-
polation of information from other grids. To date, a large number of CFD simulations have been conducted

with the aid of Chimera grids; however, the method has gone largely unnoticed by the CEM community.

1.5 Project Objectives

Using the technologies described in the previous section, the present study seeks to provide a solution
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to the problem discussed in Section 1.3. The overarching objective of this work can thus be stated as follows:

To develop a versatile and practical capability for conducting time-domain numerical
simulations of electromagnetic scattering and wave-propagation phenomena.

In the above-stated objective, the key words are versatile and practical. A versatile simulation capa-
bility is deemed to be one which is platform independent and capable of easily and rapidly addressing a large
number of problems. A practical capability is one which can used to address problems of realistic engineer-
ing significance. In order to achieve these desirable features and thereby satisfy the primary objective, sev-

eral sub-objectives must be met. They are

* to develop new methods for exploiting parallel architectures using both single and
overset grids in conjunction with typical grid-based PDE solvers in general and FVTD
solvers in specific,

* to ascertain the applicability and limitations of overset grids to the FVTD procedure,
and

* to develop and validate an overset-grid-capable FVTD solution process for distrib-
uted-memory parallel computing platforms.

The interrelation of these objectives is depicted in Figure 1.1. This “objective triad” forms the basis
and motivation for the research outline presented in the next section and is used throughout the remainder of

this document to guide the reader through the material presentation.

1.6 Research Outline and Project Scope

In accordance with the objectives stated in the previous section, the research presented in this docu-

ment proceeds along the following lines:

1.  Asingle-grid, parallel FVTD solver is developed and validated.

2. A communication model for hyperbolic PDE solvers in parallel environments is developed in
conjunction with the single-grid algorithm. Using this model and the parallel solver, a study is
conducted to determine how parallel performance is affected by the method used to partition the
computational domain.

3. The capability of the single-grid FVTD solver is extended to allow for overset grids and more
general domain decompositions.

4. An algorithm for partitioning a computational domain comprised of overset grids is conceived
and implemented.

5. A theoretical parallel-performance model for overset grids is developed, and the new FVTD
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Figure 1.1: Objective Relation Diagram

solver is used in conjunction with the grid-partitioning algorithm to test the model.

6. The accuracy and applicability of the overset grid FVTD process is assessed using several test
cases.

7. The resultant CEM simulation capability (i.e., a parallel, overset-grid FVTD solution process) is
demonstrated for a complex geometry.

Note that the work description follows an incremental approach for attacking the problem presented
in Section 1.3. Each phase of the work builds upon the previous phase thereby leading to a final product that

achieves the desired characteristics of versatility and practicality.

1.7 Document Organization

The organization of this document revolves around the objective triad with each chapter dedicated
either to one aspect exclusively, or to the interplay between two or more of the triad elements. A survey of

the relevant literature is provided in Chapter 2 while the governing equations and numerical methods that




ultimately form the foundation of the finished product are discussed in Chapter 3. Using this introductory
material as a basis, a presentation of the theoretical development and numerical results begins in Chapter 4
with a study of single-grid domain-decomposition methods for parallel environments. Chapter 5 expands
this discussion to include overset grids. Together, Chapters 4 and 5 form the crux of the parallel-computing-
investigative portion of this work. The analysis and results presented in these chapters is intended to be gen-
eral and applicable to a large class of hyperbolic PDE solvers and thus only discusses the FVTD scheme
from a parallel-implementation standpoint. Electromagnetic-specific issues are addressed beginning in
Chapter 6 wherein several test and validation cases for the FVTD algorithm are presented. The chapter is
designed to identify important algorithm-behavioral issues and to provide a reference so that a meaningful
comparison can be conducted with the overset-grid results presented in Chapter 7. Chapters 4-7 thus cumu-
latively treat all aspects of the objective triad. A discussion of the capabilities realized by combining the
work of the four chapters appears in Chapter 8. Finally, Chapter 9 draws pertinent conclusions and recom-
mends areas for further study. In addition to the work presented in the main body of this document, two
appendices are provided as supplementary material: Appendix A augments the numerical discussion Chap-
ter 3 while Appendix B provides details on the computational resources used throughout the course of this

study.




II. Background

The bolded portions of Figure 2.1 represent the areas of

emphasis of this chapter. As the chapter title indicates, the discus-

sion presented here focuses on background and familiarity issues

with each of the three main objective areas. To begin, a brief intro-

duction of the various methods used to solve the Maxwell equa- &)@’

Pparalel &
tions is presented. This is intended to provide a backdrop against il Grids

V\_/

which the benefits of a time-domain solution can be compared. Figure 2.1: Chapter 2 Bmphasis

The discussion then proceeds into a presentation of previous

research pursuant to FVTD algorithm development and notes the areas in which the overall methodology
can be improved, namely by incorporating parallel-computing and overset-grid technologies into the pro-
cess. Discussion relating to parallel computing is limited to work previously accomplished in the field of
parallel FVTD implementations and on the primary method used to achieve parallelism for grid-based scien-
tific applications—that of domain decomposition. Finally, the overset-grid process is explained and the notion

of domain decomposition is extended to overset-grid-based solvers.

2.1 Computational Electromagnetics

2.1.1 Frequency-Domain Methods

Before beginning the discussion of time-domain CEM, it is enlightening to briefly examine other
computational methods that generally preceded time-domain techniques. These techniques for solving elec-
tromagnetic wave-propagation and scattering problems have been historically grouped into the categories of
high- or low-frequency methods. High-frequency methods are generally applicable when the scattering
object is large in comparison to the wavelength of the incident electromagnetic field and include such tech-
niques as geometrical optics, physical optics, geometrical theory of diffraction, uniform theory of diffrac-
tion, and physical theory of diffraction [8,61,79,108]. These techniques usually do not involve spatial
discretization of the domain of interest. Since spatial discretizations typically require at least ten grid cells

per wavelength in order to accurately capture the physical phenomena of interest, they quickly become cum-
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bersome as frequency increases. High-frequency methods are designed to avoid such problems; however,

they are approximate methods and their range of applicability is strictly limited.

In contrast to high-frequency techniques, low-frequency methods are typically characterized by the
discretization of the surface of the scatterer and/or the space surrounding the scatterer and the subsequent
solution of a system of algebraic equations. Possibly the most widely used low-frequency technique is the
Method of Moments (MoM) developed by Harrington in the 1960s [50]. The MoM solves for the surface
currents on the body by discretizing the body itself, ultimately yielding a system of equation of the type
[Z]1{I} = {F} where Z is termed the impedance matrix and I and F are the current and excitation vectors,
respectively. The MoM has proven to be very accurate and has been applied to a large number of problems.
Because of its accuracy, results obtained via other numerical techniques are most often compared to MoM
results for validation purposes. Although the MoM has many desirable characteristics, the impedance matrix
is fully populated and contains O(N 2) entries where N is the number of field unknowns. Furthermore, com-
putation of the elements of Z involves the calculation of relatively complex integrals. Such systems can place
very heavy demands on computer storage and processing-rate capabilities [117]. Furthermore, because the
MoM is a frequency-domain technique, it cannot model time-varying phenomena nor can it extract multiple
frequency responses from a single excitation source. An excellent discussion of the basics of the MoM is
given by Volakis and Kempel [125] while Umashankar and Taflove [120] provide a comprehensive survey

into the development and applicability of a wide range of CEM techniques.

2.1.2 Development of the Time-Domain Technique

All of the methods discussed in the previous section involve at least some degree of approximation or
limitation on their range of applicability. A direct solution of the governing equations of electromagnetics—
the Maxwell equations—overcomes these limitations since these equations accurately model the behavior of
the entire electromagnetic spectrum [46]. Recognizing this fact, in 1966 Yee [140] published his pioneering
Finite-Difference Time-Domain (FDTD) algorithm which utilized direct time integration of the Maxwell
equations to compute the electric and magnetic fields over the region of interest. In Yee’s scheme, the tempo-
ral and spatial derivatives appearing in Maxwell’s equations are discretized using standard finite-difference
stencils on a staggered grid as shown in Figure 2.24. This staggered-grid approach has several advantages

[67] over a collocated grid as shown in Figure 2.2b. To begin, it eliminates ambiguities in the specification of
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Figure 2.2: Time-Domain Grid Examples: a) Staggered Grid, b) Collocated, Cell-Centered Grid

the field variables on the surface of a scattering objectl. Furthermore, it naturally exploits the means by
which the electric and magnetic fields are related through the curl operators. Unfortunately, although stag-
gered-mesh techniques exist in the CFD community [38,52], the locations where the unknowns are defined
are not directly analogous to the FDTD algorithm. Thus, despite significant advantages, it is difficult to
directly adapt Yee’s technique to a fluid-mechanics problem, and thus its use in an integrated design environ-
ment is somewhat limited. However, in the CEM arena, the FDTD technique has proven to be highly suc-
cessful. Since Yee’s original work, a myriad of problems have been solved using FDTD, and Taflove
[117,118] has emerged as the preeminent researcher in the field. One of the primary limitations of the origi-
nal algorithm—that of the inability of the grid to conform to the scatterer surface~has been overcome by the

work several researchers including Holland [56], Fusco [42], and Jurgens and Taflove [59].

In contrast to finite-difference techniques which are characterized by the application of the governing

equations at discrete points of the physical domain, finite-volume methods typically use the integral form of

1. Surface boundary conditions are discussed in Chapter 3 and Appendix A.
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conservation laws applied to discrete volumetric elements [124]. Because the governing equations of fluid
mechanics are statements of conservations laws, finite-volume techniques have lately become very popular
in the CFD community. Furthermore, over the past several years, researchers from the CFD community have
begun to apply techniques developed for CFD to CEM problems. Specifically, they have drawn on the vast
body of knowledge developed for solving hyperbolic systems of PDEs in an attempt to advance the state-of-
the-art in time-domain simulations of electromagnetic phenomena. Their efforts have resulted in the genesis

of the FVTD methodology.

Arguably the most active group of researchers using the FVTD technique is the group at Rockwell
International Science Center headed by Dr. Vijaya Shankar. During the past eight years, they have developed
and applied a temporally and spatially second-order-accurate Lax-Wendroff finite-volume method to a large
number of one-, two-, and three-dimensional problems with both perfectly conducting and layered-dielectric

media [70,97-107].

Another group of researchers who have contributed significantly to FVTD algorithm development is
the group at Wright Laboratories headed by Dr. Joseph Shang. Under the guidance of Dr. Shang, the group
has adapted a flux-vector-splitting algorithm in conjunction with a Runge-Kutta time-integration technique
to yield a temporally fourth and spatially third-order-accurate method [84-96,132,133]. Recently, members
of the group—most notably Dr. Datta Gaitonde-have investigated compact-differencing techniques in an

attempt to extend the spatial accuracy of the method to higher order [43,95].

In addition to the aforementioned works of Shankar and Shang, several other researchers have investi-
gated FVTD techniques. Harmon [48] has used Shang’s FVTD code to analyze the scattering from several
rather simple three-dimensional objects. Aftosmis [2] has compared Lax-Wendroff and Runge-Kutta meth-
ods using a cell-vertex FVTD scheme with special consideration for the effect of various higher-order
absorbing boundary conditions and found that Lax-Wendroff yielded superior results for both one- and two-
dimensional wave-propagation and scattering problems. Bishop and Anderson [15,16] have successfully
demonstrated the use of material-based limiters in an upwind-based predictor-corrector scheme and a stag-
gered-mesh central-difference scheme. Such limiters are designed to control oscillations in the field ampli-
tudes as the wave propagates between media of different intrinsic impedances. Huh, Shu, and Agarwal [58]
have developed a finite-volume algorithm capable of working in either the time or frequency domain and

have applied it to successfully solve several two-dimensional scattering problems. Finally, emphasizing the
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advantages of staggered grids for implementing surface boundary conditions, Noack and Anderson [72]
have used the integral form of Maxwell’s equations to construct a finite-volume scheme to compute the radar

cross section of a number of three-dimensional objects including a sphere and a finned projectile.

The examples cited above provide evidence that the FVTD method has begun to demonstrate its via-
bility as a method for solving the Maxwell equations. The present study seeks to leverage the advances of
previous works by incorporating two technologies which have either been completely omitted or else only
partially implemented in other FVTD solvers. The remainder of this chapter is devoted to discussing those

technologies.

2.2 Parallel Computing

Numerical simulations of electromagnetic or fluid-flow phenomena are most often constrained in
their complexity by available computational processing capability. As mentioned in Chapter 1, massively
parallel machines have recently begun to displace vector computers at the pinnacle of computing capability.
Unfortunately, efficient utilization of these machine requires much more effort on the part of the algorithm
designer since, at the time of this study, compilers are unable to fully extract the parallelism inherent in a
computer code and properly map that parallelism to a distributed-memory environment. One technique that
has demonstrated potential in realizing parallelism for typical grid-based scientific applications is that of

domain decomposition.

2.2.1 Achieving Parallelism Through Domain Decomposition

Domain decomposition is simply the act of partitioning the computational domain into a set of sub-
domains and assigning the sub-domains to the available computational processors. For a computational
domain consisting of a single structured grid, the decomposition is usually performed by dividing the grid
along constant-coordinate lines. Using this technique, the issue of domain decomposition has been examined
from an efficiency standpoint by Blosch and Shyy [23] and by Wong, et al. [137]. Both of these works uti-
lized schemes for solving the Navier-Stokes equations. The work of Blosch and Shyy used a semi-implicit,
pressure-based algorithm and was conducted on the CM-2 and MP-1 machines. Because the CM-2 and
MP-1 are older single-instruction, multiple-data (SIMD) machines, it is difficult to extend their findings to

more modern multiple-instruction, multiple-data (MIMD) machines. The work of Wong, et al. investigated




strip and patch-type decompositions on the Intel Gamma machine and found that patch-type decompositions

resulted in performance superior to that of strip decompositions.

Unlike the structured-grid decomposition techniques described above, unstructured-grid decomposi-
tion techniques are inherently more complicated since unstructured grids lack definable coordinate direc-
tions. Nevertheless, unstructured-grid decomposition techniques have been analyzed more heavily than
structured-grid methods [22,47,60,121], perhaps precisely because of their inherently greater complexity.
This increased degree of complexity extends to overset grids as well. In fact, because of the need to interpo-
late information between the various sub-grids, overset grids possess data dependencies not found in single-
grid problems—either structured or unstructured. Despite these unique data dependencies, overset-grid

domain-decomposition techniques have been left almost completely unexplored.

2.2.2 Parallel FVTD Solver Development

Although the literature is replete with examples of parallel implementations of CFD solvers—a few of
the better examples represented by the works of Yadlin and Caughey [139], Scherr [81], Stagg, et al. [112],
and Drikakis, et al. [37]-substantially fewer examples exist for FVTD codes. Within the past two years,
Shankar has devoted considerable effort to developing a parallel version of his Lax-Wendroff scheme
[106,107]. His implementation is largely a port of his vector-machine code to a parallel environment rather
than a ground-up parallel design [106]. Although he has achieved a degree of success, his published claims
of only 1 to 2.5 percent communication overhead using realistic geometries are difficult to verify. Shang too
has worked with several other researchers and published works which have made limited use of parallel
machines [87,88,93,94]. Additionally, Ahuja and Long have implemented a staggered-grid FVTD algorithm
on the IBM SP2 and the Thinking Machines CM-5 [3]. All of the works cited utilize domain decomposition
to achieve parallelism. Shankar’s implementation capitalizes on his use of multi-zone structured grids in that
each processor operates on a single zone or a subset of zones. On the other hand, Shang, et al., and Ahuja
and Long utilize a single-zone grid which is generally partitioned one dimensionally. Although these works
provide a demonstration of the possibilities inherent in using massively parallel machines with FVTD solv-

ers, there remains much work to do in the area of parallel FVTD algorithm development.
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2.3 Overset Grids

2.3.1 Overset Grid Overview

Overset grids (also known as Chimera grids) were originally developed by Benek, et al. [11,12,13] to
simplify the grid-generation process for complex geometries. In this approach, a complex configuration is
divided into a series of component geometries, and a body-conformal structured grid is generated around
each component. The resulting grids are allowed to arbitrarily overlap and thereby combined to form a glo-
bally unstructured grid with the requirement that all regions in the domain be included in at least one of the
grids. Cells within each computational grid are typically classified as either field, hole, or boundary (some-
times called fringe) cells. Field cells are those cells which are updated via application of the governing equa-
tion or from physical boundary conditions; hole cells are those cells that are excluded from computation on a
grid due to the fact that their physical location places them within a region that is either computed on another
grid or excluded from the computational domain; and boundary cells are those cells that must be updated via
interpolation from data contained on other grids. An example of the cell classifications is provided in Figure
2.3 for a simple two-grid problem consisting of a cylindrical grid embedded within a Cartesian background
grid. For a finite-volume scheme, the cell centers are given by the intersections of the grid lines in the figure.
Those cells which are updated via interpolation (the boundary cells) are clearly depicted. Furthermore, the
hole cells of the background Cartesian grid are those cells that fall inside the cylinder body. If the grids are
fixed in time, classification of the hole and boundary cells and calculation of the interpolation stencils can be
accomplished as a preprocessing step prior to execution of the solver using the widely available program
known as PEGSUS [116]. PEGSUS, like Chimera, was originally developed for the CFD community but is

equally well suited for other grid-based methods such as the FVTD technique.

Because of the unique grid structure and interpolation requirement, the Chimera method poses unique
design considerations when developing an algorithm for a distributed environment. Those considerations are

discussed in the next section.

2.3.2 Parallel Overset-Grid Implementations

Because of the increase in popularity and availability of massively parallel computing machines and

the prevalence of overset-grid implementations for CFD, it is no surprise that several researchers have devel-
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Figure 2.3: Overset Grid Example

oped parallel overset-grid implementations for CFD solvers. To date, implementations have centered around
partitioning each of the structured grids individually, and assigning the individual partitions to the processors
in some fashion. Clearly, there are several possible levels of complexity with such an approach. From a more
simplistic standpoint, Smith and Pallis simply assign each structured grid in its entirety to a processor [109].
Their approach is tailored to a distributed workstation environment. Progressing up a level of complexity,
Weeratunga, Chawla, Barszcz, Ryan, and Meakin have performed high-quality work on an implicit Navier-
Stokes overset-grid implementation [9,80,134,135]. In their approach, each structured grid is partitioned
independently and assigned to a unique subset of the available processors. Although they report communica-
tion overhead of only 3 to 4 percent, it is believed that this choice of decomposition poses a limitation to par-
allel efficiency and scalability. Still more complex is the set of tools which are collectively known as DSK
and were developed by Chessire and Naik [30]. DSK is designed to manage an overset-grid implementation
in distributed parallel environments. Unfortunately, the tools are proprietary and not available to the public

[71].

In all the cases described, partitioning of the structured grids is performed by dividing the grids along
constant-coordinate lines thereby creating computational blocks which are hexahedral in shape. Although

this is the simplest decomposition approach for this type of grid, it is not necessarily the most efficient!.

1. See Chapter 5.
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2.3.3 Overset Grids with FVTD

Most of the FVTD research thus-far accomplished has been performed using a computational domain
comprised of a single structured grid (either staggered or collocated). As previously mentioned, Shankar’s
method differs slightly in that his group utilizes a multi-zone structured gridding approach which has certain
flexibility advantages. The Rockwell group has also initiated an effort to develop an FVTD algorithm for
unstructured grids [104,106,107]; however, results from that algorithm have been plagued by accuracy con-

cerns [107].

Since certain electromagnetic problems are characterized by structures having radically different
length scales (e.g. thin wires, slots, gaps, etc.), it has been necessary to develop modifications to structured
grid algorithms so that sufficient mesh resolution is obtained while simultaneously maintaining computer
requirements at acceptable levels. Several researchers [55,64,142] have consequently introduced modifica-
tions to the structured FDTD algorithm aimed at addressing these issues. In particular, the work of
Zivanovic, et al. [142] utilizes a sub-gridding technique in which the structured grid is locally refined in
areas where field variables exhibit rapid variations. Not surprisingly, the abrupt change in grid resolution

causes some degradation of the solution accuracy [14].

All of the above-mentioned techniques use a single grid to solve the problem of interest. In 1992, Yee,
et al. departed from this philosophy and applied the concept of overset grids to a staggered-mesh FDTD
algorithm [141]. At the outset of the present study, this represented the only known published work using
overset grids in a CEM environment. Although demonstrating the possibility of using overset grids with
FDTD, the method of Yee, et al. is highly specialized and of limited value in a more generalized, integrated

design environment.

2.4 Chapter Summary

A survey of the work previously accomplished by researchers in the fields of FVTD algorithm devel-
opment, parallel algorithm development for CFD and CEM, and overset grids has been presented. Although
a great deal of progress has been made in each of these disciplines, prior to this study there was no single
work which incorporated all of these technologies into a unified approach for solving problems in CEM. The
next chapter serves to discuss the governing equations and numerical techniques used in this work and pro-
vides the bridge between the background material presented to this point and the results-oriented portion of

this document.




This chapter serves to introduce the equations and numerics
used in the present study. To begin, the governing equations of elec-
tromagnetics—the Maxwell equations—are presented and cast into
conservative form for a general curvilinear coordinate system. A
description of the finite-volume procedure used to solve the conser-
vative form of the equations follows. Because one of the focuses of
this work involves the application of overset grids to the FVTD

methodology, the numerical issues particular to Chimera-grid imple-

III. Governing Equations and Numerical Methodology

N
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Figure 3.1: Chapter 3 Emphasis

mentations are then discussed. The presentation contained in this chapter is intended only to introduce the

terminology and methods used throughout the remainder of this document; it is not intended as an in-depth

presentation. A more thorough description of the FVTD process is provided in Appendix A.

3.1 The Maxwell Equations

The phenomena of electromagnetic wave propagation is modeled by the set of four equations collec-

tively referred to as the Maxwell Equations. In differential vector form, these equations can be written as [8]

where:
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The flux densities can be related to the field intensities through the constitutive relations given by

D=¢cEandB = uH (3.5)

where

(3]
I

electric permittivity (farad/meter)

1) magnetic permeability (henry/meter)

These constitutive relations, when applied in conjunction with equations (3.1) and (3.2), yield a sys-
tem of six scalar equations for the unknown electromagnetic field components. By using the chain rule of
differentiation, equations (3.1) and (3.2) can be transformed to a general (§, 1, {) curvilinear coordinate

space and written in conservative form as

Q+Ug+V +W, =17 (3.6)
where
0 =0/
U= (§XU+§yV+§ZW)/J
V= mU+nV+n W7, 3.7
W= ({ U+ CyV+ gW)y/J
J=1/
Bx | [ o ] [ Dz/e | [_Dy/e) [ 0 |
By -Dz/¢ 0 Dx/¢ 0
0 = Bz TJ\= Dy/e -‘}z -Dx/¢ W: 0 }= 0 , 3.8)
Dx 0 -Bz/p -By/p —Jx
Dy Bz/n 0 -Bx/p -Jy
| Dz | L—By/H | L Bx/uj 0] | —Jz |
and




£, &, &,
J=1|mn, ny M, (3.9)
¢ ¢, &,

In the above expressions, terms of the form &, are known as the metrics of the coordinate transforma-

tion while J represents the Jacobian of the coordinate transformation.

Although equation (3.6) was derived for the fotal fields, it can be shown! that the scattered-field for-
mulation—a form more suitable for solution via numerical means—is identical in form. Thus, equation (3.6)

represents the final form of the governing equations which are to be solved numerically.

3.2 Finite-Volume Procedure

Equation (3.6) is solved in the present work via a collocated, cell-centered finite-volume formulation

which, for a general time-invariant hexahedral cell, can be written as

6
0,V+ Y Fi-dAg-Jv =0 (3.10)
k=1

where F = UE+ VA + WC, dAy is a vector normal to face k with a magnitude equal to the area of the face,

and V is the volume of the cell.

Because the focus of this work did not include developing a new FVTD core solver, a numerical
scheme developed by Shang, et al. [86,90] was selected for implementation. That scheme treats the flux and
time integration terms appearing in equation (3.10) using a flux-vector-splitting scheme in conjunction with
a Runge-Kutta time integration procedure. Each of these numerical aspects is treated briefly in the following

sections.

3.3 Flux-Calculation Procedure

Calculation of the flux term appearing in equation (3.10) is accomplished via a flux-vector-splitting

approach after Steger and Warming [113]. As an example of this procedure, for an arbitrary cell face of con-

1. See Appendix A.




stant & (denoted as face i + 1/2), the flux vector is written as

Fivip0 =010 = (7+(QiL+1/2)+ U‘(Qf“/z) (3.11)

where the superscripts L and R refer to the left and right states of the dependent variables at cell face
i + 1/2. Because the dependent variables are defined with respect to cell centers rather than at cell faces,
information is extrapolated via a Monotone Upstream Centered Schemes for Conservation Laws (MUSCL)

approach after van Leer [122] to the cell faces. This extrapolation approach can be written as

~L = - . -
012 = 0r+ S(1-)(Di-0i_ 1)+ (1 +K)( ;41 - O]
R 0 (3.12)
Qiv12 = Qi‘Z[(l +K)(Qi+1-9D)+(1-x)(Qi 42— Qi+ 1))
For this work, x and ¢ were set to one-third and one, respectively, resulting in a spatially third-order-

accurate scheme.

Although the exact flux-splitting procedure is not discussed here, it is possible to generate a locally
orthogonal coordinate system at each cell face and split the fluxes in that coordinate system rather than in the
general (&, m, {) system. This approach has been examined by Anderson, et al. [5] and by Shang and Gai-
tonde [86] but was not adopted here after timing studies conducted on RISC-based parallel computers
revealed that such a splitting approach required 40% greater run times than simply splitting the fluxes in the
general curvilinear coordinate system. A detailed explanation of the flux-vector-splitting scheme and the

entire FVTD methodology is contained in Appendix A.

3.4 Time-Integration Procedure

Once the numerical fluxes at cell faces are determined via the procedure described in the preceding
section, the solution is numerically advanced in time via a single-step, two-stage, second-order-accurate

Runge-Kutta procedure given by

0" =0
- - A -
0' = 0’-(r@")
(3.13)
- - A ~ -
0" = 0°-57(R@") +R@))
~n+1 ~2




where the superscripts # and » + 1 denote the solution time level, At represents the time step, and R repre-

sents the residual which is formed from the cell fluxes and can be written as

R(DY) = (D28 - 112" + Va(0") - V30" + We(0") - Ws(2") (3.14)

where the numerical subscripts denoted the appropriate cell face (1 = & etc.).

min 2 = E-'max’

For the present study, all simulations were performed in source-free regions (i.e., J/ = 0). Thus, the

two time-integration stages are given by

Stage 1:
- - At - . o - o - - U
0' = Q- T(0(0")- 12" + V(D) - V3(2") + We(D") - W5(2") (3.15)
Stage 2:
=2 1720 -1 At - -1 =~ 1 o =1 o =1 o a1 . o]
0" = 5(0"+ 0" -T2 - 11@") + Tu(@)- T5(@) + We(@)-#5(@)) (16

3.5 Boundary Conditions

With the flux and time-integration terms suitably treated, only the surface and far-field boundary con-
ditions need be specified in order to solve the discretized system. These conditions are described in the fol-

lowing sections.

3.5.1 Surface Condition

All surfaces in this project are modeled as perfectly electrically conducting (PEC) material. Since no

time-varying fields can exist within a PEC material [74], the wall or surface boundary conditions can be

written as
AxE: =0 (3.17)
A-Bi=0 (3.18)
A-V(AxB/W) = 0 (3.19)
V(A E/g) = 0 y (3.20)
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where the subscript ¢ refers to the total field values and it is understood that all evaluations are performed at
the scattering surface. Equations (3.17) and (3.18) are derived from control-surface arguments using the
Maxwell equations. Equations (3.19) and (3.20), on the other hand, are extrapolation conditions developed

by Shang and Gaitonde [89] in order to provide the requisite number of conditions at the scattering surface.

3.5.2 Far-Field Condition

The far-field boundary condition is simply a statement that the scattered field must be outwardly-
propagating at the edge of the computational domain. This condition is numerically implemented by setting

the incoming flux component to zero at the cell faces which form the periphery of the computational space.

3.6 RCS-Calculation Procedure
3.6.1 RCS Integral

The ultimate objective of most scattering simulations is the determination of the RCS of the body. For

a three-dimensional target, the RCS, &, is defined as [61]

22
2|Es

E;

¢ = lim 4nR
R0

(3.21)

where Egand E; are the scattered and incident fields and R is the magnitude of a vector which originates on
or near the scattering object and terminates at the observation point. In the far zone (where R is assumed very

large), the Stratton-Chu integral equation [35] for the scattered electric field becomes

.kR -
-~ 'ke’ R - R o R A T
Esf, = ’4nR J;f[ W/e(h x Hy) - (A x En) X 7= (7 - En#le ¥ By (3.22)
where
k = oJue (3.23)

and ® and k are the angular frequency and wavenumber of the incident field, respectively. In equation
(3.22), § is an appropriate surface over which the integration takes place. Unless otherwise noted, for the

present work, S is always defined as the scattering surface. A pictorial description of the vectors R, 7, R’,
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and 7 is given in Figure A.S.

3.6.2 Fourier Transform

Because RCS is a frequency-domain response, the electromagnetic field variables for the cells com-
prising the surface S described in the previous section must be transformed to the frequency domain using a

Fourier transform defined by [131]

N
o) = 5 Y (@)™ (3:29)
n=0
where N is the number of time steps over which the Fourier sampling takes place. Note that N must equate to
an integral number of excitation periods. Because the total fields appear in equations (3.22) and the depen-
dent variables in the FVTD scheme are scattered field quantities, the incident field must be added to the scat-
tered field during the sampling. Fourier sampling should not begin until surface current start-up transients
have diminished. Experience gained throughout this work showed that waiting approximately two periods of
wave motion was sufficient to produce accurate results. Further details of the Fourier sampling requirements

are contained in Chapter 6.

3.7 Interpolation-Stencil-Calculation Procedure

As mentioned in Section 2.3.1, cells which are updated via interpolation are identified prior to execu-
tion of the FVTD algorithm by the program known as PEGSUS! which is maintained by NASA Ames
Research Center. Given an overset computational grid, PEGSUS computes the interpolation distances dx, dy,
and dz (as shown in Figure 3.2) by using an isoparametric mapping of the computational space. In the figure,
the center of the cell which is updated via interpolation is represented by the dark spot. In addition, the verti-
ces of the cube which are numbered 1 though 8 represent the centers of the cells which must supply interpo-

lation data. Using the interpolation distances computed by PEGSUS, a boundary cell is updated via [13]
Q; = al +a2dx+a3dy + addz + a5dxdy + abdxdz + aTldydz + a8dxdydz (3.25)

where Q; is the dependent variable vector associated with a given boundary cell, and

1. PEGSUS version 4.1_28 was used exclusively in this work
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Figure 3.2: Interpolation Stencil Determination
al = Q1
a2 = Q1+Q5
a3 = -01+03
a4 = -01+Q2

(3.26)
a5 = Q1-02+Q6-05

a6 = Q1-03-05+Q7
al = Ql-02-03+04
a8 = — Q1 +05-06+Q2+03 Q7+ (08~ 04

In equation (3.26), terms of the form QX represent the dependent-variable vectors associated with the

cell which is denoted as vertex X in the interpolation cube shown in Figure 3.2.

3.8 Numerical-Solution Procedure

The numerical procedure of the overset grid/FVTD algorithm described above can be summarized as

follows:

1. Solve the discretized form of the Maxwell equations (embodied in equation (3.10)) over all the
interior cells of the computational domain using the flux-vector-splitting/Runge-Kutta

3-8




methodology given in equations (3.11) - (3.16).
2. Update the surface boundary cells using equations (3.17) - (3.20).

3. Update the boundary cells (not to be confused with cells updated via the surface boundary con-
dition) using equations (3.25).

4. Perform the Fourier transform on the computed fields over an appropriate surface, S, (after a
two-period start-up interval) using equation (3.24).

Repeat steps 1-4 over one period of wave motion. After each period,

5. Compute the RCS for the desired look angles using equations (3.21) and (3.22) applied to a
suitable surface in the computational domain.

Repeat steps 1-5 until the simulation is complete.

3.9 Chapter Summary

This chapter served as an overview of the governing equations of electromagnetics and the overset
grid/FVTD numerical procedure. Parallel computing issues are deferred to the next two chapters where they
are presented in the context of studies centering on parallel algorithm development for both single- and over-

set-grid-based FVTD techniques.
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IV. Single-Grid Domain-Decomposition Study

This chapter begins the focus on the parallel-computing
aspects of this work. Specifically, domain-decomposition strate-

gies for solving hyperbolic systems of PDEs on distributed-

memory parallel computing platforms are presented. To begin,
several domain-decomposition approaches for single structured

N
Parallel g
. L . Computin:
grids are developed, and the communication requirements asso- P

ciated with each decomposition method for a generic, explicit Figure 4.1: Chapter 4 Emphasis
hyperbolic PDE solver are discussed. Based on these communi-

cation requirements, theoretical parallel performance is predicted using a widely accepted communication
- model. The performance model is then applied to a single-grid FVTD solver used to compute the electro-
magnetic fields within a rectangular waveguide. Predictions are compared to timing measurements made on

three different parallel architectures, and the relation between processor-connection topology and message-

passing performance are identified.

4.1 Domain Decomposition of Structured Grids

As mentioned in Chapter 1, modern distributed-memory parallel architectures are capable of perfor-
mance exceeding that of vector supercomputers. Unfortunately, efficient utilization of these parallel
machines requires much more effort on the part of the algorithm designer since compilers are not yet able to
fully extract the parallelism inherent in a computer code and properly map that paralielism to a distributed-

memory environment.

One method of potentially achieving a high degree of concurrency in typical grid-based scientific
computations such as those found in CFD or time-domain CEM algorithms is to divide the computational
domain into sub-domains or blocks and then assign the blocks to the available processors. Since determining
an optimal decomposition and assignment is in problem space NP-Complete [39], no such attempt is made
here. Instead, the computational domain is partitioned along constant coordinate lines, either one, two, or

three dimensionally as shown in Figure 4.2. This approach has two primary advantages: first, it is easy to
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Figure 4.2: Single-Grid Domain-Decomposition Approaches

implement such a decomposition, and second, the resulting partitions are logically hexahedral. The second
advantage facilitates a ready incorporation within the existing framework of many legacy engineering com-
puter codes that are heavily loop based and thus assume block-type data structures. For these reasons, this
type of decomposition is often employed since it facilitates a relatively straightforward conversion path from

a traditional vector serial code to a parallel implementation.

Despite these advantages, this type of decomposition has its drawbacks, primarily with respect to load
balancing. A computational decomposition is said to be load balanced if all processors perform the same
amount of computational work. Unfortunately, a block-type decomposition can lead to an unequal distribu-
tion of the computational workload since it is often difficult to partition the computational domain so that all
processors operate on the same number of computational cells. This is easily illustrated by assuming the
computational domain consists of 1000 cells with 10 cells in each of the three coordinate directions. The
domain can be partitioned into eight 5 x 5 x 5 blocks for eight processors, but cannot be partitioned into six-

teen blocks so that all processors receive the same number of grid cells. Unless the computational grid is
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Figure 4.3: Computational Stencil on Computational Block Boundary

specifically designed for the decomposition (an approach which is not advisable since the grid design should
be dictated by problem physics rather than by decomposition considerations), then load imbalance can
become a serious drawback with this type of partitioning scheme. In the academic exercise presented
throughout the remainder of this chapter, however, the computational domain is specifically constructed so
that all processors receive the same number of grid cells. This greatly simplifies the analysis for the theoret-

ical parallel performance of the general hyperbolic PDE solver presented in the next section.

4.2 A Generalized Communication Model for Single-Grid, Explicit, Hyperbolic PDE
Solvers

4.2.1 Data Dependencies for an Explicit Hyperbolic PDE Solver

Given an arbitrary cell (denoted by ijk) in the computational domain, that cell’s data dependencies are
contained in its computational stencil. The computational stencil for cell ijk is simply the set of cells which
affect the solution of cell jjk at the next time level. A two-dimensional example of a 5-point computational
stencil (in each coordinate direction) for cell ijk appears in Figure 4.3. The size and arrangement of a compu-
tational stencil varies depending on the desired accuracy and traits of the numerical scheme, but all explicit

schemes share the trait that all cells in the computational domain can be updated simultaneously to the new
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time level using only previous-time-level information from the cells in the computational stencils. In this fig-
ure, cell jk lies on the border of a block of grid cells formed from the domain decomposition. Clearly, cer-
tain cells in the computational stencil reside in blocks different than that of cell ijk. If these blocks are
assigned to different processors, then the data must be transferred via interprocessor communication. It is the
transfer of information that forms the crux of the parallel-performance model presented in the following sec-

tion.

4.2.2 The Communication Model

Based on the data dependencies described in the previous section, the theoretical parallel performance

of a general hyperbolic PDE solver can be determined. Parallel run time, T,q,»can be assumed to consist of

ar’

calculations, T.0c and parallel overhead, T erhead’ ie.
Tpar = Tcalc + T()verhead 4.1)

The overhead consists of several factors including communication and any extra calculations neces-
sary to implement the code on a parallel machine. For this analysis, the parallel overhead is assumed to be
dominated by the communication time, T,,,,. If the classical cut-through-routing communication-cost
model of Kumar, et al. [63] is used, then the communication time for a single message to travel between pro-
cessors g and b, ¢

comm> 1S given by

Leomm = Lot mt, +1t, 4.2)

where ¢ is the message start-up time, is the per-byte transfer time, ¢, is the latency associated with a

tW
hop between two processors, m represents the number of bytes transferred, and [ represents the number of
switch hops the message must make in order to travel from processor a to processor b. In most modern par-
allel architectures, the per-hop time is extremely small and all processors can be considered computationally

close. This allows the communication cost model to be simplified [39], viz.

tcomm = tS +th (4'3)

Although other communication models have been proposed and utilized [1,39,53], equation (4.3) is
widely accepted within parallel-computing circles. The remainder of this section is therefore devoted to
determining the theoretical parallel efficiency of a general hyperbolic PDE solver based on the communica-

tion model stated in equation (4.3).




For this general analysis, the computational domain is assumed to be k-dimensional and to consist of

n cells with n'/*

=R cells distributed along each of the k coordinate directions. Furthermore, the domain is
assumed to be evenly divided among the number of available processors, p. Thus, the number of grid cells

residing on each processor, n,, is given by

n, = R*/p (4.4)

Referring again to Figure 4.3, the length of any interprocessor messages is simply the product of the
number of cells on the face of a cut, some number of grid planes, T (which is algorithm specific), and the
number of bytes of information per cell. From Figure 4.3, 1 is usually bounded above by the computational

stencil half-width, {, which can be defined as

CE[_sw—l)/ZJ (4.5)

where sw is the computational stencil width. Thus, the message length is given by

m < TDRk—lp(l—i)/i

(4.6)

where D represents the number of storage bytes required per grid point for the dependent variable data, T
represents the number of grid planes to transfer, and i represents the dimensionality of the decomposition,
0 <i<k. Note that for i = 0, the computational domain is not decomposed, and thus i = O < p = 1.In

A-iyi

all cases, the term p is restricted to integral values.

With the message length determined, the total communication time can be calculated as the product of

the communication time per message and the number of messages required per iteration, viz.

T _ n(ts+(TDRk—1p(l—i)/i

comm

) 4.7

where ) is the number of messages required by the chosen numerical scheme per time step. Substituting the
communication time into equation (4.1) yields a general expression for the theoretical parallel run time,

namely

k k-1 (1-i)/i
Ty = t.(R/p)+M(t+ (DR p ) 4.8)
where ¢ is the single-processor computation time per grid cell per time step.

With parallel run time determined, theoretical absolute speedup, S, and absolute efficiency, E,~two




of the most common metrics for parallel performance—can be determined using the standard definitions [63]
Sy = T1/ Ty, 4.9)
E,=S,/p (4.10)

where T is the run time for the best-known serial algorithm to solve the problem in question. It is often not
practical to compare the chosen parallel algorithm against the best-known serial algorithm, and conse-
quently, relative speedup, S, and efficiency, E, are often used whereby the parallel algorithm run time is com-

pared against the run time of the algorithm on a single processor. Setting T, = O and p = 1inequation

omm

(4.8) to determine Ty, the theoretical relative performance is thus given by

S = g 1k1 @.11)
SRR (/1) + DR pU =it /1))
1
E= (4.12)

1+ 3[pRY-K(1,/1,) +wDp! /it /1,)]

Because parallel machines allow one to solve large problems using a large number of processors, it is
useful to conduct an asymptotic analysis of equation (4.12) in which p and R are assumed to be arbitrarily
large. To assess the dominant term appearing in the denominator of equation (4.12), it is necessary to com-

pare the terms p/ Rt and pl/i/ R. To do so, it can be noted that

p i p /U g, s 4.13)

Since i <k, then from equation (4.13) the term pl/i/R must always dominate the term p/Rk if
pl/k/ R =2 p/ Rk for any allowable values of p, k, and R. However, from equation (4.4),
k
p/R = l/np (4.14)
and since

p*/R = (/)" (4.15)

then pl/k/ R =z p/ Rk. Of course, this assumes that n, 2 1 which follows naturally from the definition of
n,,. Thus, provided the constants appearing with each of the terms can be assumed to be on the same order of

magnitude, then the asymptotic analysis yields
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1
E =

I S (4.16)
1+0(""/R)

where the ® notation indicates a tight upper bound.

1t is important to note that the asymptotic analysis encapsulated in (4.16) is taken for p and R appro-
priately large when in fact, for a practical implementation, either variable may be restricted by memory or
machine architecture. Consequently, a consideration of the constants appearing in (4.11) and (4.12) may be

necessary when assessing true performance of the algorithm on the machine of implementation.

It is often desirable to know how the parallel performance of an algorithm scales as the problem size
increases. This can be measured by examining the amount by which the problem size must be increased as
the number of processors is increased in order to keep a constant efficiency. This is termed isoefficiency [45].

Clearly, in order to keep a constant efficiency in equation (4.16), then

R=n"*=00p")Y=n=00"" 4.17)

Thus, in order to maintain a constant paralle! efficiency, a computational domain that is decomposed

with the same dimensionality as the problem space need only be increased in size by an amount linearly pro-
portional to increasing processor number. This represents optimal isoefficiency [45]). Lower dimensional
decompositions require larger increases in the size of the computational domain as increasing numbers of

processors are applied to the problem if the efficiency is to be maintained at a constant value.

4.3 Parallel Performance Analysis of the Single-Grid FVID Algorithm

4.3.1 Implementation Details

4.3.1.1 Model Problem
The problem selected for examining the various domain-decomposition approaches was the computa-
tion of the electromagnetic fields inside a rectangular waveguide as depicted in Figure 4.4. The computa-
tional domain for the problem was uniform and Cartesian, thereby facilitating a relatively straightforward
partitioning. The physical dimensions a, b, and L of the waveguide were scaled to , ©, and 1 respectively,
and the waveguide was excited in a TMZ; mode. This problem has been extensively studied by Shang ([87],
[91]), and the existence of an analytical solution [111] allows for a ready verification of parallel program

correctness.
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Figure 4.4: Rectangular Waveguide Geometry

4.3.1.2 Flux Message Details

The MUSCL scheme described in Section 3.3 forms the basis for the data dependencies of the FVTD
algorithm. Referring to Figure 4.5, in order to compute the total flux at cell face i + 1/2, U;, { /2, the pos-
itive flux component requires dependent variable information from cells i -1, i, and i + 1. Similarly, the
negative flux component requires information from cells i, { + 1, and i + 2. In a parallel environment, one or
more of these cells may reside on different processors, and thus a means must exist to transfer necessary
information between processors. The transfer of information is facilitated through the use of buffer storage
locations. These locations serve to hold dependent variable or other information that is computed on one
processor but necessary for other computations on another. A sample of the buffer locations is shown as the
shaded cells in the lower portion of Figure 4.5. Using this approach for the simple two-processor, one-
dimensional example shown in the figure, the flux calculation for a cell which falls on a boundary created by
the domain decomposition begins as processors 1 and 2 independently compute the positive and negative
flux component, respectively, for cell face i + 1/2. This calculation requires dependent-variable data stored
in the buffer locations on each processor. Processor 1 passes the positive flux component to processor 2
which then computes the total flux for the cell face and returns this information to processor 1. Assuming the
fluxes at the remaining cell faces have been calculated, the processors subsequently update cells i and i + 1,

respectively, to the new time level. For a higher-dimensional problem, the message-passing scenario is




—
® o N o
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i-1 i i+1 i+2

1a. ' computed on processor 1

Processor ° °
1
- 3. Total flux computed
2. U*data passed on processor 2 and
to processor 2 passed to processor 1
Processor °
2

1b. U computed on processor 2

Figure 4.5: Flux Message Detail

repeated for each of the decomposition directions. No messages are required along a coordinate direction in
which the computational domain is not decomposed. Once all cells have been updated to the new time level,
dependent-variable information is exchanged so the buffer storage locations contain new-time-level data.
This procedure thus requires a total of eight message sends and eight message receives along each coordi-
nate direction that is decomposed. Furthermore, the number of grid planes transferred in each message is
one. Using this algorithm, the theoretical speedup and efficiency given by equations (4.11) and (4.12)

become

S = 76 ! (4.18)
5t = [R2(t,/1) + DpU =711, /1)]

E= ! (4.19)

16 .
1+ -k—[pR‘z(ts/tc) +Dpl/i(e, /)]

It is possible to double the size of the buffers and thereby obviate the need for either processor to
exchange any flux data; however, this approach was examined and discarded since the storage penalty

exacted was not offset by any significant performance gain.




4.3.1.3 Computer Code Development

In order to test the theoretical results obtained in Sections 4.2.2 and 4.3.1.2, a single-grid, parallel,
3-D, FVTD computer code (designated “SIGMA™!) was constructed. At the heart of the code is the flux-
vector-splitting/Runge-Kutta (FVSRK?2) algorithm discussed in Chapter 3 and Appendix A. SIGMA allows
for any of the decompositions illustrated in Figure 4.2 and is written in C to take advantage of that lan-
guage’s dynamic-memory-allocation capabilities. This allows the number of processors and the decomposi-
tion approach to be selected at run time, thus providing a very flexible environment in which to conduct a

domain-decomposition study.

4.3.1.4 Target Architectures and Message-Passing Implementation

The parallel machines used to complete the single-grid domain-decomposition study were the Maui
High Performance Computing Center (MHPCC) IBM SP2, the Eglin Air Force Base (AFB) Cray T3D, and
the Wright Patterson AFB (WPAFB) Intel Paragon. Although several message-passing libraries were avail-
able for each machine, the libraries used in this study were chosen based on vendor support, portability, and
performance. At the inception of the work, PVM for the T3D was actively supported by Cray Research [75].
Similarly, support and documentation for the Intel message-passing library, NX [73], was readily available.
Finally, Message Passing Interface (MPI) [110] was selected for the SP2 due to its portability and because its
performance has been shown to be nearly equal to that of IBM’s native Message Passing Library (MPL) for
point-to-point communications ['138]. By abstracting the library-specific programming calls through the use
of the macro feature of the C programming language, a single computer code was used to collect perfor-
mance data on all three machines. A more detailed discussion of the machine architectures and the message-

passing libraries used appears in Appendix B.

Because the computational domain was decomposed as shown in Figure 4.2, the communication
model assumed that no block was allowed to have more than a single neighboring block along a given face.
This leads to a relatively straightforward message-passing implementation. In the flux-calculation routines,
all processors post non-blocking receives and pass flux information to left-hand neighbors as appropriate.
After the left-hand messages are received, the process is repeated for the right-hand neighbors. This process

is depicted in Figure 4.6.

1. Single Grid for MIMD Architectures
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step 1: All processors post non-blocking receives

step 2: All processors send data to left neighbor

buffer data
» N N TN
processor processor processor processor
1 data 2 data 3 data 4 data
SN— S~ S~

step 3: All processors send data to right neighbor

Figure 4.6: Message-Passing Implementation Detail

4.3.2 Test Procedure

As is evident in the theoretical derivations, parallel speedup and efficiency are dependent on a variety
of parameters including the problem size and the number of processors on which the algorithm is executed.
In order to test these parameters, SIGMA was run for 100 iterations on grid sizes ranging from R = 32 to
R = 128 using up to 128 processors. One-hundred iterations was deemed an acceptable number so that run
times would not be excessive yet any transient parallel-environment effects such as inter-process message
contentions would be suitably minimized. In every decomposition, the number of finite-volume cells resid-
ing on each processor was identical. This reduced, but did not completely eliminate, load imbalance since
boundary condition cells required less computational effort than interior cells. The choice of domain decom-
positions and grid sizes was constrained primarily by the amount of memory available on each processor.
This was especially true in the case of the Paragon which, with the exception of 16 MP nodes, possesses
only 32 megabytes per processor. In addition to the memory constraint, additional restrictions were imposed
by the processor allocation scheme of the T3D. The current version of the operating system on this machine
allows processors to be allocated only in powers of two. This required that the computational domain be par-

titioned in powers of two along each decomposition direction.

In addition to the dimensionality of the decomposition, the directional dependence of the decomposi-
tions was assessed by permuting the decompositions for each coordinate direction. The permutations corre-

spond to a re-orientation of the planes or lines of grid cells as depicted in Figure 4.2. Examination of the
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Dimension of Grid Size Processors Decomposition*
Partition ®) @) P
Px1xl1
1D 32,64, 128 4,8,16,32,64, 128
such that P< R
2D 32, 64, 96 4, 16, 64 JPx JPx1
P P
2D 32,64, 96 8,32,128 7% 2 3 x 1
3D 32, 64, 96 8, 64 3/Px3/px3fP
p_ P P
3D 32, 64, 96 16, 128 3;‘/;><3A/;x2(a/;)
3D 32, 64,96 32 2x4x4
*All permutations of the tabulated decompositions were performed. For example, in addition to
the stated P x 1 x 1 one-dimensional partitioning, 1 X P x 1 and 1 x 1 X P partitions were also
examined. The decomposition nomenclature refers to the number of blocks by which the compu-
tational domain was partitioned in each coordinate direction.

Table 4.1: Summary of Examined Decompositions

decomposition along each direction allows for an assessment of machine memory-accessing performance
and uncovers potential message-bus contentions which are the inevitable result of mapping a higher-dimen-
sional physical problem onto a lower-dimensional interconnection network. Table 4.1 contains a summary of
the decompositions examined. Rather than list each grid size, processor count, and decomposition sepa-
rately, they are combined into a single listing whenever possible with the understanding that all permutations

on a given row were examined.

As timing data was collected, several runs were re-accomplished to assess the repeatability of the tim-
ing data. In the case of the T3D and the Paragon, results were found to be repeatable to well within one per-
cent. However, such was not the case for the SP2 where timing data varied much more dramatically. In order
to ensure accurate results, all runs on the SP2 were accomplished at least five times and the minimum time

observed was used as the reported execution time. This procedure is similar to that recommended by Think-
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ing Machines in the timing studies conducted by Blosch and Shyy [23].

4.3.3 Machine Performance Characterization

Determination of theoretical performance as embodied in equations (4.18) and (4.19) requires that the
values of 7, ¢, and ¢, be ascertained. In general, ¢_and ¢ are machine specific, while ¢, depends both on
the target architecture as well as the algorithm. In order to determine ¢, SIGMA was run for 100 time steps
on each of the three machines on a single processor using a variety of grid sizes up to the maximum size con-
tainable in the machine’s core memory. The times for these execution runs are contained in Figure 4.7.
Although not presented here, a formal analysis of the FVTD algorithm run-time complexity reveals the sin-
gle iteration run-time complexity is in time space ©(n). This analysis is corroborated by the run times exhib-
ited in the figure which show the execution times to be a linearly increasing function of n. Any slight
deviations from linearity can be explained by noting that boundary condition cells require less computational
work, and as the grid size decreases, the boundary condition cells have an increased effect on the algorithm

run time. Using a simple least-squares fit of the data, ¢, was determined from the slope of each plot.

The message-passing performance of each of the three machines was determined by configuring eight

processors as a logical ring and circulating messages of varying size 1000 times around the ring. Run-time




tC ts tw
(usec) (usec) (usec)
T3D 102 25 .030
Paragon 546 36 018
SP2 132 76 .040

Table 4.2: Machine and SIGMA Performance Parameters

data for this experiment appears in Figure 4.8 on the previous page. By performing a linear curve fit of the
data, the message start-up time and per-word transfer time can be computed directly from the y-intercept and
line slope. Although the linear curve-fitting process generated excellent results (goodness of fit > 0.99 in all
cases), the SP2 is characterized by marked and somewhat-random variations in execution time. These varia-
tions are similar to those observed by Bokhari [24] and are most likely due to message contention over the
omega switching network. Table 4.2 contains a summary of the findings of this portion of the study. The tab-
ulated values agree in general with those of Foster [39]. Any discrepancies can be explained by differences

in operating systems and message-passing libraries used.

4.3.4 Results

4.3.4.1 Electromagnetic Field Computations
Figure 4.9 contains a compatrison of the magnitudes of the computed and exact magnetic fields inside
the waveguide. The computed solution was obtained from a 32-node Paragon run using approximately
110,000 grid points with the computational domain partitioned three-dimensionally in a 4 X 2 X 4 configu-
ration. In the figure, the y and z axes have been scaled so that the cutting planes located at y = 0.6, 1.6, and
2.5 are unobstructed. The computed and exact solutions are in excellent agreement, and in fact, the plots are
indistinguishable. While not a formal proof of correctness, it does indicate that the parallel algorithm func-

tioned as intended.

4.3.4.2 Parallel Scalability
The parallel scalability results of the domain-decomposition studies appear in Figures 4.10 to 4.15.

Figures 4.10 to 4.12 contain parallel speedup results for the one-, two-, and three-dimensional decomposi-
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Figure 4.9: Waveguide Total-Magnetic-Field Contours: a) Exact, b) Computed

tions, respectively, while Figures 4.13 to 4.15 contain efficiency results. A comparison of the relative perfor-
mance of the SIGMA code for a given decomposition dimensionality on each of the three machines can be
conducted by examining sub-figures a, b, and ¢ of a single figure. On the other hand, a comparison of the
sub-figures in a given column facilitates an examination of the effects of the dimensionality of the decompo-
sition for a given platform. It is apparent from the figures that in nearly every case, the two- and three-dimen-
sional decompositions produced superior performance relative to the one-dimensional decompositions.
Furthermore, three-dimensional decompositions exhibited slightly better performance in several instances
on the T3D while two-dimensional decompositions tended to be slightly superior on the Paragon and notice-
ably superior on the SP2. This is especially evident in an examination of the efficiency curves of Figures
4.13'to 4.15. These trends in parallel performance correspond quite closely to the topologies of the three
machines. The three-dimensional torus structure of the T3D allows each processor six neighboring proces-
sors while the two-dimensional mesh structure of the Paragon translates to at most four neighbors for a given
computational node. In contrast, the omega network of the SP2 requires that any communication between
two processors traverse at least one switch hop and two communication lines. It appears that superior paral-
le] performance is achievable when there is a close agreement between the physical dimensionality of the
domain decomposition and the physical topology of the architecture onto which it is mapped. It should be

remembered that the speedup and efficiency curves of Figures 4.10 to 4.15 only provide one measure of the
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scalability of the algorithm and do not reflect actual program execution times. For example, although the
curves show the scalability of the computer code to be decidedly less on the SP2 than on the Paragon, the
superior performance of the RS/6000 as compared to the i/860XP! yielded substantially faster run times. In
other cross-platform comparisons, the T3D was able to significantly outperform the other two machines both
in terms of parallel scalability and in terms of absolute execution speed. This is despite the comparatively

poor performance of the message passing (as shown in Figure 4.8) which is most likely due to the use of

PVM.

4.3.4.3 Comparison with Theoretical Model

A comparison of the theoretical and measured parallel speedups for a two-dimensional decomposition
(R = 64) appears in Figure 4.16. The theoretical curve was generated by substituting the measured values
contained in Table 4.2 into equation (4.18). The measured speedup is somewhat over predicted, but this is
not surprising since the theoretical model neglects such issues as load imbalance and message contention. It
is therefore expected that this model provides a best-case performance prediction. The behavior of the model
with respect to variations in the ratio ¢, /¢ = is also shown in the figure. Using the value for t, and ¢,

found in Table 4.2 yields the ratio ) = 0.0003. A value of 3 = 0.0009 is also shown for reference pur-

1. Machine processor characteristics are discussed in Appendix B.
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Figure 4.17: Nearest-Neighbor Message-Passing Performance a) T3D, b) Paragon, c¢) SP2

poses. It is not unreasonable to expect fairly large variations in y for different decompositions due to differ-

ences in memory-accessing patterns. In fact, these variations are demonstrated in section 4.3.4.4.

Although the theoretical model was able to predict the performance of certain decompositions on the
T3D to an acceptable manner, such was not the case for the Paragon and the SP2. In these cases, the model
drastically over predicted parallel performance. Since it is known that y plays a primary role in parallel per-
formance, a more realistic test problem was conceived to measure ¢,,. Instead of utilizing a ring structure in
which a single message is in transit at any given instant, processors were configured as a logical three-
dimensional mesh of dimension 2X2Xx2 and 4 x4 x4 . Nearest neighbors in the mesh simultaneously
exchanged messages of varying lengths along each coordinate direction and the times for 1000 exchanges in

each direction were recorded. The results of this experiment are contained in Figure 4.17.

In the absence of message contention, the message-passing times are expected to be identical regard-
less of processor number or direction of message exchange since no two messages simultaneously transit the
same logical connection between processors. In reality, however, the mapping of the logical three-dimen-
sional structure to a lower-dimensionality architecture results in the mapping of more than one logical con-
nection to the same physical connection. Although all three machines exhibit some degree of variation in

message-passing times as the number of processors is increased, the effect is much less dramatic on the
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T3D. The deviation in the general trend is also small for the SP2, but the variations exhibited in Figure 4.8
become much more pronounced as the number of processors is increased. In addition to the variation with
processor number, the Paragon also exhibits a directional bias in message-transfer times which becomes
more pronounced as the number of processors increases. The magnitude of the variations in message-pass-
ing times relates directly to the quality of the theoretical parallel-performance model, and large variations in

message-passing times are expected (and observed) to adversely impact the theoretical predictions.

4.3.4.4 Variations in Decomposition Times

The results contained in Figures 4.10 to 4.15 represent the best observed times for a given dimension-
ality of decomposition, processor number, and grid size. As noted in Table 4.1, all permutations of a given
decomposition were performed for each case. Although each permutation yielded the same number of grid
points on a given processor and the same amount of message traffic, certain decompositions were observed
to yield substantially better performance than others. The performance differences were quantified by con-

structing the ratio

Ve Tmax/Tmin

where T, , and T,  represent the minimum and maximum observed run times for each combination of

X
processor number, grid size, and decomposition dimensionality, Figure 4.18 depicts this ratio for the one-
and two-dimensional decompositions on the SP2. Although the trends differed slightly depending on the
machine and decomposition approach, similar variations were observed for the Paragon and T3D. The some-
times-marked variations indicate that memory accessing issues are as important as the dimensionality of the
decomposition in achieving good performance. This is to be expected since the RISC processors employed
in all machines require a high degree of data locality in order to achieve near-advertised megaflop ratings.

Should the domains be decomposed in a manner that precludes locality-of-reference, then performance suf-

fers dramatically.

4.3.5 Study Conclusions

The relation between parallel performance and the dimensionality of the domain decomposition was
assessed on three modern distributed-memory parallel computing platforms using the SIGMA code and a
rectangular waveguide geometry. Higher-dimensionality (two- and three-dimensional) decompositions were

found to nearly always outperform one-dimensional decompositions. The performance of the decomposi-
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tions was found to relate very closely to the topology of the machine on which the algorithm was imple-
mented. In general, machines with higher processor connectivity favored higher-dimensional

decompositions.

Despite the fact the classical parallel performance model used in this study accurately predicted per-
formance trends, it occasionally dramatically over predicted the actual performance of the algorithm. This is
due to the fact that the model does not account for issues such as message contention which occurs when
more than one logical message path is mapped to the same physical connection. The -adverse affect of mes-
sage contention was observed to increase with increasing processor count on all architectures but most dra-

matically on the Paragon.

Although caution must be exercised when attempting to extend program performance characteristics
to other algorithms, because many algorithms designed for solving systems of partial differential equations
possess similar data dependencies, the results presented here can be generalized to a large number of explicit

schemes for solving hyperbolic, parabolic, and elliptic PDEs.
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4.4 Chapter Summary

An analysis of domain-decomposition techniques for single, structured-grid problems was presented.
The purpose of this presentation was two-fold: first, to provide analysis and data not currently found in the
literature, and second, to serve as a basis for examining overset-grid problems. Because an overset grid is
simply a collection of structured grids, the analysis presented here is applicable in no small extent to the par-

allel overset-grid problem. This is precisely the focus of the next chapter.
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V. Chimera-Grid Domain-Decomposition Study

This chapter expands on the domain-decomposition analy- e
sis presented in Chapter 4 by incorporating analysis and experi-
mental results for Chimera grids. An overset-grid decomposition

method is presented which produces domains requiring less inter-

processor data exchange than the typical block-type structured- %ﬁ

. .. . . . Parallel % Qverset
grid decompositions discussed in Chapter 4. The technique first Computing Grids

constructs a single globally unstructured grid and then applies an Figure 5.1: Chapter 5 Bmphasis

unstructured- grid decomposition method which capitalizes on

spatial locality-recursive coordinate bisection (RCB) [40,63]-to globally partition the computational
domain. A model is developed which identifies the unique communication requirements of a parallel over-
set-grid implementation, and parallel performance improvement is demonstrated using an overset-grid test

problem which is partitioned using both RCB and block-type decompositions.

5.1 Domain Decomposition for Overset Grids

As discussed in Section 2.3, the overset-grid decomposition approaches used prior to the present
study partitioned each of the structured grids independently along constant-coordinate lines and then
assigned the resulting grid blocks to the available processors in some fashion. This type of decomposition is
pictured in Figure 5.2 using the same cylindrical/Cartesian grid arrangement presented in Chapter 2. In this
figure, however, the darkened lines represent the constant-coordinate lines along which the computational
domain is partitioned. Here, the Cartesian and cylindrical grids are partitioned for 16 and 4 processors,
respectively. An examination of the figure reveals the problems associated with load imbalance which can
occur for this decomposition approach when applied to overset grids. Considering for a moment only the
Cartesian grid in the absence of the cylindrical grid, it is apparent that certain processors receive 6 X 6
blocks of grid cells and thus must perform 44 percent more computational work than those processors which
receive 5 X 5 blocks of cells. In this example, the addition of the cylindrical grid exacerbates the load imbal-

ance problem. Because cells in the Cartesian grid which fall inside the body of the cylinder are excluded
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Figure 5.2: Overset Grid Domain Decomposition Example

from the computational domain, the number of cells in certain blocks falls from 25 to approximately 10.

Defining the load imbalance, A, as

n._.
A=1-—22 (5.1)

where n, . and n, are the minimum and maximum number of cells assigned to a processor, then consid-

min
ering only the disparities in cell counts for the Cartesian grid, the load imbalance for this simple example has
already grown to roughly 0.6. Since a load imbalance of 1.0 represents the worst possible case, it is clear that
the illustrated decomposition is less than desirable from a processor-loading standpoint. Unfortunately, the
situation grows worse when differences between cell counts on the two grids are considered. Noting that cer-
tain processors assigned to the cylindrical grid possess approximately 56 grid cells, the load imbalance for

the global grid becomes 0.82! This simple example clearly illustrates the conventional block-type decompo-

sition approach can result in completely unscalable parallel implementations.

In addition to load-balance concerns, this notional decomposition results in a more complex interpro-

cessor communication requirement than for single-grid problems. Recall that the single-grid problem of




Chapter 4 required interprocessor communication only between block faces, since for the case of a single-
grid explicit numerical scheme, a given cell is always updated to the new time level using current-time-level
information from the cell’s neighbors. Conversely, for an overset grid, a cell which is updated via interpola-
tion requires information ar the new time level from surrounding cells which are part of a different grid.
From a data-dependency standpoint, overset grids thus possess an additional trait not found in single-grid
problems—either structured or unstructured. It is convenient to classify overset-grid data dependencies as
either structured or unstructured depending on the nature of the cell updates. Structured dependencies occur
between cells of the same grid while unstructured dependencies are a result of the interpolation stencils and
occur between cells on different grids. Along similar lines, any interprocessor communications that are
required can be divided into structured and unstructured communications. Using this classification system,
the computational block in the upper-left-hand quadrant of the cylindrical grid must engage in unstructured

communications with six different processors associated with the Cartesian grid.

Because of these hindrances to performance which are associated with the overset-grid domain-
decomposition strategies used in the past, the remainder of this chapter is devoted to proposing, developing,
and testing a new decomposition approach designed to produce partitions which are better load balanced and

require less interprocessor data exchange.

5.2 Overset Grid Communication Model

For a computational domain comprised of overset grids, the solution in any cell of the domain is
advanced in time either by application of the discretized governing equation or by interpolation. Therefore,
denoting the set of cells which form the computational domain as D, let D be divided into subsets Q and /
where Q is the set of cells updated via application of the governing equation and [ is the set of cells updated

via interpolation. The number of cells in each set is denoted by
D =|D|,Q=1Ql,and I = |J| (5.2)
where | A| denotes the cardinality of a set A.

In addition, let the communication graph for the computational domain be given by the set of cells D
and directed edges, E(cjcj), 0<i,j<D, where an edge ¢(cj,cp) exists iff cell ¢, appears in the computa-

tional stencil of cell ¢;. An edge in E is classified as a structured edge if c; and ¢, are within the same struc-
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tured grid and as an unstructured edge if c; and c, reside on different grids. Given sets D, Q, and I, the task

is to determine the number of structured and unstructured edges in the communication graph G(D,E).

Because the numerical scheme used for this work is explicit, any cell o € Q can be updated to time
level n + 1 using only time level n data from the cells contained in the computational stencil of Co- On the
other hand, as mentioned in section 5.1, any cell ¢, € I can be updated using only time level » + 1 data from
the cells in its computational stencil. Denoting a cell in the computational stencil of ¢; as a donorcell, ¢, ;,

then

cg €0 Ve el (5.3)

Furthermore, because a cell updated via linear interpolation requires information from its nearest surround-

ing cells, the total number of donor cells, N, can be bounded above by

N, = 02"1) (5.4)

where © denotes a tight upper bound and & is the dimension of the problem space. Equation (5.4) is an upper
bound since any donor cell can appear in the computational stencil of one or more ¢, ; however, in terms of

unstructured communication edges, the number is exact, namely

E =24 (5.5)

u

where E,, is the number of unstructured edges in the communication graph G(D,E).

With the number of unstructured edges determined, the number of structured edges in G(D,E) can be
found directly from the computational stencil of a typical cell contained in Q. The number of structured
edges associated with a cell is simply the number of cells in its computational stencil, excluding the cell
itself. Assuming that all cells are updated via the same scheme (which neglects any differences in stencils

due to boundary conditions), then the number of structured edges, E, is given by
E, = k(sw-1)Q (5.6)
where sw is the computational stencil width.

The total number of edges in the communication graph, E,,, is simply the sum of the structured and

unstructured edges. Thus
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k
E,, = 2k{Q+27X (5.7
where { is the computational stencil half-width defined in Chapter 4.

When the computational domain is partitioned for a distributed implementation, certain edges of the
communication graph are said to be cut. An edge e(cj,c;) is cut if cells c; and ¢, reside on different proces-
sors after the decomposition. The number of cut edges in G(D, E) relates directly to the communication over-
head associated with the domain decomposition. It is therefore important to determine the relationship
between the decomposition approach and the number of cut edges. To this end, the remainder of this section
is devoted to assessing the ratio of structured to unstructured communications given a particular domain

decomposition. In order to simplify the analysis, the following assumptions are made:

* The computational domain consists of m structured grids, m=>1.

* Any grid partitioning takes place along a constant-coordinate line through an entire grid.
* The cells of each grid are distributed equally along each of the k coordinate directions.

» Grid [ is assigned to p; processors so that all processors possess an identical number of grid cells.

Under these assumptions, the number of cells from grid / assigned to a processor, n,, is given by

k
n; =R, /p, (5.8)
where R, is the number of grid cells along each coordinate direction in grid /.

As stated in the assumptions, grid ! is partitioned by passing a cutting plane through the entire grid
along a constant-coordinate line. The number of cutting planes that are used to partition grid [, ¢, is thus
given by

1/i,

¢ = iyp, 1) (5.9)

17i, . . . .. . . . ..
where the term p, "I is restricted to integral values and J; is the dimensionality of the decomposition used

forgrid [ (0<i;<k and {; = 0 & p; = 1).

For each cutting plane passing through grid /, a number of structured edges of G(D,E) are cut. That
number is a function of the number of cells on the face of the cut which are elements of Q and the computa-

tional stencil half-width. Consequently, the number of cut structured edges for grid [ is given by
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E - @[i,(p,‘/"' _ 1)\4;,R,"‘1] (5.10)

cut,! str

where the bounding notation is used since some cells on a cut face may not be elements of Q, and

min({, R))
Y, =2 Z J (5.11)
j=1
Summing over all grids yields
- 1/i k-1
. 1 —
Ecpu i © Z’I(Pz "-T)yR, (5.12)

I=1

Although the number of cut structured edges can be expressed analytically, the number of cut unstruc-
tured edges is highly geometry and decomposition specific, and it is therefore difficult to develop a general
analytical expression for this number. Consequently, it is convenient to assume that a given decomposition
produces a number of cut unstructured edges which can be expressed as some fraction, o, of the total num-

ber of unstructured edges, namely

E ur = a2 (5.13)
unstr
With this definition, the total number of cut edges, EC up0 Can be expressed as
< 1/i k-1 k
. i -
E, =0 Z ipy " =-1WR T + 02’ (5.14)

=1

Equation (5.14) is a general expression for the number of cut edges in G(D,E) under the stated initial
assumptions. For illustrative purposes, the expression can be greatly simplified by setting the dimensionali-
ties of the problem space and the grid decompositions equal (i.e., let i ; = k), and by assuming that all grids
have the same number of grid cells. Under these assumptions, the grid-identifier subscript can be dropped,

and equation (5.14) reduces to

1)k, 1/k

E,, = @[\ykn("‘ @ _m! ")+oc2"1] (5.15)
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Figure 5.3: Dual-Sphere Overset-Grid Geometry

where p is the total number of processors used for the decomposition.

The first and second terms of equation (5.15) represent the structured and unstructured edges of the
communications graph that are cut due to the domain decomposition. In order to assess the relative contribu-
tions of these two terms, the decomposition dimensionality, problem dimensionality, and number of grids
were fixed at three, the stencil half-width at two, and D and I were set to 150,000 and 7,500 respectively.
Note that the chosen values closely approximate the geometry depicted in Figure 5.3 and were determined
by the grid necessary to resolve the problem physics rather than by the choice of decomposition. With these

values set, the variables p and o were be allowed to vary and the ratio

E
cut
unstr (516)
E

k=2
1]

cut

str

was computed. The results of this computation are shown in Figure 5.4. Note that the case p/m = 1 is not
contained in the figure since for that scenario there are no structured cut edges and ¢ is undefined. From the
figure, it is apparent that the second term in equation (5.15) comprises a significant portion of the total num-

ber of cut communication graph edges for larger values of o. For a typical structured-grid-based decomposi-
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Cut Edge Ratio

Figure 5.4: Theoretical Unstructured/Structured Cut-Edge Ratio

tion in which each structured grid is partitioned individually and assigned to a unique subset of the available
processors, all unstructured communication graph edges. are cut and o is exactly one. In the scenario shown
in Figure 5.4, a value of o = 1 results in the unstructured communications accounting for at least 25 percent
of the total communication requirements for the depicted range of processor count. Note that for a smaller
number of processors, the unstructured communications dominate the decomposition. It is therefore benefi-
cial to consider alternative decomposition approaches for overset grids which address this portion of the

communication overhead.

5.3 Numerical Investigation

5.3.1 Methodology

As discussed in the previous section, the unstructured communications can comprise a significant
portion of the to£al parallel overhead and are a result of interpolation which occurs between cells which are
physically close yet reside on different grids. In order to reduce this overhead, it follows naturally to utilize a
decomposition approach that partitions the computational domain such that cells in close proximity reside
on the same processor. This can be accomplished using RCB, a technique originally developed to partition

unstructured grids. Although researchers have shown other unstructured-grid decomposition approaches to




be generally superior to RCB when applied to unstructured grids [40,57,63], RCB exploits spatial locality,
the precise trait desired to reduce unstructured communications. To apply this technique to overset grids, the
individual structured grids are treated together as a single grid by ordering the non-hole cells of all grids
based on coordinate location. The ordered list is then bisected and each of the two sub-lists is then re-
ordered. The process continues until the desired number of sub-lists is obtained. The cells of each sub-list
are then assigned to a processor thereby allowing cells from any number of grids to reside on a single proces-
sor. Since the cells on a processor are physically close, the unstructured communication requirements can be
dramatically reduced. This reduction can come at a price, however, since the individual structured grids are
most likely not divided along constant-coordinate lines. In such instances, there is a corresponding increase
in the number of cut structured edges in the communication graph. In order to examine this possible adverse
impact, a standard structured-grid block-type decomposition was also implemented and compared to the

RCB results.

5.3.2 Computer Code Development

As mentioned previously, the RCB method does not necessarily produce domains that are partitioned
along constant-coordinate lines. In fact, in the most general sense, the cells comprising a single domain are
not guaranteed to be contiguous. This fact, coupled with the unstructured communication requirements dis-
cussed in Section 5.1, mandated that the capabilities of the SIGMA code be significantly upgraded. Conse-
quently, a substantial effort was devoted into developing an algorithm specifically designed for solving
overset-grid-based problems in parallel environments. The resulting code is known as CHARGEL
CHARGE uses the same FVSRK?2 numerical scheme found in SIGMA; however, it is much more flexible
and allows for completely arbitrary grid configurations to reside on a single processor. Sub-domains can be
blocked, irregular, or even non-contiguous. Furthermore, portions of multiple grids can reside on one proces-
sor with the maximum number of grids limited only by available memory. Efficient implementation of such
a capability required a substantial departure from the array-type data structures used in SIGMA. The actual
domain decomposition algorithms are not part of CHARGE, but instead form a separate program which
functions to partition the overset grid as a preprocessing step prior to execution of CHARGE. A complete

discussion of the workings of the domain decomposition and CHARGE codes is not fundamental to the

1. CHimera grid, ARbitrary GEometry
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focus of this chapter and is therefore deferred to Chapter 8.

In addition to the flexibility in handling arbitrarily shaped domains, CHARGE is also capable of com-
pletely unstructured communications and makes no assumptions on the relative logical or physical locations
of the domains. Overall, these capabilities allow for an extremely flexible implementation which is consis-

tent with the main objectives of this research.

5.3.3 Test Case

The problem chosen to test the RCB algorithm was the computation of the scattered electromagnetic
fields about two spheres in close proximity. The two spheres were each gridded with a body-conformal grid
and then embedded within a uniform Cartesian background grid. The background and spherical grids were
comprised of approximately 96,000 and 35,000 cells respectively, which resulted in a computational domain

consisting of roughly 166,000 cells. The dual sphere overset grid geometry is depicted in Figure 5.3.

Timing data was collected by allowing the computer code to run for a sufficient time to mitigate any
transient machine-loading effects. Multiple runs were made for each decomposition on each machine, and
the fastest observed time was used when reporting speedup and efficiency. All timing results were found to

be repeatable to well within 1 percent.

5.3.4 Target Architectures

The machines used for the study presented in this chapter were the same as those used in Chapter 4
with the exception of the SP2. This work was completed approximately one year after the completion of the
work of Chapter 4. In the interval, the WPAFB Major Shared Resource Center was brought on line and the
facility acquired an SP2 possessing faster (but far fewer) processors and a higher-bandwidth interconnection
network than that available on the MHPCC SP2. This, coupled with the extremely heavy loading on the
Maui machine, prompted the change in platform usage. Furthermore, as proof of the increasing popularity of
parallel machines, it became extremely difficult to obtain all 128 nodes of the Eglin Air Force Base T3D. For
these reasons, the maximum number of processors used for the present study on the Paragon, T3D, and SP2
was 128, 64, and 32, respectively. In terms of code optimizations on the machines, attempts were made to
invoke as much compiler optimization as possible; the compiler flag settings used were -03 -Knoieee -Min-

lines for the Paragon, -03 for the T3D, and -q arch=pwr2 -O3 -Q+inlines for the SP2. The inlines variable
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denotes those functions that were explicitly inlined.

5.4 Results

Results presented in this chapter focus on the parallel-performance aspects of the decomposition
algorithm rather than the resolution of the electromagnetic fields surrounding the spheres. Those issues are

discussed in detail in Chapter 7.

5.4.1 Decomposition Performance

The decomposition performance of the two algorithms was assessed by computing the number of cut

structured and unstructured edges assigned to each processor. This was accomplished using the formula

ECMI,P,' = z Z ae(un)str(ci’ Cj) (5.17)
(un)str & \e(er )
where E Pl e is the number of cut (un)structured edges assigned to processor p;, c; is a grid cell
un)str

residing on p;, and

0 if ¢ resides on p,

8e(un)str(ci’ cj) = (5.18)

1if ¢ does not reside on p;

By taking the maximum or minimum of equation (5.17) over all processors, the maximum and minimum

number of cut edges for a given decomposition was determined.

Because all processors must simultaneously perform the data exchange associated with each type of
communication, the processor with the most data to exchange can become the limiting factor in terms of
execution speed. For this reason, it is useful to examine the maximum number of cut edges residing on a pro-
cessor for a given decomposition. This data is contained in Figure 5.5a. Although it is clear from the figure
that the number of each type of cut edges is decomposition specific, it is also evident that the block-type
decomposition tended to produce fewer cut structured edges than did RCB. This was expected for the rea-
sons described in Section 5.3.1. In terms of cut unstructured edges, the RCB algorithm proved to be dramat-

ically superior to the block-decomposition algorithm for all decompositions and in fact produced fewer total
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Figure 5.5: Decomposition Results a) Maximum Cut Edges, b) Cut-Edge Ratios

cut edges than did block decomposition. Furthermore, the RCB algorithm produced much more uniform
trends than did block decomposition. This is due to the fact that the block decomposition algorithm can suf-
fer from load-balancing problems in cases where the number of grid cells along a coordinate direction is not
evenly divided by the number of processors assigned along that direction. In contrast, RCB always assigns a
nearly equal number of cells to all processors. In the most simple sense, load balance can be measured by
taking the ratio of the minimum to the maximum number of grid cells assigned to any two processors. For
this test case, RCB produced ratios always in excess of 0.994 while block decomposition produced ratios

ranging between 0.73 and 0.89. The load-balance-ratio comparisons are contained in Figure 5.6.

While the maximum number of cut edges provides a measure of the length of time required for the
limiting processor to exchange its data, the issue of communication load balance is more readily assessed by
examining the ratio of the minimum to the maximum number of cut edges assigned to any two processors.
This information is contained in Figure 5.5b. In this figure, a ratio of one indicates that all processors con-
tained the same number of cut edges of a given type. Thus, in contrast to Figure 5.5a, longer bars represent a
more favorable decomposition. Again, RCB generally outperformed the block decomposition for structured
and unstructured cut edges. Note that as the number of processors was increased, the communication imbal-
ance associated with the unstructured edges becomes much more pronounced, and in fact, the ratio drops to

zero for the 64- and 128-node decompositions. This is due to the fact that the interpolation regions are phys-
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ically localized and as processor count increases and the domains become physically smaller, the likelihood
increases that at least one processor possess no cells that are updated via interpolation. Also note that two
processors possessed no cut structured edges for the four-processor block decomposition since, in this
instance, each of the spherical grids was assigned to its own processor and thus no structured edges were cut

on those grids.

5.4.2 Parallel Performance

The parallel speedup and efficiency comparisons for each of the two decomposition approaches on
the three architectures are presented in Figures 5.7 and 5.8, respectively. No two-processor block-decompo-
sition data is presented due to the fact that the block decomposition did not allow cells from two separate
grids to reside on the same processor. From a performance standpoint, because CHARGE was specifically
designed for distributed architectures, both decomposition approaches achieved very good parallel scalabil-
ity. Still, the parallel performance of the RCB method was uniformly superior. In terms of architecture com-
parisons, the efficiencies observed on the Paragon and T3D were very similar and consistently above 90
percent even for a large number of processors on this relatively small problem size. The SP2, because of its

lower interprocessor- network-connection bandwidth, suffered somewhat diminished efficiency. This is not
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Figure 5.8: Efficiency Results: a) Paragon, b) T3D, c) SP2

to say, however, the Paragon and T3D outperform the SP2 in terms of raw execution speed. In fact, the oppo-
site was observed to be true. The SP2 was consistently three-to-four times faster than the T3D and nearly

eight times faster than the Paragon for identical processor counts and decompositions.

One may wonder why the efficiencies and speedups observed for the overset grid case presented here
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are superior to the single-grid results presented in Chapter 4, especially when considering the arguments pre-

sented in the first section of this chapter. This is due to the fundamentally different organization and structure
of CHARGE as compared to SIGMA. The former was targeted from the initial design phase as a code opti-
mized to run on RISC-based parallel architectures while the latter was developed using vector-machine-type

data structures and programming practices. Again, those issues are discussed in more detail in Chapter 8.

5.5 Overset-Grid Decomposition-Study Conclusions

It has been shown using both an analytical approach and through the use of a model problem that the
communications associated with the interpolation phase of an overset-grid calculation can play a significant
role in the parallel performance of the algorithm. The present work focused on using RCB to exploit the spa-
tial locality of the interpolation phase and thereby reduce the amount of information which must be commu-
nicated between processors. This reduction in communication, in conjunction with improved load balancing,
resulted in marked improvements in parallel speedup and efficiency over the block-type decomposition
approach. Care must be exercised when attempting to generalize the results presented here since they can be
very pfoblem specific. Nevertheless, it is apparent that unstructured techniques such as RCB have the poten-
tial of reducing communication overhead and improving parallel performance in overset-grid-based applica-

tions.

5.6 Chapter Summary

The discussion presented in this chapter focused on the analysis and implementation of domain-
decomposition methods for overset grids. Both the analysis and the implementation presented here differs
substantially from previous approaches and represents the first time an unstructured-grid-type decomposi-
tion approach has been applied to overset grids. This chapter, like Chapter 4, concentrated on parallel algo-
rithm development rather than on the numerical issues of the single- or overset-grid FVTD process. Because
the numerical issues associated with single-grid problems form a logical precursor to assessing the numeri-
cal performance of overset-grid cases, the next chapter presents results for the FVSRK2 procedure as

applied to single-grid problems.
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VI. Single-Grid FVTD Algorithm-Characterization Study

In this chapter, the focus shifts substantially from the paral-
lel emphasis of the preceding two chapters. Here, the performance
of the MUSCL-based FVSRK2 algorithm which forms the core
solver contained in CHARGE is addressed. Performance issues of
this chapter deal only with the capability of the method to produce

accurate results on computational problems using single struc-

tured grids. Accuracy is assessed by comparing results obtained

Figure 6.1: Chapter 6 Emphasis

from CHARGE for two different geometries—the cylindrical rod
and the flat plate—to results obtained from other validated numerical methods. Key issues examined in this
study include the effects of grid-cell density, mesh stretching, excitation frequency, and Fourier sampling

period.

6.1 Algorithm Performance Characterization Issues

6.1.1 Issues Examined

Before the performance of the MUSCL-based FVSRK2 scheme employed at the heart of CHARGE
can be assessed in an overset grid environment, it is important that the performance of the method be care-
fully documented for single-grid problems. Weber [132] has quantified performance aspects of the algorithm
using a two-dimensional square cylinder and an oscillating dipole while Shang, et al. [89,92,93,94,96] have
characterized certain algorithm features for waveguides, spheres, dipoles, and an ogive/frustrum missile con-
figuration. Specifically, these authors have examined certain accuracy-related issues pertaining to outer
boundary placement and mesh refinement. Nevertheless, during the CHARGE validation process, discrepan-
cies arose between observed and published results in terms of required mesh densities, and consequently, a
comprehensive study was undertaken in order to quantify the pertinent performance parameters of the algo-

rithm. Those parameters include

* required mesh densities in directions both tangential and normal to the scattering surface,

* mesh stretching effects,




* excitation frequency effects, and

* Fourier sampling effects.

Although several geometries were used to validate CHARGE-including oscillating electric dipoles,
waveguides, spheres, cubes, flat plates, and cylindrical rods—only results from the latter two geometries are
presented here since they had not been previously examined using this algorithm. Results from the other

geometries have been adequately discussed in the above-cited references.

6.1.2 Performance Assessment Metrics

In this chapter, “performance” refers to accuracy rather than speed of execution, and thus it was nec-
essary to determine an adequate metric with which to assess computational accuracy. For this work, the cho-
sen metric was the computed RCS of the scattering body. The choice of this metric requires the
consideration of several important issues. To begin, the RCS of a given body does not provide a measure of
the global accuracy of the solution. This is due to the fact that the RCS is obtained by integrating the charge
and current distributions over a surface which encloses the scattering body. No consideration is made to field
values in other regions of the computational domain. Furthermore, the Fourier transformation of the electro-
magnetic field values necessary for the computation of the RCS introduces an additional source of error dis-
tinct from the errors in the computed field values. Despite these concerns, the RCS is generally the quantity
sought from a numerical simulation. Furthermore, it is the quantity for which experimental and other numer-
ical data is most readily available. For these reasons, choosing the RCS as the performance metric fits the
objectives of this chapter. Because the FVTD methodology requires a new simulation for each incident field
angle, unless otherwise noted, results were generated in the form of bistatic RCS proﬁlesl in order to main-

tain computer run times at acceptable levels.

6.2 Cylindrical Rod Studies

6.2.1 Geometry and Problem Description

The cylindrical rod is a geometry constructed by placing a hemispherical endcap on both ends of a

circular cylinder. This geometry was chosen for the bulk of the grid-refinement and algorithm-characteriza-

1. A bistatic RCS profile is obtained by varying the location of the receiving antenna for a given transmitting
antenna location. This is contrasted to a monostatic profile in which the transmitting and receiving anten-
nas are in coincident locations.
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Figure 6.2: Cylindrical Rod Geometries

tion analysis because comparative MoM data was readily available [6] and because the cylindrical rod forms
the body of the finned missile used in the case study appearing in Chapter 8. For the test cases presented in
this section, the rod is illuminated with a single-frequency, sinusoidally varying incident field which
impinges on the geometry as shown in Figure 6.2. The figure also shows the relative electrical sizes of the
two cases that were examined in order to study frequency issues. Although the results do not depend on the
exact frequency (it is the electrical size of the object that is important), the low- and high-frequency cases

correspond to 500-Mhz and 2-Ghz incident signals, respectively.

6.2.2 Low-Frequency Cylindrical Rod Study

6.2.2.1 Test Case Description and Grid Characteristics

The matrix of computer runs for the low-frequency cylindrical rod (LFCR) study is given in Table 6.1.
A total of 30 cases were examined for grid-refinement-study purposes. Each row of the table corresponds to
six test cases, one for each of the wall spacings listed in the right-most column of the table. Ascending
numerical test-case identifiers within a table row indicate tighter wall spacings in terms of cells per wave-
length (cpA). Grid-cell counts are reported in the table for the radial direction, r, along the axis of the body, 6,

and circumferentially around the body, ¢. In addition, the cpA are reported for the 6 and ¢ directions. The




Grid Cells
Case Number Wall Spacing (cpA)
r 8 (cpA) ¢ (cpA)
LFCRI1 -6 21 15 (8) 11(8) 20, 100, 250, 500, 1000, 2000
LFCR7 - 12 21 21 (12) 15 (12) 20, 100, 250, 500, 1000, 2000
LFCR13 - 18 21 34 (20) 25 (20) 20, 100, 250, 500, 1000, 2000
LFCR19-24 21 43 (25) 31 (25) 20, 100, 250, 500, 1000, 2000
LFCR25 - 30 21 87 (50) 63 (50) 20, 100, 250, 500, 1000, 2000

Table 6.1: LFCR Test Matrix

range of studied mesh densities was designed to test the gamut from below the nominal 10-cpA requirement
typically reported [4,96] to a substantially greater value in order to ensure grid convergence. As is evident
from the table, an extremely wide range of cell spacings in the normal direction was examined since it was

found that this parameter plays a critical role in the accuracy of the computed results.

Because of the relative simplicity of the cylindrical rod geometry, the grids were generated analyti-
cally. The grid was body conformal and the grid lines in the radial direction were everywhere normal to the
body at the surface. No mesh stretching or packing was performed in the 6 and ¢ directions; however, an
exponential stretching function was used in the r direction. Wall spacing was controlled by specifying the
desired distance as an input variable into the grid generation program developed for this geometry. The outer
boundary of the computational domain was fixed at three wavelengths from the body, and 21 cells were used

in the normal direction for all cases reported here!. A cutaway view of a sample grid appears in Figure 6.3.

6.2.2.2 Solution Behavior as a Function of Grid Refinement

The HH- and VV- polarization plane2 RCS results for several selected LFCR cases are depicted in
Figures 6.4 and 6.5. The figures are meant to convey the wide range of solutions obtained with the different
grids and to emphasize the importance of a proper grid-resolution study prior to any production code runs.

Since grid refinements in the normal and tangential directions were observed to produce vastly different

1. Radial direction cell counts in excess of 21 cells were examined when quantifying the mesh stretching
effects presented in Section 6.2.3.
2. HH and VYV polarization planes are discussed in Section 7 of Appendix A.
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results, each of these topics is treated individually in the following sections.

6.2.2.3 Surface-Mesh-Refinement Effects (Fixed Wall Spacing)

The effects of surface-grid refinement for fixed wall spacings of 20, 100, 250, and 500 cpA are pre-
sented in parts a, b, ¢, and d, respectively, of Figure 6.6. Note that even the coarsest wall spacing is twice the
nominal 10 cp) often cited (e.g., [4]) as being sufficient for resolving wave motion. Part a of the figure
clearly shows the algorithm is incapable of resolving the physics of the problem using a wall spacing of 20
cpA regardless of the level of refinement of the surface mesh. In fact, for this level of wall refinement, the
computed solution actually worsens as the surface mesh is refined. Although the solutions for the 25-