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Abstract

Robust parameter estimation is successfully applied to the Mixed Weibull

(seven parameter) using the Method of Minimum Distance and the Method of Maximum

Likelihood. That is, parameters can now be estimated for a mixture of two Weibull

distributions where the true populations are co-located, partially co-located or highly

separated. Both techniques provided very robust estimates that were far superior to current

parameter estimation techniques. Sample sizes as low as ten with mixing proportions down

to 0.1 were investigated.

For the MLEs, innovative bounding techniques are presented to allow consistent

and correct convergence using any reasonable point estimate. The likelihood function is

solved numerically as a non-linear constrained optimization using a quasi-Newton method.

Minimum Distance Estimates (over three hundred scenarios investigated) are

derived for some variation or combination of the mixing proportion and the location

parameter(s), individually and simultaneously (the Anderson-Darling and Cramer-von Mises

statistics were used). In fact, the MDE for the mixing proportion was so effective that

future researchers should consider some permanent combination.

Primary measures of success were based on comparison of CDFs. Mean square

error (MSE) and integrated absolute difference (IAF) between the estimated and true

distributions were measured including confidence intervals.

VII



ROBUST PARAMETER ESTIMATION FOR THE MIXED WEIBULL (SEVEN

PARAMETER) INCLUDING THE METHOD OF MAXIMUM LIKELIHOOD

AND THE METHOD OF MINIMUM DISTANCE

I. Introduction

One common thread in describing the life of a satellite, a billion dollar manufacturing

process or environmental stress screening is the use of statistics and probability to

mathematically model the multitude of characteristics and processes that cannot be modeled

deterministically. The reality is that most characteristics or processes are not known with

certainty, therefore, a good statistical and/or probability model provides the best mathematical

representation. Of course, the ultimate goal may be either to cost effectively manage these

processes or to preclude current system deficiencies in the next generation system design.

Thus, the Department of Defense and the Air Force conducts numerous studies to understand

military systems. One primary Air Force Agency which conducts such studies is the Air Force

Operational Test and Evaluation Center (AFOTEC). While they are chartered to conduct

operational test and evaluation, AFOTEC's agenda includes determining a weapon system's

effectiveness and suitability.

When modeling a system, AFOTEC will collect information such as observed

successes, observed failures and repair data. Unfortunately, statistical models require

numerous observations to build confidence in their accuracy. Because additional observations

usually equate to additional time and money, data is often very limited. Nonetheless, AFOTEC



must draw conclusions based on the data they collect, no matter how small the sample size.

Even in statistics, many functional forms have been developed in an attempt to provide better

statistical and/or probability models. Historically, engineers have used the Weibull distribution

because of its ability to accurately model an infinite number of distributional forms including the

Exponential and Normal Each functional form requires correct estimation of its parameters i.e.

those parameters that best fit the limited data.

The key to success in this discipline is selection of a mathematically correct distribution and

associated parameters based on the observed data. Stating the latter, formally, "the ability to

accurately predict the parameters of a known or hypothesized distribution." In practice, this is

accomplished by using estimators which have been shown to minimize the amount of error between

the observed data and the true system in some meaningful and measurable way. Historically, the

primary means of estimation has been the Method of Maximum Likelihood (thus, the common

reference to Maximum Likelihood Estimation or specifically, Maximum Likelihood Estimates,

MLEs).
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Formal Problem Statement

Over the past decade, engineers expressed the need for robust bi-modal statistical models

to represent a variety of real-world systems and processes. Bi-modal data can be modeled with a

single distribution, but, often the quality of the model is poor. Hence, the introduction of a mixture

of statistical models to represent multi-modality quickly gained popularity as a more mathematically

correct representation. Multi-mode observations are inherent in many fields particularly logistics

where the Weibull distribution is used extensively. Hence, the term Mixed Weilbull to represent a

mixture of two or more Weibull distnbutions (the term Mixed Weibull in this report indicating a

mixture of two Weibulls). Additional applications of the Mixed Weibull include reliability

engineering (bi-modal failure modes for electrical failures), Criminal Justice System (bi-modal rates

of re-incarceration) and a variety of bi-modal medical data. Unfortunately, parameter estimation can

deteriorate rapidly with mixtures of distributions because of the increase in the number of

parameters.

The Method of Maximum Likelihood

The MLEs possess many desirable properties (Cox and Hinkley, 1974; and Wetherill, 1981).

"Under certain general conditions the MLEs are consistent, and have the asymptotic properties of

efficiency, normality and unbiasedness. Furthermore, the MLEs are finctions of the sufficient

statistics if they exist. And, the MLEs of the functions of unknown parameters are the functions of

the MLEs of the parameters (Jaing, 1991)."
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While MLEs enjoy many asymptotic properties, they have proven considerably less

desirable under many common scenarios such as: 1) small or moderate sample sizes; and 2)

distributions which have large number of parameters to estimate such as the Weibull, Gamma or a

mixture of distributions (Dr Moore, 1996). "Suggested estimators for distributions include the

'average' (for the Normal, Poisson, and Exponential), the number of observed values (for the

Uniform), and many other sample-based statistics ( Mendenhall, 1990:370)." Most of these

well-known sample statistics are Maximum Likelihood Estimates (MLEs). While

computationally efficient and possessing many desirable asymptotic properties, MLEs make

several problematic assumptions including: 1) the sample is an accurate representation of true

population; 2) the user knows the correct family of distributions; 3) the desirable properties

hold for small or moderate sample sizes; and 4) the sample contains no significant outliers.

The Method of Minimum Distance

A promising alternative to MLE, Minimum Distance Estimation (MDE) is less sensitive to

these assumptions. Hence, its classification as a "robust estimation" technique. Robust estimation

attempts to protect against minor deviations from underlying assumptions (Rey, 1983). Basically,

the concept of MDE is that better estimates will be obtained by fitting a distribution to the sample

data. While computationally more intensive, the theoretical quality is maximized since these

functions are based on minimizing the distance between the cumulative distribution function (CDF)

of the observed data (empirical distribution function, EDF) and the hypothesized (in this case,

estimated) cumulative distribution function (CDF). As the number of observations grows larger, the

EDF approaches the true population CDF.
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In statistical linguistics, the observed data such as observed failures are called the 'sample.'

Specifically, parameters are estimated iteratively until the 'error' (between the EDF and estimated

CDF) is minimized In this context, accuracy is defined as the ability to minimize 'error.' Primary

measures of accuracy are a class of goodness-of-fit statistics which measure the distance between

the estimated cumulative distribution function (CDF) and the EDF. Formally, the distance between

the estimated CDF and the EDF are minimized using numerical analysis on the mathematical

functions developed for goodness-of-fit tests. The type of statistic is determined by the user's focus

or assumptions that need to be overcome. Over thirty years ago, MDE recorded as much as a one

thousand percent improvement over MLE ( Dr Moore, 1996).
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Research Objectives

The objective of this research was to investigate the application of parameter

estimation methods for the seven parameter Mixed Weibull. First, due to their desirable

asymptotic properties, the Method of Maximum Likelihood was implemented. Second, the

Method of Minimum Distance was applied since parameter estimation might be enhanced

particularly for small sample sizes. This research extends previous work in two ways.

Specifically, the Method of Minimum Distance and the Method of Maximum Likelihood were

extended to the more useful seven parameter Mixed Weibull. Previously, MDE had not been

applied to the Mixed Weibull. Also, MLEs have only been derived for at most the five

parameter Mixed Weibull.



II. Literature Review

This research extends to several key areas including the following: 1) the history of

MDE; 2) the application of MDE and MLE to the Weibull distribution; 3) the application of

MLE to a mixture of distributions; 4) the application of MDE as a robust estimation technique;

and 5) finally, the recent progress with the Mixed Weibull A unique and important history

associated with each key area is included after a general review of the larger scope, parameter

estimation for mixtures of distributions. Since the Method of Minimum Distance and the

Method of Maximum Likelihood were born out of non-Mixed Weibull environment, the latter

part of this discussion is devoted to these topics.
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Parameter Estimation for Mixtures of Distibtions

Research on the mixed distribution began in 1894 with Karl Pearson who constructed

moment estimators for the five parameters of a mixture of two normal distributions. Rao (1948)

applied an iterative method to the maximum likelihood equations for the special case where

common variance was assumed for two normal subpopulations of the mixture. Kao (1959)

utilized Weibull probability paper and graphical techniques to obtain the parameter estimates for

a failure model involving a mixture of Weibull populations. Hasselblad (1966) dealt with a more

general case where the number of sub-populations was greater than or equal to three. He

employed the method of steepest ascent and Newton's method to solve for the MLEs of normal

distributions. Bhattacharya (1967) developed a method of resolution of a distribution into

normal sub-populations when the sub-population distributions were well separated (contained no

overlap). Tan and Chang (1972) derived the asymptotic covariance matrix of the moment

estimators and the information for a mixture of two normal distributions assuming common

variance. Dick and Bowden (1973) primarily dealt with the maximum likelihood equations for

the case when independent sample information was available from one of the subpopulations.

Peters and Walker (1977) developed an iterative scheme for obtaining the MLEs of the

parameters of a mixture of two normal distributions. Various researchers have viewed the

parameter estimation problem under a different setting. Hosmer (1973) researched Hasselblad's

iterative MLEs for a mixture of two normal distributions and made observations that the

estimates tended to have smaller variances when the component samples constituted even as

little as ten percent of the total sample. In an effort to preclude the intensive computational

effort, John (1970) proposed an alternative model based on the product of normal distributions,

a



each one raised to the power of one or zero. Hill (1963) investigated the estimation of the

mixing proportion (p). He derived a general power series expansion for the information and

considered various approximations for the case of two normal distributions. They optimized the

mixing proportion by maximizing the expected value of the function. Blischke (1964) attempted

various estimation procedures for a mixture of binomial distributions. Rider (1961) investigated

the method of moments for a mixture oftwo exponential distributions. He extended his results

to other mixed populations including Poisson, binomial and Weibull mixtures. For the Weibull

mixture, he assumed that the shape parameters were known. Cohen (1967) extended Rider's

work by obtaining moment estimates for a mixture of two normal distributions. He assumed

common variance for both sub-populations. Since then a considerable amount of work has been

devoted to this area, but specifically devoted to a mixture of normal or exponential distributions,

e.g. Hasselblad (1966), Day (1969), Wolfe (1970), McLachlan and Jones (1988), Ashour

(1985) and Cheng, Fu and Sinha (1985).

Falls (1970) attempted to find the five parameters of a two-Weibull mixture by the

method of moments. Unfortunately, he could not solve the resulting system of five equations.

Later, Cran (1976) gave some theoretical bases to support Kao's procedure resulting in a well-

known and commonly used graphical procedure called the Kao-Cran' graphical estimation

method. Olsson (1979) directly searched the maximum of the log-likelihood function of the

Mixed Weibull distribution through the Nelder-Mead Simplex Procedure. In a follow-on effort,

Jensen and Petersen (1982) developed another graphical procedure for parameter estimation of a

two-Weibull mixture when the two sub-populations are well separated. Cheng and Fu (1982)

proposed a weighted least squares method for estimating the parameters of a mixture of two
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Weibulls when the data are grouped postmortem. Sinha (1986) gave an iterative procedure to

obtain the MLE of a two-Welbull mixture for postmortem data. The approach is extended from

the approach of Mendenhall and Hader (1958) which developed the MLE of a Mixed

Exponential distribution.

The major works closest to this study are those of Kaylan (1979), Kaylan and Harris

(1981), Mandelbaum (1982) and Mendelbaum and Harris (1982). Similar to Hasselblad's (1969)

scheme, Kaylan developed an iterative procedure for solving the likelihood equations of the

likelihood function of a mixed Weibull distribution when all n times to failure are available. The

procedure is a typical fixed point iteration procedure. While it has been proven that the direction

of the two points generated from the two successive iterations is in the direction of increasing the

log-likelhood function, there is no guarantee that there will be actual improvement. Thus, a

secondary rule must be incorporated to check actual improvement. Kaylan also developed a

second algorithm based on the second partial derivatives of the likelihood function with respect

to the mixing weights. After Kaylan's work, Mandelbaum (1982) developed algorithms for the

progressive censoring sample for non-postmortem and postmortem cases.

Since then significant research has been conducted for a variety of reasons including the

appropriateness of Welull distribution to the fields of reliability, environmental stress screening

and other bi-modal data. In 1991, Jiang performed extensive research to support reliability

engineering, "use of the Mixed Weibull as a statistical model for the lifetime of units with

multiple modes of failure." Both graphical and numerical methods were developed. An

algorithm is successfully applied to solve the MLE for Mixed Weibull distributions where the

number of sub-populations is known. The algorithms for complete, censored, grouped and

10



suspended samples with non-postmortem and post-mortem failures are developed accordingly.

The next year (1992), Jiang and Kececioglu published a graphical approach for modeling failure

data by a Mixed Weibult A majority of his effort focused on graphical analysis of a mixture of

two Weibull distributions including parameter estimation. He derived a variety of classes based

on common properties including extensive graphical properties. He also investigated the

applicability of the two existing methods of graphical parameter estimation (Kao-Cran and

Jensen-Peterson methods). In 1994, Kececioglu extended their research providing a method to

estimate parameters of the Mixed Weibull for burn-in data using a Bayesian estimator. Later, in

an effort to clarify graphical parameter estimation, Jiang and Murphy (1995) published research

on an improved graphical technique. In that same year, Jiang and Kececioglu also investigated

and published a methodology for parameter estimation from censored data via the Method of

Maximum Lilcelihood. The algorithm follows the principles set forth by Mandelbaum using his

Expectation and Maximization algorithm, and it is derived for both the postmortem and non-

postmortem data. Finally, Pohl (1995) demonstrated the utility of the Mixed Weibull in

Environmental Stress Screening (ESS). That is, ESS was employed to reduce, if not eliminate,

the occurrence of early field failures. Specifically, he developed stress screening strategies for

multi-component systems with Weibull failure rates.
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Minimum Distance Estimation (MDE)

Many experts in the field of statistics categorize MDE as a "robust estimation"

technique. It is a non-classical approach attempting to improve traditional estimation

procedures where the procedure attempts to protect against minor deviations from

underlying assumptions (Rey, 1983). The following is a brief history tracing MDE as a

robust technique quoted from Gallagher (1990):

The term robustness was first proposed by Box in 1953. In 1970, six

prominent statisticians spent a year developing and testing seventy robust

estimators for the location parameter of symmetric distributions (Andrews,

1972). Of course, these early methods focused on limited problems such as

symmetric PDFs or estimation of only the location parameter. Eventually,

these methods were extended to estimation of the PDF shape and location

parameters (Parr and Schucany, 1980:616)."

The following articles, quoted from Benton-Santo (1986), combine to provide a

brief history and prove the validity of the Method of Minimum Distance:

The origin of the Method of Minimum Distance starts with

Wolfowitz who published two papers in the 1950's. He developed the theory

and proved the consistency of the estimates. Later, Matusita (1959) proved

the consistency of MDE with other distance measures. Sahler's (1970) paper

12



proves conditions for the existence and consistency of MDEs. Hobbs,

Moore and James investigated MDE for the three parameter Gamma (1984).

Varying only the location parameter, James (1980) demonstrated superiority

of MDE over MLE for the Gamma. In the same year, Hobbs, Moore and

Miller (1980) successfully applied the method to the three parameter

Weibull. Miller found similar results for a limited class of the two parameter

Weibull. Also, Parr and Schucany (1980) demonstrated MDE by estimating

the location or mean of the normal distribution. Daniel found improved

estimates for the t distribution (1980:12).

Minimum Distance Estimation continued on various distributions including the

normal (Eslinger, 1990), Exponential and Weibull. Perhaps, the most pertinent and

extensive research was conducted-by Gallagher andMoore-in_ 1990- Using MDF. on a

Weibull distribution, they evaluated several MDE methods compared to the MLEs.

Gallagher's results indicated that MDEs were superior to the MLEs under various

conditions particularly when the minimum distance estimates were derived for the location

parameter only, and for all three parameters simultaneously. Gallagher's research represents

one of few that did not reduce the three parameter Weibull to a two parameter Welbull and

he may be the first to derive MDEs based on all three parameters simultaneously.

In early research on mixed distributions, Woodard, Schucany, Lindsey and Parr

(1984) conducted a comparison of MDE and MLE for estimating the mixing proportion for

a mixture of two normal distributions. Results indicate that MLE was superior to MDE

13



when component distributions are actually normal, while MDE provides better estimation

when there are symmetric departures from normality. When component distributions are

not symmetric, however, it is seen that neither of these normal based techniques provide

satisfactory results. For a mixture of two normal and two exponential, Benton-Santo

(1986) developed and compared the Method of Moments and quasi-clustering techniques.

14



Maxinm likehlood Estirmion (MLE)

Numerous texts document procedures for deriving MLEs for the Weibull

distribution (Banks and Carson,1984:p 373). To date, most applications and research

reduce the three parameter Weibull to a two-parameter Weibull by means of a simple

translation of the coordinate axis by a distance approximately equal to the first order

statistic so the location parameter is equated to zero. This translation, as Harter and Moore

discovered in 1965, greatly simplifies calculations particularly for parameter estimation.

With a single Weibull, the translation can be performed without loss of accuracy. However,

for a Mixed Weibull, this procedure, when applied to both distributions simultaneously, can

seriously undermine parameter estimation if the true location parameters are not the same,

i.e. do not start at the same location on the x-axis. There are a few cases where the location

parameters are the same or this assumption can be made without consequences, i.e. does

not seriously degrade parameter estimation. When this assumption is made for a mixture of

two Weibull distributions, the problem is reduced to a five parameter Mixed Weibull (from a

seven parameter Mixed Weibull since the true mixture of two Weibulls consists of seven

parameters by definition).

Nonetheless, Kaylan and Harris (1981) derived MLEs for the first Mixed Weibull

and Mixed Exponential. To simplify the problem, they reduced the inherent seven

parameter Mixed Weibull to a five parameter Mixed Weibull. Even so they noted, "the

problem of obtaining the MLEs for the parameters in mixture models presents considerable

difficulty due to the complexity of the Log-likelihood function..."

15



As they discovered, prior to their work, little research was conducted on a mixture of

Weibull distributions:

Some research was conducted by Hasselblad who developed an

iterative scheme to obtain MLEs for a mixtures of exponential-family

densities (1969). In 1971, Oppenheimer extended Hasselblad's research to

various forms of censoring. For the Mixed Weibull, the only example for

parameter estimation was Kao who developed a graphical technique for

estimating parameters (1959)." This technique opened the door to many

researchers that wanted to use a mixture of two Weibulls. While the

technique proved useful, the method provides only crude estimates.

Since then, Mandelbaum (1982) extended Kaylan's work to progressively censored

samples including postmortem and non-postmortem cases. However, since all research to

date assumes that the distributions are co-located (five parameter mixed model), a large

number of researchers have sought an improvement on the current method due to its

inflexibility in dealing with mixed distributions that are moderately separated or well

separated. That is, for the Mixed Weibull, a seven parameter distribution is desired.

16



III. Methodology / Research Approach

Specifically, this research compared several different parameter estimation methods for the

seven parameter Mixed Weibull (ref Table 1). One of the parameter estimates was based strictly on

the Method of Maximum Likelihood while a majority were based on the Method of Minimum

Distance. Next, the necessary background is given including basic definitions and notation. The

methodology used to derive the Minimum Distance Estimates (MDEs) is presented. Finally, the

algorithm used to solve the Maximum Likelihood Estimates (MLEs) is given. This section begins

with an executive overview of the methods evaluated for this research that tracks well with the

organization of the results and many of the appendices.

Stochastic Nature of the Mixing Proportion

Unfortunately, in the real world of bimodal populations, the mixing proportion is not known

with certainty. The mixing proportion is uniformly distributed from zero to one, p-U(0,1). The

uniformly generated mixing proportion dictates the number of points generated fiom each

population. Specifically, a random saample is generated from a uniform (0,1) distribution. The

uniform random samples that exceed (do not exceed) the true mixing proportion dictate the number

of Weibull samples generated from each population. Therefore, the proportion of the actual number

of Weibull sample values generated and the true mixing proportion were often not the same.

17



Background

Weibull probabilift densit function (P")D :

~(x;~) (~)___ - .xp-Equation (1)" x;oj,= j t J exp ij a o ,

(x>8j; 10j,81,r > 0)

where Oi a parameter vector ie. Oj (j, ,)

(3j is the 'shape' parameter, Tb is the 'scale' parameter, is the 'location' parameter)

For example, let rj = 1 and 8 =0, several common functional forms for values of 3 are:

fxiQ Xi 0-3-B-
f3x

i

o 
Xi

Figure 1. Preview of Weibull Probability Density Functions (PDFs)
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Mixed Weibull PDE Often data is not unimodal but bi-modal. In this case a mixture of

two Weibulls (Mixed Weibull) can be used. The Mixed Weibull is formally expressed as a

mixture where each PDF is weighted by the mixing proportion, p:

2

g(x;a) = pfj(x9o,) Equation (2)
j=

1

2

where 2 pj = 1 and a = (01, 02, p)
j=!

For example, let g(x) = p*fl(x) + (1-p)*f2(x)

p :=0.5 =0 2 fl(x) = -

P2 =4 8210 n : 2  f2(x):= 0 ifx<1O

2 (x-)2 .ex -x- 2 otherwise

fl(x.) \

g2(xi) 0. 1-I , o.. ,.- . -

00 2 4 6 8 10 12 14

Xi

igur 2. PDF for a mixture of two Weibulls
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Cumulative Distribution Function. The cumulative density function (CDF) for the

Weibull follows

• F(x; 0j) = I - exp( - ((x -85) / Tl)O3  Equation (3)

Therefore, the CDF for a mixture of two Weibull distributions follows

2

G(x, a) = ZpjFj(x; 0) Equation (4)
j=l

where p is known a the mixing proportion and where a = (01, 02, p)

For example, let

p 0 .5 8 1 := 0 1 1 : 2 I = 1 F ( x) = 1- e (- - 1 -

62:=10 i12 =2 02=4 F2(x) 0 if x 10

e -exf 82)02 otherwise

1-

F1- G(x) = pFl(x)I + I(l-p)F2(x)I

F2- 0.5

G /

00 2 4 6 8 10 12 14

x i

Figure 3. Mixed Weibull Cumulative Density Function
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Minimum Distance Estimation (MDE). Minimum distance estimation was so named

because the distribution parameters selected minimize the distance between the

hypothesized distribution (in this case the estimated distribution) and the sample EDE The

measure of distance is determined by goodness-of-fit statistics which quantify the difference

between the Empirical Distribution Function (EDF) and the estimated Cumulative

Distribution Function (CDF). There exists a variety of goodness-of-fit statistics that weight

the discrepancies between the EDF and CDF differently. For example, the Mixed Weibull

EDF and CDF might look something like the following chart where the estimated CDFs are

represented by straight lines. MDE would attempt to minimize the distance between the

estimated CDFs and the sample data:

95.0- m_
90.0

70.0 , .. - L... .

50.0 . ...

-0 10.0-

C)

5.0 -

0.5 .....

0.1.
1.00E-3 1.00E-2 .10 1.00 10.00 100.00 1000.00

Tme

Mixed Weibull Cumulative Distribution Function
on Weibull Probability Paper

Figure 4. Philosophy behind Minimum Distance Estimation
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Mettt odfMinumDistaite

Because parameters are selected to minimize the distance between a hypothesized

distribution and the empirical distribution (distribution based on the sample observations or

sample data), the name minimum distance estimation is given. The 'distance' is measured in

several forms referred to as goodness-of-fit statistics. That is, the statistic quantifies the

difference between the Empirical Distribution Function (EDF) and the hypothesized

(estimated) Cumulative Distribution Function (CDF). The EDF is based on the sample,

arranged in increasing order (ref Figure 4). The concept of minimum distance estimation is

that better estimates will be obtained by fitting the distribution to the sample data. That is,

the parameters of the estimated CDF are adjusted such that the smallest possible 'distance'

remains between it and the data.

While applying MDE, one or more parameters can be estimated. This technique has

also evolved to include simultaneous estimation of more than one parameter and sequential

estimation of one or more parameters. Based on previous research on the Weibull

distribution (Gallagher, 1990), the most promising parameters to estimate via minimum

distance were the location parameter (6) and the mixing proportion, p. In general, MDE

assumes that an initial point estimate is available. The more accurate the point estimate, the

better the MDE. Primarily due to their desirable asymptotic properties, this research assumed

that the MLEs provided the best initial point estimate. Hence, MLEs were used as initial point

estimates for the MDEs.

Given the MLE, a line search was conducted in the direction of decreasing "goodness of fit"

statistic to find an interval that contained the minimum. Within this interval, the "golden search
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(GS)" algorithm was applied for the same reasons as outlined by Gallagher (Gallagher, 1985:

pp.25-28). The goodness-of-fit statistics were assumedto be unimodal with respect to a specific

parameter. Finally, for MDE based on one parameter of a multi-parameter distribution such as

the Mixed Weibull, the final MDE is calculated by re-estimating the MLE with the derived MDE

as a fixed parameter (reference Figure 5). This is known as a refinement step.

Refinement
Initial - fix MDEs

Estimate - recalculate

> 1MLEl MDE .- IMLE >

Figure 5. Basic Minimum Distance Estimation Process

For the seven parameters of the Mixed Weibull, some parameter estimation methods

required several iterations of the Basic Minimum Distance Estimation Process. In general, the

number of iterations depends on the method selected (Table 1). For example, since there were

two location parameters (one for each PDF), MDL required two iterations whereas MDE on the

mixing proportion required only one iteration. Based on the basic MDE process, there are many
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variations on the same theme which were investigated. The key, however, to successful

parameter estimation is the correct selection of"goodness of fit" statistics.

Robustness and Goodness-of-Fit

In this context, the EDF is a step function, calculated from the sample, which estimates

the population distribution function. EDF statistics are measures of the discrepancy

between the EDF and a given distribution function, and are used for testing the fit of the

sample to the distribution. In this research, the type of distribution was specified as Weibull,

but the distribution contained parameters that were estimated from the sample.

"Suppose a given random sample of size n is xl, x2, ... , x. and let x(l), X(2 ), ... , X(n) be the

order statistics; suppose further that the cumulative distribution function (CDF) of x is

F(x). For the present and in most of this chapter we assume this distribution to be

continuous. The empirical distribution function (EDF) is Fn(x) defined by

F,(x) = (number of observations < x) / n ; -o <x <oo

More precisely, the definition is

F(x) = 0, x < x{1)

F,(x) = i/n, x~i) < x < x(,+,), i = 1, ... , n-1

Fn(x) = 1, X(,) < x

Thus Fn(x) is a step function, calculated from the data. As x increases, the EDF takes a

step up of height 1/n as each sample observation is reached. For any x, Fn(x) records the
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proportion of observation less than or equal to x. We can expect Fn(x) to estimate F(x), and

it is in fact a consistent estimator of F(x). As n -> oo, I F,(x) - F(x) I decreases to zero with

probability one." (D'Agostino and Stephens, 1986: p97-98)

The goodness-of-fit statistics measure the discrepancy between two distributions.

Recall that for MDE, the distributions utilized were the estimated CDF and the EDF. The

measured difference between them constitutes the 'statistic'. Two were selected for this

research based on their previous success: the Cramer-Von Mises and the Anderson-Darling test

statistics.

Cramer-von Mises. Let K and L represent two cumulative distributions and 'W a

weighting function, the theoretical CVM is equation (5) (Parr and Suchany, 1984:616):

CVM(K, L) = J[K(x) - L(x)] 2 * W(L(x))dL(x) Equation (5)
-00

where the weighting function is a constant equal to one, W(x) = 1
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When the weighting function is a constant equal to one, W(x) = 1, the CVM formula

becomes the Cramer-von Mises statistic. When K(x) is an empirical distribution, the

computational formula is equation (6) where F(xyI)) is the estimated distribution (Stephens,

1980):

n

CVM D[zi - (2i - 1) / 2n]2 + (1 / 12n) Equation (6)
i=1

where 4= F( x( i)) for i = 1,2, ... , n

The Anderson-Darling statistic is derived by increasing the weights for the distribution

tails as in equation (7) (Anderson and Darling, 1954: p 767):

W(x) = 1 / [F(X) * (1 - F(x)] Equation (7)

The computational formula is equation (8) (Stephens: p731)

AD =(-1/n) (2i - 1)[ln(zi) + ln(1 - zi)] - n Equation (8)
i=1

wherez= F(x(i)) for i = 1,2, ... , n
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Metlod ofMwnm Lkelhood

The method of maximum likelihood selects as distribution parameters those values that

maximize the likelihood function of the observed sample. The likelihood function of the

sample is described by the joint density function (Mendenhall, Wackerly, and

Schaeffer:p362). Therefore, the probability of the observed sample is maximized by the

choice of the distribution parameter values. That is, choose as estimates those values of the

parameters that maximize the likelihood of the sample. The likelihood of the sample, L =

L(x1,x2,...,xQ), is defined to be the joint density of xl,x2,...,x0 . (Mendenhall, Wackerly, and

Schaeffer, p402). Since the natural logarithm of L is a monotonically increasing function of

L, both L and the natural logarithm of L are maximized by the same parameter values.

a. Background

Let f= {f](x;0j), j = 1,2,...K} (where K is the number of Weibull distributions

represented in a mixture) be a family of probability distribution functions (PDFs) where 0 =

(Pj , , ) denotes the parameter vector. Recall the Weibull probability density function

(PDF):

repeat Eqn (1)

(x> ; and pj,, > 0)

where 0 is a vector of parameters ( Th, m )
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Also, recall the Mixed Weibull is formally expressed as mixture where each PDF is weighted

by the mixing proportion, p:

2

g(x;a) = 'pI(x;O0) repeat Eqn (2)
j=l

2

where cc = (01, 02, p) and where Ep = 1
j=l

Also, recall the Cumulative Density Function (CDF):

F(x) = I - exp( - ((x - 8i ) /Tl)l repeat Eqn (3)

Therefore, the mixed CDF is

2

G(x, 0)= 1"pjFj(x;t6) repeat Eqn (4)
j=

1

Thus, G(x; 0) is obtained as a convex combination of the subpopulation CDFs {F(x; Oj)}

with mixing proportions given by the vector p. For the complete sample case, the log-

Likelihood function is expressed as

N

LL(a) = in g(xi; a) Equation (9)
i=1

where a = (01, 02, p), N denotes sample size, and x4 is the ie observation.
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b. Formal Statement of the Problem

We now wish to find the values of a that maximize LL. Consistent with classical

optimization methods, the algorithm maximizes LL by finding the gradient and solving for

the unknown parameters by setting the gradients equal to zero (ie. finding the roots).

Recall that the gradient is the first derivative that represents the slope of any function.

Those parameter values that result from setting the functions slope equal to zero are the

roots of the function. Geometrically, we refer to such a critical point as the maximum or

minimum depending on the convexity or concavity of the function, respectively. Since the

natural logarithm of L (In L) is a monotonically increasing function of L, both In L and L

will be maximized (Mendenhall, 1990:p402). "In estimation problems related to mixtures,

one has to take into account a set of constraints in addition to the objective function. That

is, mixing proportions have to lie between 0 and 1, and there may exist other constraints

related to the parameters of subpopulations. It is observed that the constraints are generally

of a linear type, and hence the MLE problem can be formulated as a mathematical

programming problem with non-linear objective function and linear constraints (Kaylan and

Harris, 1982):"

max LL(a)

aCS

K

where S= {al'pj = 1, a >= 0) Equation (10)
j=l
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c. Solution Approach

As Kaylan and Harris (1982) noted for the five parameter Mixed Weibull, the problem of

obtaining the MLEs for the parameters in mixture models presents considerable difficulty due to

the complexity of the likehaood function (objective function, equation 10). Kaylan and Harris

were successful using a cormmon rule of substitution which could not be extended to the seven

parameter objective function (likelihood function, Eqn 10). Thus, the MLE was solved as a non-

linear constrained optinization problem using a FORTRAN 77 based IMSL subroutine.

The initial outstanding issue with this approach is the fact that there is no global maximum.

Even for the five parameter Mixed Weibull, there exists multiple local maximum for the

likelihood function (Kaylan and Harris, 1981). As Redner and Walker (1984) pointed out,

there is currently no adequate, efficient and reliable way of systematically determining all

local maximum. Fortunately, regardless of the number of local minima, most problems can

be solved correctly if an adequate initial guess is provided. The greater the number of local

maxima, the greater the demand for a more accurate initial guess. In theory, one desires to

reduce the number of local maxima which allows a less accurate guess to converge to the

correct solution. This is particularly true in the stochastic environment.

Obviously, transition to a seven parameter log-likelihood function makes the response

surfice more complex (Figure 6). However, based on observations from the response

surface and contour plots, the response surface for the seven parameters did not change

from the response surface for five parameters if and only if a conditional statement was

employed as discussed below.
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The conditional statement is consistent with traditional probability theory in that there is

no such thing as a negative probability. For the Weibull distribution, this translates to data

values less than the location parameter. Those data values less than the location parameter

(usually near the first order statistic for a single distribution) are undefined and need to be

excluded in the calculation of the likelihood function and the gradient particularly in the

calculation of the MLEs. This is standard practice with a single distribution. In

mathematical terms, this is known as defining the proper interval for the function of interest.

What is unique to the objective function of the mixed distribution is the fact that the interval

is undefined for different parts of the objective function (hence, related gradient) because

the objective function is composed of two probability density functions. Thus, equation (9)

is modified slightly to look like equation (11):

N

LL(c) = Z In [ p f1(xi; 0) + (l-p) f2(xi; 02)] Equation (11)
i=8'

where = 1 for PDF1 and j = 82 for PDF2;

and 81 and 82 are the location parameters of PDF1 and PDF2, respectively.

After implementation of the conditional statement, the response surface was often

unimodal with respect to each parameter except under extremely poor guesses (Figure 7).

Hence, data values less than the location parameter are labeled as irrational values as

opposed to rational values. This advantageous scheme may only be possible when the true
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gradient is used in the calculation of the MLE since only the true gradient equations allow

exclusion of the values less than their respective location parameters.

Retaining irrational values results in a response surface that in many cases will not

allow convergence or requires a highly accurate guess that typically is not available. Hence,

a conditional statement was employed to exclude irrational values in the likelihood function

to obtain a better response surface. Now, those previously established techniques

developed to solve the MLE for the five parameter Mixed Weibull were applied successfully

to the seven parameter Mixed Weibull. Specifically, this methodology assumed that a

reasonable initial estimate was available. Mendelbaum (1982) recommended a graphical

approach. By starting at this initial estimate, a quasi-Newton method was successfully

applied.
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Figure 6. Irrational Response Surface and Contour Plot
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d. The Gradient of the Likelihood Function

We now discuss the development of an efficient algorithm to solve the maximization

problem. For the sake of simplicity, we henceforth employ fij, gi, and LL instead of

(xi; 1j,Tb, 8j), gj(xj; a) and LL(a), respectively. Taking the gradient of In L, the following

equations are obtained:

N

aLL/aj = E (1/g)(pj)( fi/ap) ( = 1, 2)
i=1

N

aLla% = 1 (l/gi)(p)X a^-nj) (j= 1,2) Equation (11)
j=i

N

= (1/gi)(,)( af -) 0(= 1,2)
j=!

N

aLL/pj = (1/gj)(tj - fik) (j= 1, 2, K-I)
i=3
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e. Description of the Quasi-Newton IMSL subroutine

The following is a synopsis of the algorithm (IMSL Manual, Math Library, Minimization

with Simple Bounds, subroutine DBCONG, 1990): "The algorithm used a quasi-Newton

method and an active set strategy to solve maximization subject to simple bounds on the

variables. From a given starting point (x), an active set (IA), which contains the indices of

the variables at their bounds is built. A variable is called a 'free variable' if it is not in the

active set. The routine then computes the search direction for the free variables according

to the formula

d =-B-gc

where B is a positive definite approximation of the Hessian, and gC is the gradient evaluated

at x; both are computed with respect to the free variables. The search direction for the

variables in IA is set to zero. A line search is used to find a new point xe,

x = x)e + Xd, X E(0, 1)

such that

f(xe) - f(xc) + acgT d, a E (0,0.5).
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Finally, the optimality conditions are checked:

II ( )1_ ,L<Yi<ui

g(& ) < 0, & = ui

g(xi) > 0, x i= li

where E is a gradient tolerance

When the optimality is not achieved, B is updated according to the following formula:

B -- B - [( BssTB ) / (sTBs)] + [(yyT)/(yTs)]

where s=xe-xC and y=g-gC. Another search direction is then computed to begin the next

iteration.

The active set is changed only when a free variable hits its bounds during an iteration, or the

optimality condition is met for the free variables but not for all variables in IA, the active set. In

the latter case, a variable which violates the optimality condition will be dropped out of IA. For

more details on the quasi-Newton method, see Dennis and Scbnabel (1983). For more detailed

information on an active set strategy, see Gill and Murray (1976)."
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Evaltion Crit

To evaluate the nine parameter estimation methods, Monte Carlo simulations were

conducted. The extreme cases (selected for this research) for the Mixed Weibull are the

following: 1) the case where there exists a large amount of overlap between the two

populations; and 2) the case where there is no overlap. In the former case (Figure 8. Non-

separated (NS) Mixed Weibull), the maximum overlap occurs when the two populations

share the same location parameter and a common shape or a common scale parameter. The

non-separated (NS) case was evaluated where the populations shared a common location

parameter (81 = 62 = 5) and a common scale parameter ( 111 = 111 = 0.5). Of course, then the

two populations must have different shape parameters ( e.g. 01 4, P2 = 1).

p =0.5 P,=4 02 :1 8 =5 82 -5 q,=0.5 q2 =0.5

g(x) :=((p).fl(x)) + ((1- p).f2(x))

I I I

12 (x,)/

05.5 6 6.57

X.

Figure 8. Non-separated (NS) Mixed Weibull
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In the latter case (Figure 9. Well-separated, WS, for the Mixed Weibull), the Mixed

Weibull can be thought of as a combination of two independent Weibull populations. For a

single Weibull, the MLEs are scale and location invariant (Antle, p2 5 1). That is, the MLEs are

equal variant with respect to the scale and location parameter. Therefore, only one set of

location ( 8 = 5, 62 = 5 ) and scale ( 'qI = T12 = 0.5) parameters were used for the well-separated

cases. The shape for the well-separated (WS) populations were tested at two levels (1 = 32 3

and P1 = 02 = 0.9). All variations were evaluated at four sample sizes ( n = 10, 20, 40, 100).

p:=0.5 01 =3 02i=3 &1=5 82 =10 qIl:=0.5 q2 =0.5

q q"1 1 \12 q2 12

g(x) :=((p)-fl(xl)) -+ ((I1 - p).f2(x2))

3.0 1I I

fl(xi) A

,(xi) f I

- I I I I
0

5 6 7 8 9 10 11 12

5 x. 12

Figure 9. Well-Separated (WS) Mixed Weibull



The primary criteria fials in one general category, population distribution criteria. The

population distribution criteria showed how well the estimated distribution matched the TRUE

distribution usually measured in terms of the mean square error (MSE). Within the general

category are two measures: 1) the integrated mean square error; and 2) the integrated absolute

error. Also, for each of these criteria, the percentage of times each estimation technique was

better than the initial MLE was calculated.

Reference to the TRUE parameters means the parameters used to generate the data

sample. The TRUE parameters are the population parameters that statistics are attempting to

make inferences about. ESTi represents a set of parameter estimates obtained by one of the six

methods for the ith data set.

Integrated Absolute Difference Between CDFs. This measure shows the "area"

between the estimated CDF and the TRUE CDF. The numerical integration algorithm used was

Gauss-Legendre Quadrature. This algorithm worked in three steps: the integral was

transformed to the range [-1, 1], evaluated at the roots of the Legendre polynomial, and

then the weighted summation of evaluations was calculated. The transformation was

Equation (12) (7: 168). The transformation follows:

b +1

Jf(x)dx = (1 / 2Xb - a) Jf[(1 / 2Xb - a) * t + b + a)]dt Equation (12)
a -1

where a was the lower of the two location parameters and

b was such that both CDF values exceed 0.999
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A 48 degree Legendre polynomial was used with roots and weights as listed in

Handbook of Mathematical Functions (1 : 917). The function [ absolute values of[( F (

TRUE, x) - F ( EST, x) )] was calculated at each of the roots. The numerical evaluation was

completed by applying Gauss' Formula, Equation (13) (1: 887).

+1 48

ff(x)dx = Zwf(x,) Equation (13)
-1 i=l

Since the objective of statistical estimation is to predict the population distribution from which

the sample came, this criterion was a true measure of success.

Integrated Squared Differewce Betwen CDFs. This test approximated the

theoretical Cramer-von Mses statistic. The same Gauss-Legendre Quadrature numerical

integration was used. Instead of "absolute value" between CDFs as used previously, the

"squared" difference was used.

Percentage of imes Better

The final evaluation criteria were the percentages of times that the minimum distance

estimates were '"better" than the initial MLE, where "better" was determined by the previous

criteria. This criteria ensured that a few extremely poor estimates could not skew the results

against a generally good estimation technique.
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Executive Oym~iew

An overview of the methods is presented in Tables la,b,c. For several reasons (see

justification), slightly different methods were used based on the nature of the data ( for a

description of non-separated (NS) versus a well-separated (WS) Mixed Weibull see Figures 8

and 9, respectively, Evaluation Criteria).

Table la. Basic Parameter Estimation Cycles

MLE Maximum Likelihood Estimates
MDE Minimum Distance Estimates

a. Minimum Distance via the Location Parameters, 8
MDLA The Minimum Distance for the location parameters using the

Anderson-Darling "goodness-of-fit" statistic and maximum
likelihood estimates for other parameters (sequentially, 81 then 82).

MDLC The Minimum Distance for the location parameter using the Cramer
-Von Mises "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters- (sequentially, 61 then 82).

MDLSA The Minimum Distance for the location parameters using the
Anderson-Darling "goodness-of-fit" statistic and maximum
likelihood estimates for other parameters (simultaneously).

MDLSC The Minimum Distance for the location parameter using the Cramer
-Von Mises "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters (simultaneously).

b. Minimum Distance via the M Proportion D
MDPA The Minimum Distance for the mixing proportion using the

Anderson-Darling "goodness-of-fit" statistic and maximum
likelihood estimates for other parameters.

MDPC The Minimum Distance for the mixing proportion using the Cramer
-Von Mises "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters.
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* Table lb. Non-Separated Mixed Weibull Parameter Estimation Methods

'MLE (1) Maximum Likelihood Estimation
MDE Minimum Distance Estimation

a. Minimum Distance via the 1Mixing Proportion, p
MDPA (2) Minimum Distance for the mixing parameter using the Anderson-

Darling "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters.

MDPC (3) The Minimum Distance for the mixing parameter using the Cramer -
Von Mises "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters.

b. Minimum Distance via Location & Mixing Proportion, p
MDPL1A (4) Reverse order - Sequentially combined methods

(MDPA, MDL1A)
MDPL 1C (5) Reverse order - Sequentially combined methods

(MDPC, MDL1C)
MDPL2A (6) Reverse order - Sequentially combined methods

(MDPA, MDL1A, MDL2A)
MDPL2C (7) Reverse order - Sequentially combined methods

(MDPC, MDL I C, MDL2C)
MDPLSA (8) Reverse order - Simultaneously combined methods

(MDPA, MDLSA)
MDPLSC (9) Reverse order - Simultaneously combined methods

__ (MDPC, MDLSC)

* Note: Reference Appendix D for some Single-Run Samples
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* Table Ic. Well-Separated Mixed Weibull Parameter Estimation Methods

MLE (1) Maximum Likelihood Estimation
MDE Minimum Distance Estimation

a. Minimum Distance via the Mixing Proportion. p
MDPA (2) Minimum Distance for the mixing proportion using the Anderson-

Darling "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters.

MDPC (3) The Minimum Distance for the mixing proportion using the Cramer
-Von Mises "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters.

b. Minimum Distance via Location
MDLSA (4) The Minimum Distance for the location parameters using the

Anderson-Darling "goodness-of-fit" statistic and maximum
likelihood estimates for other parameters (simultaneously).

MDLSC (5) The Minimum Distance for the location parameter using the Cramer
-Von Mises "goodness-of-fit" statistic and maximum likelihood
estimates for other parameters (simultaneously).

c. Minimum Distance via Location & Mixing Proportion p
MDLSPA (6) Sequentially combined methods

(MDLSA, MDPA)
MDLSPC (7) Sequentially combined methods

(MDLSC, MDPC)
MDPLSA (8) Reverse order - Sequentially combined methods

(MDPC, MDLSA)
MDPLSC (9) Reverse order - Sequentially combined methods

(MDPC, MDLSC)

* Note: Reference Appendix D for some Single-Run Samples
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Justification for Selection of Methods

Based on Gallagher's research with the three parameter Weibuli (1991), Minimum

Distance Estimation was applied to several of the most promising parameters for the Mixed

Weibull. Also, several alpha tests were conducted to determine the optimal methods. Not

surprisingly, the results fell into two main groups, the non-separated (NS) and the well-

separated (WS) Mixed Weibull. That is, the most promising methods for the well-separated

distributions did not hold for the non-separated distributions. Hence, the divergence between

Table lb and Table Ic (for a complete discussion, see Minimum Distance Estimation (MDE)

Conclusions). This is due in part to the nature of data and the method used to solve the NLE

(reference MLE Methodology).

The alpha testing results indicated that for well-separated distributions, the mixing

proportion was calculated with a significantly higher degree of accuracy. Obviously, the

research needed to determine if calculating the mixing proportion via minimum distance

(MDP) was beneficial. Also, the research needed to determine the best course of action for

calculating the location parameter via minimum distance (MI)L), before or after conducting

MDP. In the well-separated cases, there were two reasons that led to a simultaneous

estimation of the location parameters via minimum distance (MDLS). First, the distributions

are completely independent. And, second performing them separately had a tendency to

destroy an otherwise accurate mixing proportion.

In brief the response surface for the likelihood function required a large sample size even

for the well-separated distribution where the mixing proportion could be determined by a

simple visual inspection. Hence, for the non-separated distributions, it was never more

advantageous to calculate the location parameters (MDL) without first calculating the mixing
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proportion via minimum distance (MDP). However, there remained the goal of comparing the

sequential and simultaneous calculation of the location parameters (MDL and MDLS,

respectively).

Estimation Techniques

Regardless of the estimation method, the parameters were estimated using one of two

techniques. Recall that the Mixed Weibull has seven parameters essentially representing the

standard parameters for two probability density functions and one mixing proportion, p. For

the MLE, a FORTRAN 77 based IMSL (International Mathematical and Statistical Library)

subroutine was used (reference Methodology for MLE). Since minimum distance was applied

to only one or two parameters at once (i.e. in conjunction with MLEs) a detailed breakdown of

the estimation technique per parameter is presented for the core methods in Table 2.

- Table 2. Estimation Techniques per parameter

81 1 11 P j 82 P2 112

LOCATION SHAPE SCALE MIX LOCATION SHAPE SCALE

CORE

MLE Max Likelihood Estimation (MLE)

MDL MDE (GS) MLE given 8 MDE (GS) MLE given 8

MDP MLE given p MDE (GS) MLE given p
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IV. Mixed Weibull Results

To evaluate the performance of the parameter estimation techniques, Monte Carlo simulations

were conducted. That is, for a true population with predetermined parameters as described below,

1000 random samples were generated. Confidence intervals for the smallest samples were calculated

(reference Appendix B). For each sample, the estimates were calculated and the resulting parameters

were evaluated with the criteria in Chapter 3. Since the Weibull MLEs are location and scale invariant,

the well-separated distributions were tested at two different shape parameters. The following scenarios

were tested:

- Three different mixing proportions ( p = 0.5, 0.3, 0.1)

- Non-separated versus well-separated distributions

-- Non-separated distributions (same location parameter, 1 =82 5)

--- one familyofthe shape parameter ( I = 4 and 1)

--- same scaleparameter (IIl= T12= 0.5)

- Well-separated distribution ( 81 = 5 and 82 = 10)

- two families ofthe shape parameter ( P31 = P = 0.9 and 13 = 132 = 3)

-- same scale parameter (I = 12 = 0.5)

The above variations were each evaluated at four sample sizes ( n = 10, 20, 40, 100).
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Selected nominal-error samples are presented in Appendix A using the most successful method from

this research (minimum distance via the mixing proportion using the Cramer-von Mises statistic,

MDPC). Aggregated results are presented in Appendix B based strictly on one common measure of

error (Integrated Absolute Difference) allowing the reader to readily compare the 288 scenarios (a

scenario is defined as one method at one sample size under one set of true parameters). More detailed

results for each scenario are presented in Appendix C including two measures of error including

confidence intervals and several sub-totals on the number of times better than the MLE. Tables 3, 4

and 5 on the following page shows the best estimators by CDF comparison including the method that

produced the best result (highest percentage) and the percentage of times better than the Maximum

Liklihood Estimates (MLE).

Stochastic Generation of the Mixing Prportion

As discussed in the Methodology, the mixing proportion was generated stochastically during

each monte carlo run. The mixing proportion (as dictated by reliability theory) is uniformly distributed

from zero to one, p-U(O, 1). Specifically, a random sample was generated from a uniform (0,1)

distribution. The number of uniform random samples that exceeded (did not exceed) the true mixing

proportion dictated the number of Weibull samples generated from each population. Therefore, the

proportion of the actual number of samples generated and the true mixing proportion were often not

the same.
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Minimum Distance Estimation (MD) Results

Consistent with the executive overview (including acronyms), MDE results are presented in

Tables 3,4 and 5 based on Appendix C. Table 3 show results for non-separated (NS) populations.

Tables 4 and 5 show results for the well-separated (WS) populations where the only difference is the

true shape parameter. These results are a summarization in terms of the best estimation method for a

given scenario and in terms of estimating a better set of parameters than the Method of Maximum

Likelihood. Further, the results are grouped by mixing proportion and, finally, by sample size.
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Table 3 Best Estimators by CDF Comparison for Non-Separated Populations

NS MIXING N INTEGRATED ABSOLUTE INTEGRATED
PROPORTION DIFFERENCE % SQUARED DIFFERENCE %

P =0.5 10 MDPC 93.2 MDPC 93.2
MDPC 93.2 MDPC 93.2

20 MDPA 98.1 MDPA 98.1
MDPA 98.1 MDPA 98.1

40 MDPC 99.1 MDPC 99.1
MDPC 99.1 MDPC 99.1

100 MDPC 99.0 MDPC 99.0
MDPC 99.0 MDPC 99.0

P =0.3 10 MDPC 53.4 MDPC 53.4
MDPLA 55.2 MDPLA 55.2

20 MDPC 58.8 MDPA 55.6
MDPC 58.8 MDPA 55.6

40 MDPC 54.1 MDPC 54.1
MDPA 57.7 MDPA 57.7

100 MDPC 52.4 MDPA 56.3
MDPA 56.3 MDPA 56.3

P=0.1 10 MDPA 46.4 MDPA 46.4
MDPLA 53.5 MDPLA 53.5

20 MDPC 44.3 MDPA 43.2
MDPLSA 50.9 MDPA 43.2

40 MDPA 40.9 MDPA 41.8
MDPA 40.9 MDPLC 45.7

100 MDPA 40.3 MDPA 42.8
MDPLSA 44.6 MDPA 42.8

Note: The first rows of techniques were the best by that columns criteria. The second rows were the

techniques that were better than MLE most often. The percentage criteria was better, not equal.
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Table 4. Best Estimators by CDF Comparison for Well-Separated Populations (Shape =3)

WS MINhG N INTEGRATED ABSOLUTE INTEGRATED
I 3 PROPORTION DIFFERENCE % SQUARED DIFFERENCE %

P =0.5 10 MIDPC 82.8 MDPC 82.8
____ ____ MDPC 82.8 MDPC 82.8

20 MDPC 87.9 MDPC 87.9
____MDPC 86.9 MDPC 86.9

40 MDPC 89.0 MDPC 89.0
___MDPC 89.0 MDPC 89.0

100 MDPC 94.7 MDPC 94.7
___MDPC 94.7 MDPC 94.7

P 0.3 10 MDPC 50.2 MDPA 41.6
___MDPC 50.2 MDPA 41.6

20 MDPC 29.0 MDPC 29.0
___MDPLSC 37.8 M[DPLSC 37.8

40 MDPC 17.6 MDPC 17.6
___________MDLSPC 44.0 MDLSPC 44.0

100 MDLA 39.6 MDLA 39.6
___________MDLA 39.6 MDLA 39.6

P=0.1 10 MDLSC 33.7 MDPA 60.9
____ _______ ____ MDLSPA 61.4 MDPA 60.9

20 MDLSC 27.4 MDPC 44.2
_______ ____MDLSPA 53.6 MDPC 44.2

40 MDLSA 21.4 MDLSPA 21.4
____ _______ ____ MDPC 21.4 MDPLSA 34.2

100 MDLSA 28.4 MDLSA 28.4
________MDLSA 28.4 MDLSA 28.4

Note: The first rows of tecimiues were the best by that columns criteria. The second rows were the
techniques that were better than NEE most often. The percentage criteria was better, not equaL
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Table 5. Best Estimators by CDF Comparison for Well-Separated Populations (Shape = 0.9)

WS MIXING N INTEGRATED ABSOLUTE INTEGRATED
1i= PROPORTION DIFFERENCE % SQUARED DIFFERENCE %
0.9

P = 0.5 10 MDPA 86.3 MDPA 86.3
MDPA 86.3 MDPA 86.3

20 MDPC 82.0 MDPC 82.0
MDPC 82.0 MDPC 82.0

40 MDPC 87.1 MDPC 87.1
MDPC 87.1 MDPC 87.1

100 MDPC 84.6 MDPC 84.6
MDPC 84.6 MDPC 84.6

P =0.3 10 MDPA 41.2 MDPA 41.2
MDPA 41.3 MDPA 41.3

20 MDPC 45.9 MDPC 45.9
MDPC 45.9 MDPC 45.9

40 MDPC 43.1 MDPC 43.1
MDPA 45.9 MDPA 45.9

100 MDPA 51.9 MDPA 51.9
MDPLSC 55.4 MDPLSC 55.4

P = 0.1 10 MDPLSA 58.0 MDPLSA 58.0
MDLSA 65.4 MDLSA 65.4

20 MDLSC 61.1 MDLSC 61.1
MDLSC 61.1 MDLSC 61.1

40 MDPA 52.0 MDPC 46.3
MDPA 52.0 MDPC 46.3

100 MDPA 49.1 MDPA 49.1
MDPA 49.1 MDPA 49.1

Note: The first rows of techniques were the best by that columns criteria. The second rows were the
techniques that were better than MLE most often. The percentage criteria was better, not equal.
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Maximum Liklilxod Estimtn (MLE) Results

Appendix B was specifically drafted to demonstrate the phenomenal success of estimating

parameters for the seven parameter Mixed Weibull (See Conclusions for the MLE). Based strictly on

our ability to estimate parameters quickly and accurately, these results set a precedent and make a

strong argument for a permanent transition to non-linear techniques for all mixed distributions. Within

this context, there is existing precedence for using gradient information as opposed to some

approximation such as finite difference or least squares.
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V. Conclusions

The net error after applying the recommended methods from Tables 3, 4 or 5 is very

reasonable with an excellent confidence interval even for sample sizes as low as ten

(reference MDPC, Appendix C). One can expect the highest error to occur when the

mixing proportion is equal to one half. Based on MDPC (the overall best method), nominal

error for each sample size (n = 10,20,40,100) is plotted (estimated versus true Mixed

Weibull PDF and CDF) for both well-separated and non-separated results in Appendix A.

One should not be surprised to find some counter-intuitive results. For example,

MDPC often estimated a mixing proportion closer to the true proportion than the actual

sample generated when the sample size was small. Also, there appears to be a balancing act

occurring between the shape parameters and mixing proportion with the net result being a

good fit. That is, a poor estimate of the mixing proportion can be accommodated by one

small and one large shape parameter. This trend was easier to detect in the well-separated

scenarios, but probably occurred any time the mixing proportion was in error. In the end,

the only way to assess the performance of the methodology is with large sample sizes

Since we utilized the "extreme" cases for the Mixed Weibull in terms of the

completely separated and the non-separated populations, the results can be viewed as worst

case. That is, the researcher can expect to generate results that have the same amount of

error or less in their parameter estimates. Also, the researcher needs to remember that one

sample in this context is really estimating two probability density functions. Since the

54



mixing proportion was also generated stochastically, the total error is often greater than the

sum of the error from two stochastically generated probability distribution functions. Also,

one cannot segregate the error by simple subtraction because the estimated mixing

proportion was used in the calculation of the estimates for the parameters of the probability

density functions.

Total error was predominantly a function of the mixing proportion for several

reasons. Due to the fict that both estimation processes were affected by the mixing

proportion, the problem will be discussed in this section. For now, suffice it to say that

once the mixing proportion was estimated accurately (as in MDP), the error usually

dropped to a fraction of the original MLE. While there is no way to prove it from these

results, the remaining error appears to be strictly due to the stochastic nature of the sample.

This fact can be verified by the universal success of minimum distance estimation of the

mixing proportion (MDPC or MDPA) even for sample sizes often. The exception being

the highly overlapping (non-separated) distributions where there is naturally some minor

additional error induced by the overlap in the distributions.

Results demonstrated few universal properties with the exception of the

mixing proportion where error always reached a maximum at mixing proportion equal to

one half. Conclusions varied for several reasons but, primarily depending on whether the

two true populations were well-separated or not. New properties were observed for both

the well-separated and the non-separated results both in terms of both the MDEs and the

MLEs. In some cases, the results followed traditional expectations. For example, MILEs

became significantly more accurate with increased sample size. Recall, however, that the
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motivation for Minimum Distance Estimation is to enhance parameter estimation for the

small to moderate sample sizes where the asymptotic properties might not hold.

The dominance of the mixing proportion may give the false perception that the

MLE methodology(non-linear constrained optimization) did not perform adequately. As

indicated by the results (after the mixing proportion was adequately estimated), the

numerical methodology was as good as any parameter estimation to date. The accuracy of

this estimation was finther enhanced by utilization of the gradient information. And, this

method can be applied to most mixed distributions (especially a mixture of two

distributions) where traditional MLE algorithms cannot be extended from single to a mixed

distribution.
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The Mixing Proportion

There are several reasons that the mixing proportion became a dominant issue.

First, estimation of the mixing proportion was poor. For the non-separated distributions,

estimation remained poor even in large sample sizes. Mixing proportion estimation for the

well-separated distributions started out fair and enhanced with increasing sample size. But,

even for the well-separated results where one could perform a simple head count, a

moderate sample size was required to estimate the mixing proportion. And, sample sizes of

one hundred still did not result in estimation of the mixing proportion as good as that

obtained by minimum distance of the same parameter (MDPC). Second, the mixing

proportion dominates the objective function (the likelihood function) greater than any other

parameter. Third, the mixing proportion was generated stochastically in addition to the

sample. Fourth, due to the nature of the evaluation criteria, the mixing proportion

dominates the calculation of error. Finally, the estimated mixing proportion was used in the

calculation of the other parameter estimates. Hence, if the stochastically generated or

calculated mixing proportion was in error even a small amount, the estimation of the other

parameters was disturbed (not so much in location, but in magnitude affecting more the

shape and scale parameters). In summary, the calculated error was sensitive to changes in

the mixing proportion simply due to the nature of the evaluation criteria.
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Minimum Distance Estimation (MDE) Conclusions

Application of traditional theories in a multi-modal distribution required

careful consideration. For instance, the sample size per distribution is not a function of the

mixing proportion. Rather, each distribution is weighted according to the mixing

proportion at the expense of the other distributions. Thus, the better the estimate of the

mixing proportion, the better the estimate for MDL. And, application of MDL after a good

estimate of the mixing proportion was always beneficial.

In general, MDE via the mixing proportion proved very effective. Ironically,

however, while there were some documented successes with MDE via the location

parameters (MDL), the net benefit was overshadowed by domination of the mixing

proportion to minor deviations. As discussed, small errors in the mixing proportion

typically resulted in large errors in the parameter estimation for the individual distributions.

MDE is performed using the estimated parameters from the MLE. Hence, the greater the

error in the MLEs, the greater the error in the MDEs.

Another problem in applying MDL to the Mixed Weibull was observed. If MDL

was applied sequentially, the mixing proportion (and hence all other parameters) was

definitely affected by the application to only one location parameter. In an attempt to

"balance" the impact, MDL was conducted simultaneously to both location parameters.

The problem is that the MLE that followed was estimated with one less degree of freedom

(5 df) than when the location parameters are estimated sequentially (6 df). Theoretically,
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accuracy in the estimation is lost with a reduced number of degrees of freedom. This is a

trade-off that needs continued vigilance in the future for any mixture.

By further analysis of the results, one can reach a myriad of worthless conclusions

about the effectiveness of the different methods under different circumstances. While these

areas warranted investigation, the results (Tables 3, 4, and 5) suggest utilizing the most

successful method for a given scenario. Most often, this translates to a simple choice of

minimum distance estimation of the mixing proportion using the Cramer-von Mises test

statistic (MDPC). Surprisingly, this finding held for both the well-separated and the non-

separated populations. The only exception to this rule is in the case of a large sample size

and well-separated populations where, not surprisingly, the MLEs dominate.



MaxiumL lkellod Estimin (MLE) Conclusions

These results set a precedent and make a strong argument for a permanent

transition to (MLE) parameter estimation as a non-linear constrained optimization problem

particularly in the mixed distribution context. Most often, the error measured and observed

was due to the need for large sample sizes to estimate the mixing proportion (specifically,

the gradient of the likelihood function with respect to it) and the stochastic nature of the

process. Precedence has already been established for utilizing the available gradient

information as opposed to an approximation such as finite difference or least squares. Also,

the gradient equations may be required to enable a reasonable response surface by excluding

undefined data which is not constant in all parts of the likelihood function (reference the

conditional statement to exclude data less than the location parameter).

Again, the results displayed a natural separation based first on whether or

not the true populations were well-separated or not. In general, the seven parameter MLE

for the Mixed Weibull followed traditional expectations for sample size. That is, as the

sample size increased, the MLE became more accurate. Accessing the gradient information

proved comparable to all previous parameter estimation techniques of the Weibull

distribution. However, using the gradient, the mixing proportion was not accurately

estimated except for large sample sizes on well separated populations. Hence, in general,

MDE via a mixing proportion, p, typically improved the MLE. Also, consistent with

previous research, error increases with values of the shape parameter less than three (shape,

=3) assuming all other variables are held constant.
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While the errors may seem quite reasonable, this researcher feels that the errors are

deceptively high for several primary reasons. First , the error per distribution is heavily

dependent upon the mixing proportion. If the mixing proportion was in error then the

parameters of both distributions were estimated incorrectly. Also, the nature of the error

calculation quickly displays small departures in the mixing proportion whereas large

departures are needed for any of the other parameters (Appendix E). But, this may be

appropriate since no other parameter has such an impact on the remaining estimated

parameters. To make matters worse, the mix of samples from each population was

generated stochastically (generation based on true mixing proportion) and the error is

calculated by comparing the estimated mixing proportion to the theoretical, not the

stochastically generated one. Hence, if a more accurate means were available for predicting

the mixing proportion such as a simple count (well-separated) or Bayesian knowledge, most

of the error could be eliminated.

Excluding the mixing proportion, MLE performed very well even for the

non-separated populations. The accuracy of the MLE increased as expected with increasing

sample size. For the well-separated distributions, better results would be obtained by simply

counting the number of data points in each mode. Unfortunately, the MEE methodology

never approximated the mixing proportion correctly for the non-separated cases even when

using large sample sizes. Hence, the need for a bound on the mixing proportion and the

superiority of MDPC. This is due in part to the sensitivity of the gradient of the mixing

proportion and the fact that we placed no restriction on the location of the second location

parameter.
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Future Enhancements including Mitigation of Outliers

Until the mixing proportion can be determined with some greater accuracy, the

method of minimum distance may not see consistent success outside of estimating the

mixing proportion. While statistics were not generated specifically, the method of minimum

distance on the mixing proportion did a good job of estimating the mixing proportions. At

this time, no enhancements for minimum distance are recommended.

Since the MLE methodology worked so well, there are only a couple of

enhancements suggested. The assumption is that one desires to estimate parameters for a

mixed distribution continuing to use the Method of Maximum Likelihood. For the MLEs,

one should search for better way to estimate the mixing proportion and use it as both a

point estimate and a bound. Also, the error could be mitigated further by using the point

estimates as reasonable bounds on the variables. In this research, the point estimates were

not used to bound the variables except in the case of the mixing proportion. This action is

equivalent to mitigating outliers.

In the future, one should generate statistics on the success of the mixing proportion

such as mean square error for the mixing proportion. Also, alternative methods should be

investigated for the mixing proportion.
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Appendix A: Selected Nominal-Error Samples for Non-Separated Mixed Weibull

Part la: Well-Separated Mixed Weibull ( Shape, 13t = 132 = 3)
Part lb: Well-Separated Mixed Weibull (Shape, 13 = 132 = 0.9)
Part 2: Non-Separated Mixed Weibull

The following abbreviations were used in this appendix.

PDF Probability Density Function

CDF Cumulative Distribution Function

COUNT Sample size

PDF SUBCOUNT Sample size per PDF

TRUE True Solution for seven parameter Mixed Weibull
(1-3) PDF I Shape (13i), Location (81) and Scale (iln) Parameters
(4-6) PDF 2 Shape (132), Location (82) and Scale (112) Parameters
(7) Mixing Proportion ( p )

MLE Maximum Likelihood Estimate(s)

MDPC Minimum Distance Estimate for the Mixing Proportion using the
Cramer Von-Mises Statistic

ptr= True mixing proportion
flt(x) True PDF for Population #1
f2t(x) True PDF for Population #2
gt= True Mixed Weibull PDF
Flt(x) True CDF for Population #1
F2t(x) True CDF for Population #2
Gt. True Mixed Weibull CDF

pet Estimated mixing proportion
fl(x) Estimated PDF for Population #1
f2(x) Estimated PDF for Population #2
gest Estimated Mixed Weibull PDF
F1(x) Estimated CDF for Population #1
F2(x) Estimated CDF for Population #2
G.A Estimated Mixed Weibull CDF
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Mixed Weibull Probability Density Function PDF) Equations

- - 8t -X-6t X-8 -8

l~t x-t 1  x6t ~ 32 xt 2  xt 2
fl()=.x-f2tkx) - exp -

I P22 1~ P21

'3 - Z__ 8 1 Z- 8 z- 6
fl(z) = __-f2(z) *ex1

IL\/ J L lu L21! - - 1

Mixed Weibull Cumulative Distribution Function (CDF) Equations

Flt~x) =j I- ex - F2t9x) I 1-ex -;

F1(z) eF2(z) = il-x
=~-Xp I

Gest(z) =(p.FI(z)) t- (( 1.0- p)-F2(z)) Gtrue(x) = (p.Flt(x)) -- (1.0- p).F2tKx))
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Part la of Appendix A: Selected Nominal-Error Well-Separated Mixed Weibull
(Shape, 31 = 2 = 3)

WELL-SEPARATED (WS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mixing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing
proportion via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing
proportion via AD

MDPLSC MDE of the mixing proportion and then location parameters
(simultaneously) via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Sample MDPC for Well-Separated Mixed Weibull
(Shape 3)

COUNT = 100
For this seed, PDF I SUBCOUNT = 45
For this seed, PDF2 SUBCOUNT =5 5

FOS = 5.1460951116265

LOS =10.908389477633

TRUE(1-3)= 3.0 5.0 0.5
TRUE(4-7)= 3.0 10.0 0.5 0.5

WNTIAL MLE Soln: 2.53 8 5.078 0.405
2.062 10.140 0.387 0.459

The function value = 26.624

SUB-TOTALS FOR MLE phase 1
phITOTINTABS =9.8619061424575D-02

ph1TOTINTMSE =4.16679443463 58D-03
INTABSPDF1 3.9025302296607D-02
INTMSEPDF1 1.4013473932253D-03
INTABSPDF2 =5.9593759127967D-02

INTMSEPDF2 =2.7654470414105D-03

MDPC = 0.48447875342725

Revised MLE Soln: 2.538 5.078 0.405

2.062 10.140 0.387 0.484

The function value = 26.749

SUB-TOTALS FOR MLE PHASE 4
ph4TOTLNTABS =4.9269505611561D-02

ph4TOTINTMSE =1.1485930918393D-03

1NTABSPDF1 1.5410369637805D-02
INTMSEPDFI =2.0221936225421D-04

INTABSPDF2 =3.3859135973756D-02

INTMSEPDF2 =9.463737295851 4D-04
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Sample MPC for Well-Separated Mixed Weibull
(Shape =3)

COUNT 40
For this seed, PDF I SIJBCOUNT =22
For this seed, PDF2 SIJBCOUNT =18

FOS = 5.2157392110824
LOS = 10.749425212536

TRIJE(1-3)= 3.0 5.0 0.5
TRUE(4-7)= 3.0 10.0 0.5 0.5

INTIAL MLE Soin: 3.436 5.05 1 0.44 1
1.467 10.185 0.256 0.550

The function value = 3.8 18

SUB-TOTALS FOR MLE phase 1
phITOTINTABS 0.13478094176074
phi TOTLNTMSE =7.660705933 5772D-03

INTABSPDF1 6.228047 107663 ID-02
LNTMSEPDF 1 3.2641820374831 D-03
1NTABSPDF2 =7.2500470684105D-02

LNTMSEPDF2 =4.3965238960941D-03

NMPC = 0.51684017596413

Revised Soin: 3.436 5.05 1 0.441
1.467 10.185 0.256 0.517

The function value = 3.906

SUB-TOTALS FOR MLE PHASE 4
ph4TOTINTABS = 6.6696381024139D-02
ph4TOTINTMSE = 2.3348880555180D-03

1NTABSPDF1 = 2.99902 11629377D-02
1N4TMSEPDFI = 7.6629264896699D-04
INTABSPDF2 =3.6706169394762D-02

INTMSEPDF2 =1.5685954065510D-03
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Sample MDPC for Well-Separated Mixed Weibull
(Shape = 3)

COUNT = 20
For this seed, PDFI SUBCOUNT = 8
For this seed, PDF2 SUBCOUNT = 12

FOS = 5.1835496657608
LOS = 10.814596565814

TRUE(I-3)= 3.0 5.0 0.5
TRUE(4-7)= 3.0 10.0 0.5 0.5

INITIAL MLE Soln: 5.722 4.669 0.852
1.233 10.300 0.236 0.400

The function value = 3.739

SUB-TOTALS FOR MLE phase I
phITOTINTABS = 0.24587558478945
phlTOTINTMSE = 2.4245512009114D-02

INTABS I = 0.11090467362401
INTMSEI = 1.0126481581103D-02
INTABS2 = 0.13497091116544
INTMSE2 = 1.4119030428011D-02

MDPC = 0.46279508359642

Revised MLE Soln: 5.722 4.669 0.852
1.233 10.300 0.236 0.463

The function value = 3.899

SUB-TOTALS FOR MLE PHASE 4
ph4TOTINTABS = 0.11942197373540
ph4TOTINTMSE = 5.9773539911757D-03

INTABSPDF1 = 4.5956752453868D-02
INTMSEPDF1 = 1.6671584645745D-03
INTABSPDF2 = 7.3465221281527D-02
INTMSEPDF2 = 4.3101955266013D-03
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Sample MDPC for Well-Separated Mixed Weibull
(Shape =3)

COUNT =10

Forthis seed, PDF I SUBCOUNT = 3
For this seed, PDF2 SUBCOUNT =7

FOS = 5.1675338970734
LOS = 10.679696815739

TRUE(I-3)-- 3.0 5.0 0.5
TRUE(4-7)= 3.0 10.0 0.5 0.5

iNITIAL MLE Soin: 4.452 5.168 0.419

0.994 10.315 0.140 0.400

The finction value = 997.3 88

SUB-TOTALS FOR MLE phase 1 and J =:2
phITOTINTABS =0-.5563531333835

ph1TOTINTMSE 2.7912134556282D-02
1NTABSPDF1 0.14656380661449
INTMSEPDF1 1.7810429417008D-02
1NTABSPDF2 =0.10907150672386

INTMSEPDF2 =1.0101705139274D-02

NMPC = 0.44118033899264

Revised MLE Son: 4.694 5.168 0.412
0.956 10.315 0.124 0.441

The function value = 1999.578

SUB-TOTALS FOR MiLE PHASE 4
ph4TOTINTABS = 0.17333 113705157
ph4TOTlNTMSE = 1 .4733297376409D-02

INTABSPDFI 0.10509606627328
LNTMSEPDF1 1.0773771021652D-02
INTABSPDF2 =6.8235070778296D-02

INTMSEPDF2 =3.9595263547579D-03

72



Probability Densioy Function MPF

3 3

4 56 7 8 9 10 11 12

4 xl 12

Cumulative Distribution Function (CDF)

Getl - 0.5-

4 6- &10 12 14

4 x.,z 15

73



Part lb of Appendix A: Selected Nominal-Error Well-Separated Mixed Weibull
( Shape, 13i = 132 = 0.9)

WELL-SEPARATED (WS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mixing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing
proportion via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing
proportion via AD

MDPLSC MDE of the mixing proportion and then location parameters
(simultaneously) via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Sample MiDPC for Well-Separated Mixed Weibull
(Shape =0.9)

COUNT = 100
For this seed, PDFI SUBC(}INT =48
For this seed, PDF2 SUBCOUNT = 52

FOS = 5.0014781821701
LOS = 16.926652000889

TRUE(1-3) = 0.9 5.0 0.5
TRUE(4-7) = 0.9 15.0 0.5 0.5

IMTIAL MLE Soln. 0.500 5.00-1 0.546
1.373 14.862 0.738 0.400

The function value= 1120.529

SUB-TOTALS FOR MLE phase 1 and J =:2
phITOTINTABS =0.85355935088488
ph1ITOTIINTMSE =9.8172954856908D-02

INTABSI = .54001 141924391
LITMSE1I 6.9980344851740D-02
INTABS2 0.31354793164098
INTMSE2 =2.8192610005168D-02

MIDPC = 0.50404508267441

Revised MLE Soin: 0.977 5.001 1.336
0.984 15.000 0.535 0.504

The function value = 1106.93 8

SUB-TOTALS FOR MLE PHASE 4
ph4TOTINTABS =0.42255552312705
ph4TOTLNTMSE =4.260806303 1293D-02

INTABSI = 0.39606488312585
INTMSE1 = 4.2390146507697D-02
INTAiRS2= 2.6490640001 192D-02
INTMSE2 = 2.1791652359559D-04
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Sample MIDPC for Well-Separated Mixed Weibull
(Shape = 0.9)

COUNT =40
For this seed, PDF I SUBCOUNT =19
For this seed, PDF2 SUB COUNT = 21

FOS = 5.0025317918973
LOS = 16.581330169171

TRUE(I-3)-- 0.9 5.0 0.5
TRUE(4-7)= 0.9 15.0 0.5 0.5

INITIAL MLE Sohr: 0.891 5.003 0.651
0.999 15.022 0.512 0.400

The function value =1044.893

SUB-TOTALS FOR MLE phase 1
phITOTINTABS 0.86328490071668
phlTOTINTMSE =8.5379229014965D-02

INTABSPDFI =0.46232986482445

INTMSEPDF1 4.8812727121721D-02
INTABSPDF2 =0.40095503589223

ThTMSEPDF2 =3.6566501893244D-02

MDPC =0.48904508301020

Revised Soln: 1.007 5.003 0.341
1.000 15.022 0.530 0.489

The fu~nction value = 1051.105

SUB-TOTALS FOR MLE PHASE 4
ph4TOTINTABS =0.13909122466502

ph4TOTIh4TMSE =3.9637805066710D-03

INTABSPDFI =8.2697747493030D-02

1NTMSEPDF1 2.9601460137443D-03
INTABSPDF2 =5.63934771719900-02

INTMSEPDF2 =1 .0036344929266D-03
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Sample MDPC for Well-Separated Mixed Weibull
(Shape = 0.9)

COUNT = 20
For this seed, PDFI SUBCOUNT = 7
For this seed, PDF2 SUBCOUNT = 13

FOS = 5.0124423190355
LOS = 16.670192220847

TRUE(t-3)= 0.9 5.0 0.5
TRUE(4-7)= 0.9 15.0 0.5 0.5

INITIAL MLE Soln: 1.425 5.012 0.614
0.858 15.003 0.489 0.400

The function value= 10 14.190

SUB-TOTALS FOR MLE phase 1
phITOTINTABS = 0.81516382283992
phlTOTINTMSE = 7.6670938208509D-02

INTABSPDF1 = 0.41550929779042
INTMSEPDF1 = 3.9094579146734D-02
INTABSPDF2 = 0.39965452504951
INTMSEPDF2 = 3.7576359061775D-02

MDPC = 0.45243033874118

Revised MLE Soln: 1.491 5.012 0.638
0.995 15.003 0.555 0.452

The function value = 29.685

SUB-TOTALS FOR MLE PHASE 4 and J =: 3
ph4TOTINTABS 0.33358770050161
ph4TOTINTMSE = 1.7980879941690D-02

INTABSPDFI = 0.12946907434405
INTMSEPDF1 = 8.6376951805304D-03
INTABSPDF2 = 0.20411862615756
INTMSEPDF2 = 9.3431847611597D-03
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Sample MDPC for Well-Separated Mixed Weibull
(Shape = 0.9)

COUNT = 10
For this seed, PDF I SUBCOUNT = 6
For this seed, PDF2 SUBCOUNT = 4

FOS = 5.0019494304593
LOS = 15.0019494304593

TRUE(t-3)- 0:9 5:0- 0.5
TRUE(4-7)= 0.9 15.0 0.5 0.5

INIT-IAL MLE Sotr- 1.079 5.002 0:945
0.995 15.013 0.155 0.600

The-finetion-value = 1021.092

SUB-TOTALS FOR MLE phase 1
ph-TOTINTABS-= 0.91025476923598
phlTOTINTMSE= 0.11910581216087

INTARSPDF-1-= 0.2981223511-8837
INTMSEPDF1 = 2.3293678020428D-02
INTABSPDF2- 0.61-213241804-760
INTMSEPDF2 = 9.5812134140443D-02

MDPC = 0.54220491629182

Revised MLE Soln: 0.500 5.002 0.290
1.352 14.987 0.217 0.542

The function value = 1009.938

SUB-TOTALS FOR MLE PHASE 4
ph4TOTENTABS = 0.33225026498452
ph4TOTINTMSE = 3.8054716916735D-02

INTABSPDF1- = 0. 16766219830378
INTMSEPDFI = 1.0013769351279D-02
INTABSPDF2 = 0.16458806668074
INTMSEPDF2 = 2.8040947565456D-02
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Part 2 of Appendix A: Selected Nominal-Error Non-Separated Mixed Weibull

Non-Separated (NS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mixing proportion via AD

MDPL(t-2)C MDE of the location parameters (sequentially) via CVM

MDPL(1-2)A MDE of the location parameters (sequentially) via AD

MDPLSC MDE of the location parameters (simultaneously) via CVM

MDPLSA MDE of the location parameters (simultaneously) via AD
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Selected MDPC for Non-Separated Mixed Weibull

COUNT = 100
For this seed, PDF1 SUBCOUNT = 53
For this seed, PDF2 SUBCOUNT = 47

FOS = 5.0157295668406
LOS = 7.5789691820566

TRUE(I-3)=4.0 5.0 0.5
TRUE(4-7) = 1.0 5.0 0.5 0.5

INITIAL MLE Soln: 4.954 5.016 0.444
0.978 5.016 0.561 0.400

The function value = -0.419

SUB-TOTALS FOR MLE phase I
phITOTINTABS= 0.52615183541213
phlTOTINTMSE = 5.1507373965766D-02

INTABSPDFI = 9.2604750982949D-02
INTMSEPDF1 = 8.5478564915129D-03
INTABSPDF2 = 0.43354708442918
INTMSEPDF2 = 4.2959517474253D-02

MDPC - 0.49654508284273

Revised MLESoln: 3.697 5.016 0.455
0.940 5.016 0.472 0.497

The function value = -4.202

SUB-TOTALS FOR MLE PHASE 4
ph4TOTINTABS = 2.9507926348969D-02
ph4TOTINTMSE = 4.4208574000542D-04

INTABSPDFI - 1.4693500680389D-02
INTMSEPDF1 = 3.7708911956011D-04
INTABSPDF2 = 1.4814425668580D-02
INTMSEPDF2 = 6.4996620445307D-05
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Sample MDPC for Non-Separated Mixed Weibull

COUNT = 40
For this seed, PDF I SUBCOUNT =21
For this seed, PDF2 SUBCOUNT =19

FOS = 5.0002596553 541
LOS = 7.44722653 11814

TRUE(I-3) = 4.0 5.0 0.5
TRUE(4-7) = 1.0 5.0 0.5 0.5

INITIALMNLE Soln: 10.000 5.000 0.540

0.959 5.000 0.395 0.400

The function value =1001.329

SUB-TOTALS FOR MLE phase 1
phITOTINTABS =0.35733566871914

ph1TOTJNTMSE =3.3714864541222D-02

1NTABSPDFI =0.12905860516313

LNTMSEPDF1 1.4033346410764D-02
INTABSPDF2 =0.22827706355601

INTMSEPDF2 =1.9681518130458D-02

NMPC =0.482795083 14939

Revised MLE Soln: 4.894 5.000 0.5 83
1.000 5.000 0.458 0.483

The function value = 1000.218

SUB-TOTALS FOR MLE PHASE 4
ph4TOTINTABS =9.50978481 186441>-02
ph4TOTLNTMSE 5 .0643449134269D-03

INTABSPDFI = 5.7237378113412D-02
ULNTMSEPDF1 = 4.5472748103043D-03
LNTABSPDF2 = 3.78604700052321>-02
IINTMSEPDF2 = 5.17070103 12255SD-04
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Sample MIDPC for Non-Separated Mixed Weibull

COUNT =20
For this seed, PDF I SUBCOUNT = 7
For this seed, PDF2 SUBCOUNT = 13

FOS = 5.0361368118333
LOS = 6.886 1048364758

TRUE(1 -3) = 4. 0 5.0 0.5
TRUE(4-7) = 1.0 5.0 0.5 0,5

INITIAL MLE Soln: 4.991 5.03,6 0.521
1.000 5.036 1.006 0.506

The function value= 1002.03 7

SUB-TOTALS FOR MLE phase 1
phITOTINTABS =0.27470402893859
ph1TOTINTMSE = 2.4855348161004D-02

INTABSPDF1 3.3748617355952D-02
MNMSEPDFI = 2.22603681 19689D-03

INTABSPDF2 = 0.24095541158264
LNTMSEPDF2 = 2.262931 134903 5D-02

XMPC =0.52356894263326

Revised MLE Soin: 5.388 5.036 0.485
0.748 5.034 0.468 0.524

The function value = 0.009

SUB-TOTALS FOR MLE PHASE 4
ph4TOTIINTABS =0.13939827220376

ph4TOTllNTMSE =3.3378852878963D-03

INTABSPDFI 3.8758370994966D-02
INTMSEPDF1 1.3671301147967D-03

1NTABSPDF2 =1.0063990120879D-01

INTMSEPDF2 =1.9707551 730996D-03
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Sample MDPC for Non-Separated Mixed Weibull

COUNT =10
For this seed, PDF 1 SUBCOUNT = 4
For this seed, PDF2 SUBCOUINT = 6

FOS = 5.1361625093515
LOS = 6.910565 1798572

TRUE(1-3)= 4.0 5.0 0.5
TRUE(4-7 = 1.0 5.0- 0.5 0.5

1NITIAL MLE Son: 5.007 5.136 0.300
0.964 5.136 0.473 0.400
The function value =1.0 13

SUB-TOTALS FOR MLE phase 1
phITOTRINTABS =0.48890929755808

ph1TOTINTMSE =4.7920076166326D-02

EI;TABSPDFI =9.9601118688938D-02

INTMS.EPDF1 =- .90-53-257&L2508D-03
IINTABSPDF2 =0.389308 17886914
INTMSEPDF2 =3.9014693-596075-02

MDPC =0.4909549 1296700

Revised MLE Soln: 3.8-18 5.136 0.150
0.973 5.136 0.539 0.491
The function value = 1005.080

SUB-TOTALS FOR MLE PHASE 4
ph4TOT1NTABS =0.21857220897944

ph4TOT1NTMSE =2.9663715348184D-02

INTABSi I 9.3901002185331D-02
INTMSE1 2.3095166235675D-02
LNTABS2 = 0.12467120679411
LNTMSE2 = 6.5685491125098D-03
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Appendix B. By Integrated Absolute Error, Results for Mixed Weibull

Part la. Well-Separated Mixed Weibull ( Shape = 31 = 32 = 3 )
Part lb. Well-Separated Mixed Weibull ( Shape = 0 1 = 32 = 0.9)
Part 2. Non-Separated Mixed Weibull

The following abbreviations were used in this appendix (ref Chap 3. Methodology).

GENERAL

P Mixing Proportion
L Shorthand notation

L(1-2) Sequential estimation of the location parameters
LS Simultaneous estimation of the location parameters

N Sample Size

I-ABS Error reported via Integrated Absolute Difference
I-MSE Error reported via Mean Square Error

MDE Minimum Distance Estimate
MLE Maximum Likelihood Estimate

CVM Cramer Von-Mises Test Statistic
AD Anderson-Darling Test Statistic

SCORE Number of times better than MLE out of 1000
CI Confidence Interval at the alpha equal to ten percent level
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Part Ia of Appendix B. By Method Results for Well-Separated Mixed Weibull( Shape = 31= 32 = 3)

WELL-SEPARATED (WS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mixing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing
proportion via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing
proportion via AD

MDPLSC MDE of the mixing proportion and then location parameters
(simultaneously) via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Table 7. By Integrated Absolute Error, Aggregated Results for Well-Separated Mixed Weibull

10 [20 4_.0 100 10 20 1 4 t 100

{ --------- CVM ------------ {----------- AD----------

P-- 0.5 MDLSPC MDLSPA

MLE 0.2552 0.2069 0.1431 0.0947 0.2902 0.1954 0.1422 0.0841

MDL 0.2859 0.2395 0.1765 0.0592 0.3097 0.227 0.16 0.0956

MDP 0.2156 0.1623 0.0918 0.1384 0.2485 0.1733 0.1192 0.1115

MDPLSC MDPLSA

MLE 0.2701 0.2065 0.1411 0.0971 0.2827 0.2021 0.1489 0.0837

MDP 0.1987 0.129 0.0823 0.0495 0.2048 0.1494 0.1131 0.1032

MDL 0.2256 0-1426 0.0929 0.0569 0-2431 0-1491 0-121_ 0.1133

P = 0.3 MDLSPC MDLSPA

MLE 0.1684 0.1187 0.0928 0.0725 0.155 0.1176 0.0936 0.0712

MDL 0.1947 0.1518 0.1335 0.1128 0.1718 0.1270 0.0956 0.0809

MDP 0.1881 0.1459 0.1401 0.1215 0.1759 0.1374 0.1209 0.1121

MDPLSC MDPLSA

MLE 0.1562 0.1106 0.091 0.0744 0.1488 0.1125 0.0923 0.0719

MDP 0.1533 0.1247 0.1194 0.1098 0.1534 0.1266 0.1198 0.1097

MDL 0.1622 0.1355 0.1223 0.1113 0.1849 0.1408 0.1232 0.1121

P = 0.1 MDLSPC MDLSPA

MLE 0.1319 0.1064 0.0844 0.0583 0.1316 0.1136 0.0793 0.0564

MDL 0.1291 0.1182 0..1092 0.1073 0.1361 0.1183 0.0942 0.0792

MDP 0.1343 0.1224 0.1123 0.1059 0.1364 0.1241 0.1077 0.1031

MDPLSC MDPLSA

MLE 0.1373 0.1110 0.0901 0.0581 0.1356 0.1123 0.0810 0.0592

MDP 0.1560 0.1179 0.1121 0.1056 0.1352 0.1205 0.1095 0.1054

MDL 0.1371 0.1184 0.1139 0.1055 0.1352 0.1207 0.1093 0.1035
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Part lb of Appendix B. By Method Results for Well-Separated Mixed Weibull
( Shape = 31 = 02 = 0.9)

WELL-SEPARATED (WS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mixing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing
proportion via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing
proportion via AD

MDPLSC MDE of the mixing proportion and then location parameters
(simultaneously) via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Table 8. By Integrated Absolute Error, Aggregated Results for Well-Separated Mixed Weibull

B=0.9
10 L. 40 100 10 AD 40 100

-- ------ . -- - - CVM- - - ------------ ----------------......... AD --- }

_ _ I _ _ I _ _ _ _ I _ I _ _

P = 0.5 MDLSPC MDLSPA

MLE 0.7068 0.6238 0.644 0.7 0.7463 0.7119 0.6789 0.7144

MDL 0.7313 0.711 0.8323 0.9817 0.7244 0.8168 0.8383 1.0128

MDP 0.5166 0.4774 0.4759 0.549 0.5779 0.5228 0.4833 0.6286

MDPLSC MDPLSA
MLE 0.7415 0.6872 0.7172 0.7081 0.7114 0.7117 0.6489 0.7333

MDP 0.4538 0.3819 0.3235 0.3617 0.4331 0.4146 0.3563 0.4661

MDL 0.5661 0.5108 0.5012 0.5289 0.5582 0.5527 0.5027 0.5419

P = 0.3 MDLSPC MDLSPA

MLE 0.4267 0.3847 0.3724 0.3958 0.4329 0.3914 0.3735 0.4048

MDL 0.4703 0.4601 0.479 0.6546 0.4754 0.4847 0.4903 0.6074

MDP 0.4684 0.4478 0.4434 0.5297 0.4908 0.4618 0.4218 0.4549

MDPLSC MDPLSA
MLE 0.4147 0.377 0.3784 0.3968 0.4192 0.3734 0.3558 0.4001

MDP 0.4261 0.3707 0.3736 0.3911 0.4469 0.3747 0.3731 0.3885

MDL 0.4608 0.4242 0.4526 0.4911 0.434 0.409 0.3941 0.3978

P = 0.1 MDLSPC MDLSPA

MLE 0.4999 0.3462 0.3291 0.3427 0.5181 0.3856 0.3181 0.334

MDL 0.4605 0.3442 0.3807 0.5323 0.4578 0.3954 0.4085 0.61
MDP 0.476 0.3832 0.3713 0.522 0.4474 0.3703 0.3826 0.5144

MDPLSC MDPLSA
MLE 0.5429 0.377 0.3146 0.3292 0.4582 0.3734 0.3558 0.3516

MDP 0.5474 0.3707 0.3303 0.3584 0.4939 0.3747 0.3731 0.3416

MDL 0.508 0.4242 0.413 0.5982 0.4252 0.409 0.3941 0.5798
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Part 2 of Appendix B. By Method Results for Non-Separated Mixed Weibull

Non-Separated (NS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mixing proportion via AD

MDPL(1-2)C MDE of the location parameters (sequentially) via CVM

MDPL(1-2)A MDE of the location parameters (sequentially) via AD

MDPLSC MDE of the location parameters (simultaneously) via CVM

MDPLSA MDE of the location parameters (simultaneously) via AD
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Table 6. By Integrated Absolute Error, Aggregated Results for Non-Separated Mixed Weibull

10 20 40 100 10 20 40 100

- CVM . {- ------------ AD --------------------------

P 0.5 MDPLC MDPLA
MLE 0.4375 0.3982 0.3991 0.3698 0.4395 0.4189 0.3905 0.3539

MDP 0.1873 0.1352 0.0957 0.0641 0.2487 0.2088 0.1854 0.1464

MDL 1 0.1923 0.1372 0.0959 0.0669 0.2718 0.2105 0.1951 0.1542

MDL 2 0.2441 0.2228 0.2086 0.2083 0.2574 0.2314 0.1812 0.1675

MDPLSC MDPLSA
MLE 0.4281 0.4065 0.3709 0.3734 0.4315 0.4124 0.3957 0.3795

MDP 0.1799 0.1248 0.0966 0.0667 0.2454 0.2145 0.1889 0.1452

na na na na na na na na

MDLS 0.2356 0.2293 0.2026 0.2049 0.2696 0.2256 0.1997 0.1641

P = 0.3 MDPLC MDPLA
MLE 0.2652 0.2509 0.2376 0.2378 0.267 0.2562 0.2435 0.2364

MDP 0.2615 0.2344 0.2272 0.2252 0.2531 0.2348 0.2282 0.2258

MDL 1 0.2694 0.2388 0.2343 0.2252 0.2505 0.2411 0.2346 0.2273

MDL 2 0.2452 0.2553 0.2474 0.2371 0.2531 0.2414 0.2357 0.2251

MDPLSC MDPLSA

MLE 0.2551 0.2607 0.2447 0.2437 0.2696 0.2498 0.2493 0.238

MDP 0.2463 0.2329 0.2295 0.224 0.2499 0.2335 0.2301 0.2268

na na na na na na NA NA

MDLS 0.257 0.2515 0.2521 0.2312 0.2597 0.2392 0.2307 0.2397

P = 0.1 MDPLC MDPLA
MLE 0.226 0.2185 0.2121 0.2089 0.2208 0.2218 0.2204 0.1997
MDP 0.2157 0.2113 0.2198 0.218 0.2091 0.2122 0.2184 0.2165

MDL 1 0.2243 0.2231 0.2242 0.2281 0.2193 0.2179 0.227 0.2273

MDL2 0.2138 0.2154 0.2181 0.2251 0.2122 0.2138 0.2189 0.2217

MDPLSC MDPLSA

MLE 0.2183 0.2263 0.2102 0.2034 0.2302 0.2298 0.2199 0.2032

MDP 0.2146 0.2169 0.2188 0.2165 0.2141 0.2144 0.2186 0.2163
na na na na na na NA na

MDLS 0.2191 0.2201 0.2187 0.2234 0.2162 0.2137 0.2178 0.2189
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Appendix C. By Method Results including Confidence Intervals

Part la. Well-Separated Mixed Weibull (Shape = 1 = 32 = 3)
Part lb. Well-Separated Mixed Weibull (Shape = 31 132 = 0.9)
Part 2. Non-Separated Mixed Weibull

The following abbreviations were used in this appendix (ref Chap 3. Methodology).

GENERAL

P Mixing Proportion
L Shorthand notation

L(1-2) Sequential estimation of the location parameters
LS Simultaneous estimation of the location paramters

N Sample Size

I-ABS Error reported via Integrated Absolute Difference
I-MSE Error reported via Mean Square Error

MDE Minimum Distance Estimate
MLE Maximum Likelihood Estamate

CVM Cramer VonMises Test Statistic
AD Anderson-Darling Test Statistic

SCORE Number of times better than MLE out of 1000
CI Confidence Interval at the alpha equal to ten percent level
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Part Ia of Appendix C. By Method Results for Well-Separated Mixed Weibull
( Shape = 31 = 32 = 3)

WELL-SEPARATED (WS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mxing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing proportion
via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing proportion
via AD

MDPLSC MDE of the mixing proportion and then location parameters (simultaneously)
via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Table 10. By Method Results for Well Separated Mixed Weibull (Shape = 3)
WS (B = 3)

MLE MDPC MDPA MDLSC MDLSA MDLSPC MDLSPA MDPLSA MDPLSC
P = 0.5 I-ABS 0.2701 0.1987 0.2048 0.2859 0.3097 0.2156 0.2485 0.2431 0.2256
N = 10 CI +/- 2.02E-03 2.47E-03 2.47E-03 2.24E-03 1.63E-03 2.47E-03 1.19E-02 1.63E-03 2.59E-03

SCORE 828 455 270 206 637 408 387 766
I-MSE 0.0457 0.0358 0.0399 0.0484 0.0653 0.0378 0.0544 0.0492 0.0425
CI +/- 6.33E-04 1.37E-03 1.37E-03 1.26E-03 1.37E-03 1.1 OE-02 8.69E-04 1.41 E-03

SCORE 828 455 270 206 637 408 387 828
N = 20 I-ABS 0.2069 0.129 0.1494 0.2396 0.2269 0.1623 0.1733 0.1491 0.1426

SCORE 879 733 405 408 815 721 734 813
I-MSE 0.0245 0.0165 0.0173 0.0416 0.0318 0.0313 0.0229 0.0177 0.0214

SCORE 880 732 405 408 815 721 734 813
N=40 I-ABS 0.1431 0.0823 0.1131 0.1765 0.1599 0.0918 0.1192 0.1211 0.0929

SCORE 890 590 395 348 848 579 554 854
I-MSE 0.0113 0.0044 0.0066 0.0172 0.0141 0.0066 0.0077 0.0076 0.0068
SCORE 890 579 395 348 848 579 554 854

N = 100 I-ABS 0.0947 0.0496 0.1032 0.1384 0.0956 0.0592 0.1115 0.1133 0.0569
SCORE 947 290 218 130 497 148 73 880
I-MSE 0.0053 0.0015 0.0048 0.0108 0.0052 0.0026 0.0054 0.0058 0.0023

SCORE 949 290 218 130 497 148 73 880

P=0.3 MLE MDPC MDPA MDLSC MDLSA MDLSPC MDLSPA MDPLSA MDPLSC
N=10 I-ABS 0.1684 0.1533 0.1534 0.1948 0.1718 0.1881 0.1759 0.1849 0.1622

SCORE 502 416 76 468 118 466 481 443
I-MSE ,0180 0.0146 0.0143 0.0253 0.0219 0.0238 0.0221 0.0255 0.0163
SCORE 502 416 76 468 118 466 481 443

N = 20 I-ABS 0.1187 0.1247 0.1266 0.1518 0.127 0.1459 0.1374 0.1355 0.1408
SCORE 290 284 220 447 234 337 295 378
I-MSE 0.0071 0.0071 0.0074 0.0139 0.0104 0.0128 0.0112 0.0095 0.0127

SCORE 290 284 220 447 234 337 295 378
N = 40 I-ABS 0.0928 0.1194 0.1198 0.1335 0.0956 0.1401 0.1209 0.1232 0.1223

SCORE 176 161 225 440 120 276 255 211
I-MSE 0.0043 0.061 0.0062 0.0115 0.0046 0.0111 0.0064 0.0069 0.0069
SCORE 175 161 225 440 120 276 255 211

N = 100 I-ABS 0.0725 0.1098 0.1097 0.1129 0.0809 0.1215 0.1121 0.1121 0.1113
SCORE 98 105 252 396 78 128 150 105
I-MSE 0.0028 0.0052 0.0052 0.0076 0.0036 0.0075 0.0055 0.0055 0.0055

SCORE 98 100 252 396 78 128 150 105

P = 0.1 MLE MDPC MDPA MDLSC MDLSA MDLSPC MDLSPA MDPLSA MDPLSC
N = 10 I-ABS 0.1319 0.136 0.1352 0.1291 0.1361 0.1343 0.1364 0.1352 0.1371

SCORE 567 514 337 296 609 614 668 597
I-MSE 0.0089 0.0889 0.0088 0.0088 0.0095 0.0087 0.0089 0.0088 0.0091
SCORE 560 515 337 296 609 614 668 597

N = 20 I-ABS 0.1064 0.1179 0.1205 0.1182 0.1183 0.1224 0.1241 0.1207 0.1184
SCORE 442 447 274 241 478 536 517 475
I-MSE 0.0062 0.0065 0.0069 0.0071 0.0073 0.0071 0.0073 0.0069 0.0065

SCORE 440 441 274 241 478 536 517 475
N = 40 I-ABS 0.0844 0.1121 0.105 0.1092 0.0942 0.1123 0.1077 0.1093 0.1139

SCORE 272 239 138 214 332 333 342 284
I-MSE 0.0039 0.0057 0.0053 0.0058 0.0046 0.0058 0.0053 0.0054 0.0059

SCORE 270 239 138 214 332 333 342 284
N = 100 I-ABS 0.0583 0.1056 0.1054 0.1073 0.0792 0.1059 0.1031 0.1035 0.1055

SCORE 90 99 124 284 140 143 149 103
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Part lb of Appendix C. By Method, Results for Well-Separated Mixed Weibull
( Shape = 01 = 132 = 0.9 )

WELL-SEPARATED (WS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mxing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing proportion
via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing proportion
via AD

MDPLSC MDE of the mixing proportion and then location parameters (simultaneously)
via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Table 11. By Method Results for the Well-Separated Mixed Weibull (Shape = 0.9)
MLE MDPC MDPA MDLSC MDLSA MDLSPC MDLSPA MDPLSC MDPLSA

P = 0.5 I-ABS 0.7068 0.4538 0.4331 0.7312 0.7244 0.5166 0.5779 0.5661 0.5582
N = 10 Cl +/- 2.02E-03 2.42E-03 2.21 E-02 2.78E-03 2.31E-02 2.02E-03 3.89E-02 3.57E-03 2.71E-02

SCORE 830 863 455 474 727 719 714 738
I-MSE 0.0907 0.0573 0.0557 0.1129 0.1189 0.0737 0.096 0.1002 0.0842
CI +/- 6.33E-04 7.17E-04 2.46E-03 7.83E-04 5.34E-03 6.33E-04 4.77E-03 1.37E-04 3.60E-03

SCORE 830 863 455 474 727 719 714 738
N = 20 I-ABS 0.6238 0.3819 0.4146 0.711 0.8168 0.4774 0.5228 0.5108 0.5527

SCORE 820 869 357 380 684 692 671 698
I-MSE 0.0658 0.0311 0.0379 0.099 0.1106 0.0642 0.0659 0.0638 0.0674

SCORE 820 869 357 380 684 692 671 698
N = 40 I-ABS 0.644 0.3235 0.3563 0.8323 0.8383 0.4759 0.4833 0.5012 0.5027

SCORE 871 824 335 330 699 692 688 637
I-MSE 0.0639 0.0246 0.0272 0.1145 0.1179 0.0562 0.0611 0.0618 0.0503

SCORE 871 824 335 330 699 692 688 637
N = 10C I-ABS 0.7004 0.3617 0.4661 0.9817 1.013 0.5489 0.6286 0.5289 0.5419

SCORE 846 715 266 139 648 295 195 254
I-MSE 0.0729 0.0312 0.0418 0.1508 0.1861 0.0818 0.1275 0.0655 0.0608

SCORE 846 715 266 139 648 295 195 254

P = 0.3 MLE MDPC MDPA MDLSC MDLSA MDLSPC MDLSPA MDPLSC MDPLSA
N = 10 I-ABS 0.4267 0.4261 0.4469 0.4703 0.4754 0.4684 0.4908 0.4609 0.434

SCORE 412 391 471 231 430 188 413 402
I-MSE 0.0414 0.0406 0.0478 0.0595 0.0584 0.0566 0.06 0.0561 0.0446

SCORE 412 391 471 231 430 188 413 402
N = 20 I-ABS 0.3847 0.3707 0.3747 0.4601 0.4847 0.4478 0.4618 0.4242 0.409

SCORE 459 288 379 363 320 376 359 260
I-MSE 0.0247 0.023 0.0239 0.0486 0.0453 467 0.0403 0.0411 0.0279
SCORE 459 288 379 363 320 376 359 260

N = 40 I-ABS 0.3724 0.3736 0.3731 0.479 0.4903 0.4434 0.4218 0.4526 0.3941
SCORE 431 459 268 299 313 372 321 473
I-MSE 0.0208 0.0206 0.0212 0.0511 0.039 0.0446 0.0301 0.0437 0.0242

SCORE 431 459 268 299 313 372 321 473
N = 1OC I-ABS 0.3958 0.3912 0.3885 0.6546 0.6074 0.5297 0.4549 0.4911 0.3978

SCORE 504 519 159 226 299 408 304 554
I-MSE 0.0217 0.0209 0.0207 0.0786 0.0557 0.0628 0.0376 0.0502 0.0261

SCORE 500 519 159 226 299 408 304 554

P = 0.1 MLE MDPC MDPA MDLSC MDLSA MDLSPC MDLSPA MDPLSC MDPLSA
N = 10 I-ABS 0.4999 0.5474 0.4939 0.4605 0.4578 0.4759 0.4474 0.508 0.4254

SCORE 519 517 654 570 643 612 643 580
I-MSE 0.0348 0.0396 0.0351 0.0338 0.0319 0.0347 0.0311 0.0371 0.0284

SCORE 519 517 654 570 654 612 643 580
N = 20 I-ABS 0.3462 0.388 0.3627 0.3442 0.3954 0.3832 0.3703 0.3704 0.3743

SCORE 496 519 611 501 607 506 590 514
I-MSE 0.0196 0.0236 0.0214 0.0213 0.0237 0.0246 0.0214 0.234 0.0219

SCORE 496 519 611 501 607 506 590 514
N = 40 I-ABS 0.3291 0.3303 0.3285 0.3807 0.4085 0.3713 0.3826 0.4129 0.4302

SCORE 463 520 526 362 519 419 473 383
I-MSE 0.0167 0.0161 0.0161 0.0237 0.0235 0.0231 0.0212 0.0265 0.0263
SCORE 463 520 526 362 519 419 473 383

N = I0(C I-ABS 0.3427 0.3584 0.3416 0.5323 0.61 0.5219 0.5144 0.5982 0.5798
SCORE 444 450 400 178 51 363 283 56
I-MSE 0.0159 0.0167 0.0159 0.0389 0.0424 0.0378 0.0347 0.0453 0.0411

SCORE 444 450 400 178 51 363 283 56
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Part 2 of Appendix C. By Method Results for Non-Separated Mixed Weibull

Non-Separated (NS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mxing proportion via AD

MDPL(I-2)C MDE of the location parameters (sequentially) via CVM

MDPL(1-2)A MDE of the location parameters (sequentially) via AD

MDPLSC MDE of the location parameters (simultaneously) via CVM

MDPLSA MDE of the location parameters (simultaneously) via AD
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Table 9. By Method Results for the Non-Separated Mixed Weibull

P = 0.5
MLE MDPC MDPA MDPLIC MDPL2C MDPL1A MDPL2A MDPLSC MDPLSA

N = 10 I-ABS 0.4375 0.1873 0.2487 0.1923 0.2441 0.2574 0.2718 0.2356 0.2696
Cl 1.79E-03 6.46E-04 9.85E-04 4.76E-04 6.17E-04 1.04E-01 9.02E-04 6.92E-04 7.38E-04

score: 932 791 912 842 790 763 827 723
I-MSE 0.0513 0.0194 0.0289 0.0206 0.0349 0.0332 0.0382 0.337 0.0289

CI 2.60E-04 2.10E-04 2.OOE-04 9.12E-04 1.39E-04 2.31E-04 2.OOE-04 1.55E-04 1.56E-04
score: 932 791 912 842 790 763 827 723

N = 20 I-ABS 0.3982 0.1352 0.2088 0.1372 0.2228 0.2106 0.2314 0.2293 0.2226
score: 979 840 967 892 852 815 804 894

I-MSE 0.0418 0.0108 0.0175 0.0113 0.0301 0.0177 0.0235 0.0234 0.0301
score: 979 840 967 892 852 815 804 894

N = 40 I-ABS 0.3991 0.0957 0.1812 0.0959 0.2086 0.1854 0.1951 0.2026 0.1997
score: 991 883 980 874 867 858 884 839

I-MSE 0.0385 0.005 0.0111 0.0051 0.0259 0.0116 0.0154 0.0251 0.0161
score: 991 883 980 874 867 858 884 839

N = 10( I-ABS 0.3698 0.0641 0.1464 0.0669 0.2083 0.1543 0.1675 0.2049 0.1641
score: 990 896 983 853 887 877 864 888

I-MSE 0.0333 0.0021 0.0065 0.0028 0.0255 0.0077 0.0114 0.025 0.0108
score: 990 896 983 853 887 877 864 888

P=0.3
N=10 I-ABS 0.2652 0.2452 0.2477 0.2615 0.2694 0.2531 0.2505 0.257 0.2599

score: 534 516 517 487 542 552 513 548
I-MSE 0.0193 0.0178 0.0181 0.0212 0.0297 0.0202 0.0223 0.027 0.025

score: 534 516 517 487 542 552 513 548
N = 20 I-ABS 0.2509 0.2344 0.2348 0.2388 0.2553 0.2411 0.2414 0.2515 0.2392

score: 519 579 573 466 620 549 479 562
I-MSE 0.0156 0.0152 0.0149 0.0169 0.0263 0.0177 0.0192 0.0266 0.0184

score: 519 579 573 466 620 549 479 562
N = 40 I-ABS 0.2376 0.2272 0.2282 0.2343 0.2474 0.2346 0.2357 0.2526 0.2307

score: 541 577 532 430 545 549 448 577
I-MSE 0.0128 0.0127 0.0127 0.0146 0.026 0.014 0.0155 0.0261 0.0146

score: 541 577 532 430 545 549 448 577
N = 10( I-ABS 0.2378 0.2252 0.2251 0.2252 0.2371 0.2258 0.2273 0.2312 0.2397

score: 564 563 571 457 551 557 502 379
I-MSE 0.0137 0.0111 0.0111 0.0117 0.0233 0.0116 0.0129 0.0133 0.0234

score: 564 563 571 457 551 557 502 379
P=0.1
N=10 I-ABS 0.226 0.2157 0.2091 0.2243 0.2138 0.2193 0.2122 0.2191 0.2162

score: 500 464 459 509 476 535 506 514
I-MSE 0.0111 0.011 0.0108 0.0125 0.0128 0.0121 0.0119 0.013 0.0121

score: 500 464 459 509 476 535 506 514
N = 20 I-ABS 0.2185 0.2113 0.2122 0.2231 0.2154 0.2179 0.2138 0.2201 0.2137

score: 443 432 444 495 465 476 482 509
I-MSE 0.0105 0.0107 0.0106 0.0121 0.0127 0.0117 0.0117 0.0108 0.0117

score: 443 432 444 495 465 476 482 509
N = 40 I-ABS 0.2121 0.2198 0.2184 0.2242 0.2181 0.227 0.2189 0.2187 0.2178

score: 409 409 405 457 378 445 412 452
I-MSE 0.01 0.0109 0.0109 0.0121 0.0131 0.0121 0.0119 0.0129 0.0116

409 409 405 457 378 445 412 452
N = 10( I-ABS 0.2089 0.218 0.2165 0.2281 0.2251 0.2273 0.2217 0.2234 0.2189

344 305 326 322 278 309 369 180
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Appendix D. Single Sample Runs for Each Method

Part la. Well-Separated Mixed Weibull (Shape -- 1 132 = 3)
Part lb. Well-Separated Mixed Weibull (Shape = 0 132 = 0.9)
Part 2. Non-Separated Mixed Weibull

The following abbreviations were used in this appendix (ref Chap 3. Methodology).

GENERAL

P Mixing Proportion
L Shorthand notation

L(1-2) Sequential estimation of the location parameters
LS Simultaneous estimation of the location paramters

N Sample Size

I-ABS Error reported via Integrated Absolute Difference
I-MSE Error reported via Mean Square Error

MDE Minimum Distance Estimate
MLE Maximum Likelihood Estamate

CVM Cramer Von Mises Test Statistic
AD Anderson-Darling Test Statistic

SCORE Number of times better than MLE out of 1000
CI Confidence Interval at the alpha equal to ten percent level
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Part l a of Appendix D. Single Sample Run for Well-Separated Mixed Weibull
(Shape=3 1 == 2 3)

WELL-SEPARATED (WS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the nixing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing
proportion via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing
proportion via AD

MDPLSC MDE of the mixing proportion and then location parameters
(simultaneously) via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Sample for MDLSPC

COUNT = 10

For this seed, PDF1 SUBCOUNT = 5
For this seed, PDF2 SUBCOUNT = 5

FOS = 5.2528127194075
LOS = 10.3968802790539

TRUE(I-3)= 3.0 5.0 0.5
TRUE(4-7)= 3.0 15.0 0.5 0.5

IMTIAL MLE ...
4.195 5.253 0.379
2.393 10.249 0.100 0.444

The function value = 993.076

MDLIC = 5.3616323769752

MDL2C = 10.2017474577584

Revised MLE: 2.786 5.362 0.265
3.719 10.202 0.148 0.444

The function value = 993.196

MDPC = 0.50635426732366

Revised MLE: 2.786 5.362 0.265
3.719 10.202 0.148 0.506

The function value = 993.265
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Sample for MDLSPA

COUNT = 10

For this seed, PDF1 SUBCOUNT = 6
For this seed, PDF2 SUBCOUNT = 4

FOS = 5.1946464500596
LOS = 10.3603981497592

TRUE(I-3)= 3.0 5.0 0.5
TRUE(4-7)= 3.0 15.0 0.5 0.5

INITIAL MLE ...
1.500 5.195 0.270
3.384 10.226 0.100 0.556

The function value = 994.869

MDL1A = 5.2185976658729

MDL2A = 10.0683577962409

Revised MLE: 1.301 5.219 0.237
8.747 10.068 0.259 0.556

The function value = 995.046

MDPA = 0.5040108024391

RevisedMLE: 1.301 5.219 0.237
8.747 10.068 0.259 0.504

The function value = 995.094
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Sample for MDPC & MDPLSC

COUNT = 10

For this seed, CVM1 = 4
For this seed, CVM2 = 6

FOS= 5.2167419148015
LOS = 10.4808556003185

TRUE(I-3)= 3.0 5.0 0.5
TRUE(4-7)= 3.0 10.0 0.5 0.5

INITIAL MLE ...
2.612 5.217 0.206
2.688 10.033 0.318 0.400

The function value = 997.726

MDPC = 0.47368033826620

Revised MLE: 2.612 5.217 0.206
2.688 10.033 0.318 0.474

The function value = 998.005

MDL1C = 5.2321927644561

MDL2C = 10.0480235732543

RevisedMLE: 2.363 5.232 0.189
2.513 10.048 0.301 0.474

The function value = 997.983
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Sample for MDPA & MDPLSA

COUNT= 10

For this seed, CVM1 = 3
For this seed, CVM2 = 7

FOS = 5.1845715038107
LOS = 10.688001991511

TRUE(I-3)= 3.0 5.0 0.5
TRUE(4-7)= 3.0 10.0 0.5 0.5

INITIAL MLE ...
2.240 5.185 0.212
1.728 10.135 0.275 0.400

The function value = 999.233

MDPA = 0.41868033949555

Revised MLE: 2.240 5.185 0.212
1.728 10.135 0.275 0.419

The function value = 999.363

MDL1A= 5.2394244183989

MDL2A = 10.0314915981867

RevisedMLE: 1.419 5.239 0.150
2.555 10.031 0.394 0.419

The function value = 999.493
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Part lb of Appendix D. Single Sample Runs for Well-Separated Mixed Weibull
( Shape = 1 = 32 = 0.9)

WELL-SEPARATED (WS)

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mxing proportion via AD

MDLSC MDE of the location parameters simultaneously via CVM

MDLSA MDE of the location parameters simultaneously via AD

MDLSPC MDE of the location parameters simultaneously and then mixing
proportion via CVM

MDLSPA MDE of the location parameters simultaneously and then mixing
proportion via AD

MDPLSC MDE of the mixing proportion and then location parameters
(simultaneously) via CVM

MDPLSA MDE of the mixing proportion and then the location parameters
(simultaneously) via AD
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Sample for Well-Separated Mixed Weibull

COUNT = 10

For this seed, PDF1 SUBCOUNT = 6
For this seed, PDF2 SUBCOUNT = 4

FOS = 5.0368507578617
LOS = 15.878272472209

TRUE(I-3)= 0.9 5.0 0.5
TRUE(4-7)= 0.9 15.0 0.5 0.5

INITIAL MLE ...
1.471 5.037 0.800
1.876 14.995 0.560 0.556

The function value = 1009.239

MDLIC = 5.0924738156716

MDL2C = 14.601669949573

Revised MLE: 1.366 5.092 0.729
3.721 14.602 0.990 0.556

The function value = 1009.082

MDPC = 0.56214434883697

Revised MLE: 1.366 5.092 0.729
3.723 14.602 0.990 0.562

The function value = 1009.083
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Sample for MDLSP

COUNT = 10

For this seed, PDF1 SUBCOUNT = 6
For this seed, PDF2 SUBCOUNT = 4

FOS = 5.4557230964974
LOS = 16.149584079853

TRUE(I-3)= 0.9 5.0 0.5
TRUE(4-7)= 0.9 15.0 0.5 0.5

INITIAL MLE ...
0.967 5.456 0.580

0.946 15.103 0.440 0.600

The function value = 1007.572

MDL1A= 5.4988539184841

MDL2A = 15.102514094312

Revised MLE: 0.500 5.499 1.019
0.500 15.103 0.400 0.600

The function value = 10 16.478

MDPA = 0.55720491595654

RevisedMLE: 0.500 5.499 1.119
0.500 15.103 0.349 0.557

The function value = 1016.625
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Sample for MDPC & MDPLSC

COUNT = 10

For this seed, PDF1 SUBCOUNT = 5
For this seed, PDF2 SUBCOUNT = 5

FOS = 5.3964532271532
LOS = 15.670319494084

TRUE(I-3)= 0.9 5.0 0.5
TRUE(4-7)= 0.9 15.0 0.5 0.5

INITIAL NILE ...
1.082 5.396 0.475
1.000 15.044 0.312 0.400

The function value = 1006.323

MDPC = 0.50743033751215

Revised MLE: 1.111 5.396 0.515
0.997 15.044 0.285 0.507

The function value = 1006.27

MDL1C = 5.4447156052831

MDL2C = 15.044130141483

Revised MLE: 0.500 5.445 1.601
0.500 15.044 0.366 0.507

The function value = 10 15.236
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Sample for MDPA & MDPLSA

COUNT = 10

For this seed, PDF1 SUBCOUNT = 6
For this seed, PDF2 SUBCOUNT = 4

FOS = 5.0019494304593
LOS = 15.365247463217

TRUE(I-3)= 0.9 5.0 0.5
TRUE(4-7)= 0.9 15.0 0.5 0.5

INITIAL MLE ...
1.079 5.002 0.945
0.995 15.013 0.155 0.600

The function value = 1021.092

MDPA = 0.54220491629182

Revised MILE: 0.500 5.002 0.290
1.352 14.987 0.217 0.542

The function value = 1009.93 8

MDL1A = 5.104479945233

MDL2A = 13.494479945233

Revised MLE: 1.076 5.104 0.894
10.000 13.494 1.731 0.542

The function value = 1008.670
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Part 2 of Appendix D. Single Sample Runs for Non-Separated Mixed Weibull

Non-Separated (NS) Methods

MLE Maximum Likelihood Estimation

MDPC MDE of the mixing proportion via CVM

MDPA MDE of the mxing proportion via AD

MDPL(1-2)C MDE of the location parameters (sequentially) via CVM

MDPL(1-2)A MDE of the location parameters (sequentially) via AD

MDPLSC MDE of the location parameters (simultaneously) via CVM

MDPLSA MDE of the location parameters (simultaneously) via AD
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Sample Run for MIDPC & MDPLC

COUNT = 10

For this seed, PDF1 SUBCOUNT = 4
For this seed, PDF2 SUBCOUNT = 6

FOS = 5.0186625015626
LOS = 6.2767729694646

TRUE(I-3)= 4.0 5.0 0.5
TRUE(4-7)= 1.0 5.0 0.5 0.5

INITIAL MLE ...
5.292 5.019 0.510
0.715 5.019 0.296 0.400

The function value = -6.577

MDPC = 0.48315982820764

Revised ME: 5.073 5.019 0.481
0.999 5.019 0.444 0.483

The function value = -0.642

MDL1C = 4.9674008566246

RevisedMLE: 5.190 4.967 0.531
1.000 5.019 0.406 0.483

The function value = -0.598

MDL2C = 5.0044015888227

Revised MLE: 10.000 4.967 0.560
0.500 5.004 0.133 0.483

The function value = -1.500
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Sample Run for MDPA & MDPLA

COUNT = 10

For this seed, ADT1 = 5
For this seed, ADT2 = 5

FOS = 5.2319329793737
LOS = 6.5415151342765

TRUE(I-3)= 4.0 5.0 0.5
TRUE(4-7)= 1.0 5.0 0.5 0.5

IMTIAL MLE ...
6.223 5.232 0.255
0.996 5.232 0.695 0.400

The function value = -4.577

MDPA= 0.47065982860115

RevisedMLE: 1.651 5.232 0.150
0.906 5.232 0.733 0.471

The function value = 1002.156

MDL1A= 5.2450449387151

Revised MLE: 2.824 5.245 0.150
0.896 5.232 0.483 0.471

The function value = 0.066

MDL2A= 5.2142278811673

Revised MLE: 7.250 5.245 0.246
0.500 5.214 0.217 0.471

The function value = -4.164
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Sample Run for MDPC & MDPLSC

COUNT =10
PDF1 SUBCOUNT= 6
PDF2 SUBCOUNT = 4

FOS = 5.0235825959959
LOS = 6.5095421369077

TRUE(I-3)= 4.0 5.0 0.5
TRUE(4-7)= 1.0 5.0 0.5 0.5

INITIAL MLE: 6.259 5.024 0.418
0.929 5.024 0.673 0.600

The function value = 998.351

MDPC = 0.49131966251611

Revised MLE: 5.728 5.024 0.440
0.873 5.024 0.588 0.491

The function value = -3.811

MDL1C = 5.0464192499178

MDL2C = 5.0708774965770

Revised MLE: 10.000 5.046 0.422
1.251 5.071 0.698 0.491

The function value = 995.873
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Sample Run for MDPA & MDPLSA

COUNT = 10

PDF1 SUBCOUNT = 4
PDF2 SUBCOUNT = 6

FOS = 5.0537649570432
LOS = 6.1571406477402

TRUE(I-3)= 4.0 5.0 0.5
TRUE(4-7)= 1.0 5.0 0.5 0.5

INITIAL MLE...
4.523 5.054 0.392
0.888 5.054 0.399 0.400

The function value = -1.053

MDPA = 0.51868033726038

Revised MLE: 4.176 5.054 0.392
1.000 5.054 0.482 0.519

The function value = 0.885

MDLI = 5.0191057105040

MDL2 = 5.0394743882462

Revised MLE: 3.458 5.019 0.396
0.987 5.039 0.521 0.519

The function value = 0.819
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Appendix E: Sample FORTRAN for Non-Separated Mixed Weibull

The following abbreviations were used in this appendix.

PDF Probability Density Function

CDF Cumulative Distribution Function

COUNT Sample size

PDF SUBCOUNT Sample size per PDF

TRUE True Solution for seven parameter Mixed Weibull
(1-3) PDF 1 Shape (031), Location (a1) and Scale (Ti1) Parameters
(4-6) PDF 2 Shape (032), Location (62) and Scale (12) Parameters
(7) Mixing Proportion ( p )

MLE Maximum Likelihood Estimate(s)

MDPC Minimum Distance Estimate for the Mixing Proportion using the
Cramer Von-Mises Statistic

ptr.e True mixing proportion
flt(x) True PDF for Population #1
f2t(x) True PDF for Population #2
&M True Mixed Weibull PDF
Flt(x) True CDF for Population #1
F2t(x) True CDF for Population #2
Gt. True Mixed Weibull CDF

Pest Estimated mixing proportion
fl(x) Estimated PDF for Population #1
f2(x) Estimated PDF for Population #2
9Estimated Mixed Weibull PDF
F 1(x) Estimated CDF for Population #1
F2(x) Estimated CDF for Population #2
G..t Estimated Mixed Weibull CDF
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PROGRAM NSPLC

INTEGER COUNT,I,J,, SCabs2 1, SCmse2 1.
6 SCabs3 1,SCrnse3 1,SCabs32,SCnise32.
6 SCabs4 1,SCmse4 1,RUNSEED,SEED1,DIV

REAL*8 MLE(l1:7),RAW(5000),TRIJE( 1:7),
6 MDLCVM1(0:3).MDLCVM2(0:3),MPCVML(O:3),NMPCVM2(0:3),
6 TRUEPDFL(0:3), TRUEPDF2(0:3),
6 1NTABS,INTMSE,INTABS1,JNTMSE 1,INTABS2,1NTMSE2,
6 ph3TOTINTABS,ph3TOTNTMSE,ph4TOTINTABS,ph4TOThJTMSE,
6 ph2totintabs,ph2totintmse,phltotintabs,phltotinmse,
6 SUMlINTABS, SUMINqTMSE,sum2intabssum2intmse,
6 sum3intabs,sum3intmse,suni4intabs,sum4intmse,
6 MEAN4INTABSvMAN4INMSE,MEANINTABS,MEAN1INTMSE,
6 MEAN2LNTABS,MEAN2LNTMSE,MEAN3MNTABS,MEAN3INMSE,
6 XGUESS(7), X(7),XLB(7),XUB(7), Di, P

EXTERNAL RSORT
COMMON / GLOBALDATA / COUNT, raw

DATA TRUE/4.0,5.0,0.5, 1.0,5.0,0.5, 0.5/
DATA SEED / 242234567.0I
DATA COUNT / 40/

C ** ROEs
c 1) DL CANNOT be.GT. FOS
c 2) D2 cannot be.GT. LOS
C -NOTE: to prevent underfiow, do not allow any to equal zero

DATA XLB/0.5E0,5.OEO, 0. 15E0, 0.5E0,5.OEO,0. 1E0,0.4E0/,
6 XUBI1O.OEO,5.01E0,3. lEO, 10.OEO,6.OEO,3. 1EO,0.6E0/

DATA XGUESS/5.0E0,5.OEO,0.5E0, 1 .5E0,5.OE,0.5E0,0.5E0/

*MAIN

RUN = 0

CALL READ (RUN, SEED, SCABS2I1, SCABS3 1,
6 SCABS3 1,SCabs32,SCABS4 1,
6 MEfAN4INTABS,MEAN4INMSE,MEAN1INTABS,MEAN1INTMSE,
6 MEAN21NTABS,MEAN2INTMSE,MEAN31NTABS,MEfAN3INTMSE)

RUN= RUN+ 1

SEED 1 = SEED
sumlintabs = 0.0
sumlintmuse = 0.0
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sum2intabs = 0.0
sum2intmse = 0.0
sum3intabs =0.0
sum3intmse =0.0

DO 17 J = RUN, 5000
DIV = J - (RUN-1)

C45 Generate samples

CALL MONTE (SEED1,TRUE)

C SORT an 'CVMjustable' (M&S, p 4 5 3 ) array of of observations subsequently referred to as 'raw'
C - an real array of length equal to the count

CALL RSORT
PRINT *, 'main successfully exited the CALL RSORT'

C After sorting but before calling DBCONG, reset XUB-D1 = FOS
C RESET ALTERED INITIAL CONDITIONS

XLB(7) = 0.4
XUB(7) = 0.6
XGUESS(7) = (1.0 - 0.5)

XLB(2) = 0.5
XUB(2)= RAW(l)
XGUESS(2) = RAW(l)

XLB(5) = 0.5
XUB(5)= RAW(COUNT-4)
XGUESS(5) = 5.0

XUB(3) = RAW(COUNT-3)
XUB(6) = RAW(COUNT-3)

c PRINT*,'UPDATED XUB(2) =',XUB(2)

C INITIAL MLE (MLE PHI, VARY ALL SEVEN PARS)
C PASS OUT MLE FOR PDF1 ONLY REQURIED FOR MDE PHI
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PITENTERING INITIAL MLE..

CALL SMILE (XYXG1JESS,XLB,XUB)

PpJNT*,'SUCCESSFULLY EXITED INITIAL MLE ..

MLE(l) = X(1)
MLE(2) = X(2)
MLE(3) = X(3)

C Now, calculate the error for phase 1
C

INTABS 0.0
INTMSE 0.0
INTABSTI = 0.0
INTMSE2 = 0.0
INTABS1 0.0
INTMSE2 0.0
phitotiNTABS 0.0
phltotINTMSE =0.0

DO026 1= 1,3
MDLCVM1 (0) =X(7)

MDLCVM2 (0) =X(7)

TRUEPDF 1(0) = TRIJE(7)
TRUEPDF2(0) = TRUE(7)
MDLCVM1 (I) = X(I)
MDLCVM2 (I) = X(1+3)
TRUEPDFI(I) = TRUE(I)
TRUEPDF2(I) = TfRUE(I+3)

26 CONTINUJE

C *ccsubtol aeror for PDFlI

CALL INTEGRATE (TRIJEPDF1 ,MDLC VMl ,1NTABS 1,INTMSE 1)

C *ccsubtl error for PDF I

CALL INTEGRATE (TRIJEPDF2,MDLCVM2,INTABS2,INTMSE2)

phiTOTINTABS INTABS I + INTABS2
phITOTINTMSE =INTMSE1I + INTMSE2

PRJIT*,'SUB&TOTALS FOR NEE phase 1 and J

PRINT*,' phiTOTINTABS =',phITOTINTABS
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PRINT~*,' ph1TOTINTMSE =',phITOT1NTMSE
PRIN..T*,' INTABSI =',INTABS1
PRINT*,' INTMSE1 =',INTMSE1
PRIN4T*,' JNTABS2 =',INTABS2
PRINT*,' LNTMSE2 =',ll'.TMSE2

SUMlINTABS =SUMlINTABS + ph1TOTIhNTABS
SUMINTMSE =SUM 1INTMSE + ph1TOTINTMSE
MEANlIINJTABS =((SUMlINTABS) + (MlEAN11NTABS*(J-DIV)))/J
MEANlINMSE =((SUM1INTMSE) + (M4EAN1INTMSE*(J-DIV)))/J

PRINT*,' MEAN-phi-IT-ABS =',MEANLINTABS
PRINT*~,' MEAN-phl-INT-MSE =t,MEANLTNTMSE

C *** INSERT NUN DISTANCE PROPORTION**

C MOE ON P ( FIX PREy Six PARS, VARY P)
C

DO033 K=l1,7
MILE(K) = X(K)

33 CONTINUE

CALL PSMDE (MLE,P)

IF (P .LT. XLB(7)) THEN
P =XLB(7)

END IF
IF (P .GT. XUB(7)) THEN

P = XB(7)
END IF

C 2nd MEE (MLE Ph2, fix D 1, vary six pars)
C NOW, set rerun MILE with MDPCVM ffixed:

IF (P .LT. 1.OE-6) THEN
P = 1.OE-6

END EF

PRINT*, ',P
XILB(7) =(P - 1.OE-7)
XUB(7) = (P + 1.OE-7)
XGUESS(7) = P

CALL SMLE(XYXGUESS,XNLB,XUB)
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C Now, calculate the error for phase 2
C

INTABS = 0.0
INT'MSE = 0.0
INTABS1 0.0
INTMSE1 =0.0

INTABS2 =0.0

11'TMSE2 =0.0

ph4totINTABS =0.0

ph4totINTMSE =0.0

DO029 1= 1,3
MDPCVML (0) =X(7)

MDPCVM2 (0) X(7)
TRUEPDFI(0) = TRIJE(7)
TRUEPDF2(0) =TRUE(7)
MDPCVML1 (1) = X(I)
MDPCVM2 (1) = X(I+3)
TRUEPDF1Q) =TRUE(1)
TRUEPDF2(I) = TRUE(I+3)

29 CONTiNIJE

CALL INTEGRATE (TRUEPDF1,MDPCVM1,INTABS 1,LNTMSE1)

CALL INTEGRATE (TRIJEPDF2,MIDPCVM2,INTABS2,INTSE2)

ph4TOTINTAI3S =INTABS1 + IINTABS2
ph4TQT1NTMSE = NTMSELI + INTMSE2

PRINT*,'SUB..TOTALS FOR MLE PHASE 4 and J3=: ,
PRINT*,' ph4TOT1NTABS =',ph4TOT1NTABS
PRINT*,' ph4TOTINTMSE =',ph4TOTINTMSE
PRINT*,' INTABSi =',1NTABS1
PRINT~*,' INTMSE1 =jNTMSEL
PRINT*,' 1NTABS2 =t,INTABS2
pPRIT*,' INTMSE2 =',INTMSE2

SUM41NTABS = SUM4INTABS + ph4TOTINTABS
SIJM41NMSE = SUM4INTMSE + ph4TOTINTMSE
MEAN4INTABS ((SUM4INTABS) + (MEAN4INTABS*(J-DMV))/J
MEAN4INTMSE =((SUM41NTMSE) + (M1EAN4InTMSE*(J-DIV)))/J

PRINT*,' MEAN-ph4-ABS =',MEAN4rNTABS
PRINT*,' MEAN-ph4-MSE. =',MfEAN4INTMSE
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C INITLAL MDE (MDE PHI, FIX DI, VARY Six PARS)
C

CALL SMDE (MLE,Di)

C 2nd MLE (MLE Ph2, fix DI, vary six pars)
C NOW, set rerun NLE with MDLCVM fixed:

PRINT*,DI =',Di
XLB(2) = (Di - L.OE-7)
XUB(2) = (Di + 1.OE-7)
XGUESS(2) = Di

CALL SMLE(XXGUESS,XLB,XUB)

C Now, calculate the error for phase 2
C

INTABS = 0.0
INTMSE = 0.0
INTABSI = 0.0
INTMSE2 = 0.0
INTABSI = 0.0
INTMSE2 = 0.0
ph2totINTABS = 0.0
ph2totINTMSE = 0.0

** now, calculate error

DO 27 I= 1,3
MDLCVM1 (0) = X(7)
MDLCVM2 (0) = X(7)
TRUEPDFI(0) = TRUE(7)
TRUEPDF2(0) = TRUE(7)
MDLCVM1 (1) = X(I)
MDLCVM2 (1) = X(I+3)
TRUEPDFI(1) = TRUE(I)
TRUEPDF2(I) = TRUE(I+3)

27 CONTINUE

CALL INTEGRATE (TRUEPDF1,MDLCVMI,INTABSI,INTMSE1)
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CALL INTEGRATE (TRUEPDF2,MDLCVM2,INTABS2,1NTMSE2)

ph2TOTINTABS INTABSI + INTABS2
ph2TOTLN'TMSE = ThTMSE 1 + LNTMSE2

PRINT*,'SIJB.TOTALS FOR NILE phase 2 and J =:',

PRINT*,' ph2TOTINTABS =',ph2TOTINTABS
PRINT*,' ph2TOTINTMSE =',ph2TOTflNTMSE
PRINT*,' INTABSI =',1NTABSI
PRINT*,' INTMSEI =',INTMSE1
PRINT*,' INTABS2 =',INTABS2
PRINT*,) 1NTMSE2 =',IN4TMSE2

SUM2INTABS =SUM2INTABS + ph2TOTLNTABS
SUM2R1NTMSE =SUM2ITMSE + ph2TOTIN4TMSE
MEAN2INTABS =((SUM2INTABS) + (MEAN2lNTABS*(J-DIV)))/J
MEAN21ITMSE =((SUM2INTMSE) + (MfEAN2lNTMSE*(J-DIV)))/J

PRINT*,' MEAN-INT-ph2-ABS =',MEAN21NTABS
PRINT*,' MEAN-1NT-ph2-MSE =',MEAN2INTMSE

C 2nd MOE (calculate Mini Distance for D2)

MLE(l) = X(4)
MLE(2) = X(5)
MILE(3) = X(6)

CALL SMDE (MILE,Di)

C 3Rd MILE (MILE Ph2, fix DlI, vary six pars)
C NOW, set rern MILE with MDLCVM fixed:

c IF (Di .LT. 1.0) THEN
C ~Di = 1.0

c ~END IF

PpflNf* , D2 = ',Di
XLB(5) = (Di - 1.OE-7)
XIJB(5) = (Di + 1.OE-7)
XGUESS(5) = Di

CALL SMLE(XYXGUESS,XLB,XUB)

C
C Now, calculate the error for phase 3
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C
INTABS = 0.0
INTMSE = 0.0
INTABSI 1 0.0
INTMSE2 0.0
INTABSI= 0.0
INTMSE2=0.0
ph3totINTABS = 0.0
ph3totLRMSE = 0.0

DO028 I= 1,3
MDLCVM1 (0) = X(7)
MDLCVM2 (0) = X(7)
TRUEPDF 1(0) = TRUE(7)
TRUEPDF2(0) = TRIJE(7)
MDLCVM1 (1) = X(I)
MDLCVM2 (1) = X(I+3)
TRUEPDFl(I) = TRUE(I)
TRIJEPDF2(I) = TRUE(I+3)

28 CONTINUE

CALL 2NTEGRATE (TRUEPDF 1,MDLC VM1,INTABS ITMSE 1)

CALL INTEGRATE (TRUEPDF2,MDLCVM2,1NTABS2,INTMSE2)

ph3TOTINTABS =INTABS I + INTABS2

ph3TOTINTMSE = NTMSE1I + INTMSE2

PRINT*,'SUB..TOTALS FOR MILE phase 3 and J
PRINT*, ph3TOTINTABS =',ph3TOTINTABS
PRINT*,' ph3TOTRNTMSE =',ph3TOTINlTMSE
PRINT*,' LNTABSI =%INTABS1
PRINT*,' LNTMSEI1=%,INTMSE1
PRINT*,' INTABS2 =,LNTABS2
PRINT*,' 1NTMSE2 =',INTMSE2

SL]M3INTABS =SUM3INTABS + ph3TOTINTABS
SUM31NTMSE =SUM311-NTMSE + ph3TOTINTMSE
MEAN3INTABS =((SIJM3INTABS) + (MEfAN3LNTABS*(J-DIV)))/J
NJEAN31NTMSE =((SIJM31INMSE) + (NlEAN31NTMSE*(J-DIV)))/J

PPINT*,' MEAN-ph3-INT-ABS =',NMAN31NTABS
PRINT*,' MEAN-ph3-INT-MSE =',MEAN31NTMSE

IF (PH4TOTINTABS .LT. PHLTOTINTABS) THEN
SCABS41 = SCABS41 + 1

END IF
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IF (PH4TOTINTMSE .LT. PH1TOTINTMSE) THEN
SCMSE41 = SCMSE41 + 1

END IF
ccc

ccc
IF (PH2TOTINTABS .LT. PHITOTINTABS) THEN

SCABS21 = SCABS21 + 1
END IF
IF (PH2TOTINTM[SE .LT. PHLTOTINTMSE) THEN

SCMSE21 = SCMSE21 + 1
END IF

ccc
IF (PH3TOTINTABS .LT. PHITOTINTABS) THEN

SCABS31 = SCABS31 + 1
END IF
IF (PH3TOTINTM[SE .LT. PH1TOTINTMSE) THEN

SCMSE31 = SCMSE31 + 1
END IF

ccc
IF (PH3TOTLNTABS .LT. PH12TOT1NTABS) THEN

SCABS32 = SCABS32 + 1
END IF
IF (PH3TOTDNMSE .LT. PH2TOTDNMSE) THEN

SCMSE32 = SCMSE32 + I
END IF

C
C In case fail to finish, print summary statistics
C

PRINT*,'.. SUMMARY STATISTICS for seed =',SEED,' J =',J
PRINqT*' ----

PRINT*,' SCabs2l1',SCabs2 1
PRINT*,' SCmse2l=',SCrnse2 I
PRINT*,' SCabs3 1=",SCabs3 1
PRINT*,' SCmse3 1=',SCmse3 1
PRIT*,'"~ SCabs4l=',SCabs4l
PRINT*,' SCrnse4 l=',SCmnse4 1
PRINT*,' SCabs32=',SCabs32
PRINT*,' SCmse32=',SCmse32

PRINT*,' MEAN-phi-INT-ABS =',MEAN lINTABS
PRINT*,' MEAN-ph 1-lNT-MSE ='.MEANHfNTMSE
PRINT*,' MEAN-LN-Wh-ABS =',MIEAN2INTABS
PRINT*,' MEAN-INT-ph2-M[SE =',MEAN2INTMSE
PRINT*,' MEAN-pb3-INT-ABS =',MEAN3LNTABS
PRINT*,' MEAN-ph3-INT-M[SE ='MEAN3INTMSE
PRIINT*,' MEAN-p4--ABS =',NffAN41NTABS
PRINT*,' MEAN-ph4-N-M[SE =',M4EAN4INTM[SE
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CALL TIM[ER (J,SCABS21I,SCABS3 1,
6 SCABS3 1.SCabs32,SCABS41,
6 MEAN4INTABS,MEfAN4INTMSE,MEfAN1INTABS,MEAN LINTMSE,
6 MEAN2INTABS,MEAN2INTMSE,MEAN3INTABS,MEAN3INMSE)

17 CONTINUE

PRINT*.'.. SUMMARY STATISTICS for seed =',SEEDI,' J =',J
PRINT* 1 ------------------------
PRINT*:' SCabs2l=',SCabs2l
PRINT*,' SCmse2 1-',SCmse2l
PRINT*,' SCabs3 l=',SCabs3 1
PRINT*,' SCmse3 1=',SCmse3 1
PRINT*,' SCabs4l=',SCabs4 I
PRINT'y SCmse4l=',SCmse4l
PRINT*,' SCabs32=',SCabs32
PRINT*,' SCmse32=',SCmse32

PRINT*,' MEAN-phi-INT-ABS =',MEANIINTABS
PRINT*,' MLAN-phl-INT-MSE =',MEANlINTMSE
PRINT*,' MJAN-INT-ph2-ABS =',MEAN2INTABS
PRINT*,' MEAN-IN-ph-MSE =',M(EAN2INTMSE
PRINT*,' MEAN-ph3-INT-ABS =',MEAN3lNTABS
PRINT*,' MEAN-ph3-INT-MSE =',MEAN3INTMSE
PRINT*,' MEN-ph4-N-ABS =',UEAN4INTABS
PRINT*,' MEAN-ph4-IN-MSE =',MEAN4INTMSE

END

C* SUBROUTINE SUMMARY OUTPUT - READS AND COUNTS
C* ALSO declares the real array 'raw' as an adjustable array
C* returns a one-dimensional real array raw called raw P455
C* into ascending order by the selection-sort algorithm*

C490

SUBROUTINE SUIMMARY(SEEDJ,DIV,SCabs2 l,SCrnse2 1,
6 SCabs3 1,SCnise3 l,SCabs32,SCmse32,
6 SCabs4l,SCmse4l,
6 MEAN4INTABS,MEAN4INTMSE,MEANIINTABS,MEAN1INTMSE,
6 MEAN2INTABS,MEAN2INTMSE,MAN3INTABS,MEAN3LNTMSE)

* Constant:
* INTEGER: The maximum number of data items that can be stored
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INTEGER LIMIT
PARAMETER ( LIMIT = 5000)

INTEGER COUNT,J,DIVSCabs21, SCmse2 1,
6 SCabs3lI,SCnise3l1,SCabs32,SCmse32,
6 SCabs41,SCmse41

REAI*8 TRUE(1 :7),SEED,
6 NEAN4rNTABS,IEAN4NTMSE,MANINTABS,MEAN1INTMSE,
6 MEAN2INTABS,MEAN2INTMSE,MEAN3INTABS,MEAN3INThSE

* Variables:
* COUNT:The total number of raw observations read from frmn
* raw:Array of real observations

INTEGER 1, count, ERRCOD
LOGICAL ENDFIL
REAL*8 raw(5000), X(7)

COMMON / GLOBALDATA/ count, raw

C-OPEN THE INPUT FILE
INTEGER INP, IOUT, J
CHARACTER CPD*30
IOUT=4
INP--3

c WRIrE(6,*)
c 140 WRITE(6,FMT='($,A) 'INPUT FILE NAME =

c READ(5,150) CPD
050O FORMAT(A30)

cpd = 'rslcpc.RES'

OPEN(UNIT=1INP,FILE=CPD,ACCESS='APPENDY)

c WRITE (INP,*)'

C WRITE (NOUT,99999) , FL, (IPARAM(L), L=3,5)

C

WRITE (INP,99) J,DIV,
6 SCABS21,SCnise2l,SCabs3l1,
6 SCmse3 1,SCabs4l,SCmse4l,
6 SCabs32,SCmse32,MEAN1INTABS,
6 MEANINTIMSE,MEAN2INTABS,MEAN2INTMSE,
6 MEAN3INTABS,MEAN31NTMSE,MEAN4INTABS,
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6 MEAN4LNTMSE

99 FORMAT(9(1X,I3),3X,8(lX,F10.7))

c WRITE (INP,*) '

c CLOSE (INP)

IF (ERRCOD .LT. 0) THEN
ENDFIL = .TRUE.

END IF
IF (ENDFIL) GO TO 20

20 PRINT *,'END OF FILE REACHED WITHIN RSORT SUBROUTINE'
c PRINT *,'WITHIN READ, COUNT =', COUNT

END

* ******** *** * * *** **** ***** * * *** * *** *** * ***** ***** **** ***** ***** *** * *** * ** **

C* SUBROUTINE READ OUTPUT - READS AND COUNTS
C* ALSO declares the real array 'raw' as an adjustable array
C* returns a one-dimensional real array raw called raw P455
C* into ascending order by the selection-sort algorithm *

C490
SUBROUTINE READ (RUN,SEED,SCABS2 1,SCABS3 1,

6 SCABS3 1,SCabs32,SCABS41,
6 MEAN4INTABS,MEAN4INTMSE,MEAN1INTABS,MEAN1INTMSE,
6 MEAN2INTABS,MEAN2INTMSE,MEAN3INTABS,MEAN3INTMSE)

INTEGER LIMIT
PARAMETER ( LIMIT = 5000)

INTEGER count,ERRCOD,RUN
INTEGER LIMIT, SCABS21, SCABS31,

6 SCABS31,SCabs32,SCABS41
REAL*8

6 MEAN4INTABS,MEAN4INTMSE,MEAN1INTABS,MEANIINTMSE,
6 MEAN2INTABS,MEAN2INTMSE,MEAN3INTABS,MEAN3INTMSE

LOGICAL ENDFIL
REAL*8 raw(5000), SEED

134



COMMON / GLOBALDATA count, raw

C- OPEN THE INPUT FILE

INTEGER INP, IOUT, J
CHARACTER CPD*30
IOUT=4
INP=3

c WRITE(6,*)'
c140 WRITE(6,FMT='($,A)') - INPUT FILE NAME
c READ(5,150) CPD
c150 FORMAT(A30)

cpd = 'nslcpc.in'

OPEN(UNIT=INP,FILE=CPD)

CONTINUE
REWIND(INP)

READ (INP,*) RUN
READ (INP,*) seed
READ (INP,*) SCABS21
READ (INP,*) SCABS31
READ (INP,*) SCABS41
READ (INP,*) MEANIlNTABS
READ (INP,*) MEANIlNTMSE
READ (INP,*) MEAN2INTABS
READ (INP,*) MEAN2INTMSE

READ (INP,*) MEAN3INTABS
READ (INP,*) MEAN3INTMSE
READ (INP,*) MEAN4INTABS
READ (INP,*) MEAN4INTMSE

END

C* SUBROUTINE TIMER OUTPUT - READS AND COUNTS
C* ALSO declares the real array 'raw' as an adjustable array
C* returns a one-dimensional real array raw called raw P455
C* into ascending order by the selection-sort algorithm *

******* ***** ************* ***** ***** ** **** ** *** ** ***** **** * ****** **** * **** *** ***

C490
SUBROUTINE TIMER (J,SCABS21,SCABS31,

6 SCABS31,SCabs32,SCABS41,
6 MEAN4INTABS,MEAN4INTMSE,MEAN1INTABSMEAN11NTMSE,
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6 MEAN2LNTABS,MEAN21NTMSE,MEAN3INTABS,MEAN3INTMSE)

INTEGER LIMT, SCABS2 1, SCABS3 1,
6 SCABS3 1,SCabs32,SCABS4L

REAL*8
6 MEAN4INTABS,MEAN4NTMSE,MANI'.JTABSMEANIINTMSE,
6 MEAN2INTABS,M4EAN21NTMSE,MEAN3hITABS,MEAN3INMSE

PARAMETER (LIMT = 5000)
INTEGER 1, count, ERRCOD
LOGICAL ENDFIL
REAL*8 raw(5000), X(7)

COMMON / GLOBALDATA I count, raw

C- OPEN THE INPUT FILE

INTEGER INP, IOUT, J
CHARACTER CPD*30
IOUT=4
INP--3

cpd = inslcpc.out'

OPEN(UNIT=INP,FILE=CPD)

REWINID(B-P)

PPJNTf*,'WMTHN SIJBR TIMER!
PRINT*,'RIJN =',RUN
PRINT*,'SCABS2 1 =',SCABS2 1
PPINT*,'SCABS3 1 =',SCABS3 1

WRITE (INP,*) J
WRITE (INP,*) SCABS21
WRITE (INP,*) SCABS31
WRITE (INP,*) SCABS41

WRITE (INP,*) MEAN lINTABS
WRITE (INp,*) MEANINTMSE
WRITE (T.NP,*) MEAN2INTABS
WRITE (INP,*) MEAN2INTMSE

WRITE (INP,*) MEAN31NTABS
WRITE (INP,*) MEAN3JNTMSE
WRITE (INrP *) MN4T 1 &
WRITE (INP,*) MEAN4INTMSt
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END

*THIS FUNCTION RETURNS A MONTE CARLO ESTIMATE

C 166

REAL*8 FUNCTION MONTE (SEED 1,TRUE)
c (GENERATES A UNIFORM RANODM COUNTBER)

CHARACTER CPD*30
INTEGER COUNT, I, CVMI, CVM2
REAL*8 RAW(5000),TRIJE(1 :7),SEEDL,SEED2,SEED3,

6 U1,U2,U3,RG1,RG2,RG3
INTRINSIC DEXP, DLOG
EXTERNAL RSORT,RG1,RG2,RG3
COMMON /GLOBALDATA/ COUNT, raw

CVM =O0
CVM2 = 0

SEED2 = SEEDi + 10.0
SEED3 = SEEDI - 10.0

DO055 1= 1, COUNT

Ul =RG1 (SEEDL)
U2 = RG2 (SEED2)
U3 = RG3 (SEED3)

IF (I .LT. TRUE(7)) THEN
CVM1 = CVM1 + 1

c IF (TRUE(2) .LT. 1.OE-7) THEN
c RAW(I)=TRUE(3)

c6 *(((-.1*DLOG(1.0.U2))**(10ffRLJ(1))))
c ELSE

RAW(I)=TRUE(3)
6 *(((-1.0*DLOG( 1.0-U2))**( I.0,TRUE( 1))))
6 +TRUE(2)

c ~END IF
ELSE

CVM2 = CVM2 + 1
c IF (TRIJE(5) .LT. 1.OE-7) THEN

c PINT,'AUTON TRUE(5)=',TRUE(5)
c RAW(I)=TRUE(6)

c6 *(((4 .0*DLOG(1 .0-U3))**( 1.O/ITRUE(4))))
c ELSE

RAW(I)=ThIJE(6)
6 *(((-..1.*DLOG(I1.0-U3))**( 1.O/ITRUE(4))))
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6 +TRUE(5)
c END IF

END IF

c PRINT*,' SEEDI =',SEED1
c PrINT*,' U1 =', U1
c PRINT*,' SEED2 =',SEED2
c PRINT*,' U2=', U2
c PRINT*,' SEED3 =',SEED3
c PRINT*,' U3 =', U3

C PRINT*,' FOR I =',I,' RAW(I) = ',RAW(I)

55 CONTINUE

PRINT*,'For this seed, CVM1 =,CVML
PRINT*,Tor this seed, CVM2 =',CVM2

END

** ***** ******* ***** * **** ****** ** *** ** **** * **** * ***** **** * **** * *****

* THIS FUNCTION RETURNS A UNIFORM RANDOM COUNTBER

* **** * ***** ***** ***** * **** * ****** **** ** **** * **** * **** **** * ***** *** *

REAL*8 FUNCTION RGL (SEED1)
c (GENERATES A UNIFORM RANODM COUNTER)

REAL*8 PROD, SEMI, SEED1

INTRINSIC DMOD

PROD = 16807.DO*SEED1

SEMI = DMOD(PROD,2147483647.DO)

RG1 = SEMI*0.4656613E-9
C250

SEED1 = SEMI

RETURN

END
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* THIS FUNCTION RETURNS A UNIFORM RANDOM COUNTBER

REAL*8 FUNCTION RG2 (SEED2)
c (GENERATES A UNIFORM RANDOM COUNTER)

REAL*8 PROD, SEMI, SEED2
INTRINSIC DMOD

PROD = 16807.DO*SEED2

SEMI = DMOD(PROD,2147483647.DO)

RG2 = SEMI*0.4656613E-9

SEED2 = SEMI

RETURN

END

* THIS FUNCTION RETURNS A UNIFORM RANDOM COUNTBER

REAL*8 FUNCTION RG3 (SEED3)
c (GENERATES A UNIFORM RANDOM COUNTER)

REAL*8 PROD, SEMI, SEED3
INTRINSIC DMOD

PROD = 16807.DO*SEED3

SEMI = DMOD(PROD,2147483647.DO)

RG3 = SEMI*0.4656613E-9
C250

SEED3 = SEMI

RETURN

END
c256
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* * **** *** ***** * *** * **** * ***** * *** * **** ** *** * ***** * ** * *** * ***** * *** * ***** * ** *** *

* SUBROUTINE RSORT
* Sorts count = COUNT values in a one-dimensional real array 'raw P409
,

* into ascending order by the selection-sort algorithm
* *** ** ** ****** **** * **** ***** **** ** **** ***** * *** ***** ** *** **** **** **** * *** * *** * **

* This is not a big deal for our two population Mixed Weibull
* Lets assume initially that the mixing proportion (P) is equal to 0.5

C
SUBROUTINE RSORT
INTEGER LIMIT
PARAMETER (LIMIT = 5000)
INTEGER count, I, J
REAL*8 LOW, raw(5000)
COMMON / GLOBALDATA / COUNT, raw
EXTERNAL RSWAP

c PRINT*,' WITHIN RSORT COUNT = ',COUNT

DO 20 I = 1, count-1
LOW = I
DO 10 J = (I+l), count

IF (raw(J) .LT. RAW(LOW) ) THEN
LOW = J

END IF
10 CONTINUE

CALL RSWAP (raw(I), RAW(LOW))
20 CONTINUE

PRINT *, 'WITHIN RSORT, FOS = ',RAW(l)
PRINT *, 'WITHIN RSORT, LOS = ',RAW(I)

c DO 30 J = 1,COUNT
c PRINT*,RAW(J)
c30 CONTINUE

c PRINT' (30(1X,F8.3))',(raw(J),J=l,count)
C200

RETURN
END

C
C
C * SUBROUTINE RSWAP
C * swaps two real values
C225 *************************************************************************

SUBROUTINE RSWAP (rl,r2)
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REAL*8 ri, r2, temp
EXTERNAL RSORT

temp = rl
ri = r2
r2 =temp

RETURN
END

NIMLE SUBROUTINE MLE

**original data set was file: "raw40"
* a well-separated (GT 5) data set

SUBROUTINE SULE(XYXGUESS,XLB,XUB)

INTEGER N
PARAMETER (N=7)

INTEGER IPARAM(7), lTP, L, NOUT, I, COUNT
REAL*8 FL,FLSCALE,GRCVM,FLOG,RPARAM(7),

& X(7),XGUESS(7),XLB(7),XSCALE(7),XUB(7),
& raw(5000), PDF, MPDF, TOLL, TOL2

EXTERNAL DBCONG, FLOG, GRCVM, RECVM, RSORT, UMACHI
& PDF, M[PDF, PDPDF, DU41NFC

INTRINSIC DEXP, DLOG
COMMON / GLOBALDATA / COUNT, raw

DATA XSCALE/ 7*I.0E-l/. FLSCALE/l.OEO/

c CRITICAL INITIALIZATION

DO014 1= 1,7
X(I) = 0.0

14 CONTINUE

C All the bonds are provided

ITP = 0

C Default parameters are not used

C
C *DOUBLE PRECISION BLOCK..
C
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C-TOLl = SQRT(surn of (XSCALE(I)*XGUESS(I))**2) for 1= 1,...N
C-TOL2 = 2 NORM OF X-SCALE

TOLL = 0.2
TOL2 = 0.2

CALL DU41NF(IPARAM, RPARAM)
LPARAM() =(1)

c LPARAM(2) =(15)
IPARAM(3 ) = (1000)
IPARAM(4) = (2000)
IPARAM(5) = (2000)

c RPARAM(1) = ((eps)**(2/3))
c RPARAM(2) = ((eps)**(2/3))
c RPARAM(3) = MAX(1.0E-20,((eps)**(2/3)))
c RPARAM(4) = MAX(1.0E-20,((eps)**(2/3)))
c RPARAM(5) = (100*((eps)**(2/3)))
c RPARAM(6) = (1000*MAX(TOL1, TOL2))
c RPARAM(7) = 10.0

CALL DBCONG(FLOG,GRCVMKN,XGUESS,ITP,XLB,XUB,XSCALE,
& FLSCALE, IPARAM, RPARAM , FL)

c Print results

CALL LJMACH (2, NOIJT)

WRITE (NOUT,99999) , FL, (IPARAM(L), L=3,5)

C
99999 FORMAT('Soln is ',6X7F8.3,I/,'The function',

& 'value = ',F8.3,//,"The number of iterations is',
* 1OX,13,/,'The number of function evaluations is',
& 13, /,' The number of grCV~fient evaluations is ',13)

END

* BASIC FUNCTIONS:

*f - WEIBULL PDF DENOTED BY f where J = 1 or 2 where

REAL*8 FUNCTION PDF(raw, count, Y, I, J)

INTEGER count, I, J

REAL*8 raw(count), X(7)
INTRINSIC DLOG, DEXP
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*critical initialization

PDF = 0.0

*start execution

IF (J .EQ. 1) THEN

*recall that if this value is GT 10.0, all pfs will be =0.0
*i.e if ((raw -13l) / El ) GT 3, DEXPiwill generate an underflowc
**prevent underfiow

IF ((raw(I) .LT. X(2))
6 .OR(ABS(raw(1)-X(2)).LT. lE-l10)
6 .OR(ABS(((raw(l)-X(2))/X(3))**X( l)).GT. 100.0)
6 .OR-(ABS(raw(I)-X(2)).LT. LE-lO)) THEN

PDF = 0.0
c122

ELSE IF (ABS(X(l)-l.0) .LE. L.OE-l0) THEN
PDF =(X(l)IX(3))

6 *1.0
6 *DX(IO((a~)X2)X3)*~))

ELSE
PDF = (X(l)/X(3))

6 *(((raw([).-X(2))/)((3))**((l).l .0))
6 *(DE)iP(-.1*(((raw(I)..X(2))/)((3))**X(l))))

END IF
ELSE

c if (raw(1) .LT. D2) THEN does not apply to second pdf
c 140

IF ((raw(1) .LT. X(5))
6 OR- (ABS(((raw(I)-X(5))/X(6))**X(4)).GT. 100.0)
6 OR- (ABS(raw(I)-X(5)).LT.l1E-10)) THEN

PDF = 0.0
ELSE IF (ABS(X(4)-1.0) .LT. lE-LO) THEN

PDF = (X(4)/X(6))
6 *1.0
6 *(DEYJ)(-..1.*(((raw(I)-X(5))/X(6))**X(4))))

ELSE
PDF =(X(4)/X(6))

6 *(((rawQ}..X(5))/X(6))**((4). .0))
6 *(DEX(J.1 .0*(((raw(l)-X(5))/X(6))**X(4))))

END IF
END E

c PRINT, 'PDFij 'PDF
RETURN
END

*g - MIEXED WE1I3ULL PDF DENOTED BY g(RAW; ALPHA) =g(I)
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RLEAL*8 FUNCTION MPDF(raw, count, X, I)
INTEGER count, I
REAL*8 raw(5000), X(7), PDF. pdfl, pdf2
INTRINSIC DEXP, DLOG
EXTERNAL PDF

*initialization

pdf2 =0.0
pdfl = 0.0
MPDF =0.0

**start

pdfI = PDF(raw,count,X,I,1)
pdf2 = PDF(raw~countX,I,2)

C PRINT*, 1pdfl= 1, df
C PRINT*, opdf=1, pmf
c PRINT*,I... withinMNPDF, X=
c PRINT*, X(1-3) = ',X(1),X(2),X(3)
c PRINT*, 'X(4-6) ',X(4),X(5),X(6),X(7)

IF (ABS(pdfl) .LT. 1.OE-10) THEN
c PRINT*, 'pdfl is ZERO for I' I

MPDF = ((1.0-X(7))*pdf2)
ELSE IF (ABS(pdf2) .LT. 1.O13-10) THEN

C PRIN*, 'pdf2 isZERO! for I' I
MPDF = (X(7)*pdfl)

ELSE IF((ABS(pdfl).LT. 1 .OE-10).AND.(ABS(pdf2).LT. 1 OE-10)) THEN
PINT*,WARNING, BOTH PDFS=ZERO (NOT POSSIBLE)'
PpJINT*,# pdfl =,pdfl

PRIN-T*,' pdf2 =,pdf2

ELSE
MPDF = (X(7)*pdfl)+((1.0-X(7))*pdf2)

END IF
C PPINT*, fmpdf= 1, MPDF

RETURN
END

*EQN#5 - caic of GRCVMIENT vector stored in GR(I)

SUBROUTINE GRCVM(N, Y., GR)
ITEGER N, I, count, J, K, L

REAL*8 GR(N), X(7), pf(7),
& raw(5000), temp(7),
& PDF, MPDF, mt

ITNSIC DEXP, DLOG
COMMON / GLOBALDATA / COUNT, raw
EXTERNAL PDPDF, PDF, MPDF

c PRINT*, 'did GRCVM receive? COUNT ',COUNT
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c PRINT*,'X(1-3) = ',X(1),X(2),X(3)
c PRINT*, 'X(4-6) ',X(4),X(5), X(6),X(7)
C 6 'raw=',raw(I)

** CRITICAL INITIALIZATION **

DO 33 K = 1,7
GR(K) = 0.0

33 continue

CALCULATIONS

c- check null

DO 20 I=1,count

C ** initialization **

mt=0.0

DO 44 L = 1,7
temp(L) = 0.0

44 continue

C ** MAIN **

CALL PDPDF(pf, raw, count, X, I)

mt = MPDF(raw,countXI)

c PRINT*, COUNT-',I
c PRINT*,' PF1-3=', PF(1),PF(2),PF(3)
c PRINT*,' PF4-6=', PF(4),PF(5),PF(6)

c PRINT*, 'mpdf =,mt

DO77 J=1,3

IF (mt .LT. 1E-10) THEN
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temp(J) = 0.0

ELSE IF(ABS(pf(J)).LT.1.OE-50) THEN
temp(J) = 0.0

ELSE
temp(J) =(pf(J)/mt)*X(7)

END WF

GR(J) = GR(J) - temp(J)

77 continue

DO088 J =4,6

IF (lit .LT. lE-LO) THEN

temp(J) = 0.0

ELSE EF(ABS(pf(J)).LT. 1.OE-50)THEN
temp(J) = 0.0

ELSE
temp(J) = (pf(J)/mt)*( 1.0-X(7))

END IF

GR(J) = GR(J) - temp(J)

88 continue

IF (mt .LT. IE-1O) THEN

temp(J) = 0.0

ELSE EFABS((PDF(raw,count,X,I, 1))
6 -(PDF(raw,count,X,I,2)))
6 .LT. 1.OE-10) THEN

temp(7) = 0.0
ELSE

temp(7)=(((PDF(raw,count,X,I, 1))
6 -(PDF(raw,count,,,2))))/mt

END IF

GR(7) = GR(7) - temp(7)

20 CONTINUE

c PRIhJT*,IWITHN GRCVMK THE CALCULATED GRCVM IS -

c PRINT*,' GR(1-3) = ,GR(l),GR(2),GR(3)
c PRINT*,' GR(4-6) = ',GR(4),GR(5),GR(6),GR(7)

RETURN
END
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c
c * EQN#5a - calc of partial derivatives wrt pdf *
c
c320

SUBROUTINE PDPDF (pf, raw, count, X, I)
INTEGER count, I, K
REAL*8 raw(5000), X(7), pf(7),

& BL, D1, El, B2, D2, E2
INTRINSIC DEXP, DLOG

C PRINT*,'WITHIN PDPDF, COUNT =', COUNT

C **** CALCULATIONS WITHIN FOR THE SUMMATIONS ****
BI = X(l)
D1 = X(2)
El = X(3)
B2 = X(4)
D2 = X(5)
E2 = X(6)

C PRINT*, 'did PDPDF receive? ',count,X(l),E I
IF (ABS(El) .LT. L.OE-2) THEN

PRINT*, 'WARN, El = 0, PARTIALS DIV ZERO !.9
END IF
IF (ABS(B1) .LE. L.0E-l) THEN

PRINT*, 'WARNING, BI = ZERO T?'
END IF

c339
IF (ABS(E2) .LT. L.0E-2) THEN

PRINT* WARNING, E2 = 0, PARTIALS DIV ZERO !?
END IF
IF (ABS(B2) .LE. L.OE-1) THEN

PRINT*,'WARN, B2 = 0, ERROR ZERO IT'
END IF

•* initialization

DO 33 K = 1,7
pf(K) = 0.0

33 continue

" recall that if this value is GT 10.0, all pfs will be = 0.0
" i.e if ((raw - Dl) / El ) GT 3, DEXP will generate an underflow

IF ((RAW(I).LT. DI)
6 .OR(ABS(((raw(I)-Dl)/El)**Bl) .GT. 100.00)
6 .OR(ABS(raw(I)-DI).LT. 1E-10)) THEN

pf(l) = 0.0
pf(2) = 0.0
pf(3) = 0.0

ELSE F ((B1-1.0) .LT. 1E-10) THEN
pf(l) =(((1.0/El)* 1.0

6 *(DEXP(-((raw()-D1)/E1)**Bl)))
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6 +((B1/El)*1.0
6 *DLO(J(((mw(I).D 1)/F 1))
6 *(CJEXJP(.(w(I)..Dl)IE )**B1)))
6 -((Bl/E1)*1.0
6 *(((Qaw(I)..Dl)/El)**Bl)
6 *DLO(((raiN(I).D 1)/F 1))
6 *(DEXP(..((raw(I)..Dl)/E)**B 1))))

pf(2) = ((((Bl**2)IEl)*1.0
6 *((((raw(I)..Dl)/El)**Bl)/(raw().Dl))
6 *(DEX~P(.((raw(I)..Dl)/F1)**B 1))))

pf(3)=(((-Bl/(E1**2))* 1.0
6 *(DEXPJ(.((rw(l)..Dl)/El)**B1)))
6 (Bl*)El*)*.
6 *(((raw().Dl)/F1)**Bl)
6 *(DEXJP(.((faw(I).D 1)/F )**B 1))))

ELSE
pf(1) =(((l.0/El)*(((raw()-D1)fE1)**(B 1-1.0))

6 *(DEYJP(.((raw(D.,D1)/F l)**Bl)))
6 +((Bl/F1I)*(((raw()-D1)/F1)**(BI1.0))
6 *DLO((((mw()D 1)/Fl))
6 *QJEXP(.((raw(l)..Dl)/El)**Bl)))
6 -((BI/El)*(((raw(1)-Dl)/E1)**(BI1l.0))
6 *(((rlw(I)..D1)/El)**Bl)
6 *DL(YJ(((rawqi)D 1)/Fl))
6 *(DEYJP(.((raw(I).D 1)/F )**B 1))))

pf(2) = (((-BI1/Fl)
6 *(((raw().D)/l)**(Bl4 0o))
6 *((BI1.0)/(rawQ).Dl))
6 *(DEYP(.((i-aw(I).D 1)/F 1)**B 1)))
6 +(((Bl**2)/Fl)*(((raw()-Dl)/F l)**(B 1-1.0))
6 *((((raw(I)..Dl)/El)**Bl)/(raw(I).D1))
6 *(DE-dP(.((aw(I)..Dl)/El)**B 1))))

pf(3)=(((-B 1/(El **2))

6 *(((raw(I)..DL)/Fl)**(BI1 0))
6 *(DE-)(((raw(I)..Dl)/F l)**B 1)))
6 -((B1/(El**2))*(((raw(I)-Dl)/F1)**(B 1-1.0))
6 *(Bl410)*(DEP(-.((raw(I).Dl)/El)**Bl)))
6 +(((B1**2)/(El**2))*(((raw(I)-D1)/F l)**(Bl-1 .0))
6 *(((Qaw(I)..Dl)/Fl)**Bl)
6 *(DEXP(.((Qw(I)..Dl)/F1)**B 1))))

c405
END IF

*CHECK VALIDITY OF OBSERVATION FOR SECOND DISTRIBUTION

IF ((raw(I).LT. D2)
6 OR. (ABS(raw(I)-D2).LT.1.OE-10)
6 OR- (ABS(((rawQl)-D2)/F2)**B2).GT. 100.0O))THEN

pf(4) = 0.0
pf(5) =0.0
pf(6) = 0.0

ELSE IF ((B2-1.0) .LT. 1.OE-l0) THEN
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pf(4) =( 1I.O/E2)* 1.0
6 *(DEXPj(.(rw(I)..D2)/E2)**B2)))
6 +((B2/E2)*1.0
6 *DLO(((!Jw(l).D2)/E2))

6 -((B2IE2)*1.O
6 *(((raw(l).D2)IE2)**B2)
6 *DLOG(((raw(I).D2)/E2))
6 *QJEXJP(.((raw(I).D2)/E2)**B2))))

pf(5) = ((((B2**2)/E2)* 1.0
6 *((((raw(I..D2)/E2)**B2)/(raw(I)..D2))
6 *(DEXP(..((raw(I).D2)/E2)**B2))))

pf(6)=(((-B2/(E2**2))* 1.0
6 *(DEX(.<((w(I)D2)E2)**B2)))
6 +(((B2**2)/(E2**2))* 1.0
6 *(((raw(I).D2)/E2)**B2)
6 *(DEXjP(.((aw(l)-D2)/E2)**B2))))

ELSE
pf(4) =(((1 .0/E2)*(((raw(I)-D2)/E2)**(B2-1 .0))

6 *(DEX~P(-((raw().D2)/E2)**B2)))
6 +((B2/E2)*(((raw(I)-D2)/E2)**(B2-1.0))
6 *DLeyJ(((raw~l)D2)/E2))

6 -((B2IE2)*(((raw(I)-D2)fE2)**(B2- 1.0))
6 *(((raw(I)..D2)/E2)**B2)
6 *DLJ(J(((Mw().D2)/E2))
6 *4pEXP(.((raw(D..D2)/E2)**B2))))

pf(5) = (((-B2/E2)*(((raw(I)-D2)IE2)**(B2-1 .0))
6 *((B2..1.0)I(raw(I)-D2))
6 *QJE)XP(.(w(I)..D2)/E2)**B2)))
6 +((B2**2)/E2)*(((raw(I)-D2)E2)**(B2-1.0))
6 *((((raw(I)-D2)IE2)**B2)/(raw()-D2))
6 *(DEyXP(.((raw(I)..D2)/E2)**B2))))

pf(6)=(((-B2/(E2**2))
6 *(((raw(I..D2)1E2)**WB2-I.0))
6 *(DEXJ(((faw(l)D2)/E2)**B2)))
6 -((B2/(E2**2))*(((raw()-D2)fE2)**(B2-1 .0))
6 *B-.)(EP-(a~)D)E)*2)
6 +(((B2**2)/(E2**2))*(((raw()-D2)/E2)**(B2- 1.0))
6 *(((fawQI).D2)/E2)**B2)
6 *(bEP(.((rw(1).D2)/E2)**B2))))

END IF

RETURN
END

C FL -CALC THE NATURAL DLOG- LIKLIHOOD SUBROUTINE
C (subroutine was necessary because function do not handle summations)
C MULTIPLY BY NEGATIVE ONE FOR inisI TO CONVERT To MAX PROBLEM
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C for the complete sample case, count:
C

SUBROUTINE FLOG ( N, X, FL)

INTEGER N, I, count
REAL*8 raw(5000), FL, X(7),PDF, MPDF, MTI, Q
intrinsic DLOG
COMMON / GLOBALDATA / COUNT, raw

EXTERNAL PDF, MPDF

**** CALCULATIONS WITHIN FOR THE SUMMATIONS ****

FL = 0.0

DO 10 1 = 1, count
MTI = 0.0
Q= 0.0

C PRINT*,' for count =',I,' RAW(I)=',RAW(I)
MTI = MPDF(raw,count,X,I)

C PRINT*,' MPDFi=',MTI
IF (MTI.LE. 1.OE-10) THEN

Q = -1000.0
ELSE

Q = DLOG(MTI)
END IF

c5000 PRINT*,' NATURAL DLOG OF MPDFi ', Q
FL-- FL - Q

10 CONTINUE
c PRINT*,'VALUE OF DLOG-LIKLIHOOD(= -FL): FL ',FL

RETURN
END

* SMDE SUBR SMDE

SUBROUTINE SMDE (MLE, Di)

INTEGER I, COUNT
CHARACTER*3 WHICH
REAL*8 err, tol, reps, Di
PARAMETER( err = 1.OE-6)

c (* error and tolerance are limits*)
PARAMETER( tol = 1.0E-6)

c (* used in the numerical routines *)
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PARAMETER( reps = 1000)
c (* the number of DATA generated *)
c - DECLARE FUNCTIONS
c- - DECLARE ARRAYS -

REAL*8 RAW(5000),
6 MLE(I:3),
6 MDLCVM(1:3)

c (* WEIBULL random variables *)
c (* position 0 is the number of RVs.*)

c (* evaluation values for different paras
COMMON / GLOBALDATA / COUNT,RAW

C PRINT*,'WITHIN SUBR SMDE ALL CALCS BASED ON ORIGINAL MLES:'
C PRINT*,' COUNT, COUNT
C PRINT*,' MLE(1) ',MLE(1)
C PRINT*,' MLE(2) ',MLE(2)
C PRINT*,' MLE(3) ',MLE(3)

C CRITICAL INITIALIZATION

Di= 0.0

DO 99 1 = 1,3
MDLCVM (I) = MLE (I)

99 CONTINUE

WHICH = 'CVM'
CALL GSEARCH ( WHICH, MDLCVM)

C PRINT*,HE MINIMUM DISTANCE LOCATION VIA CVM:'
C PRINT*,WMDLCVM(1) ',MDLCVM(1)
C PRINT*,'MDLCVM(2) ',MDLCVM(2)
C PRINT*,MDLCVM(3) ',MDLCVM(3)

Di = MDLCVM(2)

END

* INPUTS: DESIRED STAT: WHICH, HOW : PARAS
* STARTING AT "A" SEARCHES IN "DIRECTION" UNTIL THE FUNCTION STOPS
* DECREASING. THEN BEGINS A GOLDEN SEARCH ON THE LAST TWO
* INTERVALS JUST PRIOR TO THE FUNCTION INCREASING.
* THE LOCATION SHOULD HAVE BEEN BOUNDED BELOW THE FIRST ORDER STATIS

SUBROUTINE GSEARCH ( WHICH,PARAM)
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INTEGER REPS,K,NUM
REAL*8 err, tol

PARAMETER( err = 1.OE-6)
c (* error and tolerance are limits*)

PARAMETER( tol = 1.OE-6)
c (* used in the numerical routines *)

PARAMETER( reps = 1000)
c

CHARACTER*3 WHICH
INTEGER COUNT, REPCOUNT
REAL*8 GOF, A, B,

C (* CURRENT RIGHT AND LEFT ENDPOINTS *)
6 AB,

C (* MIDPOINT BETWEEN A AND B *)
6 LEFT, RIGHT,

C (* GOLDEN SEARCH MIDPOINTS *)
6 FA, FAB, FB,
6 FLEFT, FRIGHT,

C (* FUNCTION VALUE AT CURRENT POINTS *)
6 STEP,

C (* LINE SEARCH INTERVAL LENGHT *)
6 R,

C (* SETS GOLDEN SEARCH INTERVAL WIDTH

6 BOUND,
C200 (* GOLDEN SEARCH ITERATION ERROR BOUND

C (* BOUND COULD BE A STOPPING RULE BUT *)
C (* I DON'T THINK I USED IT IN THE END*)

C DECLARE ALL VARS IN COMMON

6 PARAM(1:3), RAW(5000), CUM(5000)

C EXTERNAL DECLARE ANY EXTERNAL FUNCTIONS USED

EXTERNAL GOF
COMMON / GLOBALDATA / COUNT,RAW

PRINT*,'WlTHIN SUBR GSEARCH:'
PRINT*,' COUNT", COUNT

C INITIALIZATION

REPCOUNT = 0
A= 0.0
B= 0.0
AB= 0.0
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LEFT = 0.0
RIGHT = 0.0
FA = 0.0
FAB = 0.0
FB= 0.0

FLEFT = 0.0
FRIGHT = 0.0
STEP = 0.0
R=0.0
BOUND = 0.0
SUM = 0.0
TEMP = 0.0
NUM = 0

DO 22 K = 1,COUNT
CUM(K) = 0.0

22 continue
c PRINT*,'WHICH = ','CVMv
c PRINT*,' fos =',RAW(l)
C PRINT*,'WITHIN GS PARAMETERS =',
C 6 PARAM(1),PARAM(2),PARAM(3)

C- BEGIN

STEP = 1.0/50.0
c250 (* LINE INTERVAL STEP SIZE *)

R = 0.618034
c (* GOLDEN SEARCH MULTIPLIER *)

A = PARAM(2)

C =,A

FA = GOF (WHICH,PARAM)
c (* CURRENT OBJECTIVE VALUE *)

FB = FA + 1.0
c (* INITIATE LOOP *)
C PRINT*,'FA =',FA
C PRINT*,'FB =,FB

C WHILE (FB - FA) > ERROR DO
C (* LOOP DETERMINES DIRECTION TO *)

10 IF ((FB - FA) .GT. 1.OE-6) THEN
C (* DECREASE THE FUNCTION OR IF *)

B = A+STEP
C PRINT*,' B =',B
C (* CURRENT POINT IS THE MINIMUM *)

PARAM(2) = B
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C PRINT*,' PARAM(2) =',PARAM(2)
FB = GOF( WHICH, PARAM)

IF (FB .GT. FA)THEN
C (* TRY THE OTHER DIRECTION *)
C278

STEP =-1.0* STEP
B = A + STEP
PARAM(2) = B
FB = GOF (WHICHPARAM)

END IF
STEP = STEP / 4.0

C (* REDUCES STEP - IF THE CURRENT POINT *)
GO TO 10
END IF

C (* IS THE MIN, STEP WILL REDUCE SO A=
B *)

IF (FB .GT. FA) THEN
C (* THE ORIGINAL POINT WAS THE
MINIMUM *)

PARAM(2) = A
ELSE

C (* LINE SEARCH TO FIND INTERVAL WITH MINIMUM*)
AB=A

C (* INITIALIZES SEARCH *)
FAB =FA

C REPEAT UNTIL (* LINE SEARCH CHECKS EVERY STEP TO
FIND *)

20 A =AB
C (* WHERE THE FUNCTION STARTS TO
INCREASE *)

FA = FAB
AB = B
FAB = FB
B = B + STEP
PARAM (2) =B
FB = GOF ( WHICH,PARAM)
IF ( FB .LT. FAB ) GO TO 20

C * GOLDEN SEARCH BEGINS ***

LEFT = B-R*(B-A)
RIGHT = A+R*(B-A)
BOUND = 2 * ABS (STEP)

PARAM (2) = LEFT
FLEFT = GOF (WHICH,PARAM)
PARAM (2) = RIGHT
FRIGHT = GOF ( WHICH,PARAM)

154



C WHILE ABS (FB - FA) > ERROR DO
30 IF ((ABS(FB - FA) .GT. 1.OE-6)

6 .AND. (REPCOUNT .LT. REPS)) THEN

REPCOUNT = REPCOUNT + 1

IF (FLEFT .LT. FRIGHT) THEN
C (* DELETE RIGHT INTERVAL *)

B = RIGHT
FB = FRIGHT

RIGHT = LEFT
FRIGHT = FLEFT
LEFT = B - R*(B-A)
PARAM (2) = LEFT

FLEFT = GOF (WHICH, PARAM)
END IF

IF (FRIGHT .LE. FLEFT) THEN
C (* DELETE LEFT INTERVAL *)

A =LEFT
FA = FLEFT
LEFT =RIGHT
FLEFT = FRIGHT

RIGHT = A+R* (B-A)
PARAM (2 ) = RIGHT

FRIGHT = GOF(WHICH,PARAM)
END IF

BOUND = R * BOUND

GO TO 30
END IF

C (* END OF WHILE *) (* END GOLDEN SEARCH ROUTINE *)

C (* PICKS MIN POINT AS THE SOLUTION *)

IF (FLEFT .LT. FRIGHT) THEN

IF (FA .LT. FLEET) THEN
PARAM (2) = A

ELSE
PARAM (2) = LEFT

END IF

ELSE

IF (FB .LT. FRIGHT) THEN
PARAM (2) = B

ELSE
PARAM (2) = RIGHT
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END IF

END IF
C (* OF ELSE (FROM LONG TIME AGO) *)

C (* OF PROCEDURE GOLDENSEARCH *)
END IF

END

C NOW, RE-ESTIMATE MLEs USING THIS MIN DIST ESTIMATE OF LOCATION

*CVM THIS FUNCTION RETURNS THE CRAMER VON-MISES GOODNESS OF FIT *)
* STATISTIC FOR THE THREE PARAMETER WEIBULL.
* FORMULAS PUBLISHED IN WOODRUFF, MOORE, AND DUNNE (1983)
* DATA MUST BE ORDERED!

REAL*8 FUNCTION CVMGOF (paramn)

INTEGER I,J,K,COUNT,SUBCOUNT,NLB,NUM
REAL*8 RAW(5000),CUM(5000), SUM, TEMP,

6 PARAM(1:3)
INTRINSIC DLOG, DEXP
COMMON / GLOBALDATA / COUNT, RAW

C PRINT*,Trom CVM PARAMETERS =',

C 6 PARAM(1),PARAM(2),PARAM(3)

C INITIALIZATION

SUM = 0.0
TEMP = 0.0
NUM =0
NLB = 1
subcount = 0
CVMGOF = 0.0

DO 12 K = 1,COUNT
CUM(K) = 0.0

12 continue
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C BEGIN

NUM = COUNT
C PRINT*,'WITHIN SUBR CVM, COUNT =',NUM

DO27 I= 1, NUM

IF (RAW (I) .LE. PARAM (2)) THEN
(* OBS LT LOC: UNDEFINED*)

CUM(I) = 1.OE-10
ELSE

TEMP 0.0

TEMP= -1.0
6 *DEXP(PARAM(1)*DLOG((RAW()-PARAM(2))/PARAM(3)))

CUM(I) = (1.0 - DEXP (TEMP))
END IF

27 CONTINUE

DO13 J = 1, NUM

TEMP = 0.0

TEMP = CUM(J)
6 .(2.0*J-1.0)/(2.0*NUM))

C PRINT*,'-----------
C PRINT*,'FOR J = ',J,' RAW(J) = ',RAW(J),'CUM(J)=',CUM(J)
C PRINT*, K = ',Y,' TEMP = ',TEMP
C PRINT*'

SUM = SUM + TEMP*TEMP

13 CONTINUE

CVMGOF = (1.0/12.0*NUM)+SUM

c PRINT*, ' - --

c PRINT*,'CVMGOF FUNCTION COMPLETED'

c PRINT*,' NUM = ',NUM
c PRINT*,' COUNT =',COUNT
c PRINT*,' SUM =',SUM
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c PRINT~y*,' TEMP =',TEMP
c PRINT*,' CUM(count) = ', CUM(count)

END

*FUNCTION WHCH GOF

REL* FUNCTION GOF (WHICHPARAM)

CHARACTER*3 WHICH

REAL*8 PARAM(1:3), CVMGOF

EXTERNAL CVMGOF

c PRINT*,'WITHIN SUBR GOF:'
C PRINT*jTrom GOF PARAMETERS=,
C 6 PARAM(1),PARAM[(2),PARAM[(3)

GOF = CVMGOF(PARAM)

END

* subroutine INTEGRATE
* calculates the duff between CDFs
* 1))ICVM
* 2) imse

SUBROUTINE INTEGRATE (DISTA, DISTB, INTABS,INTMSE)

REAL*8 TEMP1,TEM4P2,DISTA(O:3),DISTB(0:3),INTABS,INTMSE,
6 UPLIMAUPLLMB,UPLIMLOWLIM, CUMWELBULL

EXTERNAL INT, CUMWEIBULL

C PRINT*,VITHIN SUBR. INTEGRATE:'
C PRJNT*, MDLCVM(0-3)',DISTB(0tDISTB( 1),DISTB(2),DISTB(3)
C PRIN-T*,'TRUE (0-3) =',DISTA(0),DISTA( l),DISTA(2),DISTA(3)
C PRINT*,'INTABS =',JNTABS
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C PRN*'ITS =',INTMSE

IF (DISTA(2) .EQ. 0.0) THEN
DISTA(2) = 0.0000 1

END IF

IJPLIMA = DISTA(2) + 3.0*DISTA(3)
TEMP 1 = CUMWEIBULL, (DISTA, UPLIMA)

c WHILE TEMVI LT 0.999
10 IF (TEMVI .LT. 0. 999) THEN

UPLDMA = UPLIMAA + DISTA(3)
TEMP 1 = CUMWEIBULL(DISTAUPLIA)

GO TO 10
END IF

UPLLMB = DISTB(2) + 3.0*DISTB(3)
TEMP2 = CUMWEIBULL (DISTB, UPLIMvB)

c WHILE TEMP2 LT 0. 999 DO
20 IF (TEMP2 .LT. 0. 999) THEN

UPLIMB = UPLIMB + DISTB(3)
TEMP2 = CUMWEIBULL(DISTB,UPL1MBff)

GO TO 20
END IF

IF (TEMVI .LT. TEMP2) THEN
UIPLIM = UPLIMB

ELSE
UPLIM = UPLIMvA

END IF

IF (DISTA(2) .LT. DISTB(2)) THEN
LOWLIM =DISTA(2)

ELSE
LOWLIM = DISTB(2)

END IF

CALL INT(DISTADISTB,LOWLIM4UPLIMINTABS,INTMSE)

END

SUBROUTINE INT(DISTADISTB,LOWERLIMUPPERLINTABS,INTIASE)
C1200

INTEGER I
REAL*8 TEMP1,TEMP2,TEMP3,VAL 1,VAL2,SUM2,SUMI,

6 W(1 :24),X(1 :24),CUM~WEIBULL,DISTA(0:3),DISTB(0:3),
6 LOWERLIM, UPPERLIML INTABS, INTMSE

EXTERNAL CUMWEIBULL,FX
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C PRINT*,'WITHIN SUBR INT:'
C PRINT*,' LOWERLIM =',LOWERLIM
C PRINT*,' UPPERLIM =',UPPERLIM
C PRINT*,'INTABS =',NTABS
C PRINT*,'INTMSE =',INTMSE
C PRINT*,' MDLCVM(I-3)=',DISTB(1),DISTB(2),DISTB(3)
C PRINT*,' TRUE (1-3)', DISTA(1),DISTA(2),DISTA(3)

TEMPI = 0.0
TEMP2 = 0.0
TEMP3 = 0.0
SUMI = 0.0
SUM2 = 0.0

X(1) = 0.03238017096286
X(2)= 0.09700469920946
X(3)= 0.16122235606889
X(4)= 0.22476379039469
X(5)= 0.28736248735546
X(6)= 0.34875588629216
X(7)= 0.40868648199072
X(8)= 0.46690290475096
X(9)= 0.52316097472223
X(10)= 0.57722472608397
X(11)= 0.62887396776514
X(12)= 0.67787237963266
X(13)= 0.72403413092381
X(14)= 0.76715903251574
X(15)= 0.80706620402944
X(16)= 0.84258826162439
X(17)= 0.87657202027424
X(18)= 0.90587913671557
X(19)= 0.93138669070655
X(20)= 0.95298770316043
X(21)= 0.97059159254625
X(22)= 0.98412458372283
X(23)= 0.99353017226635
X(24)= 0.99877100725243

C1230
W(1) = 0.06473769681
W(2)= 0.06446616444
W(3)= 0.06392423858
W(4)= 0.06311419229
W(5)= 0.06203942316
W(6)= 0.06070443917
W(7)= 0.05911483969
W(8)= 0.05727729210
W(9)= 0.05519950370
W(10)= 0.05289018949
W(1 1)= 0.05035903555
W(12)= 0.04761665849
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W(13)= 0.04467456085
W(14)= 0.04154508294
W(15)= 0.03824135107
W(16)= 0.03477722256
W(17)= 0.03116722783
W(18)= 0.02742650971
W(19)= 0.02357076084
W(20)= 0.01961616046
W(21)= 0.01557931572
W(22)= 0.01147723458
W(23)= 0.00732755390
W(24)= 0.00315334605

TEMPI = (UPPERLIM-LOWERLIM)/2
TEMP2 = (UPPERLIM+LOWERLIM)/2

C1260
SUM = 0.0

D0 17 1 = 1,24

VAL1 = 0.0
VAL2 = 0.0
TEMP3 = 0.0

TEMP3 = TEMPI*X(I)+TEMP2
CALL FX(DISTADISTB,TEMP3, VAL1, VAL2)
SUMI = SUM1 + VALI*W(I)
SUM2 = SUM2 + VAL2*W(I)

17 CONTINUE

DO 33 1=1,24

TEMP3 = 0.0

TEMP3 = TEMPI*-I.0*X(I)+TEMP2
CALL FX(DISTADISTB,TEMP3, VAL1, VAL2)
SUMI = SUMI + VALI*W(I)
SUM2 = SUM2 + VAL2*W()

C1280
33 CONTINUE

INTABS = TEMPI * SUM1
INTMSE = TEMP1 * SUM2

END
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SUBROUTINE FX(DISTADISTB,PT,FXL,FX2)

REAI*8 DISTA(0:3),DISTB(0:3),TEMP1,TEMP2,PT
REAL*8 CUMWEIBULL, FXl, FX2
EXTERNAL CUMWEIBULL

C1 300
C PPJNT*,'WITHIN SUBR FX:'
C PRINT*,' X ,T
C PR1Nr*,'MDLCVM(O-3)=',DISTB(0),DISTB( 1),DISTB(2),DISTB(3)
C PRINT*,TRUE (0-3) =',DISTA(0),DISTA( l),DISTA(2),DISTA(3)

TEMPI = 0.0
TEMP2 = 0.0
FX1 = 0.0
FX2 = 0.0

TEMPI = CUMWEIBULL(DISTAPT) * DISTA(0)
TEMP2 = CUM[WEIBULL(DISTB,PT) * DISTB(0)
FXI = ABS(TEMVl-TEMP2)
FX2 = (TEM[PI-TEMP2)*(TEM[PI-TEMP2)

C PRINT*,' FX1 =,FX1
C PRINT*,' FX2 =',FX2

END

*REAL FUNCTION CUMWEIBIJLL
* returns the cumulative weibull value for point x
* dist contains the weibull shape, scale and location

C1314

REAL*8 FUNCTION CUMWEIBULL(DIST, PT)

REAL*8 TEMPDIST(0:3),PT
INTRINSIC DEXPDLOG

C PRlNr*,rW1THIN FUNC CUMWEIBULL'
C PRINT*,' X ,T
C PRINT*,' DIST(1-3)=',DIST(1),DIST(2),DIST(3)

TEM[P = 0.0

IF (PT .LE. DIST(2)) THEN
CUMWEIBULL = 0.0

ELSE
TEMP = DEXP(DIST(1)*DLOG((PT-DIST(2))/DIST(3)))
IF (TEMP .GT. 20) THEN

CUMWEIBULL = 1.0
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ELSE
CUMWEIBULL = 1.0 - DEXP(-1.0*TEMP)

END IF

END IF

END

* PSMDE SUBR SMDE ON P

SUBROUTINE PSMDE (MLE, P)

INTEGER I, COUNT
CHARACTER*3 WHICH
REAL*8 err, tol, reps,P
PARAMETER( err = 1.OE-6)

c (* error and tolerance are limits*)
PARAMETER( tol = 1.OE-6)

c (* used in the numerical routines *)
PARAMETER( reps = 1000)

c (* the number of DATA generated *)
c - DECLARE FUNCTIONS
c- - DECLARE ARRAYS -

REAL*8 RAW(5000),
6 MLE(1:7),
6 MDPCVM(1:7)

c (* WEIBULL random variables *)
c (* position 0 is the number of RVs.*)

c (* evaluation values for different paras
COMMON / GLOBALDATA / COUNT,.RAW

C PRINT*,'WITHIN SUBR SMDE ALL CALCS BASED ON ORIGINAL MLES:'
C PRINT*,' COUNT, COUNT
C PRINT*,' MLE(1)',MLE(1)
C PRINT*,' MLE(2) ',MLE(2)
C PRINT*,' MLE(3) ',MLE(3)

C CRITICAL INITIALIZATION
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P= 0.0

DO 99 1 = 1,7
MDPCVM (I) = MLE (I)

99 CONTINUE

WHICH = 'CVT
CALL PGSEARCH ( WMCH, MDPCVM)

P = MDPCVM(7)

END

** ** *** **** * **** ** **** *** *** *** * **** ** ***** * *** * **** ** *** * ***** **** **** * *** **

* INPUTS: DESIRED STAT: WHICH, HOW : PARAS
* STARTING AT "A" SEARCHES IN "DIRECTION" UNTIL THE FUNCTION STOPS
* DECREASING. THEN BEGINS A GOLDEN SEARCH ON THE LAST TWO
* INTERVALS JUST PRIOR TO THE FUNCTION INCREASING.
* THE LOCATION SHOULD HAVE BEEN BOUNDED BELOW THE FIRST ORDER STATIS

SUBROUTINE PGSEARCH ( WHICH,PARAM)

INTEGER REPS,K
REAL*8 err, tol

PARAMETER( err = 1.OE-6)
c (* error and tolerance are limits*)

PARAMETER( tol = 1.OE-6)
c (* used in the numerical routines *)

PARAMETER( reps = 1000)
C

CHARACTER*3 WHICH
INTEGER COUNT, REPCOUNT
REAL*8 PGOF, A, B,

C (* CURRENT RIGHT AND LEFT ENDPOINTS *)
6 AB,

C (* MIDPOINT BETWEEN A AND B *)
6 LEFT, RIGHT,

C (* GOLDEN SEARCH MIDPOINTS *)
6 FA, FAB, FB,
6 FLEFT, FRIGHT,

C (* FUNCTION VALUE AT CURRENT POINTS *)
6 STEP,

C (* LINE SEARCH INTERVAL LENGHT *)
6 R,

C (* SETS GOLDEN SEARCH INTERVAL WIDTH

6 BOUND,
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C200 (* GOLDEN SEARCH ITERATION ERROR BOUND

C (* BOUND COULD BE A STOPPING RULE BUT *)
C (* I DON'T THINK I USED IT IN THE END*)

C DECLARE ALL VARS IN COMMON

6 PARAM(I:7), RAW(5000), CUM(5000)

C EXTERNAL DECLARE ANY EXTERNAL FUNCTIONS USED

EXTERNAL PGOF
COMMON / GLOBALDATA / COUNT, RAW

C PRINT*,'WITHIN SUBR GSEARCH:'
C PRINT*,' COUNT, COUNT

C INITIALIZATION

REPCOUNT = 0
A= 0.0
B =0.0
AB =0.0

LEFT = 0.0
RIGHT = 0.0
FA = 0.0
FAB = 0.0
FB= 0.0

FLEFT = 0.0
FRIGHT = 0.0
STEP = 0.0
R= 0.0
BOUND = 0.0
SUM = 0.0
TEMP = 0.0
NUM = 0.0

DO 22 K = 1,COUNT
CUM(K) = 0.0

22 continue
c PRINT*,'WHICH = ','CVMv
c PRINT*,'COUNT =',RAW(0)
c PRINT*,' fos =',RAW(l)
C PRINT*,'WlTHIN GS PARAMETERS =,
C 6 PARAM(1),PARAM(2),PARAM(3)
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C- BEGIN

STEP = 1.0 / 200.0
c250 (* LINE INTERVAL STEP SIZE *)

R = 0.618034
c (* GOLDEN SEARCH MULTIPLIER *)

A = PARAM(7)

C PRINT*,'A =',A

FA = PGOF (WHICH,PARAM)
c (* CURRENT OBJECTIVE VALUE *)

FB = FA + 1.0
c (* INITIATE LOOP *)
C PRINT*,'FA =',FA
C PRINT*,'FB =',FB

C WHILE (FB - FA) > ERROR DO
C (* LOOP DETERMINES DIRECTION TO *)

10 IF ((FB - FA) .GT. 1.OE-6) THEN
C (* DECREASE THE FUNCTION OR IF *)

B = A+ STEP
C PRINT*,' B =',B
C (* CURRENT POINT IS THE MINIMUM *)

PARAM(7) = B
C PRINT*,' PARAM(7) =',PARAM(7)

FB = PGOF( WHICH, PARAM)

IF (FB .GT. FA)THEN
C (* TRY THE OTHER DIRECTION *)
C278

STEP =-1.0 * STEP
B = A + STEP
PARAM (7) = B
FB = PGOF (WHICH, PARAM)

END IF
STEP = STEP/4.0

C (* REDUCES STEP - IF THE CURRENT POINT *)
GO TO 10
END IF

C (* IS THE MIN, STEP WILL REDUCE SO A =

B *)

IF (FB .GT. FA) THEN
C (* THE ORIGINAL POINT WAS THE
MINIMUM *)

PARAM (7) = A
ELSE

C (* LINE SEARCH TO FIND INTERVAL WITH MINIMUM*)
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AB =A

C (*INITIALIZES SEARCH *
FAB=FA

C REPEAT UNTIL (*LINE SEARCH CHECKS EVERY STEP TO
FIND *)

20 A=AB
C (*WHERE THE FUNCTION STARTS TO
INCREASE *

FA =FAB
AB =B
FAB = FB
B = B + STEP
PARAM (7) = B
FB = PGOF ( WHICHPARAM)
IF ( FB .LT. FAB ) GO TO 20

C **GOLDEN SEARCH BEGINS
LEFT = B-R*(B-A)
RIGHT = A+R*(B-A)
BOUND 2 * AB (STEP)

PARAM (7) = LEFT
FLEET = PGOF ( WHICHPARAM)
PARAM (7) = RIGHT
FRIGHT = PGOF ( WHICHPARAM)

C WHILE ABS (FB - FA) > ERROR DO
30 IF ((ABS(FB - FA) .GT. 1.OE-6)

6 .AND. (REPCOUNT .LT. REPS)) THEN

REPCOUNT = REPCOUNT + 1

IF (FLEET .LT. FRIGHT) THEN
C (*DELETE RIGHT INTERVAL *

B = RIGHT
FB = FRIGHT
RIGHT = LEFT

FRIGHT = FLEET
LEFT = B - R*(B-A)
PARAM (7) = LEFTF

FLEET = POOF (WHICHPARAM)
END IF

IF (FRIGHT .LE. FLEET) THEN
C (*DELETE LEFT INTERVAL *

A =LEFT
FA =FLEET

LEFT =RIGHT

FLEET =FRIGHT
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RIGHT = A + R * (B-A)
PARAM (7) = RIGHT
FRIGHT = PGOF( WHICHPARAM)

END IF

BOUND = R * BOUND

GO TO 30
END IF

C (* END OF WHILE *) (* END GOLDEN SEARCH ROUTINE *)

C (* PICKS MIN POINT AS THE SOLUTION *)

IF (FLEFT .LT. FRIGHT) THEN

IF (FA .LT. FLEFT) THEN
PARAM (7) = A

ELSE
PARAM (7) = LEFT
END IF

ELSE

IF (FB .LT. FRIGHT) THEN
PARAM (7) = B

ELSE
PARAM (7) = RIGHT

END IF

END IF
C (* OF ELSE (FROM LONG TIME AGO) *)

C (* OF PROCEDURE GOLDENSEARCH *)
END IF

END

C NOW, RE-ESTIMATE MLEs USING THIS MIN DIST ESTIMATE OF LOCATION

* ***** ***** ********** *********** * ***** ** ** ** * *** ** * **** ***** **** ** *

• FUNCTION WHICH PGOF

**** ** *** * ***** * ***** ***** ** **** * ** **** ** * *** * **** **** ** ***** * ***

REAL*8 FUNCTION PGOF ( WHICH,PARAM)

CHARACTER*3 WHICH
REAL*8 PARAM(1:7)

168



EXTERNAL PCVMGOF

C PRINT*,'WITHiN SUBR. GOF:'
C PRINT*,' COUNT,' COUNT
C PRINT*, From GOF PARAMETERS '

C 6 PARAM(1),PARAM(2),PARAM(3)

PGOF = PCVMGOF( PARAM)

END

*CM THS FUNCTION RETURNS THE CRAMER VON-M[ISES GOODNESS OF FIT *
* STATISTIC FOR THE THREE PARAMETER WEIBULL.
* FORMULAS PUBLISHED IN WOODRUFF, MOORE, AND DUNNE (1983)
* DATA MUST BE ORDERED!I

REAL*8 FUNCTION PCVMGOF (param)

INTEGER I,J,,COUNT, SUBCOUNT,NLB,NUM
REAL*8 RAW(5000),CUM(5000), SUM TEM[P.

6 PARAM(1 :7),CVMGOFI,CVMGOF2
ITRINSIC DLOG, DEXP
COMMON / GLOBALDATA / COUNT, RAW

C PRIT*,From CVM PARAMETERS=,
C 6 PARAM(1),PARAM[(2),PARAM[(3),
C 6 PARAM(4),PARAM(5),PARAM(6),PARAM(7)

C RN1TIALIZATION

SUM = 0.0
TEMP = 0.0
NUM =0
NLB = 1
subcount = 0
CVM[GOF1 = 0.0

DO012 K =1,COUNT
CUM(K) = 0.0

12 continue
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C BEGIN

NUM = COUNT

PRINT*,* WITHIN SCVMGOF, NUM =',NUM

DO13 I = 1, NUM

IF (RAW (I) .LE. PARAM (2)) THEN
(* OBS LT LOC : UNDEFINED*)

CUM(I) = 1.OE-10
ELSE

TEMP = 0.0

TEMP = -1.0
6 *DEXP(PARAM( 1)*DLOG((RAW(I)-PARAM(2))/PARAM(3)))

CUM(I) = (1.0 - DEXP (TEMP))*PARAM(7)
END IF

13 CONTINUE

DO14 J = 1, NUM

TEMP = 0.0

TEMP = CUM(J)
6 -((2.0*J-1.0)/(2.0*NUM))

C PRINT*,---
C PRINT*,TOR J = ',J,' RAW(J) = ',RAW(J),'CUM(J)=,CUM(J)
C PRINT*,' K = ',K,' TEMP = ',TEMP
C PRINT*,' -.. ..... ... ..--------.- --------- '

SUM = SUM + TEMP*TEMP

14 CONTINUE

CVMGOF1 = (1.0/12.0*NUM)+SUM

c PRINT*,' ............................--- -- ---- --
c PRINT*,'CVMGOF FUNCTION COMPLETED'
c PRINT*,' CVMGOF = ',CVMGOF
c PRINT*,' NUM = ',NUM
c PRINT*,' COUNT =',COUNT
c PRINT*,' SUM =',SUM
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c PRINT*,' TEMP =',TEMP
c PRINT*,' CUM(count) =', CUM(count)

C INITIALIZATION

SUM = 0.0
TEMP = 0.0
NUM =0
NLB = 1
subcount = 0
CVMGOF2 = 0.0
CVMGOF = 0.0

DO 22 K = 1,COUNT
CUM(K) = 0.0

22 continue

C BEGIN

NUM = COUNT
c PRINT*,' COUNT =',NUM

D023 I = 1, NUM

IF (RAW (I) .LE. PARAM (5)) THEN
c (* OBS LT LOC: UNDEFINED *)

CUM(I) = 1.OE-10
ELSE

TEMP= 0.0

TEMP = -1.0
6 *DEXP(PARAM(4)*DLOG((RAW(I)-PARAM(5))/PARAM(6)))

CUM(I)=(1.0 - PARAM(7))*(1.0 - DEXP (TEMP))
END IF

23 CONTINUE

D024 J = 1, NUM

TEMP = 0.0

TEMP = CUM(J)
6 -((2.0*J-1.0)/(2.0*NUM))

C PRINT*, .
C PRINT*, FOR J =',J,'RAW(J) = ',RAW(J),'CUM(J)=',CUM(J)
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C PRINT*,' K=' ,K,'TEMP =',TEMIP
C PR N *' -------------

SUM = SUM + TEMP*TEMP

24 CONTINUE

CVMGOF2 = (1.O/12.O*NUM)+ISUM

PCVMGOF = CVMGOF1 + CVMGOF2

C PRINT*,' CVMGOF1 = ',CVMGOFI
C PRIINT*,' CVMGOF2 = ',CVMGOF2
C PRINT*,' PCVMGOF = ,PCVMGOF

END
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