May 1992 Report No, -CS-92-1429

I NN

PB96-150370

Scaling Algorithms for the Shortest Paths Problem

by

Andrew Goldberg

Department of Computer Science

Stanford University
Stanford, California 94305

19970313 017




-

ma7- oS -2 762



REPORT DOCUMENTATION PAGE Form Approved

OMB No. 07040188

Pubin reporting Burden for tha ot mior ne 10 Sverge | hOU? BEY rEIDONME, INCIVEING tAE TiMe 107 FEVIOW!A
gotharing 6 MAINEIMAG TR G212 ACUSIL. ng COMPILING SN reviewing The (OIIICLION Of ATOrMELIOn. Send LOMMENE T Duron oxtimate o Sy Oy S108Y O the
OlherDON Of INFGIMEUON., INCIUBiNg WHRIILION for ragucing thi Burden. ) Ut Buren estimate or day OThev MpeCt Of th

B e e 13704, Arengvon. V3. 112034307 mfa T e of':l Wathington :;l“uﬂ?"l Servicn. Directorate for mvgmm?“o)oxom o m 3 213 Mftenon
\#_7 l $ucho "lll °.° . !“"“w‘. d y o

T AGENCY USE ONLY (Leave Blank) ]32. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1992

#

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Scaling Algorithms for the shortest Paths Problem

6. AUTHOR(S)

Andrew V. Goldberg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER o

Computer Science Department
Stanford University ' STAN-CS-92-1429
Stanford, CA 94305

§. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

ONR
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

122. DISTRIBUTION/ AVAILABILITY STATEMENT 12, DISTRIBUTION CODE

unlimited

™13, ABSTRACT (Maximum 200 words)

Abstract

We give an O(/nm log N) algorithm for the single-source shortest paths problem with
integral arc lengths. (Here n and m is the number of nodes and arcs in the input network
and N is essentially the absolute value of the most negative arc length.) This improves
previous bounds for the problem.

14. SUBIECT TERMS 15. NUMBER OF PAGES
11

16. PRICE CODE

p———— rTvarTy

17. SECURITY CLASSIFICATION ] 18. SECURITY CLASSIFICATION [ 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500 Stancarg Form :98 '.ﬂo‘v 2-89)

Jreerr peE T. NS vz 729



Scaling Algorithms for the Shortest Paths Problem

Andrew V. Goldberg*
Computer Science Department

Stanford University
Stanford, CA, 94305

May 1992

*Part of this work was done while the author was visiting IBM Almaden Research Center and supported by
ONR Contract N00014-91-C-0026.
Supported in part by ONR Young Investigator Award NO00014-91-J-1855, NSF Presidential Young Investigator
Grant CCR-8858097 with matching funds from AT&T. DEC. and 3M, a grant from Powell Foundation, and by
a grant from Mitsubishi Electric Laboratories.




Abstract

We give an O(y/nmlog N) algorithm for the single-source shortest paths problem with
integral arc lengths. (Here n and m is the number of nodes and arcs in the input network
and N is essentially the absolute value of the most negative arc length.) This improves
previous bounds for the problem.

1 Introduction

In this paper we study the shortest paths problem where arc lengths can be both positive and
negative. This is a fundamental combinatorial optimization problem that often comes up in
applications and as a subproblem in algorithms for many network problems. We assume that
the length function is integral, as is the case in most applications.

We describe a framework for designing scaling algorithms for the shortest paths problem and
derive several algorithms within this framework. Our fastest algorithm runs in O(y/nmlog N)
time, where n and m are the number of nodes and arcs of the input network, respectively, and
the arc costs are at least —N.! Our approach is related to the cost-scaling approach for the
minimum-cost flow problem [2, 11, 13, 14, 15].

Previously known algorithms for the problem are as follows. The classical Bellman-Ford
algorithm [1, 7} runs in O(nm) time. Our bound is better than this bound for N = o(2V™).
The scaling algorithm of Gabow and Tarjan [10] is dominated by an assignment subroutine,
which takes O(y/nm log(nC)) time, where [-C',...,C]is the range of the arc costs. Our bound
dominates this bound (note that N < C —1).

Our bound is competitive even with bounds for special-purpose algorithms on planar
graphs. The fastest shortest paths algorithm currently known for planar graphs [8] runs in
O(n'®logn) time. Our algorithm runs in O(n'®log N) time on planar graphs, which is better
for N = o(n).

The previous best time bounds for scaling algorithms for the shortest paths problem match
those for the assignment problem. Our improved bound for the former problem implies that
either this problem is computationally simpler or the bound for the latter problem can be
improved.

Our framework is very flexible. In Section 8, for example, we use the framework to design
a different algorithm for the problem that runs in O(y/nmlog(nN)) time. Although our algo-
rithms do not use sophisticated data structures such as those for manipulating sets and paths,
the flexibility of the framework would make it easy to use such data structures if needed. This
flexibility may lead to better running time bounds.

2 Preliminaries

The input to the single-source shortest paths problem is (G. s,1), where G = (V, E)is adirected
graph, ( : E = R is a length function, and s € V is the source node. (See e.g. [3, 17].) The

[\We assume that N > 2 so that log N > 0.



goal is to find shortest paths distances from s to all other nodes of G or to find a negative
length cycle in G. If G has a negative length cycle, we say that t..e problem is infeasible. We
assume that the length function is integral. We also assume, without loss of generality, that
all nodes are reachable from s in G and that G' has no multiple arcs. The latter assumption
allows us to refer to an arc by its endpoints without ambiguity.

We denote |V] by n and |E| by m. Let M be the smallest arc length. Define N = —M if
M < -1 and N = 2 otherwise. Note that N > 2 and l(a) > ~N foralla € E.

A price function is a real-valued function on nodes. Given a price function p, we define a
reduced cost function [, : E = R by

(v, w) = I(v, w) + p(v) — p(w).

We say that a price function p is feasible if

l,(a) >0 VaecFE. (1)
For an € > 0, we say that a price function is e-feasible if

l,(a) > —¢ Va€E. . (2)

We call an arc (v, w) improvable if I,(v,w) < —¢, and we call a node w improvable if there
is an improvable arc entering w.

Given a price function p, we say that an arc a is admissible if [,(«¢) < 0, and denote the set
of admissible arcs by E,. The admissible graph is defined by G, = (V, Ey).

If the length function is nonnegative, the shortest paths problem can be solved in O(m +
nlogn) time [9]. We call such a problem Dijkstra’s shortest paths problem [5]. Given a feasible
price function p, the shortest paths problem can be solved as follows. Let d be a solution to
the Dijkstra’s shortest paths problem (G,s,l,). Then the distance function d’ defined by
d'(v) = d(v) + p(v) — p(s) is the solution to the input problem.

We restrict our attention to the problem of computing a feasible price function or finding
a negative length cycle in G.

3 Successive Approximation Framework

Our method computes a sequence of e-feasible price functions with ¢ decreasing by a factor of
two at each iteration. Initially, all the prices are zero and ¢ is the smallest power of two that is
greater than N. The method maintains integral prices. At each iteration, the method halves
¢ and applies the REFINE subroutine, which takes as input a (2¢)-feasible price function and
returns an e-feasible price function or discovers a negative length cycle. In the latter case, the
computation halts. The high-level description of the method is given in Figure 1.

Lemma 3.1 Suppose a price function p is integral and 1-feasible. Then for every a € E.
(,(a) > 0.
P z




procedure COMPUTE-PRICES(G, s,1);
[initialization]
€ — 91+|log, NJ;
Yv e E, p(v) « 0;
[loop]
while e > 1 do
€+ €/2;
p < REFINE(€, p);
end;
return(p);
end.

Figure 1: High-level description of the shortest paths method.
Proof. The lemma follows from the fact that £,(a) is integral and £,(a) > —1. =

Corollary 3.2 The method terminates in Oflog N) iterations.

4 Dealing with Admissible Cycles

Suppose that G, has a cycle T'. Since the reduced cost of a cycle is equal to the length of the
cycle, [(T') £ 0.

If I(T) < 0, or I(T') = 0 and there is an arc (v, w) such that [,(v,w) < 0 and both v and
w are on [, then the input problem is infeasible and the method terminates. Otherwise, we
contract I’ and remove self-loops adjacent to the contracted node. A feasible price function on
the contracted graph extends to a feasible price function on the original graph in a straight-
forward way.

Our algorithm uses an O(m)-time subroutine DECYCLE(G,) that works as follows. Find
strongly connected components of Gy [16]; if a component contains a negative reduced cost
arc, G has a negative length cycle; otherwise, contract each component.

Suppose G, is acyclic. Then G, defines a partial order on V and on the subset of improvable
nodes. This motivates the following definitions. A set of nodes S is closed if every node
reachable in G, from a node in S belongs to 5. A set of nodes (arcs) S is a chain if there is a
path in G, containing every element of S.

5 Cut-Relabel Operation

In this section we study the CUT-RELABEL operation which is used by our method to transform
a (2¢)-feasible price function into an e-feasible one. The CUT-RELABEL operation takes a closed
set S and decreascs prices of all nodes in S by e.

Lemma 5.1 The CUT-RELABEL operation does not crcate any improvable arcs.



Proof. The only arcs whose reduced cost is decreased by CUT-RELABEL are the arcs leaving
S. Let a be such an arc. The relabeling decreases I,(a) by €. Before the relabeling, S is closed
and therefore [,(a) > 0. After the relabeling, [y(a) > —¢. ®

The above lemma implies that CUT-RELABEL does not create improvable nodes. The next
lemma shows how to use this operation to reduce the number of improvable nodes.

Lemma 5.2 Let p be a (2¢)-feasible price function. Let S be a closed set of nodes, and let
X C S be a set of improvable nodes such that every improvable arc entering X crosses the cut
defined by S. After the set S is relabeled, nodes in X are no longer improvable.

Proof. Let p' be the price function after the relabeling. Let w € X and let (v,w) be an
improvable arc with respect to p. By the statement of the lemma, v € S. Thus the relabeling
increases I, by €, and, by (2¢)-feasibility of p, ly(v,z) > —€e. B

A simple algorithm based on cUT-RELABEL applies the following procedure to every im-
provable node v.

1. DECYCLE(G)).
2. S « set of nodes reachable from {v} in G,.
3. CUT-RELABEL(S).

4. If v is improvable return “the problem is infeasible” and halt.

It is easy to see that given a (2¢)-feasible price function, this algorithm computes an e-feasible
one in O(nm) time.

As we shall see, it is possible to find either a set X, such that relabeling X eliminates many
improvable nodes, or a chain containing many improvable arcs. In the next section we describe
a technique that can be applied to a chain of improvable arcs.

6 Eliminate-Chain Subroutine

Suppose that Gy, is acyclic and let I" be a path in G,. Let (vy,wy), ..., (Vs wy) be the collection
of all improvable arcs on I such that for 1 <7 < j <t the path visits v; before v; (i.e.. v
is visited last). By definition, nodes wy,....w; are improvable. In this section we describe
a subroutine ELIMINATE-CHAIN that modifies p so that the nodes wy,...,w; are no longer
improvable and no new improvable nodes are created, or finds a negative length cvcle in G.
The subroutine runs in O(m) time.

At iteration i, ELIMINATE-CHAIN finds the set .S; of all nodes reachable from w; in the ad-
missible graph and relabels Si. If w; is improvable after the relabeling, the algorithm concludes
that the problem is infeasible.




Lemma 6.1 The path T is always admissible. If w; is improvable after iteration i, then the
problem is infeasible.

Proof. The price function is modified only by CUT-RELABEL. At iteration 1, S; contains w;, all
its successors on I', and no other nodes of T (by induction on ¢). Therefore I,(v;, w;) changes
exactly once during iteration i, when it increases by e. The arc (v;, w;) is improvable before
the change, and admissible after the change. Reduced costs of other arcs on ' do not change
during the execution of ELIMINATE-CHAIN.

Suppose w; is improvable immediately after iteration i. Then there must be a node v such
that (v, w;) is improvable and v € S;. By construction of S;, there must be an admissible path
from w; to v. This path together with the arc (v, w;) forms a negative length cycle. ®

Lemmas 5.1 and 6.1 imply that the implementation of ELIMINATE-CHAIN is correct. Next
we show how to refine this implementation to achieve O(m) running time. The key fact that
allows such an implementation is that the sets S; are nested.

First, we contract the set of nodes S; at every iteration. The reason for contracting is to
allow us to change the prices of nodes in S; efficiently (these prices change by the same amount).
The CONTRACT(S;) operation collapses all nodes of S; into one node s;, assigns the price of
the new node to be zero, and eliminates self-loops involving the new node. Reduced costs of
the other arcs adjacent to the new node remain the same as immediately before CONTRACT.
Note that we have at most one contracted node at any point during ELIMINATE-CHAIN, but
contracted nodes can be nested.

The UNCONTRACT(s;) operation, applied to a contracted node s;, restores the graph as it
was just before the corresponding CONTRACT operation and adds p(v) to prices of all nodes
in S;. At the end of the chain elimination process, we apply UNCONTRACT until the original
graph is restored.

Contraction is used for efficiency only and does not change the price function computed by
ELIMINATE-CHAIN, because by Lemma 6.1 S;CS;for1<i< <t

Second, we implement the search for the nodes reachable from w;’s in the admissible graph
in a way similar to Dial’s implementation [4] of Dijkstra’s algorithm. Our implementation uses
a priority queue that holds items with integer key values in the range [0, . .., 3n]; the amortized
cost of the priority queue operations is constant. We assume the following queue operations.

e enqueue(v,Q): add a node v to a priority queue Q.

e min(Q): return the minimum key value of elements on Q.

e ertract-min(Q): remove a node with the minimum key value from Q.
o decrease-key(v, x): decrease the value of key(v) to z.

o shift(Q.d): add & to the key values of all elements of Q.

All of these operations except shift are standard; a constant time implementation of shift is
trivial.



‘;rocedure SCAN(v);
for all (v,w) do
if key(w) = oo then
mark w as labeled;
key(w)  lp(v,w);
insert(w, Q)3
else if w is labeled and key(w) < h(lp(v, w)) then
decrease-key(w, lp(v, w));
mark v as scanned;
end.

Figure 2: The scan operation.

Note that if p is (2¢)-feasible and I,(a) > 2ne, then a can be deleted from the graph. We
assume that such arcs are deleted as soon as their reduced costs become large enough.

We define the key assignment function h that maps reduced costs into integers as follows.

h(x)___{ : 0 ifz<0

z .
Z] otherwise.

During the chain elimination computation, each node is unlabeled, labeled, or scanned.
Unlabeled nodes have infinite keys; other nodes have finite keys. The priority queue Q contains
labeled nodes. Initially all nodes are unlabeled. At the beginning of iteration i, key(w;) is set
to zero and w; is added to Q. While Q is not empty and the minimum key value of the queue
nodes is zero, a node with the minimum key value is extracted from the queue and scanned
as in Dijkstra’s algorithm except that h(lp(a)) is used instead of I,(a) (see Figure 2). When
this process stops, the scanned nodes are contracted, the new node is marked as scanned, and
its key is set to zero. Then the price of the new node is decreased by € and shift(Q, —€) is
executed. This concludes iteration i.

Next we prove correctness of the implementation.
Lemma 6.2 The sets S; are computed correctly for every 1 =1,...,t.

Proof. For convenience we define So = 0. Consider an iteration i. It is enough show that S;
is correct if 1 < i < t and S;—y is correct.

Let v be a node on @ with the zero key value. We claim that v is reachable from w; in the
current admissible graph. To see this, consider two cases. If v was a node on Q with zero key
value at the beginning of the iteration, then v is reachable from w; by Lemma 6.1. Otherwise,
key of v became zero when an arc (u,v) was scanned. We can make an inductive assumption
that u is reachable from w;. By definition of h, h(u,v) = 0 implies that l(u,v) <0, and
therefore v is reachable from w;.

Let T be an admissible path originating at w;. It is easy to see by induction on the number
of arcs on T that all nodes on I are scanned and added to S;.




It follows that at the end of iteration i, S; contains all nodes reachable from w; in the
admissible graph. m

Lemma 6.3 ELIMINATE-CHAIN runs in O(m) time.

Proof. Each node is scanned at most once because a scanned node is marked as such and
never added to Q. A contracted node is never scanned. The time to scan a (noncontracted)
node is proportional to degree of the node, so the total scan time is O(m).

The time of a CONTRACT operation is O(1 + n' + m'), where n' is the number of nodes
being contracted and m! is the number of arcs between these nodes. The number of CONTRACT
operations is t < n; the sum of m/ values over all CONTRACT operations is at most m and the
sum of 7' values is below 2n. Thus the total cost of contract operations is O(m).

The cost of an UNCONTRACT operations is O(1+ n' +m'), where n’ and m' are the same as
in the corresponding CONTRACT operation. Thus the total time for these operations is O(m).
= ,

7 Faster Algorithm

In this section we introduce an O(y/amlog N) algorithm for finding 2 feasible price function.
Let k denote the number of improvable nodes. The algorithm reduces k by at least Vk at each
iteration. An iteration takes linear time and is based on the results of sections 5 and 6 and
the following lemma, which is related to Dilworth’s Theorem (see e.g. [6]).

Lemma 7.1 Suppose Gy 15 acyclic. Then there exists a chain S C E such that S contains at
least VE improvable arcs or @ closed set S C V such that relabeling S reduces the number of
improvable nodes by at least J/n. Furthermore, such an S can be found in O(m) time.

Proof. Define a length function I' on E, by

o) -1 ife is improvable
Fla) = { 0 otherwise.

The absolute value of the path length with respect to I is equal to the number of improvable
arcs on the path.

Add a source node r to Gy and arcs of zero length from r to all nodes in V. Call the
resulting graph G'; note that G' is acyclic. Let d':V = R give the shortest paths distances
from r with respect to !’ in G'. Since G' is acyclic, d' can be computed in linear time. Define
D = maxy |d'|.

IfD > Vk, then a shortest path from r to a node v with d'(v) = —D contains a chain with
at least \/7: improvable arcs.



procedure REFINE(¢, p);
k « the number of improvable nodes;
repeat
DECYCLE(G,);
S « a chain or a set as in Lemma 7.1;
if S is a chain
ELIMINATE-CHAIN(S);
else
CUT-RELABEL(S);
k « the number of improvable nodes;
until £ = 0;
return(p);
end.

Figure 3: An efficient implementation of REFINE.

If D < Vk, then the partitioning of the set of improvable nodes according to the value of
d’ on these nodes contains at most % nonempty subsets. Let X be a subset containing the
maximum number of improvable nodes and let i be the value of d’ on X. Observe that X
contains at least V& improvable nodes. Define § = {v € V|d'(v) < i}.

Clearly X C S. Also, S is closed. This is because if v € S and there is a path from v to w
in G, then the length of this path with respect to !’ is nonpositive, so d'(w) < d'(v) <1and
therefore w € S.

We show that after CUT-RELABEL is applied to S, nodes in X are no longer improvable. Let
z € X and let (v.2) be an improvable arc. Then I'(v,z) = —1 and therefore d'(v) > d'(z) = 1.
Thus v ¢ S and (v, w) is not improvable after relabeling of S. ®

The O(y/nm) implementation of REFINE is described in Figure 3. The implementation
reduces the number of improvable nodes k by at least Vk at each iteration by eliminating
cycles in Gy, finding S as in Lemma 7.1, and eliminating at least vk improvable nodes in S
using techniques of sections 4, 5, and 6.

Lemma 7.2 The implementation of REFINE described in this section runs in O(y/nm) time.
Proof. Each iteration of REFINE take O(m) time by the results of the previous sections. Each

iteration reduces k by at least Vk, and O(\/E) iterations reduce k by at least a factor of two.
The total number of iterations is bounded by

S /& = ova).
i=0

Corollary 3.2 and Lemma 7.2 imply the following result.

S

A



Theorem 7.3 The shortest paths algorithm with REFINE implemented as described in this
section runs in O(y/nmlog N) time.

8 Tighten Operation

In this section we describe an alternative to the CUT-RELABEL operation, which we call TIGHT-
eN. This operation is motivated by the operation described in [13] in the context of minimum
cost flows. Let p be a (2¢)-feasible price function. Assume that we eliminated cycles in Gp,
and let I/, d’, and D be as in the proof of Lemma 7.1. Define a new price function p’ by

d'(v)

D

p'(v)=pv) +e

TIGHTEN computes d’ and replaces p by p'. This takes O(m) time.

For any'v, 0 < p(v) —p'(v) < € Thus if {,(v, w) > 0 then ly(v,w) > —e. If —e < L(v,w) £
0, then !(v,w) = 0 and thus d'(w) < d'(v); therefore (v, w) 2 lp(v,w) > —€ Finally if
L,(v,w) < —¢, then I'(v, w) = =1 and thus &'(w) < d'(v)—1; therefore Iy (v, w) > Ip(v, w)—¢/D.

This implies that TIGHTEN creates no improvable arcs. Sirice D < n — 1, the reduced cost
of every existing improvable arc increases by at least o-. Therefore the implementation of
REFINE based on TIGHTEN takes O(nm) time.

Note that TIGHTEN does not maintain integrality of p, so the method cannot terminate
when ¢ reaches 1. However, if € = O(1/n) and [ is integral, an ¢-feasible price function can
be converted into a feasible price function using rounding and a Dijkstra’s shortest paths
computation. Therefore the overall running time of the algorithm is O(nmlog(nN)).

This bound can be improved by using TIGHTEN in combination with ELIMINATE-CHAIN.
Implemented this way, REFINE works as follows. It starts by removing cycles from G, and
computing ', D, and k. If D > Vk, then ELIMINATE-CHAIN is applied to the appropriate chain,
eliminating at least VE improvable nodes. If D < vk, then TIGHTEN is applied, increasing the
reduced cost of every improvable arc by at least 5&:

The first case cannot occur more than O(y/n) times since all improvable nodes will be
eliminated. The second case cannot occur more than O(y/n) times since reduced cost of every
improvable arc will increase by at least € and these arcs will no longer be improvable. The
resulting algorithm runs in O(y/nmlog(nN})) time. '

9 Concluding Remarks

We described a framework for designing scaling algorithms and two operations, CUT-RELABEL
and TIGHTEN, that can be used to design algorithms within this framework. The framework
is very flexible and can be used to design numerous algorithms for the problem. Using these
results, we improved the time bound for the problem. We believe that further investigation of
this framework is a promising research direction. Our algorithms are easy to implement and

9



may have practical implications; this work was in fact motivated by an experimental study of
minimum-cost flow algorithms [12].

If one is interested only in the algorithms based on CUT-RELABEL, bit scaling can be used
instead of e-feasibility. This version of the algorithm rounds lengths up to a certain precision,
initially the smallest power of two that is greater or equal to N. Each iteration of the algorithm
starts with a price function that is feasible with respect to the current (rounded) lengths.
At the beginning of an iteration, the lengths and prices are multiplied by two, and one is
subtracted from the arc lengths as appropriate to obtain the higher precision the lengths. The
resulting price function is 1-feasible with respect to the current length function; the feasibility
is restored using the CUT-RELABEL operations as described above. The bounds obtained for the
algorithms that use the relabel operation remain valid, but some aspects of the implementation
and analysis become slightly simpler. In particular, the only possible negative reduced cost
value is —1, and the length function I’ defined in the proof of Lemma 7.1 is the same as I
Also, no rounding is required for computing the priority queue keys. However, the TIGHTEN
operation cannot be defined in a natural way if bit scaling is used.

Our definition of e-feasibility corresponds to that of e-optimality for minimum cost flows
[11, 14]. If one follows [11.14] faithfully, however, one would define e-feasibility using [,(a) > —¢
instead of (2) and not consider arcs with zero reduced costs admissible. Under these definitions,
the admissible graph cannot have zero length cycles, so there is no need for DECYCLE. However,
these definitions seem to lead to an O(log(nN)) bound on the number of iterations of the outer
loop of the method.

In conclusion we would like to mention a natural variation of the TIGHTEN operation related
to continuous optimization techniques. Suppose we use I, instead of I and redefine p’ by

P (v) = p+ dd'(v).

We can interpret d' as the direction we want to move in, and J as a parameter that determines
the step size. Then we can define a penalty function ® whose value is determined by the
reduced costs, and pick d to achieve a large decrease in @. For example, we can define @ to be
absolute value of the most negative reduced cost andset 6 =1+ Fﬁ?' Then an application of
TIGHTEN reduces ® to at most :

D n
P—< .

Dr®  n+l
(The last inequality follows from the fact that D < n®.) The resulting algorithm runs in
O(nmlog(nN)) time. Using a different penalty function may give a different result.

Acknowledgments

I am grateful to Tomasz Radzik for suggesting an important idea for the proof of Lemma 7.2,
and to Bob Tarjan for suggesting a clean implementation of DECYCLE. 1 would also like to
thank Serge Plotkin, Eva Tardos, and David Shmoys for useful discussions and comments on
a draft ot this paper.



References

[1] R. E. Bellman. On a Routing Problem. Quart. Appl. Math., 16:87-90, 1958.

[2] R. G. Bland and D. L. Jensen. On the Computational Behavior of a Polynomial-Time Network
Flow Algorithm. Math. Prog., 54:1-41, 1992.

{3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cam-
bridge, MA, 1990.

[4] R.B. Dial. Algorithm 360: Shortest Path Forest with Topological Ordering. Comm. ACM, 12:632-
633, 1969.

[5] E. W. Dijkstra. A Note on Two Problems in Connection with Graphs. Numer. Math., 1:269-271,
1959.

(6] R.P. Dilworth. A Decomposition Theorem for Partially Ordered Sets. Annals for Math., 51:161-
166, 1950.

[7] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ,
1962.

[8] G. Frederickson. Fast Algorithms for Shortest Paths in Planar Graphs, with Applications. SIAM
J. Comput., 16:1004-1022, 1987.

[9] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Opti-
mization Algorithms. J. Assoc. Comput. Mach., 34:596-615, 1987.

[10] H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM J.
Comput., pages 1013-1036, 1989.

[11] A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis,
M.LT., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science,
M.LT., 1987).

[12] A. V. Goldberg and M. Kharitonov. On Implementing Scaling Push-Relabel Algorithms for the
Minimum-Cost Flow Problem. Technical Report STAN-CS-92-1418, Department of Computer
Science, Stanford University, 1992.

[13] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Canceling Negative
Cycles. J. Assoc. Comput. Mach., 36, 1989. A preliminary version appeared in Proc. 20th ACM
Symp. on Theory of Comp., 388-397, 1988.

[14] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approxima-
tion. Math. of Oper. Res., 15:430-466, 1990. A preliminary version appeared in Proc. 19th ACM
Symp. on Theory of Comp., 7-18, 1987.

[15] H. Rock. Scaling Techniques for Minimal Cost Network Flows. In U. Pape, editor, Discrete
Structures and Algorithms, pages 181-191. Carl Hansen, Minich, 1980.

(16] R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.. 1:146-160,
1972.

[17} R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Math-
ematics. Philadelphia, PA, 1983.

11



