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Objective

This work derived the mathematics required in the RSCEM (Radar Simulation
Concept Evaluation Model) model for closed-form answers for the probability of
detection and false alarm for Swerling class targets in clutter and noise and targets in
compound-K clutter plus noise. In all cases, the results are applicable to the N-pulse
coherent detection problem. For the case of a target in “spikey” clutter plus the noise the
advantage of multiple pulse integration is significant.
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1. Introduction

Target detection in Gaussian noise is an old problem and there too many
references to cite them all here. Similarly, there are several published results for target
detection in Gaussian noise and log-normal clutter (Trunk and George, 1970, Schieher,
1975). Although some of the analysis in this report is derived elsewhere, we have tried to
present a unified approach to the problem of target detection in clutter plus noise to
include all the standard Swerling target cases and the relatively new compound-X clutter
probability density function, as discussed by Ward et al.(1990). In the following analysis,
many of the derivations are new and yield closed form results for the N-pulse case for the
probability of detection, and probability of false alarm for Swerling class targets in
Gaussian noise, assuming square-law detection. All the derivations are not new;
however, to the authors knowledge, they do not appear in a single reference for all
combinations of Swerling targets and clutter statistics, including compound-k. The report
considers the following theoretical problems:

1) The use of the characteristic function to treat the problem of N-multiple pulse
integration, for SC-0, SC-1, SC-2, SC-3, SC-4 and compound-k clutter cases.

2) The use of a basic rule in probability theory for removing “left” and “right”
variables in conditional pdf’s to treat the problem of target plus clutter in noise, and then
target in clutter, in place of multiple convolutions of the individual pdf’s representing the
sum of the random variables target, clutter and noise.

3) The use of the recently reported compound-K pdf for treating “spikey” clutter
arising in wide-band radar applications.

4) FORTRAN 77 algorithms for all Swerling cases for target plus noise, and
Swerling case #1 and #2 targets in compound-k clutter.




2. Probability Density Functions for a Target in Clutter and Noise
2.1 General Case

A detection decision is to be made during each N-pulse beam-dwell interval. In
the general case, the target and the clutter can vary from pulse-to-pulse and from scan-to-
scan. An extension of the usual two-components representing the complex phasors for
the I and Q output of the received signal to include clutter, after post detection is the
following three component model

Re® =1 " +1° +re®, (1)

where T " is the complex phasor representing the target, ¥ is the complex phasor

representing the clutter, and re® is the complex phasor representing thermal noise. A
vector diagram for the three phasors is shown in figure 1, where the detection is made on

the basis of IReiel in equation (1). Note, the symbol (0 in equation (1) should not be
confused with the same parameter when used in the characteristic function.

P v ><
’ M I
Figure 1. Phasor diagram for three components of the received
signal.

If the target is immersed in Gaussian noise and clutter, and this target is to be detected
using an N-pulse radar burst, the return can in equation (1) can be written as

Re” =pe” +re, )

where the target plus clutter is decomposed as




pei\y _—'Teim"l"}@ic . (3)

| The pdf for the return, Re 'e, can be written, using the basic rule; to remove a number of
| “left’ variables, we integrate with respect to them. To remove a number of “right”
variables, we multiply by their conditional density with respect to the remaining “right”
variables and integrate (Papoulis, 1965, p.236). For example, for two “right” removals
we have,

X, )abczdx3 : 4)

px|x.) = [ (x|, %, x, ) (.. x,

For the case of a target in noise alone (no clutter in equation (1) ) standard Swerling cases
use a Rayleigh pdf for the noise component given by

2

r o2
pn(r)=?e 2 | (5)

n

The distribution of R in equation(1) with no clutter; i.e., where pe"" =Te"is
Rice given by

8

n n

R —(R2+02)262 R
p(Rp) == I(GE) ©6)

Assume a square-law detector. The actual detector type; i.e., linear, half-wave, square-
law, full-wave square-law introduces only minor differences in the correlation function of

. the received signal, i.e., all correlation outputs are proportional to the mean square
received power with second order differences depending on the time shift. Make the
following substitutions:




R*/2 RdR
Y=o dy = 5
X = (52

and temporarily treat P as though it were a constant, and R is the detected amplitude.
Substituting equation (7) into equation (6) gives, for each pulse, in the SC-0, SC-1, SC-2,
SC-3, and SC-4 cases,

eI (24xy),y20

, )]
0 ,y<0

pOlx) =

where the pdf in equation (8) is conditioned on x. DiFranco and Rubin (p.370, 1980)
show that there is negligible difference in detection performance (as measured in terms of
the probability density function) between a square-law envelope detector and a linear
detector (on the order of 0.1 dB). Blake (p.44,1986) also states the difference between
square-law and linear detection in terms of the required signal-to-noise ratio for detection
is on the order of 0.2dB at most. As a point of interest, the result in equation (8) can be
shown to be equivalent to the result in Nathanson.'

' second edition (p. 168, Table 5.6, entry (5), Rice (power), 1991), by making the
following substitutions in equation (8)

y=(1+a*)x

p=ax ,

Rz e
Gn Gn

where a’ is the ratio of the large reflection (target) to the sum of small reflections
(clutter), X is the rcs, and x= 2(5i is the mean rcs. We note a “typo” in Nathanson,
where the density function for the rcs, X, should read in the argument of the Bessel
function as

J 2ia\ﬁ1 + az)(%) J =1(2/x)




In order to treat the case of multiple pulse post-detection integration gain
efficiency, it is convenient to introduce the characteristic function associated with p( y|x)
in equation (8) as

D(a)x) = [ p(ylx)e™dy, ©)
and substituting equation (8) into equation (9) gives

O(fx) = e [ L (2,35 )dy
0

X
(1-iw)

=e” 10
* Wtio) 1o
e'(x l-:‘m)

1-io

We will now consider the N-pulse detection case. For N-pulse detection, we
detect the sum of N different values, Y, ,..., Y, of the received power and noise as

Y=y +y, ++y,,

VU
0n 0n Gn

12 a4 12
p+re” |p+re™ . (1D
=T T a2
p* /2

Exp{Y|x}=N

+N=Nx+N=N(x+1)

2

n




where the last line in equation (11) will be obtained by an alternative method shortly, and
X is defined in equation (7).

If the pulse-to-pulse noise samples are statistically independent, then the
characteristic function of the sum of the N samples is the produce of their individual
characteristic functions. Therefore, the characteristic function associated with Y is

e
D, (0x)=——"7—. 12
v(@lx) (ia) (12)

A slight modification of the order of first averaging over p(x ) and next taking the

product of the individual characteristic functions is required for SC-4. In this case we
need to average with respect to one-dominant-scatter plus Rayleigh noise, before finding
the sum of the N samples. The advantage of performing the multiple pulse analysis in the
“frequency” domain as in equation (12) as opposed to the probability domain is that the
expression corresponding to (12) in the pdf domain is an N-fold convolution of each of
the N pdf’s for each of the N variables.

Now, because the target plus clutter fluctuates from scan-to-scan, for all Swerling
2

class targets, we must average equation (10) over the variable x = 2‘;2 . That is,
@, (0)= [D, (0)x)p(x)dx
= j'[CD((o]x)]N p(x)dx : (13)
f ¢ p(xya

Ta-

where p(x ) is the probability density function for the random variable X. In the case of
Swerling class targets, p(x) corresponds to the density function of the target alone,

appropriate to either pulse-to-pulse variation or scan-to-scan variation. For the case of
target plus clutter plus noise, a similar analysis will be used as shown in section 2.7. In
the case of Swerling class targets, once @, (®) is known, the probability density of
Y=y +y,+---+y,, the desired result, is

11




p,(Y)= 1 Iq)N(CO)e'i“’yd(D (14)
2T

Equations (13) and (14) are extremely useful, and form a “key pair” and will be
used in several of the following derivations.

Before leaving the subject of the characteristic functlon associated with a pdf it is
instructive to consider the meaning of the parameter ®? in the definition for the
characteristic function. First, this parameter is a dummy variable of integration. Second,
it is not really frequency, but simply a variable used to analytically continue the
characteristic function into the complex plane in order to consider the moments of the
random variable. The derivatives of the characteristic function of a random variable, Y,
are related to its moments as

(15)

and the Taylor’s series expansion (a Laurent series is a more general analytic continuation
for a function of a complex variable) for the characteristic function is

-(D n
CI>(0)|x)=1+ia)ml—m2m2+---+(l ') m +--- (16)
n.

For the characteristic function given in equation (16) we find for the first two derivatives

2 See remark on page 6.
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iNx

oy S [iN+iNx— Mo ]p(x)dx
do (1 Q)

_ i(l))N+l 1_
4O _iNf+x)p(x)dx L an
d’ o T TP pony
e = —Nj xp(x)dx + zN_[(zN +iNx) p(x)dx

and from the second line in equation (17) we see
Exp{Y|x}=N(x+1), (18)

which is the same statement as equation (11) as of course it must be. It is also easy to
show that

d*®
N =—_Nl1+2(x+n+ N
o [1+2( x)]
0> = Exp{Y*} - (Exp{Y})’ (19)

=3N




‘ Before considering the various Swerling cases, it is instructive to draw a picture of
| target echo’s varying on either a pulse-to-pulse or a scan-to-scan basis. Hopefully, such a

picture helps explain the choice for a particular pdf used in the following sections. Figure

2 shows a time series (or equivalently, a range profile) of received echo fluctuations

under different circumstances.

L L]

Scan #1 Scan #2

SC-0: Steady target.

L] 100

Scan #1 Scan #2

SC-1 and SC-3: Steady target pulse-to-pulse.

In

Scan #1 Scan #2

SC-2 and SC-4: Pulse-to-pulse variation. For SC-4, there is a
dominant pulse in each scan.

Fig.2 Various Swerling class time series representations for a fluctuating target.
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2.2 Swerling Case #0 (non-fluctuating target):

In this case, we see from figure 2, that the target is constant pulse-to-pulse and
scan-to-scan, and the total received signal can be written as

. A*/2 .
Re” =———+re® , (20)
(0)
where
Te" = i 1)
V2

and where the average target power to noise power is the first term on the right-hand-side
of equation (20), and the phase is constant. This case was originally discussed by
Marcum (1960). The pdf for the target in equation (20) is

A*/2
p(x)= S(x - ) 22)

n

and substituting equation (22) into equation (13) gives

1 (Az / 2) —iw )

_N. L
(—=im)"

o \l-iw

® ()= : (23)

in agreement with Fehlner (1962, his equation A-4 on page 24). Substituting equation
(23) into equation (14) of our “key pair” gives

15




1 % 1 M—ia))’

P(Y) = [——e " do
= 5o
24
412 4
b="

n

We need to perform a bit of algebra to write the integral in equation (24) in
“closed form,” a goal throughout this report.

l—-io=iu,io=1—iu

U=—i—
du=—-dw
o~ s ei("y'%)
Y)= du
p,(Y) o fw (ir)" . (25)

E=iu,d€=idu

~(Y+Nb) {4ioo e(§ g
d
27t 1—[« gN &

e

p,(Y)=

The last line in equation (25) is can be written in terms of a Laplace transform as

Nb

1+ieo g
pN (Y) — e—(Y+Nb) 5_1_7 J’ eé}' e_dg

T 1—i=-=_ & , 26)
= e'(”Nb)(i) "I, (2JNBY)
Nb

where the last line in equation (26) follows from transform pair 29.3.81, page 1026,
AMSS55, Handbook of Mathematical Functions, National Bureau of Standards, 1964.

16




The probability of detection, for the N-pulse case, is then the simple numerical
integration of equation (26) as

N-1

P =[p,(Y)dY =e™[e” (_1579) C1,JNBY)aYy e

The probability of false alarm is found by setting b = 0 (N.B., this corresponds
to setting X, the ratio of mean target power to noise variance to zero), and this is most
easily accomplished in equation (25) since (26) is indeterminate. From (25) with b =0
we find

-Y 1+1°°

p,Y,b=0)= = j
, (28)
_ e—Y YN—]
(N-1)!
and the probability of false alarm becomes
P, =[p,(¥Y,b=0)dY
) (29)

TYYdy

S

N’

o e B
Q

which is easily evaluated by integration by parts.

17




Fora P, =107 (¥ =8xlog, 10 =18.42068), and N=1,

P=1-¢" Te-vo (2+/bY)dY ,

and for N=2,

and

A*/2
o,

and, for illustrative purposes, figure 3 shows a plot of PD versus

in dB

18




15 L

: Swerling case #0
, Pea=10"°
A%2¢%, dB

10 |-
5 N=1
i N=2

5 -

0 |lllll| 1 L |||JJJ[ Ll JlJLlJI 1 L] I|IIIII 1 L llllll'

10* 10° 107* 10" 10°
PD

Fig. 3 Probability of detection versus signal-to-noise ratio for
Swerling Case #0.
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2.3 Swerling Case #1:

For both Swerling cases SC-1 and SC-3 we see from figure 2 that

Re® =p+re” , (30)

where the first term on the right-hand-side of equation (30) fluctuates from scan-to-scan
but is constant from pulse-to-pulse. The scan-to-scan Rayleigh pdf for the normalized
mean target power for this case is

p(x)=e",x" 20, 31)

or, in terms of the unnormalized mean power to noise variance, X ,

L_E_p2_pl2
x, x0. O.
o,
x, =—L
a Gi
1 , (32)
dx' =—dx
x(l
’ ’ e-x—a
x)=plx =
p(x)=p(x")—

and in going from X to X ’ there are two normalization’s, first by X, and then the
normalization used in the definition of X itself.

Before proceeding, we show that equation (32) is indeed a Rayleigh pdf, for the
target voltage, 0. From the definition of X,

20




x=P /22, dx =L dp
0Il Gfl
dx
p(p)=p(x)— - (33)
dp
=%e 20,7;
Gn

Substituting p(x ) from the last line of equation (32) into equation (13) gives

iIN®
X, l-u.o

17 -
®ul)= (1-1@)” x—a‘([ ¢
1

(34)

T (i) [1—io(1+ Nx,)]

Substituting equation (34) into equation (14) yields the probability density for the N-pulse
case as

1 1 r: e
Y)=
P(¥) 2m (1+ Nxa).{(coa —io)(1—im)"™
(35)
1
O =
1+ Nx,

We now treat various values for N.

case N=1:

21




1 1 5 ™

P(Y)=— d
W= e e ©
Y , (36)
e I+x,
—1+xu

and the corresponding probability of detection is

Y,

P = J p,(Y)dy= e (37)

and P, = e™" (from equation (36) with X, = 0), and both 36 and 37 agree exactly with
Fehiner (his equation 15, page 18).

N=2:
Expand the integrand in equation (35) using a partial fraction expansion as
1 A B
- - = - + .
(0, —ie)(1-i0) ©,—io 1-io
A—iwA+ Bw, —inB=1

) 38
B (38)
1
-,
and substituting equation (38) into (35) gives
1 1
Y)= e —e), (39)
D=y 2x). )

and the corresponding probability of detection is

22




[ 1 A
P =|— [(1+2xa)e A —e'“’}

T2z,
4
( 1 Y ¢ 2
={14+—le "™
\ 2x,

where the last line in equation (40) is valid for signal-to-noise ratios greater than 10 (10
dB). From the mathematical principle of induction it is readily demonstrated that for

arbitrary N,

N-1

P=|1+—1| e , (41)

a very simple closed form result. The corresponding probability of false alarm is
obtained from equation (41) by making the substitution X, = 0, obtaining

P =e". (42)

02
Figure 4 shows a plot of PD versus X, = —Z— indB for N =1,10.
]

n

23




20 -

Swerling case #1
Pea=10°

Fig. 4 Probability of Detection versus signal-to-noise ratio for a
Swerling case #1 target, for N=1,10.

24




2.4 Swerling Case #2:

From figure 2, we see the received signal is given by

Re® =pe” +re® . (43)

where the first term on the right-hand-side of equation (43) fluctuates from pulse-to-
pulse, and scan-to-scan. In this case the target is Rayleigh (the form given by Nathanson
is exponential for the power which is Rayleigh for the voltage) and immersed in Rayleigh
noise and the joint probability density of 7 and (D is given by

r°

r ZZGZTH:E,;
o> + 02)8
T n

p..(r.0)= o , “4)

2. . 2. . . . .
where O is the target variance and O’ is the noise variance. Since we are again

interested in obtaining the probability density of the square of the envelope in equation
(43) it is convenient to define

y=0§+cj_1+9_z_
c
R*/2
)’:—8'2“_ , (45)
, P12 . x X
_cj+oj_1+%—1+xa

where equation (45) uses the same form for the definition of X ” as in equation (7) for the
normalized total power. The renormalization of X in (45) corresponds to a simple

25




substitution in all the derivations which follow. Equation (45) implies that the target
variance plus noise variance are embedded (or included) in the pdf in equation (8) and do
not need to be included again in the pdf for the target random variable, X. Thus the pdf is
a delta function given by

p(x)=0(x). (46)

The normalization in the first line in equation (45) is motivated by considering the total
received power in each pulse. From equation (43), i.e.,

Re”® = pe" +re®
R =lpe e’
=p? + 7 +2prcos(y —9) @7)
Exp{R} = Exp{p*}+ Exp{r’} + 2 Exp{prcos(y - 0)]
6. =0;+0.

For N-pulse detection of a Swerling case 2 target, where the target is varying from
pulse-to-pulse, equation (13) is replaced by

Y’=y1'+y;+---+y;, (48)

and, in the probability of detection Yo is replaced with Yo'. Substituting equation (46)
into equation (13) yields the characteristic function for the SC-2 as

=__—__°" —Nx(l—l?li;)
. (@) (1-iw)" _([e O(x)x
, (49)
_ 1
T (1-io)"

26




in agreement with DiFranco and Rubin (Equation 11.3-17a, page 404). We will see
shortly, that SC-2 and SC-4 differ only in p(x ). Substituting (49) into equation (14)

gives the N-pulse probability for Swerling case #2 as

(1)
p,(Y)= TETR (50)
in agreement with Fehlner (his equation 17, page 19).

The probability of detecting a Swerling-2 target in noise is the probability that

Y 2 Y”G =1Y” (51)
+x
1+8{

or

(52)

D

P, = |p,(Y)aY".

o
2
[
ey
(43

=

and substituting equation (50) into equation (52) gives the following probability of

detecting a Swerling #2 target as

m

Wil Y 1
P=e ” L , (53)
m=0 1 9_7; m‘,
62

_.Yu

another closed form result. The probability of false alarm is PF , =€

27
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) -
Figure 5 shows a plot of X, = ——g— versus P for P, = 10" for N=1,2
o

20

: X, = 0%, o |

25

15

10

n

Swerling case #2
P, = 10"

Fig. 5 Probability of detection versus signal-to-noise ratio for
Swerling case #2 target with N=1,2.
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2.5 Swerling Case #3:

We see from figure 2, that the probability density function when one large
scatterer exists with a number of small scatterers is, (Nathanson, page 86)

x x, /2
p(X) - (xa /2)2 €
, (54)

~N N

a

o
X,=—
)

] N

Substituting the last line of equation (54) into equation (13) gives

¢ (m)—x(l—w)) l. ( ) ax

4

_ x?
(1—im)”(3— ol )

x, 1-iw : (55)
_ 4
(1-iw)"[2—io(2+ Nx, )]

1

(1-im)"7|1- z'o)(l + N2x ):'

which agrees with Fehlner, page 26, his equation (A-8). Substituting equation (55) into
equation (14) gives

29




1 o e—iw}’
p,(Y)= - | do
N.x —00 b
2n(1+ ) (1-i0)"* (0, —io)
| 2
| (56)
1 o 1
| “ Nx
\ 1+
2

Again, we consider various cases for N starting with N=1:

1 J-(1—1(1))e""y

dm
2n(1 + x_) - lw
2

(57

and the corresponding probability of detection is

30




] MG
e "+ 222 gy

= X (58)
(1_,_&) . 1+
2 N i
7 ' %y |
e T2 "L

An interesting observation for this particular case is that when N =1, Fehner’s
derivation, (his equation A-3) yields infinity in the denominator, (unity divided by infinity
equals zero), and this is the reason we suggest using equation (45). The mathematical
result is correct, however, it is not convenient for numerical implementation.

The probability of false alarm for this case is

P, =[e”YdY

(59)
:e_y"
=2:
1 1 = e
Y)= ; ~d
p.(Y) 2m(1+x,) .{(ma—im) ®
y (60)
B Ye 14x,
(1+x )2

The probability of detection is

31




P, =[p,(Y)dY

, (61)
- Y
=e‘“"[1+ 2 }
I+x,

and the corresponding probability of false alarm is

N=3:

PFA — e—Y,, (1 + Y(,) . (62)
1 1 - —ioY
Y)= 2 2 d
r=0 (ui&) o, —er
2
1 A B <
= + 2 +

(1-io)o, —in) 1-ie (o, -io) o,-io
1= A(®, —i0)’ + B(1-i®)+ C(1-in)(o, - io)
-0’'(A+0)=0

~0(2i0 A+iB+iCw, +iC)=0

A®’+B+Cw, =1

A=-C

A=

2 B -
(0,-1)7"" (0.-1) (©D

and continuing,
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p,(Y)= L o4 Ye ¥ L e@ (62)
3 = Tm_ AN - 2
(3x,/2) (3x. / 2)(1 N 3;& ) (3x, /2)
The probability of detection becomes
e —e ’ "o
Ye
— + 0
2 2, (63)
(1 + 3x" ) Y,
2 )
+ 3. e
2
and the probability of false alarm is
P, =(1+Y)e™. (64)

The analysis required to solve for Y for N=2, is as follows:
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= L4 -Y
Y 0
1+ o
Y
2+______0_Y_._
3+—2
4+...

Y’ +log, P,Y +2log P, =0

Y = —-—;—loge P, + E(Loger ) —2Log P,

2
Figure 6 shows a plotof X, = —6% versus PD for Pm =10"° , for

N=12 and 3. In order to be able to compare our results with DiFranco and Rubin,

their definition for normalized signal-to-noise power has to be related to our definition in

equation (7). DiFranco and Rubin define

P12
X, =3
Gn
This results in the mean signal power power as

2

A = Explxi,} = %A,,
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10 +

Swerling case #3
P, =10°

Fig. 6 Probability of detection versus signal-to-noise ratio for

Swerling #3 target.

For example, from figure 6

P,=0.1,N=1x,=9.0dB.

From figure 11.4-1, page 411 of DiFranco and Rubin at

P,=0.1(10%), %X, =12.2-3.0=9.24B,

From Fehlner, page 67, figure 31, for
N=2, PD = (.1, from figure 6, S/ N = 6.5 dB, and from Fehlner, figure 32,
page, N=2, P, =0.1, S/ N = 6.53 dB, which is excellent agreement.

where we need to subtract 3 dB because DiFranco and Rubin use peak power and we use
average power. The above results are within numerical accuracy in reading their plot.

P,=0.1,5S/N=8.0(9.0dB). For
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2.6 Swerling Case #4:

As discussed in section 1.1, the order of applying the pdf for the target power, and
treating the sum of N-pulses needs to be interchanged from the previous Swerling cases.

To evaluate the characteristic function for SC-4, we average with respect to p(x ) For
SC-4, p(x ) is the pdf for one dominant scatterer plus noise. For SC-2, p(x ) is the pdf
for all the returns in figure 2. For SC-4, we first average over p(x) and then address the

N-pulse case. Using the same pdf for the target as in SC-3 (Nathanson), we have from
the last line in equation (9),

®(0) = ICI)((olx) p(x)dx

—_ 1 I X _4‘:7 —m)dx
(l—iw)o(gci)z
2

. (65)

Substituting equation (65) into equation (14) ((I) N ((D) = [CI)((D)]N) gives for the N-
pulse case

pN(Y)= 1 1 ZNJ‘ (1—l(o) 2N d(l), (66)
21 x\ =
(1—}——) 1
2 x —i®
1+
2

where the integrand of equation (66) agrees with Fehiner (1962, page 426, equation A-
13).
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We again consider cases beginning with N=1:

1 1 r; —i .
p‘(Y)= 2J (1-iw) —e™ d®
2T X, )
(1+ ) 1
2 —1im
14 : (67)

= mje"""’[l + ma(xa )Y}
2

which agrees with SC-3 for N=1. The corresponding probability of detection is

P, =[p,(Y)dY

_ pot [14—032();‘ )Y} (68)

P =e". (69)

N=2:
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p,(Y)= ; +do
21 X\ -
IR
2 7 i
1+=*
2
1 =(1-2i .
_ 1 41( 2i® u)z o
27 X, ) -
(1+——) 1
2 L i
1+-—=
2
- M((szz X, 0 1)
=w.Y’e Lt —
6 Y Y
1
@ =
oyt . (70

The probability of detection is

P, = ™" +£“—(maY0)2(1+ﬁ)+ . an

and the probability of false alarm is
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P =e"(1+Y). (72)

N=3:

p3(Y)= 6 6d0)
2 X\
T
2 ——iw
1+—
1+(——coa +—5—) + (73)
Y
Ve ( . 10w 20)
el | O, — a+——; +
F(6)(1+3C—“—) Y
( , 150° 60w 60)
-0+ .+
LYy v v

The probability of detection is

(v (1-20, +©°)+ |
. —-5——Yj(1+oaa—2coj)
(5 ot
LT | o, ra)): o
[1€+—3—17+—§;1c+—6—3)
L (Da (Da (Da ]

The probability of false alarm is
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FA

P =e"yﬂ(l+Yo+%) (75)

2

6)
Figure 7 shows a plot of X, = —— versus P, for N = 1,2,3.
)

- n

20 |-
Swerling case #4
X, = 02 Gﬁ, dB | g_a
15 |- PFA =10
10 _
5
. -

Fig. 7 Probability of detection versus signal-to-noise ratio for
Swerling case #4 target.
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2.7 Swerling Target plus Compound-k Clutter and Gaussian Noise

The probability density function for the sum of the target plus clutter signal in
equation (3) is

W‘w =1 eim +'}@i§ ) (76)

For a Rayleigh target, with uniformly distributed phase, (0, we know that

e a7)

T,0)=
Pr(T.0) 2TO:

and the pdf for the sum in equation (76) of two Rayleigh phasors (i.e., Y is also Rayleigh
distributed) is (Beckmann, page 124, equation 4.5-4) -

pn(P)=%e—2¥Jpc(v)e—2¥L -9-21 Y. (78)
0) 0 )

T T

In section 4, we show that when a Rayleigh pdf representing “spikey” clutter,
with clutter variance,O f, is modulated by a gamma pdf, the resulting pdf is the so-called

compound-K clutter pdf. The principal features of a high-resolution radar return from the
sea consist of a fast time variation within a resolution cell (the so-called temporal
variation on time scales on the order of several millisec) and a slow time variation from
cell to cell (the so-called spatical variation on time scales on the order of several
seconds). We assume the sea is frozen on a pulse-to-pulse basis (this would be valid for
pulse repitition intervals of 10 millisec based on the decorrelation time for sea scatter).
The fast time features of the return are “spikey” and have a Rayleigh pdf. The reason the
short time statistics are Rayleigh, is the surface slopes on the sea follow a Gaussian pdf,
and the resulting scattered field is Gaussing in the I and Q components, or a Rayleigh
envelope. The slow time variation, or the envelope of the return is modulated by the
garma pdf, because the swell moves in and out of a particular slant range cell. As shown '
in section 4, when the compound-K statistics are included, we will require the clutter
variance in the Rayleigh pdf to satisfy
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_K' 43K -2k +1
(o)’

2
c

c ; (79)

where O defines the mean value of the clutter power and K defines a shape parameter
that defines the clutter variance. In order to proceed, we assume in (78) that

,YZ
_Y

p.(vlo?) i °, (80)

where the pdf for the clutter amplitude is conditioned on the clutter variance as shown in

section 4. As will be seen in section 4, this conditional form for the pdf introduces
mathematical complications which do not permit writing the probability of detection in
closed form, and to proceed, we take the approach that the clutter variance in (80) be

treated as simply an ordinary probability assuming O 3 is a variable. Substituting (80)
into (78) yields

2

R i

2
GTGC T
2 2 glg
p A 0;0. il

=50t (ot+0)) : (81)

GTGC (GT + Gc
_ p e zicgﬂrﬁi
T (2 2

(GT + Gc )

pr2
Recall that X = g and it is easy to show that
o
N

(82)

pTc(x)= 2 2
o, o
c: O,
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We now substitute (82) in (13) to obtain

o,
®, (@)= (1-i0)" (0, —ion)
1

c: o
1+ N| —+—
6. ©

©, =

n

Now substitute (83) into (14) to find

W e™
Y)= >
p(Y) 2n _[,(l—im)”"(mc—im)

where, in several steps above we have made use of the following result

F(a,b)= Te'“z"z I (bx)xdx

)
L(bx)=3—~—t

o kT (k+1)
e 2.2 1
fe = x*dx =—7T(K+1).
0 2a
1 «( b Y1
F(a,b)= —
(a.5) 2a2;(4a2) k!
_ 1 =
2a’

do .

(83)

(84)

(85)
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We now examine specific values for N.

N=1:

and the probability of detection is

pY)=we™,

PFA = e—m‘;}'
2
o =1+ N(G;
Gn
G2
y, =—|1+ N(——J In(P,,)
Gn
N=2:
)] 1 1
(I)z((D) = - . .
1-0 )0 -io 1-io
and substituting (89) into (14) gives
p,(¥)=— ~e7),

1-®

(e—(n,Y

j.

(86)

87

(88)

(89)

(90)




and the probability of detection is

) 1 ’
P = c o, -k
P (1“036)(0% ¢ ¢ )

and the probability of false alarm is given in (88).

=3:

®
p,(Y)= Z_—C——Z(—e_y +Ye" +e)

1-o)

The probability of detection is

1
P =—_—_2__ —(ﬂ‘y ,
»Tl-e)

and the probability of false alarm is given in (88).

€2y

92)

(93)

In general, from induction, the probability of detection for this case for any N is

P(N)= "

2

Figure 8 shows a plot of —;— in dB versus PD for a target-to-clutter ratio,

o

(0)
—L =1 “stressing” case), for N=1, 2 and 3.
0)

a6 vy

(94)
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3s [
i Swerling target in
- compound-k clutter
30 |- . .
- and Gaussian noise
o¥c?,dB |  of/ei=10(10dB)
25 |-
20 |
15 |-

Fig. 8 Probability of detection versus signal-to-noise ratio for a
target in clutter plus noise. Three different cases for the
number of integrated pulses are considered.

From figure 8 we see for the case examined, where the target-to-clutter ratio is 10
(a stressing case), there is relatively little significant improvement by integrating more
pulses.

We now give an alternative derivation for probability of the sum in (76). The pdf
for target plus noise can be written as

1 _(x—t)z;y’
e T (95)

plply) = =

and we wish to determine the pdf of
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p=+/x"+Y’
x=Te"

y="1"

We make the transformation of variables

x =pcosO, y=psin6, dxdy = pdpd©

to obtain

( ) 1 2 (pcose—rz);;l~(psin9)2
plplt)= 2TC. !e
(02+7) oy
— 21502 2062 Z‘Eepmosﬁ/crdﬁ

?+2)
_P I[p;r]
GT GT

2

Again, using the variable X =
]

n

plxly) = ( ] (PJI(

Then from the Theorem of Total Probability

, equation (98) becomes

pdpd®

Y2%0

62

T

)

(96)

oD

(98)

(99)
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p(0) = [ Py )p(Y)a

p(x)= (“2\1‘ -5 (Y 2X0, )p(v)dv
(1

G )
T 20+c ‘\/—270 ’ (100)
; ) T e ™ (Y dy
\G 0 o’

T
[__}'—m

ol ©

T

in agreement with equation (81).




3. An Alternative Derivation for the Probability Density Function for a Target and
Gaussian Noise Fluctuating Pulse-to-Pulse (Swerling Class 2, N=1).

As an alternative to the derivation in section 1.2, consider the following analysis.
When the target varies so rapidly that its cross section changes from pulse-to-pulse along
with the noise, we can replace equation (1) for the total received signal in the I and Q
channels (no clutter) as

Re® =1 ® + re®, (101)

and the probability density function for the received signal in equation (101) is, assuming
the target is Rayleigh distributed, and the noise is a uniformly distributed phasor (with
random amplitude),

(R2+r2)
PRI = 10(52{)
(8 (6

T T

RZ
y =
202 : (102)
r2
XxX=
202

plIx) =71 (2xy), y20

Then applying the Theorem of Total Probability,

p(») = [ pOix) plx)dr., (103)

and, assuming the noise in equation (103) is Rayleigh (Gaussian in I and Q and Rayleigh
envelope)
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p(x)dx = —)%e_zgdx
)

n

y= o'x’ (o = xdx 104)
20! '\ o’ o’

o’ ) %
p(y)dy = o e " dy

2
1

and substituting equation (104) into equation (103) gives(x ={?,dz =24¢)

Lot (e
py)=2¢” e 1(20y )
70
ol e Hz_zi
L o—— : (105)

Or 1+G'2'
7

__% W
(07 +07)

a simple, closed form result.

An alternative derivation from Papoulis (pages 194-195, 1965) is as follows:
R =1 +r?
(1:1+r2)

S, (106)
p(’c,r)=————21 —~e 7T
2n(c? +62)

and assume the target has a mean value of

50




Exp{t}=1, (107)

so the pdf in equation (106) becomes the Rice pdf as

(zcos®-1, ) +(zsin®)?
1 2n Py
- - ‘[e 2(0’, +on) de
t Gn) 0
(2+22) (108)

Z 2467 ZT

= - - e 2l67 +o Io : 1 -

(62 +0?) 6’ +0°

We are again interested in obtaining the probability density of the square of the envelope
of the total received signal. Thus define

__z {=——0
2cl+02)"7 2(c?+0?)
zdz (109)

(ot +0?)

plEL) =91 (2ET)

Now, we need to integrate the last line of equation (109) over all possible values of

&, )as

p(’é)=Ip(él?;)d?;=e‘§Ie‘gIo(2x/ﬁ)d€

C=x*,dC=2xdx (110)

ZZ

p(&)= Ze'é]ie"z L(2Ex*)xdx = e =¢
0

which agrees with equation (104), with the following substitutions
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2

é_ yci 2 Gn

“2ot+0) " 26

p(z)dz = p(&)dE

R*,yo?

2
T

ke an
2

Z
:—-,d =zdz
y ) Yy

From equation (105) we can derive the probability of detection, PD, and
probability of false alarm, P,,. We find

Yo

1+——°'T]

P, = [p(y)dy=e &

Yo

P, =|e?dy=e™ (112)
Yo

yo = _loge(PFA)

In figure 9 we plot the probability of detection for three false alarm numbers, or
probability of false alarms determined from

2 ’

» =—1—10ge(1)=—0'693147, ..
n

where 1’ is the false alarm number. The curves in figure 9 match those given by Fehlner
(1962).
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o%/c%, numeric

Xa=

10°

10°

Fig. 9 Probability of detection of Swerling Class 2 targets in noise, for
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4. Probability Density Function for Broad-Band Clutter Constant Pulse-to-Pulse
but Varying Scan-to-Scan (No Target, Probability of False Alarm)

From the free-space radar range equation, the received clutter-to-noise power is

P PIGXNo, Tt
N (4n)R(kT)
, (114)

0. =08 5 o:

and the clutter variance, O f , in the Rayleigh pdf,

p(vlo?) =l2e_2_"?- (115)
is given by
) cT, .
o: = Eplo} = (0B S JEwlot.  ao

Ward et al.(1990) and Baker (1988), treat clutter by assuming the clutter is

Rayleigh distributed on time scales of millsec as in equation (80), and assume the
variance of the clutter in equation (115) is modulated with a Gamma probability density

function, on time scales of seconds, as

X+l

PO =reapme™

(117)

where the random variable 1 (the clutter power) in equation (117) equals the clutter

variance according to
; (118)

C,

n=20
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and O is the mean value of the clutter power and X is a shape parameter that defines the
normalized clutter variance.

The probability density function for the clutter amplitude, 7, is from the Theorem
of Total Probability

p()=]p.(1n)p(n)an

o F (119)
20, 207 1 Jﬂ“ _.ml e "dn
1"(1<+1) n

The integral in equation (119) is evaluated as follows:

am%:z\/afyxcoshm

oan’ —2nJoycoshw+y> =0

—%coshm+'yz=0
Y S APUTPN &
=—=coshw*,|—cosh* ®w——
n J&COS \/acos .
;77_&(00811 M *sinh ®)
=—>oo, —Lyo0,(+)
*——c0o—21—(,(+)
dn=ndw

Tn“e*’"e—? an = (——\}%—) Te’m"“s""’ (cosh®+sinh®)" dw

(120)
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The last integral is evaluated for the following cases:

k=1
X Ie'”“_*’”‘""’ (cosh® +sinhw)dw = —%ije*@”“"“’ coshwdw
Ja = NOE:
2x
==K (2/o.
\/a l( x)
K=2:

{

Y
Ja

K=23:

()

Y
Ja

|

oo

J

[e™™= (cosh +sinh®)" do = 2(%) [e@ " (cosh? ® +sinh® ®)de
0 o

e (cosh@ +sinh )’ do = 2(l) K,(24o)

Jo

and, in general,

(121)

(122)
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and from (119) and (122),

ply) =Y ( Y )KKK(A/EY)

Tx+D\ Vo
x, (120)
4“2 ,ch+l
=———K (2
I'(x+1) ( J&y)

Figure 10 shows a plot of the pdf in equation (120) together with a Rayleigh pdf
for comparison. If the form of the compound-K pdf given in equation (119) is substituted

in the right-hand-side of equation (78) for p_ ('Y) , the resulting integrand containing the

product of two Bessel functions does not lend itself to a closed form representation.
From figure 10, we see the tails of the compound-k distribution extend further out than
the corresponding tails for the Rayleigh pdf. This probably accounts for the fact that the
compound-k pdf predicts more “spikey” clutter than the Rayleigh pdf. This is also the
reason in the design of a broad-band radar where the slant range cell is small, compared
to that for a narrow band radar, that even though the slant range cell size is small, the
clutter may appear more spikey than the corresponding return from a narrow band radar.

Figure 10 also shows the Rayleigh pdf over the same range of the independent
variable. The mean value of the clutter parameter, ., is adjusted so that both pdf’s have
equal variances. We will see in equation (127) this is accomplished when K =1, if

V3
o=—
o

c

57




PO o
10° compound-k

5 10 15

Fig. 10 A comparison of the compound-K and Rayleigh pdf’s.

We now show a derivation for an approximate form for the compound-k pdf.
Using the following asymptotic representation for the modified Bessel function in

equation (123)
K.(2)= w/—“—e‘z, (124)
2z

equation (123) can be written as

x+1 1

zﬁa—z_'ylﬁ; e-ZJEy
I'(x+1)

p(y)= (125)
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and making the replacement in (125)
K+—=V, (126)

gives a form for p('Y ) identical to the gamma pdf (Papoulis, 1965, p. 103-104) as

24m W
P(Y)E——J;l—(ﬁ) Zyve (127)
F(v+5)

with

F(-l-) =z, (128)

Thus, the probability density function for the clutter voltage (no target) can be
approximated as

K+1

=—vy e™ | 129
p(y) F(K+1)Ye (129)

and we are back to a simple gamma pdf. The pdf in equation (129) represents a much
simpler expression for use in integrals involving the Theorem of Total Probability. In
figure 11, we show a plot of the approximate compound-k (gamma) pdf togther with the
exact pdf.
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P(Y) 10°

10°®

Fig. 11 Comparison of the approximate compound-k (equation 125) and )
the exact compound-k pdf (equation 119).

We have shown in figure 11 that using the approximate form for the compound-k

pdf differs insignificantly from the exact expression, and therefore this simpler form
should be considered in derivations requiring the compound-k pdf.

The first two moments of T} are given by

- 1
Exp{y}=v= —

—2 , (xm-l oo 1 2 .
Exp{(Y—Y) }=01 =“1:(—K—+1—)£(Y—;<—&) Yedy , (130)
(k43K 2K +1)

(o)’
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The clutter variance, from equation (130) is defined as

, (K43’ -2x+1)
r=00= o . (131)

The clutter variance,O 3, has been estimated to be 0.7 for low-sea-state clutter, 1.1

for ground clutter and as high as 1.6 for high-sea-state clutter. Table 1 shows the
corresponding values for O{, in the compound-K pdf

Table 1. Clutter variance and mean clutter power for various

environments.

environment (yi o’

low-sea-states 0.7 4.29
ground 1.1 2.73

high-sea-state 1.6 1.875

The moments for the gamma distribution can be expressed in terms of the
characteristic function as (Papoulis, 1965)

1 oo

= , 132
” @’ (w) Jo (132)

and, if the moments in equation (133) are normalized to the variance, Ward has shown
that all moments greater than i = 2 are zero (Ward, 1990). This reduces to a Gaussian
distribution using the Central Limit Theorem argument.
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Computer Code

CALCULATE THE PROBALITY OF DETECTION FOR SC-0

COMMON/SC0/B
OPEN(UNIT=10,FILE="C:\tecplot\sc01.dat’)
OPEN(UNIT=11,FILE="C:\tecplot\sc02.dat’)
YO0 = 8.*ALOG(10.)
DO 11=1,40
FI=1
B=FI
Z=2.*SQRT(B*Y0)
CALL TRAPI1(0.,Z,SUM,15)
PD1 = 1. - EXP(-B)*SUM
WRITE(10,*) PD1,10.*ALOG10(B)
WRITE(*,*) PD1,B
1 CONTINUE
A=1.e-08
YO0 = (-0.5*ALOG(A) +
x  SQRT(0.25*ALOG(A)**2 - 2.*ALOG(A)))
DO 2J=1,40
FI=J
B=FJ
Z2 =2.*#SQRT(B*Y0)
CALL TRAP2(0.,Z22,SUM2,15)
PD2 = 1. - EXP(-2.*B)*SUM2
WRITE(11,¥) PD2,10.*ALOG10(B)
WRITE(*,*) PD2,B
2 CONTINUE
STOP
END

SUBROUTINE TRAP1(A,B.SUM,N)
EXTERNAL FSCO
NN=N+1
SUM =0.
FN=N
D =(B-A)/FN
X=A
DO 10 I=1,NN
J= (I-1)*(NN-I)
C=1.
IF{J) 15,56
5C=05
6 SUM = SUM + C*FSCO(X)
10X=X+D
SUM = SUM*D
RETURN
15 WRITE(*,*) "INCORRECT INDEX"
STOP
END




SUBROUTINE TRAP2(A,B,SUM,N)
EXTERNAL FSC02
NN=N+ 1
SUM = 0.
FN=N
D = (B-A)/FN
X=A
DO 10 I=1,NN
J= (I-1)*(NN-I)
C=1.
IF(J) 15,5,6
5C=05
6 SUM = SUM + C*ESC02(X)
10X=X+D
SUM = SUM*D
RETURN
15 WRITE(*,*) 'INCORRECT INDEX’
STOP
END

C
C A FUNCTION USED IN SC-0
C
FUNCTION FSCO(X)
EXTERNAL BESSIO
COMMON/SCO/B
FSCO = BESSIO(X)*X*EXP(-X**2/(4.*B))
RETURN
END

A FUNCTION USED IN SC-0

Q00N

FUNCTION FSC02(X)
EXTERNAL BESSI1

COMMON/SCO/B

FSCO2 = BESSII(SQRT(2.)*X)*(X**2/(4 *SQRT(2.)¥B**2))*
x  EXP(-X**2/(4.¥B))

RETURN

END
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C
C
C

ann

PROBABILITY OF DETECTION FOR SC-1

OPEN(UNIT=10,FILE="C:\tecplot\sc1.dat’)
Y0 =10.*ALOG(10)
DO 2K=1,10
N=K
PWR=N-1
DO 11= 1,100
XA=1*2
PD = ((1. + (1/(N*XA)))**PWR)*EXP(-YO0/(1. + N*XA))
WRITE(*,*) PD,10.*ALOG10(XA)
WRITE(10,*) PD,10.*ALOG10(XA)
1 CONTINUE
2 CONTINUE
RETURN
END

PROBABILITY OF DETECTION FOR SC-2

EXTERNAL FACTRL

OPEN(UNIT=10,FILE="C:\tecplot\sc2.dat’)

YO0 =8.*ALOG(10)

DO 11=1,100

XA =1*0.2

PD = EXP(-YO0/(1. + XA))

WRITE(*,*) PD,10.*ALOG10(XA)

WRITE(10,*) PD,10.*ALOG10(XA)
1 CONTINUE

RETURN

END
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C  PROBABILITY OF DETECTION FOR SC-3

EXTERNAL FACTRL
OPEN(UNIT=10,FILE="C:\tecplot\sc3.dat’)
Y0 = 8.*ALOG(10.)
WRITE(*,*) YO
DO 11=1,200
XA =1
OMEGA1 = 1./(1. + (XA/2.)))
PD1 = EXP(-YO*OMEGAD*(1. + (XA/2.)*YO*OMEGA 1¥%*2)
WRITE(10,*) PD1,10.*ALOG10(XA)
C  WRITE(*,*) PD1,10.*ALOG10(XA)
1 CONTINUE
A=1.e-08
YO0 = (-0.5*ALOG(A) +
x  SQRT(0.25*ALOG(A)**2 - 2.*ALOG(A)))
WRITE(*,*) YO
DO 21=1,200
XA =1
OMEGA2 =1./(1. + XA)
PD2 = EXP(-YO*OMEGA2)*(1. + YO*OMEGA?2)
WRITE(10,*) PD2,10.*ALOG10(XA)
C  WRITE(*,*) PD2,10.*ALOG10(XA)
2 CONTINUE
DO 3 I=1,200
XA =1
OMEGA3 = 1./(1. + (3.¥XA/2.))
PD3 = EXP(-YO*OMEGA3)*(1. + (1./(3.*XA2)*(1. + Y0))
WRITE(10,¥) PD3,10.*ALOG10(XA)
C  WRITE(*,*) PD3,10.*ALOG10(XA)
3 CONTINUE
RETURN
END




C  PROBABILITY OF DETECTION FOR SC-4

OPEN(UNIT=10,FILE="C:\tecplot\sc4.dat’)
YO0 = 8.*ALOG(10.)
| WRITE(*,*) YO
| N=1
DO 11=1,200
v XA =1
¢ OMEGA = 1./(1. + N*(XA/2.))
PD1 = EXP(-YO*OMEGA)*(1. + (XA/2.)*OMEGA**2*Y()
WRITE(10,*) PD1,10.*ALOG10(XA)
- C  WRITE(*,*) PD1,10.*ALOG10(XA)
1 CONTINUE
A =1e-08
YO0 =(-0.5*ALOG(A) +
x  SQRT(0.25*ALOG(A)**2 - 2.*ALOG(A)))
WRITE(*,*) YO
DO 21=1,200
XA =1
OMEGA = 1./(1. + 0.5*XA)
PD2 = OMEGA**2*EXP(-YO*OMEGA)*((1. + 0.5*XA)**2 +
x OMEGA*YO*(1. + 0.5*XA)**2 +
x  0.5*XA*OMEGA**2¥Y(0**2*(1. + 0.25*XA) +
x  (1./6.)*(0.5*XA)**2*(YO*OMEGA)**3)
WRITE(10,*) PD2,10.*ALOG10(XA)
C  WRITE(*,*) PD2,10.*ALOG10(XA)
2 CONTINUE
PFA = 1.e-08
CALL NEWTON(PFA,Y0)
WRITE(*,*) YO
DO 31=1,200
XA=1
OMEGA = 1./(1. + 0.5%XA)
PD3 = (0.5*XA)*(OMEGA**6)*EXP(-YO*OMEGA)/120.*
x  (YO**5%(1. - 2. *OMEGA + OMEGA**2)
x  +(5/OMEGA)*Y0**4*(1. + OMEGA - 2.*OMEGA**2)
x  +(20./OMEGA**2)*(1. + OMEGA + OMEGA**2)*(
X YO**3 + (3/OMEGA)*Y0**2 + (6./OMEGA**2)*Y0 +
X (6/OMEGA**3)))
WRITE(10,*) PD3,10.*ALOG10(XA)
C  WRITE(*,*) PD3,10.*ALOG10(XA)
3 CONTINUE
RETURN
END




FIND THE THRESHOLD USING NEWTON’S METHOD FOR SC4

SUBROUTINE NEWTON(PFA,YO0)
YOI = -ALOG(PFA)

R1=(1.+ YOI + 0.5*¥Y0I**2)

R2 = EXP(-YOI)

R3 = 0.5*Y0I**2

YO = YOI - (PFA/(R2*R3) - R1/R3)
RETURN

END
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C
C
C

C

PROBABILITY OF DETECTION FOR SC-5

OPEN(UNIT=10,FILE="C:\tecplot\sc5.dat’)

A =10.e-08

N=1

XB = 10.

YO0 =-(1. + N¥XB)*ALOG(A)

WRITE(*,*) YO

DO 11=1,200

XA =20.*1

OMEGACI = 1./(1. +(XB + XA))

PDI1 = EXP(-OMEGAC1*Y0)

WRITE(10,*) PD1,10.*ALOG10(XA)

WRITE(*,*) PD1,10.*ALOG10(XA)
1 CONTINUE

N=2

YO0 =-(1. + N*XB)*ALOG(A)

DO 21=1,200

XA =20.%1

OMEGAC2 = 1./(1. +2.*(XB + XA))

PD2 = (1./(1. - OMEGAC2))*EXP(-OMEGAC2*Y0)

WRITE(10,¥) PD2,10.*ALOG10(XA)

WRITE(*,*) PD2,10.*ALOG10(XA)
2 CONTINUE

N=3

YO =-(1. + N*XB)*ALOG(A)

DO 31=1,200

XA =20.*1

OMEGAC3 = 1./(1. +3.*(XB + XA))

PD3 = (1./((1.- OMEGAC3)**2))*EXP(-OMEGAC3*Y0)

WRITE(10,*) PD3,10.*ALOG10(XA)

WRITE(*,*) PD3,10.*ALOG10(XA)

3 CONTINUE

RETURN

END
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C

PDF FOR THE COMPOUND-K

EXTERNAL FUNCTION BESSK1
OPEN(UNIT=10,FILE="C:\tecplot\compound.dat’)
OPEN(UNIT=11,FILE="C:\tecplot\rayleigh.dat’)
OPEN(UNIT=12,FILE="C:\tecplot\approxim.dat’)
PI = 3.1415926536
ALPHA = 1.
KAPPA =1.
SIGMAC = SQRT(3.YALPHA
PWRI1 = (1/2) + KAPPA
PWR2=2
DO 1=1,100
Fi=1
X =FI1*0.15
COMPK = 4.*(ALPHA**PWR1)*(X**PWR2)*BESSK1(2.*SQRT(ALPHA)*X)
WRITE(10,*) X,COMPK
1 CONTINUE
DO 2J=1,100
FI=1]
XX =FJ*0.1
RAYLEIGH = (XX/SIGMAC)*EXP(-XX**2/(2.*SIGMAC))
WRITE(11,*) XX, RAYLEIGH
2 CONTINUE
PWR1 = KAPPA + 0.5
DO 3K =1,100
FK=K
XG =0.1*FK
APPROX = 2.*SQRT(PI)*XG**PWR1*EXP(-2.¥XG)
WRITE(12,*) XG,APPROX
WRITE(*,*) XG,APPROX
3 CONTINUE
STOP
END
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C
C
C

CALCULATE THE RICE PDF

EXTERNAL FUNCTION BESSIO
OPEN(UNIT=10,FILE="C:\fortran\probilty\code\ricepdf.out’)
OPEN(UNIT=11,FILE="C:\fortran\probilty\code\gausspdf.out’)
OPEN(UNIT=12 FILE="C:\fortran\probilty\code\swerlpdf.out’)
X=0.01
XRCS = 1.
SIGMA =04
PI=3.1415926536
DO 11=1,101
FI=1I
Y = (FI-1.)*.1
Z=X*Y
R1=BESSIO2.*SQRT(Z))
R2 = exp(-(X+Y))*R1
R3 = (1./(SIGMA*SQRT(2.*P))*EXP(-(Y**2/(2.*SIGMA**2)))
R4 = (1./XRCS)*EXP(-Y/XRCS)
WRITE(10,*) Y,R2
WRITE(11,*) Y,R3
WRITE(12,*) Y,R4
1 CONTINUE
STOP
END

FUNCTION bessiO(x)
REAL bessi0,x
REAL ax

DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,91.92,93,94,45,96,97.98,99,y

SAVE pl,p2,p3,p4,p5.p6,p7.91.92,93.94.65,96.97.98.99

DATA pl,p2,p3.p4,p5,p6,p7/1.0d0,3.5156229d0,3.089942440,
*1.2067492d0,0.2659732d0,0.360768d-1,0.45813d-2/

DATA q1,92.,93,94,95.96,97,98,99/0.398942284d0,0.1328592d-1,
*(.225319d-2,-0.157565d-2,0.916281d-2,-0.2057706d-1,0.2635537d-1,
*.0.1647633d-1,0.392377d-2/

if (abs(x).1t.3.75) then

y=(x/3.75)**2
bessiO=pl1+y*(p2+y*(p3+y*(pd+y*(p5+y*(p6+y*p7)))))

else

ax=abs(x)
y=3.75/ax
bessiO=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(qd+y*(q5+y*(q6+y*

*(q7+y*(q8+y*q9))MN)))

endif

return

END

C (C) Copr. 1986-92 Numerical Recipes Software i_91y.
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C
C
C

CALCULATE PROBABILITY OF FALSE ALARM

EXTERNALF

EXTERNAL G

EXTERNAL FACTLN

COMMON/POWER/ N
OPEN(UNIT=10,FILE="C:\fortran\probilty\data\data.in)
OPEN(UNIT=11,FILE="C:\fortran\probilty\code\falsalrm.out’)
READ(10,*) CLTRNOIS,AK,N

DO 11=1,101

FI=1

TON = (FI-1.)*0.05

R1 = EXP(-TON)

R2 = CLTRNOIS*(AK**2)*(AK+1.)*(AK+2.)/(AK**4 + 3 *(AK**3)
X -2*AK + 1))

CALL TRAP(F,TON,20.,ANS1,10)

CALL TRAP(G,TON,20.,ANS2,10)

R3 = FACTRL(N)

R4 = ANS1/R3

R5 = (N**2)*R2*ANS1/R3

R6 = -N*R2*ANS2/R3

PFA=R4 +R5+R6

IF(PFA .GE. 0.) THEN

PFA = PFA

ELSE

PFA =0.

ENDIF

WRITE(*,*) PFA

WRITE(11,*) TON,PFA
1 CONTINUE

STOP

END

FUNCTION KX)
COMMON/POWER/ N
F = (X**(N-1)*EXP(-X)
RETURN

END

FUNCTION G(X)
COMMON/POWER/ N
G = (X**N)*EXP(-X)
RETURN

END
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FUNCTION factri(n)
INTEGER n
REAL factrl
CU USES gammin
INTEGER j,ntop
REAL a(33),gammln
SAVE ntop,a
DATA ntop,a(1)/0,1./
if (n.1t.0) then
pause “negative factorial in factrl’
else if (n.le.ntop) then
factri=a(n+1)
else if (n.le.32) then
do 11 j=ntop+1,n
a(+1)=j*a()
11  continue
ntop=n
factrl=a(n+1)
else
factrl=exp(gammin(n+1.))
endif
return
END
C (C) Copr. 1986-92 Numerical Recipes Software i_91y.

FUNCTION gammin(xx)
REAL gammin,xx
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)
SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,
*24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2,
*_ 5395239384953d-5,2.5066282746310005d0/
X=XX
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=1.000000000190015d0
do 11 j=1,6
y=y+1.d0
ser=ser+cof(j)/y
11 continue
gammln=tmp-+log(stp*ser/x)
return
END
C (C) Copr. 1986-92 Numerical Recipes Software i_91y.

74




SUBROUTINE trap(F,a,b,s,n)
INTEGER n
REAL ab
REAL S,F,SUM
EXTERNAL F
INTEGER it,]
REAL del,tnm,x
if (n.eq.1) then
s=0.5*(b-a)*(F(a)+F(b))
else
it=2**(n-2)
tnm=it
del = (b-a)/tnm
x=a+ 0.5*%del
sum = 0.
do 11 j=1.it
sum = sum + F(x)
x=x+del
11 continue
s=0.5*(s+(b-a)*sum/tnm)
endif
return
END
C (C) Copr. 1986-92 Numerical Recipes Software i_91y.

FUNCTION bessk1(x)
REAL besskl,x
CU USES bessil
REAL bessil
DOUBLE PRECISION pl,p2,p3.p4,p5.p6,p7,91,92,93,94,95,6,97.y
SAVE pl,p2,p3,p4.p5.p6.p7.91,92,93,94,95.96,97
DATA pl,p2,p3,p4,p5,p6,p7/1.0d0,0.15443144d0,-0.6727857940,
*-0.18156897d0,-0.1919402d-1,-0.110404d-2,-0.4686d-4/
DATA q1,92,93.94,95,96,97/1.25331414d0,0.23498619d0,-0.3655620d-1,
*0.1504268d-1,-0.780353d-2,0.325614d-2,-0.68245d-3/
if (x.1e.2.0) then
y=x*x/4.0
bessk1=(log(x/2.0)*bessil(x))+(1.0/x)*(pl+y*(p2+y*(p3+y*(p4+y*
*(p5+y*(p6+y*p7))N))
else
y=2.0/x
bessk1=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+y*(qd+y*(q5+y*(q6+y*
*q7)N))))
endif
return
END
C (©) Copr. 1986-92 Numerical Recipes Software i_91y.

FUNCTION bessiO(x)
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REAL bessi0,x
REAL ax
DOUBLE PRECISION p1,p2,p3,p4.p5,p6,p7.91,92,93,94,95,96,97.98,99.y
SAVE pl,p2,p3,p4,p5.p6.p7,91.92,93.94,95,96,97,.98,q9
DATA p1,p2,p3.p4,p5,p6,p7/1.0d0,3.5156229d0,3.0899424d0,
*1.2067492d0,0.2659732d0,0.360768d-1,0.45813d-2/

DATA ql,92,93,94,95,96.97,98,q9/0.398942284d0,0.1328592d-1,
*(.225319d-2,-0.157565d-2,0.916281d-2,-0.2057706d-1,0.2635537d-1,
*-0.1647633d-1,0.392377d-2/

if (abs(x).1t.3.75) then

y=(x/3.75)**2
bessiO=p1+y*(p2+y*(p3+y*(pd+y*(p5+y*(p6+y*p7)))))

else

ax=abs(x)
y=3.75/ax
bessiO=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(qd+y*(q5+y*(q6+y*

*(q7+y*(q8+y*q9))N))

endif
return

END
C (C) Copr. 1986-92 Numerical Recipes Software i_91y.

FUNCTION bessil(x)

REAL bessil,x
REAL ax
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7.91,92,93,94,95,96,97,98,99.y
SAVE pl,p2,p3,p4,p5,p6.p7.91,92.93,94.95,96.97,8,99
DATA p1,p2,p3,p4,p5,p6,p7/0.5d0,0.87890594d0,0.514988694d0,
*(.15084934d0,0.2658733d-1,0.301532d-2,0.32411d-3/

DATA q1,92.,93,94,95,96,97,98.99/0.39894228d0,-0.3988024d-1,
*_(),362018d-2,0.163801d-2,-0.1031555d-1,0.2282967d-1,-0.2895312d-1,
*(.17876544-1,-0.420059d-2/

if (abs(x).1t.3.75) then

y=(x/3.75)**2
bessil=x*(p1+y*(p2+y*(p3+y*(p4+y*(pS+y*(p6+y*p7)N))

else

ax=abs(x)
y=3.75/ax
bessil=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*

*(q7+y*(g8+y*q9N))

if(x.1t.0.)bessil=-bessil
endif
return

END
C (C) Copr. 1986-92 Numerical Recipes Software 1_91y.
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