Research results establish that novel periodic magnetic focusing optics offer the opportunity to propagate much higher beam currents than previously achievable in slow-wave vacuum microwave devices. Several new sources for sheet electron beams have been designed and numerically analyzed, including 2 different thermionic electron gun designs as well as one approach that uses magnetic quadrupole optics for converting a conventional round beam into a large-aspect-ratio elliptical (i.e., sheet) beam. Round beam focusing by short period PPQM arrays was also studied. We have developed new understanding of the relatively unexplored area of hybrid electromagnetic waveguide mode dynamics. The dispersive properties of a slow wave grating system have been measured and compared with the theoretical model.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Final Report
November, 1996

Low-Voltage Millimeter-Wave Cerenkov Amplifiers
Grant: AFOSR-91-0381

Professor John H. Booske (PI/PD)
and
Professor John E. Scharer (co-PI)

University of Wisconsin-Madison
Electrical and Computer Engineering Department
1415 Engineering Drive
Madison, WI 53706
OBJECTIVES:

- To contribute to the fundamental knowledge and technology base for improved vacuum sources of high power, coherent millimeter-wave electromagnetic radiation.

- Focus on innovations to yield higher average power (up to ~10 kW) in wide-instantaneous-bandwidth (Δf ≥ 20%) Ka-band (35 GHz) amplifiers, as well as higher average power (up to ~100 W) in W-band (95 GHz) traveling-wave-tube amplifiers (TWTA's).

- Specific objectives include research on: (1) the stable formation, focusing, and transport of high-pervenance electron beams, (2) the basic physics of grating-lined waveguides for high-average-power Ka-band TWTA's, and (3) the dynamics of multiple-round-beam arrays as an alternative electron beam configuration for higher-average-power W-band TWTA's.

ACCOMPLISHMENTS/NEW FINDINGS:

A number of important accomplishments have been realized by taking a fresh approach to the traditional desire for higher average power at ever-shorter wavelengths in compact systems based on existing technological capabilities. Specifically, we have focused on novel, high-pervenance, electron beam configurations (sheet beams, multi-beams, periodic-permanent-quadrupole-magnet or PPQM focused round beams) and TWTA interaction structures compatible with those beam configurations, as well as with high-average power devices.

- Research results establish that novel periodic magnetic focusing optics offer the opportunity to propagate much higher beam currents than previously achievable in slow-wave vacuum microwave devices. Theory and simulations establish that stable, cusp-focused transport of linear sheet electron beams can be realized with periodically-cusped magnetic (PCM) focusing for very high current density beams (> 200 A/cm²) even at low beam voltages (10 kV)—i.e., very high space-charge beams. Edge focusing options include offsetting the poles of the planar PCM array or using periodic permanent quadrupole magnetic (PPQM) edge focusing. Both options provide stable edge focusing with the former method requiring fewer magnet pieces and the latter method providing superior beam matching capability. An entire new class of higher-average-power coherent microwave and millimeter-wave sources can be based on this high-pervenance electron-beam technology. Opportunities include both HPM as well as more conventional low-voltage (< 30 kV) vacuum microwave devices. Implementation is particularly appropriate for linear beam devices, including BWO's, TWTA's, and klystron and free electron lasers. Hence, applications are envisioned for EW, ECM, high resolution tracking radar, remote sensing radar, and for air-, sea-, space- and land-based systems. Cost-effective improvements in devices for commercial microwave processing of materials are also envisioned.

- Several new sources for sheet electron beams have been designed and numerically analyzed, including 2 different thermionic electron gun designs as well as one approach that uses magnetic quadrupole optics for converting a conventional round beam into a large-aspect-ratio elliptical (i.e., sheet) beam. The latter method has several attractive features: (1) by varying the quadrupole parameters, one can substantially vary the
output beam characteristics (making this an ideal source for experimental research efforts), and (2) it will significantly extend the state-of-the-art understanding of quadrupole focusing physics, setting the stage for future research into periodic quadrupole focusing of intense electron beams and multi-beam arrays. Both simulation and experimental results with a 10 kV, 2 A electron beam confirm the feasibility of this approach.

- Round beam focusing by short period PPQM arrays was also studied. The focusing force from PPQM arrays can be an order of magnitude greater than that of conventional periodic permanent magnet (PPM) arrays for beam voltages from 10-40 kV. Analytic and numerical studies demonstrate the potential of this configuration but also show that beam ripple may be problematic. Experimental measurements are in good qualitative agreement with the predictions of envelope and PIC code simulations.

- We have developed new understanding (theoretical and experimental) of the relatively unexplored area of hybrid electromagnetic waveguide mode dynamics, including electromagnetic dispersion and mode-coupling physics (important for efficient launching and coupling to high-gain slow-wave hybrid modes), as well as the interaction physics between electron beams and these hybrid waveguide modes. In particular, this knowledge base is critical to designing high-average-power-compatible grating-based TWTAs for use with sheet electron beams. Theoretical studies indicate that high gains (e.g., up to 6 dB/cm at 14 GHz) are possible with these modes and structures.

- The dispersive properties of a slow wave grating system have been measured and compared with the theoretical model and agree well for the shallow groove grating. A creative lab setup to measure the wave fields and dispersion relation using a moveable probe and coherent mixing was used. The lowest order mode in the backward wave regime and higher order modes were measured and good agreement with the theoretical predictions were obtained. For the deep groove grating, skin effect losses and the wave mismatch in the taper section of the grating were found to limit efficient coupling.

- The spontaneous emission round test beam curve for the shallow groove grating backward wave mode regime was obtained and is in good agreement with theoretical predictions. Next, the loop coupled multipass small signal gain for the backward wave regime with reflectors was obtained at 14.2 GHz in the Ku-band. The effect of beam spread on the gain and the classic doublet shape of gain/loss curve arising from Landau damping of the beam as the beam energy is scanned about the resonant beam energy was obtained. It was found that this small signal gain was in close agreement with our theoretical predictions of gain and the analytic predictions of the theory of Grover and Sprangle. Energy analyzer measurements found that the beam energy spread was about 4% due to beam optics alignment of the magnetic flux shield located in front of the electron gun. This research has been described in the Ph. D. thesis of J. Joe and has been submitted to the Journal Plasma Physics as a group paper.

Professional Personnel Supported by and/or Associated with Project During the Support of This Work

Professor John H. Booske (faculty)
Professor John E. Scharer (faculty)
Dr. Richard True (Industrial Colleague, Litton Electron Devices, San Carlos, CA)
Dr. Glen Scheirrum (Industrial Colleague, Litton Electron Devices, San Carlos, CA)
Dr. Carter Armstrong (Industrial Colleague, Northrop Corp., Rolling Meadows, IL)
Mr. Mark Basten (Grad student)
Mr. Jurianto Joe (Grad student)
Mr. L. Lazarus Joseph (Grad student)
Mr. Jim Anderson (undergraduate student)
Mr. Ryan Thompson (undergraduate student)
Mr. Len Rauh (undergraduate student)
Ms. Keely Wagner (undergraduate student)
Mr. Cubie Harris (undergraduate student)
Mr. Mark McNealy (undergraduate student)
Mr. Zachary Smith (undergraduate student)

PEER-REVIEWED JOURNAL PUBLICATIONS

OTHER PUBLICATIONS

STUDENT THESSES RELATED TO THIS GRANT AND ITS SUPPORT

INTERACTIONS/TRANSITIONS:

a) Participation/presentations at meetings, conferences, seminars, etc.

A substantial time commitment was dedicated during 1994-95 by the co-PIs to the organization and hosting of the 1995 International Conference on Plasma Science in Madison, WI. This event, held in June 1995, attracted 580 attendees from Universities, National Laboratories, and Industry. A particular highlight of this event was a strong focus on Vacuum Electronics and High Power Microwave Generation. Particular advantage was obtained by co-location and integration with the 1995 Annual Tri-Service Vacuum Electronics Review. Professor John Scharer was the Conference Chairman and Professor Booske served on the Program Committee, as well as local coordinating chair for the Tri-Service Vacuum Electronics Review. Prof. Booske has been retained as Technical Area Coordinator for all Microwaves Generation and Microwave/Plasma Interaction papers for the 1997 and 1998 IEEE International Conferences on Plasma Science (San Diego, CA, and Raleigh, NC, respectively).

In addition, the following Conference papers/presentations were made during or in association with the support of this grant.

"An investigation of the Applicability of Permanent Magnet Quadrupole Arrays for High-Power Microwave Tubes," J.H. Booske, M.A. Basten, L.J. Louis, J. Joe,

"An Optimization Analysis for a Dielectric Cerenkov Maser with Low Beam Voltage," S.F. Chang and J.E. Scharer, APS 35, 2145 (1990), Cincinnati, OH.

"An Optimization Analysis for a Dielectric Cerenkov Maser with Low Beam Voltage," S.F. Chang and J.E. Scharer, APS 35, 2145 (1990), Cincinnati, OH.

b) Consultative/advisory functions to other laboratories and agencies:

No formal such functions were conducted in matters related to this grant during the time of the grant.

c) Transitions:

Both Northrop-Grumman and Litton Electron Devices (San Carlos, CA) have been collaborating in our research, with expectations of implementing forthcoming research results into commercial technology. In particular, Litton has developed two strip (sheet) electron beam thermionic gun designs for use in possible future microwave tubes. The individual associated with this technology development is Dr. Richard True. An important, long-term collaborative relationship has been established with Northrop-Grumman (Rolling Meadows, IL) Corporation. This activity is being coordinated with Dr. Carter Armstrong. Several industrial research grants have already been made by Northrop-Grumman to our institution to supplement our work in this area. One of our former Ph.D. students, Dr. Mark Basen, has joined Northrop-Grumman as a scientist and engineer. The knowledge base he acquired related to our innovative work is expected to find its way into various technological ventures at Northrop-Grumman through Dr. Basen's contributions on current and future vacuum electronic systems development projects. Another of our prior undergraduate students (supported in part by this grant) is also being actively recruited for hire in the vacuum electronics industry.

NEW DISCOVERIES, INVENTIONS, OR PATENT DISCLOSURES

None filed.
HONORS/AWARDS SINCE THE BEGINNING OF THIS GRANT (OCTOBER 1, 1991):

Professor Booske has received several academic awards or honors:

UW Chancellor's Distinguished Teaching Award (1995)

Elected Fellow of the University of Wisconsin-Madison Teaching Academy (1994)

Co-winner (with undergraduate Jim Anderson) of UW-H. H. Id ale Faculty-Undergraduate Research Fellowship (1994) for work on "Stabilizing an Elliptical Sheet Electron Beam Using an Open Configuration of Periodic Cusped Magnets."

Awarded Early Tenure and Promotion (to Associate Professor) in 1994 (anything sooner than 6 years is considered "early"...Professor Booske was selected after 4 years at Madison).

ECE Holdridge Teaching Excellence Award (1994)

Elected to Senior Membership, IEEE (1993)

Elected Honorary Member of Kappa Eta Kappa EE Fraternity (UW-Madison chapter, 1993)

UW-Madison IEEE Professor of the Year (91-92)

U. Wisconsin-Madison Wisconsin Student Association's "Top 100" Educator Award (1991)