QUANTUM OPTICS WITH LASER COOLED
AND TRAPPED ATOMS

FINAL PROGRESS REPORT

H. J. KIMBLE, PRINCIPAL INVESTIGATOR

MARCH 15, 1993 - MARCH 14, 1996

U. S. ARMY RESEARCH OFFICE

GRANT NUMBER: DAAH04-93-G-0074

CALIFORNIA INSTITUTE OF TECHNOLOGY
1201 E. California Blvd.
Norman Bridge Laboratory of Physics 12-33
Pasadena, California 91125

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED
An experimental investigation of a variety optical processes for laser cooled and trapped atoms has been carried out. The principal achievements of the research program have been (1) the first observation of cooling and trapping of a single neutral atom and (2) a detailed spectroscopic study of the 6D_{5/2} level in atomic Cesium made possible by two-photon excitation of a laser cooled and trapped sample. These advances are enabling accomplishments for diverse experiments in optical physics, including the realization of quantum logic with single atoms and photons and the exploration of atomic radiative processes with manifestly quantum or nonclassical excitation.
Final Progress Report

Quantum Optics with Laser Cooled and Trapped Atoms

H. J. Kimble, Principal Investigator

A. Statement of Problem Studied
The principal objective of this research program has been to exploit the unique properties of laser cooled and trapped atoms for diverse investigations in optical physics. At one extreme, it has been possible to isolate a single neutral atom within a volume of roughly $100 \mu m^3$ for a mean interval of a second.[1] At the other extreme, the high density and low temperatures of an atomic vapor in a magneto-optical trap ("MOT") enables unique spectroscopic studies with high signal-to-noise ratio and small residual Doppler broadening.[2]

B. Summary of Significant Results
Perhaps the most important result obtained as part of the research program has been the isolation of a single atom in a MOT, as described in publication [1]. For this work, fluorescence from Cesium atoms in a MOT is detected under conditions of very low background density. Discrete steps are observed in the fluorescent signal and are associated with the arrival and departure of individual atoms in the trap. These observations are the first such measurements for individual atoms and provide an enabling capability for diverse investigations in optical physics with single atoms, including research in the areas of quantum logic and measurement, and in cavity quantum electrodynamics.

A second significant accomplishment has been the utilization of a trapped sample for high resolution spectroscopic studies of atomic structure. In particular, the work reported in publication [2] determines the hyperfine structure of the $6D_{5/2}$ level in atomic Cesium at a level of 1%, which represents an approximate 30-fold improvement over a prior measurement made by level-crossing spectroscopy in a vapor cell. With this information about the structure of the $6D_{5/2}$ level in hand, a variety of nonlinear spectroscopic possibilities have emerged, including the use of the $6S_{1/2} \rightarrow 6P_{3/2} \rightarrow 6D_{5/2}$ transition for two-photon excitation with nonclassical ("squeezed") light and the exploitation of the trapped atomic sample for nonlinear mixing and demodulation of tera-Hertz frequency offsets.

C. List of Publications

D. Participating Scientific Personnel
Graduate students -
Zhen Hu, Ph.D. degree, California Institute of Technology, 1995
Nikos Ph. Georgiades (Ph.D. degree in progress)
Quentin Turchette, Ph.D. degree spring, 1997

Senior Personnel -
Dr. E. S. Polzik, who left Caltech to become Associate Professor of Physics, Aarhus University, Aarhus, Denmark
MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office
ATTN: AMXRO-ICA-L (Hall)
P.O. Box 12211
Research Triangle Park, NC 27709-2211

___ Reprint (Orig + 2 copies) ___ Technical Report (Orig + 2 copies)
___ Manuscript (1 copy) ___ Final Progress Report (Orig + 2 copies)
___ Related Material (1 copy)

CONTRACT/GRANT NUMBER: DAAH04-G-0074

TITLE: Quantum Optics with Laser Cooled and Trapped Atoms

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

Enclosure 4