Development of Microwave Ferrites for High Performance Applications

Dr. Vasantha R.W. Amarakoon, Dr. Vernon L. Burdick, Yong S. Cho, Wesley Garbic

New York State College of Ceramics at Alfred University
2 Pine Street
Alfred, NY 14802-1296

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution unlimited.

LiZn ferrites were investigated to control the resultant microstructure or to obtain nanoscale powders at a low temperature. Two unconventional chemical methods are introduced. The sol–gel coating procedure was used to uniformly distribute additives like SiO₂ and Bi₂O₃.

These oxides improved the densification of the LiZn ferrites at low temperatures via a liquid phase sintering. Nanocrystalline LiZn ferrites were obtained at a low temperature of 400°C via the assistance of a combustible acid like polyacrylic acid.

19970210 119

LiZn Ferrite, Sol–Gel, Nanoparticle, Microstructure
DEVELOPMENT OF MICROWAVE FERRITES FOR HIGH PERFORMANCE APPLICATIONS

TECHNICAL REPORT

DR. VASANTHA R. W. AMARAKOON
DR. VERNON L. BURDICK
YONG S. CHO
WESLEY GARBIC

1/22/97

U.S. ARMY RESEARCH OFFICE

NEW YORK STATE COLLEGE OF CERAMICS
ALFRED UNIVERSITY

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION LIMITED

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION. UNLESS SO DESIGNATED BY OTHER DOCUMENTATION
Development of Microwave Ferrites for High Performance Applications

Two chemical methods applied to LiZn ferrites will be briefly introduced. The influences of the experimental parameters and compositions on the final microstructures and properties are being investigated. Several reprints and manuscripts resulted from the previous research on yttrium iron garnet materials are enclosed (reported in technical report submitted to ARO on 2/5/96).

I. Microstructural Control of LiZn Ferrites with Chemically Derived Additives

Raw materials such as Li₂CO₃, ZnO and Fe₂O₃ were mixed using yttria stabilized zirconia balls (Tosoh Co.) and calcined at 800°C for 4 hrs to form a spinel phase. Two additives, Bi₂O₃ - MnO₂ and SiO₂ - MnO₂ were incorporated into Li₀.₃Zn₀.₄Fe₂.₃O₄ via the sol-gel coating method. The calcined powders were milled using the same media. The experimental procedures for sol-gel coating are as follows. In case of Bi₂O₃ - MnO₂ coating, Bi nitrate and Mn acetate were used as raw materials. Bi nitrate pentahydrate, Bi(NO₃)₃·5H₂O and Mn acetate tetrahydrate, Mn(CH₃COO)₂·4H₂O corresponding to 1 wt% Bi₂O₃ and 1 wt% MnO₂ were dissolved completely into deionized water. A 50 wt% aqueous solution of polyacrylic acid (PAA) was added to the solution resulting in a gelatinous white precipitate. And then the calcined LiZn powder was mixed with the gel. For the SiO₂ - MnO₂ coating, tetraethylorthosilicates (TEOS), Si(OC₂H₅)₄ and Mn acetate tetrahydrate, Mn(CH₃COO)₂·4H₂O corresponding to 1 wt% SiO₂ and 1 wt% MnO₂ were dissolved into ethanol. A few drops of HCl was added as a catalyst for sol-gel reaction. The calcined powder of LiZn ferrite was added into the clear solution and kept stirring for a few hours for complete reaction. All coated powders were dried at 70°C and then pulverized using a mortar. Pellets were made by uniaxial pressing of the powder at around 12,000 psi and sintered at 1050°C for 2 hrs with a heating rate of 300°C/hr after organic burnout at 500°C.

The preliminary observation of microstructures showed that Bi₂O₃ and SiO₂ enhanced grain growth and densification. Large grains were observed in these cases. Distinct grain boundary regions were seen after chemical etching in case of Bi₂O₃, indicating a weak grain boundary layer. While, in case of SiO₂, it is likely that the addition SiO₂ induces a glassy phase in the grain boundaries (not easily etchable). Based on the grain size variations with temperature and time, grain growth kinetics will be studied for the different compositions. Magnetic and dielectric properties in the microwave frequency
range will be also investigated. Additionally, different contents of the additives will be adjusted in order to optimize the magnetic and dielectric properties.

II. Preparation of Nanocrystalline LiZn ferrites Using Polyacrylic Acid

A new chemical method utilizing a combustible polyacrylic acid (PAA) is introduced to prepare nanoscale ferrite powders. This method is relatively simple compared to other chemical methods. Nitrates of Li, Zn and Fe were dissolved in deionized water to form a 0.5 M solution. The nitrate solution was inserted into a 50 wt% polyacrylic acid aqueous solution. The atomic ratio of the carboxyl ion to cation was 0.5. After a few minutes, the clear nitrate solution changed into an opaque viscous gel having brown color. The gel was dried at 70°C and calcined from 400°C to 700°C for 30 min.

As a result of TEM observation, the average particle size of the LiZn ferrites fired at 400°C was around 10 nm. The XRD pattern indicated the crystalline LiZn ferrite phase. As the synthesis temperature increases, the particle size tended to increase but the nanoscale was kept until 600°C. From the initial results, it can be concluded that the PAA method is promising for the preparation of nanoscale LiZn ferrite powders at low temperatures. Densification behavior of the nanosized ferrites will be investigated.
List of Publications


List of Presentation


