The effort reported on here was primarily aimed at acquiring a better understanding of a broad class of stochastic partial differential equations.

The main class of problems was concerned with regularity properties of solutions to stochastic wave equations in one and two spatial dimensions. A second class of problems arose from attempts to understand the flow of information throughout the solution of a linear stochastic wave equation in two spatial dimensions driven by Lévy (shock) noise. A third topic studied was in the area of stochastic optimization.

Substantial results have been obtained in all three areas. These results have given rise to six published (or soon to be published) research articles, a published monograph and a Ph.D. thesis.
LEVEL SETS
AND
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

FINAL PROGRESS REPORT

Robert C. Dalang

August 31, 1996

U.S. ARMY RESEARCH OFFICE
Grant No. DAAH-04-94-G-0261

Tufts University

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
A. Statement of the problem studied

The effort reported on here was primarily aimed at acquiring a better understanding of a broad class of stochastic partial differential equations. These equations are an important modelling tool for describing the evolution of physical media subject to random excitation.

The main class of problems was concerned with regularity properties of solutions to stochastic wave equations. In one spatial dimension, deep sample path properties, such as existence of points of increase and non-differentiability of solutions along curves were considered. In two spatial dimensions, continuity and short-term existence of solutions to a non-linear stochastic wave equation driven by non-white Gaussian noise were examined. The emphasis on non-white noise is a departure from most of the existing literature on such equations. This emphasis is motivated by the fact that in many applications [3, 18], Gaussian noise with non-degenerate spatial correlation is a better model than white noise.

A second class of problems arose from attempts to understand the flow of information throughout the solution of a linear stochastic wave equation in two spatial dimensions driven by Lévy (shock) noise. Most of these questions had been previously examined by the Principal Investigator in the context of one dimensional space, but new methods were required to move up to two dimensional space.

A third direction of research was concerned with certain stochastic optimization problems. The goal of this type of research is to understand how to best make use of available information in a stochastic decision making environment.

B. Summary of the most important results

THE ONE-DIMENSIONAL WAVE EQUATION. In article 2 (see the List of all publications and technical reports), the PI and T. Mountford (UCLA) have shown that the sample paths of the Brownian sheet belong with probability one to the space of functions of two variables that admit strict points of increase along monotone curves. This shows that the analogue for the Brownian sheet of the famous 1961 result of Dvoretzky, Erdős and Kakutani for Brownian motion does not extend to the Brownian sheet, and therefore that the structure of excursions of the Brownian sheet is quite different from what was previously thought.

In article 4, it is shown that the function space just mentioned has Baire category one and is therefore a “small” set, whereas the result obtained above indicates that it is a “large” set. This difference does not occur with Brownian motion, for which most sets of positive measure are of second Baire category. This Baire category result extends a result of Bruckner and Garg [2] concerning functions of one real variable.

In article 3, the PI and T. Mountford have shown that the Brownian sheet is nowhere differentiable in any direction in the strongest possible sense: given any Jor-
dan arc, there are no points at which the arc has a tangent and the sheet viewed along the arc is differentiable at that specific point. This result implies all previously known results on this problem [6], and also has important implications for our understanding of geometric properties of level sets of the Brownian sheet.

THE TWO DIMENSIONAL WAVE EQUATION. In article 5, the PI and N. Frangos have completed their study of the stochastic wave equation in two spatial dimensions driven by non-white Gaussian noise. A necessary and sufficient condition on the covariance function of the noise process for existence of a jointly measurable mean-square bounded solution has been obtained. Examples of processes that satisfy this condition are provided, including the so-called “Brownian free field.” Since the last progress report, the situation with regard to non-linear forms of this equation has been clarified. The condition that is necessary and sufficient in the case of the linear equation also suffices to guarantee short-term existence of solutions to non-linear forms of the equation. The question of long-term existence remains open (except in the case of the linear equation).

In article 6, the PI and his former Ph.D. student Q. Hou study the sharp Markov property for solutions of the two dimensional wave equation driven by a locally finite Lévy point process. The solution to this equation is the superposition of waves created by distinct and well localized shocks.

In this article, they establish this Markov property for domains that are bounded polyhedra. Previously, they had established this property for domains bounded by half-spaces, that correspond to the line of sight of an observer moving at a speed greater than the speed of waves. Even though the sample paths of the solution process are discontinuous, this result is proved using properties of real-analytic functions of two variables. In addition, it is shown that the germ-field of the boundary of an open set actually contains all information about the process in the past light-cone of the domain. These results are part of Q. Hou’s Ph.D. thesis, titled “On Markov properties of Solutions to Wave Equations Driven by Lévy Noise.” Q. Hou’s degree was awarded by Tufts University in May 1996. The question of whether or not the sharp field of the boundary of an arbitrary bounded open set also has this property remains open.

STOCHASTIC OPTIMIZATION. In the monograph 7, a unified mathematical theory of sequential stochastic optimization is presented. The monograph emphasizes problems of optimal stopping and control of stochastic processes in the presence of incomplete information, together with several applications, including sequential statistical testing involving several populations and the multi-armed bandit problem. Much of the material presented here is either new or appears in a book for the first time. Most of the main results were obtained over a period of several years, many of which were described in the Final report of the grant DAAL-03-89-6-0323. Dur-
ing the period of this grant, the remaining work on this monograph concerned the
time-consuming preparation and actual publication of the final version of the book.
Several stochastic control problems that involve optimal switching between two or
more observation processes and for which results obtained in this monograph are
useful are under continuing investigation.

C. List of all publications and technical reports

Research articles

1. R. Cairoli and R.C. Dalang, Optimal Switching Between Two Random Walks,
2. R.C. Dalang and T. Mountford, Points of Increase of the Brownian Sheet,
3. R.C. Dalang and T. Mountford, Non-differentiability of curves on the Brownian
4. R.C. Dalang and T. Mountford, Points of increase of functions in the plane,
Real Analysis Exchange (9 pages, to appear).
5. R.C. Dalang and N. Frangos, The stochastic wave equation in two spatial di-

6. R.C. Dalang and Q. Hou, On Markov properties of Lévy waves in two dimensions
(23 pages, submitted).

Monograph

7. R. Cairoli and R.C. Dalang, Sequential Stochastic Optimization, (10 chapters,

D. List of all scientific personnel showing any advanced degrees earned by
them while employed on the project

R. Dalang (PI)
Q. Hou, Ph.D, May 1996

REPORT OF INVENTIONS (BY TITLE ONLY)

None.
References


[18] Miller, R.N., Tropical data assimilation with simulated data: The impact of the tropical ocean and global atmosphere thermal array for the ocean, Journal of Geophysical Research 95 (1990), 11,461-11,482.


