Traffic Management System

Authors
Dachelle Weems and Y.B. Reddy (advisor)

Performing Organization
Grambling State University
Department of Math and Computer Science
Grambling, LA 71245

Sponsoring Agency
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

Abstract
This project deals with creating a railroad traffic management system. This system will contain two rail stations and the operations between these two stations will be regulated by the traffic management system. Any number of trains may be allowed on the tracks but the management system will have to monitor this as well. This system will consider departures, arrivals, auxiliary tracks, routing, scheduling, communication controls, etc. to make sure the traffic is regulated.

Subject Terms
traffic management
Traffic Management System

Dachelle Weems and Y.B. Reddy (advisor)
Grambling State University
Department of Math and Computer Science
Grambling, LA 71245

This project deals with creating a railroad traffic management system. This system will contain two rail stations and the operations between these two stations will be regulated by the traffic management system. Any number of trains may be allowed on the tracks but the management system will have to monitor this as well. This system will consider departures, arrivals, auxiliary tracks, routing, scheduling, communication controls, etc. to make sure the traffic is regulated.
Traffic Management System

Weems, Dachelle

Y.B. Reddy (Advisor)

Grambling State University
Dept. of Math. and Computer Science
Grambling, LA 71245

Note: This research is supported by Advanced Distributed Simulation Research Consortium and Office of Naval Research
About The Project

1. Traffic Management System
2. Modernization and Module Architecture
3. Goals
4. Modifying the Software
5. Changing the Target Hardware
Outline

1. About The Project
2. Requirements of the System
3. Specifications of System
4. Design Specifications
5. Implementation
6. Testing and Maintenance
7. Conclusions
Specifications of System

1. Hardware Architecture
2. Boundaries of the Problem

Load/Unload Platform

<table>
<thead>
<tr>
<th>Train ID</th>
<th>Arrival</th>
<th>From</th>
<th>Depart</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>3040</td>
<td>0700</td>
<td></td>
<td>0720</td>
<td>Stat B</td>
</tr>
<tr>
<td>7676</td>
<td>0800</td>
<td></td>
<td>0830</td>
<td>Stat B</td>
</tr>
<tr>
<td>9090</td>
<td>0950</td>
<td></td>
<td>1030</td>
<td>Stat B</td>
</tr>
<tr>
<td>1121</td>
<td>1050</td>
<td></td>
<td>1120</td>
<td>Stat B</td>
</tr>
<tr>
<td>4426</td>
<td>1200</td>
<td></td>
<td>1210</td>
<td>Stat B</td>
</tr>
<tr>
<td>6535</td>
<td>1300</td>
<td></td>
<td>1320</td>
<td>Stat B</td>
</tr>
</tbody>
</table>
Requirements of the System

1. Routing
 - Network Control System
 (progress individual routes and tracks)
 - Scheduling
 - Communication Control

2. Train System Monitoring
 - Locomotive analysis and Reporting System
 - Energy Management System
 - On-Board Display System
 - Data-management Unit
 - Train Location Tracking

3. System and Software Requirements
 (Various Scenario for Processing Daily Train orders)
Implementation

1. Language C++
2. To be completed in Fall 95
3. System RISC-6000
4. Packages to use:
 CADRE/teamwork
 SRI Testing Package
Design Specifications

Message
 A

TrainStatus
 Message
 Location
 Message
 Speed
 Message
Stop
 Message

TrainPlan
 Message
 Pickup
 Message
 Clearance
 Message
Track Work
 Message

Wayside Device
 Message
 Switch
 Message
 Signal
 Message
Testing and Maintenance

1. Tracking the Bugs and Correcting
2. Adding more modules
3. Software Re-use (property of OOD)
Conclusions

1. Object-Oriented Design Allows
 Adding new Functionality
 Allows Software Reuse Property

2. Studied the Requirements and
 Specifications of the project

3. Experiences helps to
 design and implement of other similar projects

4. Hardware Independent Design