Geomorphological and Geomorphometry of the East Pacific Rise Flanks

Peter F. Lonsdale

Supported by the Chief of Naval Research Grant N00014-93-1-0042

Final Report 19970204 007

MPL-U-19/96 October 1996

Approved for public release; distribution is unlimited.

University of California, San Diego Scripps Institution of Oceanography
4. Title and Subtitle.

Geomorphological and Geomorphometry of the East Pacific Rise Flanks

6. Author(s).

Peter F. Lonsdale

7. Performing Monitoring Agency Names(s) and Address(es).

University of California, San Diego
Marine Physical Laboratory
Scripps Institution of Oceanography
San Diego, California 92152

9. Sponsoring/Monitoring Agency Name(s) and Address(es).

Chief of Naval Research
Department of the Navy
800 North Quincy Street
Arlington, VA 22217-5660
Code 322GG

11. Supplementary Notes.

12a. Distribution/Availability Statement.

Approved for public release; distribution is unlimited.

A marine geophysical survey of the seafloor east and west of the rise crest ONR Natural Laboratory was used to interpret the geologic history that has determined the shape, structure, and pattern of the present East Pacific Rise axis, and to study the fates of crust after it leaves the axis. The emphasis of this work was on tectonic processes that modify the structure of young oceanic crust, and on quantifying the effects of these processes on seafloor roughness.

14. Subject Terms.

geophysical survey, tectonic processes, geophysical traverse, geomorphology

15. Number of Pages.

2

None

Unclassified

18. Security Classification of This Page.

Unclassified

Unclassified

20. Limitation of Abstract.

None
Geomorphological and Geomorphometry of East Pacific Rise Flanks

Peter F. Lonsdale

Final Report to the
Office of Naval Research
Grant N00014-93-1-0042
for the Period 10-1-92 - 9-30-95

Abstract

A marine geophysical survey of the seafloor east and west of the rise crest ONR Natural Laboratory was used to interpret the geologic history that has determined the shape, structure, and pattern of the present East Pacific Rise axis, and to study the fates of crust after it leaves the axis. The emphasis of this work was on tectonic processes that modify the structure of young oceanic crust, and on quantifying the effects of these processes on seafloor roughness.

Research Objective

The objectives of this project were (1) to establish the geologic history of a large tract of seafloor containing on ONR Natural Laboratory, and thereby derive better understanding of the typical long-term behavior of a fast-spreading rise crest; and (2) to improve quantitative assessments of seafloor roughness in areas of known and complex geologic history. The first objective has been met more completely than the second.
Research Summary

The primary data used were Seabeam 2000 multibeam bathymetric swaths, magnetic and gravity profiles collected on a 1993 cruise leg to the eastern tropical Pacific. Similar supplementary data was collected in 1995 to fill in what proved to be critical gaps in the principal survey. Coverage of the large study area with new data was by no means complete, so its interpretation required analysis of the large archived volume of preexisting data.

The past 10 m.y. of geologic history proved to include major changes in the rate and direction of spreading, reorientation and abandonment of spreading centers and transform faults, migration of large propagating rifts, and formation and capture of microplates. Only for the past 4 m.y. has this part of the East Pacific Rise had a steady, simple pattern of crustal accretion and deformation. The 10-4Ma geologic history has much in common with the history of the Mathematician microplate region further north, and a comparison of these histories (now being prepared for publication) clarifies which features are merely local idiosyncrasies, which are prevalent patterns of crustal evolution.

Statistical analyses of the multibeam bathymetry have been performed by Dr. Ute Herzfeld (formerly of Scripps Institution of Oceanography) and Dr. Peter Shaw (formerly of Woods Hole Oceanographic Institution). These analyses were able to identify patches of different topographic roughness and lineation direction, patches that could be explained by the conventional geophysical interpretation. They did not, however, materially enhance that interpretation.

Publications

Geomorphological and Geomorphometry of East Pacific Rise Flanks
ONR/MPL REPORT DISTRIBUTION

Chief of Naval Research (3)
Ballston Centre Tower One
800 North Quincy Street
Arlington, VA 22217-5660
 Attn: Dr. Joseph Kravitz
 Code 322GG

Regional Director (1)
ONR Detachment
San Diego Regional Office
4520 Executive Drive, Suite 300
San Diego, CA 92121-3019

Commanding Officer (1)
Naval Research Laboratory
4555 Overlook Avenue, S.W.
Attn: Code 2627
Washington, D.C. 20375-5320

Defense Technical Information Center (4)
8725 John J. Kingman Road
Suite 0944
Ft Belvoir, VA 22060-6218