OFFICE OF NAVAL RESEARCH

CONTRACT N00014-97-1-0066

R&T Code 33e 1806

Dr. Richard S. Miller

Technical Report No. 98

COMPUTED HEATS OF FORMATION OF THREE DIAZAPENTALENES, AND TWO GEM-DINITRO/GEM-DIFLUORAMINO ANALOGUES OF RDX

by

Peter Politzer, M. Edward Grice and Jane S. Murray

Department of Chemistry
University of New Orleans
New Orleans, LA 70148

January 24, 1997

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

DTIC QUALITY INSPECTED
Computed Heats of Formation of Three Diazapentalenes and Two Gem-Dinitro/Gem-Difluoramino Analogues of RDX

Peter Politzer, M. Edward Grice and Jane S. Murray

University of New Orleans
Department of Chemistry
New Orleans, Louisiana 70148

Office of Naval Research
Code 333
800 N. Quincy Street
Arlington, VA 22217

Computed heats of formation for 1 - 5.

1: ΔH_f^{298K} (solid) = 61 kcal/mole = 402 cal/g
2: ΔH_f^{298K} (solid) = 67 kcal/mole = 276 cal/g
3: ΔH_f^{298K} (solid) = 78 kcal/mole = 273 cal/g
4: ΔH_f^{298K} (solid) = -51 kcal/mole = -160 cal/g
5: ΔH_f^{298K} (solid) = -77 kcal/mole = -230 cal/g

heats of formation; diazapentalenes; gem-dinitro/gem-difluoramino analogues of RDX

Approved for public release. Unlimited distribution.

Unlimited
We have used our density functional procedure [1] to compute the heats of formation of the compounds 1 - 5. 1 and 2 have been prepared by R. Schmitt and J. Bottaro at SRI and 3 is under consideration. The syntheses of 4 and 5 are being pursued by T. Axenrod (CUNY). The vibrational energies were determined from the molecular stoichiometries [2]. The density functional calculations give the gas phase heat of formation, which we convert to the solid state value by subtracting the heat of sublimation. The latter is obtained by means of the relationship that we have developed between the heat of sublimation and the computed electrostatic potential on the molecular surface [3].

Results:

1
\[\Delta H_f^{298K} \text{(gas)} = 84 \text{ kcal/mole} = 553 \text{ cal/g} \]
\[\Delta H_f^{298K} \text{(solid)} = 61 \text{ kcal/mole} = 402 \text{ cal/g} \]

2
\[\Delta H_f^{298K} \text{(gas)} = 97 \text{ kcal/mole} = 401 \text{ cal/g} \]
\[\Delta H_f^{298K} \text{(solid)} = 67 \text{ kcal/mole} = 276 \text{ cal/g} \]

3
\[\Delta H_f^{298K} \text{(gas)} = 113 \text{ kcal/mole} = 394 \text{ cal/g} \]
\[\Delta H_f^{298K} \text{(solid)} = 78 \text{ kcal/mole} = 273 \text{ cal/g} \]

4
\[\Delta H_f^{298K} \text{(gas)} = -13 \text{ kcal/mole} = -42 \text{ cal/g} \]
\[\Delta H_f^{298K} \text{(solid)} = -51 \text{ kcal/mole} = -160 \text{ cal/g} \]

5
\[\Delta H_f^{298K} \text{(gas)} = -40 \text{ kcal/mole} = -120 \text{ cal/g} \]
\[\Delta H_f^{298K} \text{(solid)} = -77 \text{ kcal/mole} = -230 \text{ cal/g} \]

For comparison, the experimental gas phase \(\Delta H_f^{298K} \) value for RDX is 206 cal/g [4,5].
References: