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FEEDBACK CONTROL THEORY
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13.1 FUNDAMENTALS OF FEEDBACK CONTROL THEORY

Pilots might be inclined to associate the phrase "control system" with
only aircraft flight control systems. Although the control system theory of
this course has a large application to flight control systems, this material
applies to any process or system in which control is exercised over same
output variable. Examples of these controlled variables are: the speed of an
automcbile, the temperature of a room, the attitude of a spacecraft, ad
infinitum. ‘

Feedback control system theory is often called several different things.
It might be found under any of the following headings or titles: Control
Systems, Autamatic Control Systems, Servo-Mechanisms, or our term, Feedback
Control Systems.

First, the difference between "open-loop" and "closed-loop" control will
be discussed. Oonsider the roll chamnel of an aircraft flight control system
in which the pilot input is assumed to be a rate command. That is, the pilot
camands a roll rate ($) proportional to the stick displacement. Figure
13.1 shows a diagram of this system. The input is a low power input

representing a selected value of roll rate.

POWER
il_"__, HYDRAULIC %a -~ AIRCRAFT Sour
ACTUATOR DYNAMICS >

FIGURE 13.1 OPEN-LOOP CONTROL SYSTEM
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This mechanical signal is then amplified in a hydraulic control valve/actuator
cambination to position the ailerons accordingly (Ga) . The deflected ailerons
then react with the airstream to produce a roll mament in the required
direction. The magnitude of the resultant roll rate (¢ out) is a function
primarily of the dynamic pressure (qg) and the moment of inertia about the
longitudinal axis (Ix) . Both are part of aircraft dynamics.

There are inmumerable examples of the "non-feedback" or "open—loop" type
of control systems. For instance, a gasoline engine in an automobile has a
low power input, the throttle position, which controls the speed of the
vehicle expending a large amount of power. In a simple electronic amplifier a
very small input signal controls a much larger output signal. 1In all
open-loop control systems the output has no influence on the input whatsoever.
The input quantity controls the output only directly through the intermediate
components. Referring back to the aircraft roll control system, a lateral
stick displacement of a specified amount will not command a constant roll rate
under all conditions. As the conditions in the intermediate camponents
change, such as the dynamic pressure, mament of inertia, hydraulic pressure,
temperature of hydraulic fluid, condition of hydraulic camponents, temperature
effects on modulus of elasticity of metal components, etc., the resultant roll
rate for a specified input will vary.

The performance of any control system with respect to maintaining the
output quantity as close as possible to the input quantity can be
substantially improved by feeding back the output for camparison with the
input. The use of the difference resulting frcm this cafparison as an
actuating signal constitutes a feedback or closed~loop control system.

‘i’m o : ¢ >
—1 « HYDRAULIC | % AIRCRAFT out
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FIGURE 13.2. CLOSED-IOOP CONTROL SYSTEM
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Figure 13.2 shows .how the open-loop system of Figuré 13.1 can be changed to a
closed-loop system by the addition of an outer feedback loop to campare the
input with the output. Thus, the effect of variations in the intermediate
camponents can be eliminated in that a corrective signal (e) will continue to
exist until the output properly matches the input.

A serious disadvantage of closed-loop control systems, however, is that
they can make an otherwise stable system unstable. The possibility of
instability is the prime reason for the existence of the science of feedback
control system analysis. The first and major effort in control system
analysis is the determination of whether or not the closed-loop system is
stable. After this fact is established, other response characteristics may be
found.

Stability, with respect to control systems is defined as follows: A
stable system is a system in which the transients die out with increasing
time.

13.2 NOMENCIATURE

The following namenclature is used in this chapter:

R input variable

0
it

output variable

Each of these might represent any quantity dépending on the system such as
angular or linear position, current, voltage, degrees of temperature, etc, or
the time rate of change of those above.

The following symbol represents a summer or differential. It indicates
the algebraic sumation of the input quantities according to the arrows and

. R +c D ¢
——-—-*
Je
FIGURE 13.3. SUIMMER OR DIFFERENTIAL
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the signs. The eicample in Figure 13.3 shows

e = R-C - (13.1)

The symbol for gain or amplification factor is K.-

Control systems are generally described through the use of block diagrams
as in Figures 13.1 and 13.2. However, instead of words to indicate the
process or operation occurring within each block, there appears what is called
a transfer func:ion (Figure 13.4). The term "transfer function" might be
thought of as what is done to the input to produce the output. Although the
transfer functions within the blocks are generally written in terms of same
_operator notation, they are often described graphically, especially for
nonlinear systems. A definition of transfer function is: the ratio of the
output to the input expressed in Laplace operator notation, assuming zero
initial conditions. The transfer function is essentially a mathematical model
of the system and embodies all the ﬁhysical characteristics of the system

i.e., mass, damping, etc.

R TRANSFER C
—ee . ‘

[ TRANSFER FUNCTION ]
x R

c = (IN OPERATOR
NOTATION)

c TRANSFER FUNCTION

' (IN OPERATOR

NOTATION)

FIGURE 13.4. TRANSFER FUNCTION
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13.3 DIFFERENTIAL EQUATIONS — CLASSICAL SOLUTIONS

Differential equations for a control syé‘tenfwill illustrate the types of
responses to be expected from first and second-order systems. These two
examples are used throughout this course because higher-order systems produce
a transient response consisting of the sum of first and second-order
responses. . o

The reason the transient response is significant rather than the steadjr
state or complete response, concerns the stability of the system. Since
positive stability requires that the transients die away with increasing time,
the transient solution of the differential eguation describing the system is
most important to the analysis. The transient solution also provides other
important response characteristics.

Figure 13.5 shows a simplified block diagram of VTOL Auto Pitch Control
with inertia, I, and limited aero-damping proportional to pitch rate. Pitch
attitude is maintained by reaction control jets. These jets produce a torque
proportional to a valve position. Torque = pe, where p is the gain of the
valve and e the input to the valve. The loop is closed by comparing the
output pitch attitude to the commanded pitch attitude.

COMMANDED OUTPUT
ATTITUDE © e T ATI'I;’UDE
TOROUE
— 0| compare | -ERROR | varLve VEHICLE I .
A
o
ATTITUDE
GYRO

FIGURE 13.5 VTOL AUTOMATIC PITCH CONTROL BLOCK DIAGRAM

13.5




This camparison produces the error signal, e, which'is the input to the linear
valve. The resulting torque, ue, is applied to the wvehicle to change the
pitch attitude. ’

Two situations will be considered in order to simplify the problem. In
the first case, only the effect of viscous damping will be considered. This
will result in a first-order differential equation. The second case will
include both inertia and viscous friction and will result in a second-order
system. The first and second-order differential equations will be solved for

the transient response.

13.3.1 First-Order System

Using Figure 13.5, including only the effect of damping on the wehicle,
the differential equation of the system can be written by equating the applied
torque to the absorbed torque. The torque applied by the reaction jets is
absorbed by the viscous friction (aero-damping) of the wehicle.

The output of the camparator, e = 8; - %o that produces the system differ-
ential equation or the equation of motion
H (el - en) bGO

Applied Torque = Absorbed Torque

Using the operator "p" notation (where p = d/dt) to determine the system
transient response, the homogeneous equation becomes

b -
-gpeo+90—0
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b s
(l—lp+l)9° = 0

the root of the characteristic equation is’

Since the transient response is assumed to be

n pt

eo(t)transient = iflcie (13.2)

where P; 's are the roots of the characteristic equation, the
transient response for our first—order system is

6, (t) = eIt (13.3)

transient

For positive gain x and damping factor b, 6, (t)is always stable. Thus, a
first-order system has only real roots of the characteristic equation and the
transient response is either an exponential increase or decrease depending on
the sign on the time constant. The time constant is the reciprocal of the
coefficient of t in the exponent of e (b/y in our case).

The time constant, generally given the symbol <, can be defined as the
value of time that makes the exponent of e equal to -1. 1In one time constant
the exponential €™ has decreased from the value 1 to the value .368. Figure
13.6 shows a plot of the transient response of a first-order stable system.
Time constants are discussed in more detail in Paragraph 13.5.4.
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Bo(t)

0.388

FIGURE 13.6. PILOT OF FIRST ORDER TRANSIENT RESPONSE

A stable transient response requires the root of the characteristic equation

be negative.

13.3.2 Second~Order System .
Equating applied tormque to absorbed torgue of Figure 13.5 again, but

including the inertia and damping effects yields '

ue = béG + I.é0
again
£ = ei - 60
and
u(e; - 8,) = bby + I8,
I.éO + béo + ueo = uei

is the quétion of motion of the system. The hamogeneous equation in operator
notation is y ‘
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eo(Ip2 +bp+u) = 0O
The characteristic eguation is

I +bp+u = 0 (13.4)

whose roots are

-b + Vbz.- 4u I

Pi,2 = Vil (13.5)

Depending on the relative magnitudes of the gain, damping factor, and
inertia, the roots of the characteristic equation might be real or camplex
thereby indicating different types of response. If the roots turn out to be
real, the transient response is merely the sum of the two resulting first-
order exponential terms. If the roots are camwplex, however, they always
appear in camplex conjugate pairs in the following form:

Py, = 0% 3ug

vhere o is the real part and w 3 the imaginary part of the roots. These
complex roots yield a solution of the form

(o+jmd)t (o - jwd)t
eo(t) transient Cle + C2e (13.6)

After complex variable manipulations, this expression can be shown to be
equivalent to

ot

eo(t) = Ae cos(wdt+.¢) (13.7)

and C.,.

vhere A and ¢ are derived from the coefficients C1 5
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This is the forxri of the solution whenever the characteristic equation has .
camplex conjugate roots.
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FIGURE 13.7. EXPONENTIALLY DAMPED SINUSOID =
TYPICAIL SECOND-ORDER SYSTEM RESPONSE

It is called an exponentially damped sinusoid and consists of a sine wave of
frequency wy whose magnitude is Aeot; that is, it is decreasing exponentially
with time if o is a negative quantity. A typical second-order response is
plotted in Figure 13.7.

Referring back to the solution of the characteristic egquation, Equation
13.5, the real part can be recognized as the exponent of e .
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¢ = _% g -~ (13.8)

and the imaginary part as the frequency of the oscillation of the transient

response
. 4u1-b’° (13.9) -
@ \/“T -
41

The quantity b represents the effective damping of the system. If b equals
2 \/ﬁ the two roots p,,, are equal. This is the critical level of damping and
is written b’ = 2 ‘jﬁ :

The damping ratio is defined as the ratio of actual damping to the
_critical value of damping

b

2 T

L = actual in = D
critica ing b’

(13.10)

When { is greater than zero but less than one the roots are complex and
the solution is a damped sinusoid of the form of Figure 13.8 and is called
underdamped. When { is greater than one the roots are real and the response is
overdamped. When Z is negative, the system is unstable. |

The undamped natural frequency, W, is defined as the frequency of
oscillation of the transient if the damping is zero. From Equation 13.9

(13.11)

£
]
~in

The response in the case of no damping is a sine wave of constant amplitude.

Second-order equations (or factors in more complex systems) are
frequently written in terms of the damping ratio and undamped natural
frequency. Factoring o from Equation 13.4 leaves

2P+ 2pa1 = 0 (13.12)
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where I/u can be recognized as i/aonz and b/y equals 28/w . The characteristic .
equation becomes . o ‘

—l-z—p2+3-§p+l = 0

Multiplying by wnz produces the standard form of the second-order system.

P +2lyp+w’ =0 (13.13)

The roots of this equation are

P = oxjo, = - +jg N1-0 (13-14)‘

And the transient response in terms of { and & is

c(t)iransient = et cos wtyl- ¢+ ¢ (13.15)

Figure 13.8 shows a family of curves représenting the response to a step input
of a second-order system as a function of {. These curves illustrate the fact
that the amount of overshoot and the time to arrive at the input value are a
function of C.
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FIGURE 13.8. SECOND-ORDER TRANSIENT RESPONSE VERSUS g

13.4 TRANSFER FINCTIONS

The first and second-order egquations derived in the previous paragraph
were solved using the classical method to show the types of response to be
expected from each type system. In practice, this approach is extremely
laborious, if not impossible, for more camplicated systems. Therefore, more
advanced techniques are used which do not produce the total solution but do
indicate whether or not the system is stable; and if not, provide information
about how to make the system stable. These sophisticated techniques generally
use laplace transforms. The use of operational calculus offers a definite
advantage in that transfer functions can be manipulated using the normal rules
of algebra. It also imposes a severe restriction. The systems to be




analyzed must be representable by linear diffe:.;énti'al equationé with constant ‘ -
coefficients. The method of determining these transfer functions will now be
described. :

First, we will consider the system of Figure 13.5 in which only damping
was included. Its eguation of motion is

b ; -

-l-‘- 60 + 90 = ei
Ietting 1 = b/u we have

reo + 90 = ei
Taking the laplace transform using the notation X,[eo(t)] = eo(s)

6.(s) - 0,(0%) + 6, (5) = o,(s)
where ‘
+o. +
) 90(0 ) is the value of eo(t) att = 0

8, (s) + 16 (oh

8,(s) [rs + 1]

+
ei(s) Teo (0)

eO(S) = Ts+ 1 + s + 1

Thus we see that the input to the system is acted upon by the transfer
function

(13.16)

s + 1

and also the initial condition is acted upon by this transfer function.
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: Fram this brief discussion we can see that if we assume all the initial
‘ conditions to be zero we obtain the relationship. '

60(8)
ei(s) T Is+1 - (13.17)

Our first-order system can then be described in the manner of Figqure 13.4
where G(s) = 1/(1s + 1), the transfer function.

The transfer function of our second-order system in which the inertia and
damping were considered will now be determined using the same procedure. From
its equation of motion,

I8 +bé

0 + ub

0 o = o

taking the Laplace transform and assuming all initial conditions to be zero we

‘ have

%52 eo(s) +§s eo(s) + eo(s) = ei(s)
eo(s) [%— s2 +% s + 1:' = ei(s)

The transfer function is then

GO(S)

=s"+=s+1
u u

The transfer functions that have been developed for first and second-
order systems (Equations 13.17 and 13.18) are obtained fram the equation of
motion of the whole system with the feedback loops closed (Figure 13.5).
Therefore, they are called closed-loop transfer functions.

The denominator of Equation 13.18 is equivalent to Equation 13.12 and is
‘ the characteristic equation of the system.




13.5 TIME DOMAIN ANALYSIS

Much of the work of the control system engineer is done in the s-damain
to take advantage of simplicity of solution, but the response of a system is
in the time domain. The time response of a sysf.en is divided into two parts:
(1) the transient response, ard (2) the steady-state response.

clt) = (t) + ¢ o (B) (13.19)

ct:l:ans

In order to analyze a control system, we discuss the performance of the system
in terms of time response to a specific input. For a given system, a specific
input will result in a predictable transient response and a steady-state
error. Control system performance specification can be stated in terms of the
transient behavior of the system and the allowable steady-state error. In
general, the steady-state error can be a function of time; however, we usually
want lim e(t) . = 0. "

h o )

In reality, control system specification and obtainable real world
solutions are a compromise. The first order of business in analyzing a
control system is to determine if the system is stable. If it is stable, then
it will be tested to determine if it meets the performance specifications.
The response of the system to specific test inputs will provide several

measurements of performance.

13.5.1 Typical Time Domain Test Input Signals
13.5.1.1 The step input is the most coammonly used test signal. This input is

simply an instantaneous change in the reference input _variable (Figure 13.9).

rt)
R u_q(t)
=R, t>0
nt)=0,t<0
R=CONSTANT
0 -3 t

FIGURE 13.9. STEP INPUT

13.16




r(t) = u_,(t)

where u_l(t) is the unit step function. The quantity r(t) is not defined at
t = 0. The laplace transform of the unit step is

Liu_ (1)) = = (13.20)

Therefore the lLaplace of r(t) = Ru_1 (t) is R/s.

13.5.1.2 Ramp Function. The ramp signal is the integral of the unit step and
is often called the velocity input (Figure 13.10).

rt)

nt)=Rt,t>0
n)=0 t<0O

rit) = Rtu_y (1)

t

FIGURE 13.10. RAMP INPUT
r(t) = Rt u_l(t)

and

KRt u ()} = ~R—2 (13.21)

]

13.5.1.3 Parabolic Input. The parabolic input signal (Figure 13.11) is the
integral of the ramp signal and is often referred to as the acceleration

input.
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rit) = Rt2u_; (1)

vr(t)=Rt2,t>0
ft)=0 t<O

FIGURE 13.11. PARABOLIC INPUT
2
r(t) = Rt u_, (t)
and

Xr? u_ ()] = (13.22)

13.5.1.4 Power Series Input. An input made up of the sums of a step, ramp

"l

and a parabola would be a power series of power 2.

2
r(t) = R [1 +t 4+ Z—J u_ (8) (13.23)

13.5.1.5 Unit Impulse. BAnother useful input is the unit impulse (Figure
13.12).

rt)

+  qy=1, o<t<e
=0, ELSEWHERE

S ®

FIGURE 13.12. UNIT IMPULSE
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As ¢ + 0, the function r(t) approaches the iﬁi‘pul's',e function 6 (t).

Lis(t) = 1

13.5.2 Time Response of a Second-Order System

Consider the closed loop

+

n(s)-—"»®-§(—'l>

block diagram in Figure 13.13

G(s) > C(s)

FIGURE 13.13. CLOSED-LOOP CONTROL SYSTEM
. where
_ G(s) R(s)
Cs) = T grs)
1et
_ K
Gls) = s(s + a)
K
———— R(s)
c(s) s(s +Ka)
1+ s(s + a)
_ K
= = R(s)

s” +as + K

This equation can be generalized in terms of ¢ and -

13.19
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Then the control ratio C(s)/R(s) is

2 -

C(s) “
= (13.26)
R(s) s +2lus+w’
For a unit step input, R(s) = 1l/s, and

c(s) = g{%}a(s)

2

w
c(s) = - 2 - (13.27)
s (s° + 20w s+ ")
Taking the inverse Laplace gives the transient response ‘
ct) = 1- —t— e ““tsin (qtVi- T +¢) (13.28)
1-C

where ¢ = tan 'V1 - /. The transient response of this
system varies according to the selected value of (. Figure 13.14 depicts this

variation.
Several standard performance specification terms common throughout
industry are illustrated in Figure 13.15.
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These transient performaince épecifications are usually defined for. a unit

.
.

step input.

1. Overshoot - indicated by largest error between input and
output during the transient state. We can determine the
magnitude by using the previously developed equation for
a step input to a second-order system.

2
c(t) = 1-—2L1 Wt (wnt Vi-7 +tan? _er-c )(13.29)

1-0
Taking the derivative of this equation and equating to zero yields

2
de(t) | g . 1 gy e tgiy ( wtVI- & + tan V 1-¢ )
f1-2

2
- — e, 17 cos(wnt\ll - 4 tant M T )(13.30)

This derivative is zero when ot \/1 -7 = 0, n, 2n, etc.
The peak overshoot occurs at the first value after zero (with initial
conditions equal to zero).

Therefore, the time to maximum or peak overshoot is

T = I (13.31)

Substituting thié. value into c(t) yields the peak response, M

~Cw n 2
Moo= l—-——l——exp - sin(u+tan'1@)
Vi WY 1-7 |




Note:

And
M o= 1+emp|- tn (13.32)
1-0
The overshoot for the unit step input is | ‘
Overshoot = M -1 = exp[- __&n (13.33)
1-¢

and the percent of overshoot

p.o. = M — 141002

- 100% exp |- —% _ (13.34)
1-08 ‘

Delay Time, T,, is the time required for the response to a unit step
to reach 50% of its final value.

Rise Time, T , is the time required for the response to a unit step

to rise from 10% to 90% of its final value. .
13.24



4, Settlihg Time, Tgr is the time required for the response to a unit

step to decrease to and to stay within a specific percentage of its

final value. Commonly used values are 2% or 5% of the final value.

13.5.3 Higher-Order Systems
The relationships developed in the preceding paragraph using © and ¢

apply equally well for each complex-conjugate pair of poles of an nth-order
system. The distinction is that the dominant ¢ and wp apply for that pair of
camplex-conjugate poles which lie closest to the imaginary axis. The values
of ¢ and w, ~are dominant because the corresponding transient term has the
longest settling time and the largest magnitude. Therefore, the d&ominant
poles primarily determine the shape of the time response, c(t). A
nondominant pole(s) has a real axis component that is at least six times
further to the left than the corresponding camponent of the daminant pole(s).
Components of c(t) due to nondominant pole(s) die out relatively quickly, and
can be neglected. (13.1:245)

13.5.4 Time Constant, 1 ’
The time constant is used as a measure of the exponential decay of a

response. For first-order systems, the transient response is an exponential
function described by Ae T, Figure 13.16.

1.0

e_m*

0368+————
I
: (NOT TO SCALE)
.0498 +--~ -~ e = -
H | ) i
] [ 1 |
T 27 37 47

FIGURE 13.16. PLOT OF EXPONENTIAL e T°F
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The value of time which makes the exponent of e equal to -1 is defined as
the time constant, 1 - o

In one time constant the exponential et

1.0 to a value .368. Table 13.1 shows values for other time constants.

will decrease fram a value of

TABLE 13.1

TIME CONSTANT TABLE

+ e—mt
1t .368
27 .135
31 .0498
41 .0183

The time constant is another way of specifying settling time. The
exponential will decay to 37% of its initial value in t seconds (one time
constant). In 31 the exponential is within approximately 5% and in 4t
approximately 2% of its final value. For a second-order undetdamped system of
the form

-z wnt

c{t) = 1 ~-=¢€ sin (mnBt + @)

B

the response is bounded by the exponent of the form (1/ e ™. The
specifications of ¢ and W determine the bounding exponential curve. The time

constant, 1, for these systems is

_ 2
R (13.35) ‘
n
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13.6 STARILITY DETERVINATION

The most important area of the analysis of a closed-loop control system
is the determination of stability. A system is said to be stable if the
output of the system corresponds to the input after transients die out. A
system is said to be unstable if the transients do not die out or if they grow
larger following a disturbance.

Stability is an inherent characteristic of the system and depends only
upon the system itself, not upon the input or forcing function. Hence, if a
system is unstable, any input will cause the system to diverge. If the system
is stable, any bounded input will cause a bounded response.

The problem in determining stability is ascertaining whether or not the
transients of a system will die out BEFORE the system is built.

We must determine the conditions under which a system will became
unstable and be able to tell when this happens in the analysis of the system.
Several methods are available for determining stability: root locus, Bode
plot, Routh's stability criterion, and Nyquist Criterion. Only the root locus
and the Bode plot methods will be presented in this chapter.

- 13.6.1 Stability in the s-Plane

Since this course is concerned with linear systems, i.e., those whose
differential equations.are linear with constant coefficients, the transient
response is of the form

- 8.t

c(t) = k.e

transient

™3

where n is the order of the differential equation and the values of s are the
roots of the characteristic equation which are, in general, complex.

s = o+ Jjug (13.36)

o is the real part of the complex variable s and o 3 is the imaginary part of
the camplex variable s. The notation used to indicate this is :
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Previously, we discussed only a first and second-order system and saw the type
of transient response to be expected from each. The characteristic equation
of hicher-order systems, however, can in theory be factored into the product
of several first and second-order factors depending on the order of the
equation. This is demonstrated in Equations 13.37 and 13.38

n n-1 _ )
A s +A S S Ao = 0 (13.37)
Can be expressed
s2 2;1 SZ 2C2
0, n, ) n,
1 2

The transient response of a camplex system is the sum of those associated with
each of the first and second—crder factors. Each root of the characteristic
equaticn must be of one of the forms shown in Figure 13.17. Opposite the
possible values of the roots on the left are shown the corresponding transient
response components as a function of time. Note that camplex or imaginary
roots always occur in camplex-conjugate pairs. That is, they have imaginary
parts of equal magnitude but are opposite in sign.

211 the possible values of s can also be described through use of a
complex plane —- in this case the s-plane. A camplex plane is one in which
the value of the real part of the camplex variable is the distance along the
abscissa and the magnitude of the imaginary part is described along the
ordinate. These are called the real and imaginary axes, respectively. The
complex variable, s, is then a position vector in the complex s-plane where
o = Re {s} is the magnitude of the real camponent and wg = Im {s} is the

imaginary camponent.
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Figure 13.18 shows the s-plane. 1t the values of s, which are the roots of
the characteristic equation, are plotted in the . 5-plane, they produce a
transient solution component as indicated. Areas in the s-plane in which
roots produce stable and unstable responses are also shown. Roots yielding an
undamped response or neutrally stable output' are all on the imaginary axis.
Roots associated with non-oscillatory response are all on the real axis. A
root of the characteristic equation at the origin (s = 0) has a transient
solution equal to a constant.

The mathematical definition of a stable system is one in which the roots
of the equation have only negative real parts. In other words, where s =
o + jw, are the roots of the characteristic equation, ¢ < 0 produces a stable

system.
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FIGURE 13.17. TRANSIENT SOLUTION OF LINEAR .
CONSTANT COEFFICIENT BQUATIONS
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13.6.2 Additional Poles and Zeros : .

The results of adding a real pole or a real zero to the ba51c
second-order control ratio as given by Equatmn 13.26 will be investigated.
When a pair of complex-conjugate poles are dominant, the approximations
developed in Paragraph 13.5.2 yield accurate results. The addition of a third
real pole to a second-order transfer function -can significantly alter the

system time response c(t), and the approximations given in Paragraph 13.5.2 .

no longer give accurate results.
The effects of a third real pole can be seen by considering the control
ratio

C(s) -

S ; K=6»,f 93)
R(s) (s2 + 20w s + wﬁ) ( - pz)

The time response resulting from a unit step input is

(13.39)

c(t) = 1+2 |a] e sin (gt + ¢) + BePst  (13.40)

é= tan! (13.40b)

The transient term due to the real pole, p,, has the form BePs t, where B is

always negative. Therefore, the peak overshoot is reduced, the settling time,
t,, may be increased or decreased, and the phase angle is decreased. This is
the typical effect of adding a third real pole. The further to the left P,
is, the smaller the magnitude of B and the effect on c(t). . Typical time
responses as a function of the real pole location are shown in Figure 13.19

(13.1:350).
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FIGURE 13.19 TIME RESPONSE AS A FUNCTION
‘ OF REAL POLE LOCATION

The time response is also altered by the addition of a real zero to the basic
second-order transfer function of Equation 13.26. The control ratio now .

becomes
C(s) K(s - z) (K = w: /z)
A ; (13.41)
R(S) (52 + ZCwns + mﬁ)
The time response resulting from a unit step input is
1 2 2 12 “tyt
c(t) =1+ K Ez - (wn) + wd] e sin (w,t + ¢) (13.42)
where
-1 wd
¢ = tan z—___—m (13.43)
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From Bquations 13.42 and 13.43, it is seen that' the addition of a real zero
affects both the magnitude and phase of the transient part of c(t). The real
zero tends to increase the overshoot and decrease the phase angle of c(t).
This effect becomes more dramatic as the zero approaches the imaginary axis.
This is illustrated in Figure 13.20 for a stable second-order system with o,
held constant.

3-w \ _I
\.z1=—R 4= —0.1
NN

—— N ——
Y N —

0.00 A

LB RRARRARARRI

\J\zl =0.1

11100088 llllllllllllljlllll USSR E RSN R NI INENIREEERINIENNENISNTIRNESEERRNIRSENI Liipiittit

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 8.00 10.00

TIME, s

FIGURE 13.20. TIME RESPONSE OF A SECOND-ORDER SYSTEM
AS A FUNCTION OF REAL ZERO LOCATION

Several things can be seen by examining the responses in Figure 13.20. First,:
it should be noted that rise time is decreased and the overshoot is increased
with the addition of a real zero. This effect is more noticeable as the zero
moves closer to the imaginary axis. This is to be expected, because when the
zero is at the. origin, it acts as a pure differentiator of the input.
Differentiation of the unit step input yields the unit impulse. When the zero
is in the right half plane, the response is stable but the direction of the
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initial response is opposite to the final steady;stéte value. Additionally,
it should be noted that the initial slope of the response is not zero as is
true for a second-order system without a zero (13.2:91). The block diagram of

a system zero is shown in Figure 13.21.

S juundp- 1/2-1
+
R(s) + A E®

C(s)

$2+2{ w,5+w,?

FIGURE 13.21. BIOCK DIAGRAM OF A SECOND-ORDER
SYSTEM WITH A REAL ZERO

Fram Figure 13.21 it can be seen that the zero operates on the input
signal to produce a signal proportional to both the magnitude and the
derivative (rate of change) of the input signal. Therefore, the system will
react not only to the magnitude of input, but also to its rate of change. If
R(s) is changing rapidly, then E(s) is large anc the system responds faster.
(13.1:360).

13.7 STEADY-STATE FREQUENCY RESPONSE

We have looked at the time domain analysis and specifications of control
systems. 1In the time domain analysis, the typical test inputs were the step,
ramp, and parabola. The frequency response technique, introduced in this
paragraph, 'is a valuable tool to the control systems engineer and provides a
standardized method representing the total performance of a system. The input
for steady-state frequency response is the sinusoid

r(it) = Al sin wt

The basis for the frequency response method is that a system's response
to a sinusoid will be a sinusoid at the same frequency, but the response will




differ in magnitude and phase angle. All that is needed to campletely specify ’ ..
the steady-state frequency response is to be able to find the magnitude of the
output and the phase angle. '

The fact that the output is a sinusoid of the same frequency can be shown
by analyzing a sinusoid input to a first-order system described by

G(s) = —2 (13.44)

s+
T

The input, r(t) = Al sin wt in Iaplace transform is

W
R(s) = 2Al )
S + w
C(s) = G(s) R(s)
and ‘
B Ao
C(s) =
s +-l 52 + m2

Using partial fraction expansion yields

C(s) = + +
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Finding the coefficients C;, C,, and Cg can be a tedious process. By
inspection we can write the form of the solution as

Cc

"t/T+C2 cos wt+§sin wt

c(t) = Cle

Another form of this eguation is

c(t) = c.et/

1 T+ 2 sin (st + ¢) (13.45)

0

The steady-state response can be written as

c(t)ss = A

0 sin (wt + ¢) (13.46)

Magnitude L Phase Angle

which tells us that the steady-state response will always have the same
frequency as the input but will differ in phase angle and magnitude. The

transient response due to the exponential term, Clét/ T, decays to zero as

T

The laplacian operator, s, contains both real and imaginary camponents
and to evaluate coefficient C3 the complex variable "s" would be selected to
be +jw (i.e. purely imaginary). Thus

s = c+jmd

and for a constant amplitude-input sinusoid, o is zero, (Figure 13.22),
therefore

s = jw

13.37




/ PURE HARMONIC MOTION (0=0)
s-PLANE

FIGURE 13.22. s-PLANE - PURE HARMONIC MOTION
The frequency response function, G(jw), is defined by replacing s with jw
in the system transfer function (Equation 13.44).

G(s) = B
S+:i
becomes
G(jw) = —2
3w+—_€

It is important to remember that we are talking about the steady-state
frequency response only when we replace s with jw.

13.7.1 Complex Numbers

In the study of feedback control systems, the relative magnitude and time
relationship between such quantities as position, speed, voltage, current,
force, and torque are the items of interest. These are all real physical
quantities which behave according to the laws of nature. It is frequently
convenient, however, to represent these physical quantities by complex
mathematical symbols that indicate more than the information describing the

13.38
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real quantities themselves. The use of complex vanables to represent real

physical quantities has the advantage of simplifying the mathematical process
‘ necessary to solve the prvoblem. On the other hand, it has the disadvantage
of obscuring the true value of the real physical quantities.

It is the purpose of this chapter to introduce the complex variable
notation which will be used later. Complex quantities are usually expressed
in one of four forms:

(a) rectangular

(b) polar
(c) trigonometric

(d) exponential

The equivalence of these four forms will now be demonstrated.

13.7.1.1 Rectangular Form. The complex quantity Z is drawn on the complex
plane in Figure 13.23. It can be thought of as a position vector in the
complex plane.

- R,

FIGURE 13.23. THE COMPLEX PLANE

The real part is measured along the horizontal or real axis and the imaginary
part is measured along the vertical or imaginary axis.
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In rectangular form the complex variable, z, is
T = x+ 3y

where j is the imaginary quantity \l—_l- .

13.7.1.2 Polar Form. Any position in the complex plane can also be defined
by the angle, ©, of the position vector z, and its magnitude, [Z]|(Figure
13.23). 1In polar form the complex quantity, z, is

z = 2] [fe

In terms of the rectangular form parameters,

Z] = & +¥

@ = tan’ ysx

13.7.1.3 |Trigonometric Form. The trigonometric form of the position vector
in the complex plane can be written again using Figure 13.23. We see that ‘

_ X

oS 6 = =
X +y

sin 6 = —_—
2

Therefore,

cos 6+ j sin ® = + 3
ﬁz+y2 _ 1,x2+y2

Multiplying both sides by

Z] = X +y

®



We have

Iil [cos 8 + j sin 8] =Vx2+y2 X + 3 Y
'-\/XZ + y2 .‘/XZ + y2
The trigonametric form is then
z = |Z| [cos & + j sin 6]

13.7.1.4 Exponential Form. The exponential form of a camplex quantity is
most convenient for mathematical manipulation. It will be shown equivalent to

the trigonametric form.
’ . . X .
. The Maclaurin series expansion € is

Ietting x = J©

. 2 3
e® = 1490 - g?" j-%r ... (13.47)

Now, sin 6 and cos 6 can be defined by series expansions as follows:

. 63 65 67
sin 6 = 6-ﬁ+§—!——-ﬂ+... ., (13-48)
2 4 6
8
cm9=l—ﬁ+%-%+.” (13.49)
Recalling that j2 = -1, Equation 13.48 and 13.49 may be written
Ll 2 Loy 4 .6
0 6
cos 6 = 1+ ‘32{ + ‘341 + ‘321 ... (13.50)
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. 3 st 7
jsing = }?—+-(l%—+-(lg-i—+—(lg-),—+... (13.51)
Adding Equation 13.50 to 13.51 yields

a2 a3
cose+jsine = 1+8+ 0 . a3

The right side of Equation 13.52 is egual to Equation 13.47, therefore
e:’6 = cos 6 + j sin 6

and finally

z = |z]e

(30)
(13.53)

We have proven the four forms of the camplex variable z to be consistent. ‘
They are summarized below

Rectangular Z = x+3y

Polar z = |zl A
Trigonametric z = |zl [cos & + sm 8]
Exponential 7 = Izl &°

13.7.2 Bode Plotting Technique

With this background in coamplex notation we will develop the Bode
technique of frequency response. Beginning with a generalized transfer
function (Equation 13.54), we will manipulate it into the frequency response
standard form, sametimes called the Bode form (Equation 13.55). .
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K s" (s+.a'1)(s.+ a,)(s’ + 2t s+a ?) -
’ (13.54)

G(s) = - —3 -~ 1 2 -
s (s + a,)(s + a )(s” + ZCmnzs + w"z )
Equation 13.54 must be normalized as follows:
s 2% ‘
Ka a, w 2§ ;T+”n v
172 "n, (‘tls-l-l)(‘l.'z s+ 1)\ =, 1
G(s) = P 3 (13.55)
8 0 5 (1, s +1) (t, s +1) s ECE+1
2 © 2 w
nz 2
where
'cl-%,'tzc-%,etc.
1 2
Let
Ka a, «

and K = static loop
sensitivity

Substitute jw for s in Equation 13.55 and rewriting in the Frequency Response

Standard Form
2
K, (30" (1 + 1,0 (1+ jr,0) (1 - ;“-’2- + j2z 7“0’:)
: n 1
G(jw) = - (13.56)
(F0)® (1 +jr,e) (1+ jr,,w)(l - £ s 2
. wn ' nz
2
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Equation 13.56 can be written in polar form .. . ;
6w = [6(iw)| lw) - ~ . -
where IG( jw)l is of the fomm \/Re2 + Im

and ¢(w) of the form tan ~*

Blg

Furthermore, G(jw) can be written in exponential form where

G(jw) = |G(jw)| e&*') (13.57)

To express G(jw) in either of these formats will entail finding the magnitude
G(jw) and the phase angle ¢(w). The Bode technique requires taking the log of
G(jw) to take advantage of addition and subtraction in lieu of multiplication,
and division.

Taking the log of Equation 13.57 yields

log |G(jw)|e’*'®’ = log [G(jw)| + log e’*'*’ ‘
= log |G(jw)] + j .4343 ¢(w)
The quantity, j .434 ¢(w), is the imaginary part and in future discussion
only the angle ¢(w) will be used.
In feedback system work the unit commonly used for the logarithm of the

magnitude is the decibel. The logarithm of the magnitude of a transfer
function G(jw) expressed in decibels is

20 log |G(jw)| = ( ) db . (13.58)

This quantity is often referred to as the log magnitude and is
abbreviated Lm where

Im G(jw) = 20 log |G(jw)| db | (13.59)
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Now, how does multiplication and division become addition and subtraction

. for Bode development? We will take the log of Equation 13.56 and multiply

this by 20 which will give the amplitude ratio in decibels. The use of
logarithms will allow us to add for nmltlpllcatlon and subtract for division.

The Lm of Equation 13.56 becomes

20 log [G(jw)| = 20 log K + 20 m log |jw| + 20 log |1 + j T, 0|

2
+20 log |1+ jr,0f +20 log |1 -£- 43 2
wnl 111
- 20 n log |jw| - 20 log |1 + jr,u]
2
- 20 log |1 + jr,w| - 20 log [1 -4 4 j 2% (13.60)
(02 wnz
n

2

The associated phase angle of Equation 13.56 becomes,

A A+m90°+tan ourr+tanm'
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It is inmediately obvious that a poinf’ by'f point solution of these . .
equations for varying input freguency, w, would be very tedious. A technigque
known as the Bode plot simplifies this process. Notice in BEquation 13.60 that
there are four types of factors in the open~loop .transfer function G(juw).

1. Constant term, Kn

2. Pole or zero at origin, (jw) n
(+n = zero, -n = pole)

3. Simple pole or zero, (1 + jurt) in

2
w n
n

+
4. OQuadratic pole or zero, (1 - -ﬁ- + j2r %—)Jl

The Bode plot uses semilog paper. Magnitude and phase angle are
represented on the ordinate (linear scale) and frequency along the logarithmic
scale as in Figures 13.24 and 13.25. ‘Bode plot technique uses asymptotes and
corrections to the asymptotes. for each of the four types of factors listed
above. All of the factors are individually plotted on the Bode diagram, and
then are added and subtracted (taking advantage of logarithms) to achieve the
composite curve. We will develop the technique for each of the four types-of
factors.
Constant term, Kn The magnitude of Kn in db is

20 1lcg IKnl = constant
and the associated phase angle is
arg (K) = 0° or

Arg (- K ) = +180°

as shown in Figure 13.26.
The magnitude and phase angle are depicted respectively on Figures 13.24

and 13.25. .
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FIGURE 13.26. PLOT OF A CONSTANT ON
THE COMPLEX PLANE

Pole or zero at origin, (jw) *". The magnitude of (jw) *" is

20 log |(jw) *"| = 20 n log w,,

which is the equation of a straight line with slope of +20 n db/decade.

A decade is a frequency band from £, to £, where £/, = 10. 1f £ =4
‘rad/s, then one decade above £ is : £, = 40 rad/s. The octave is also used
as a freqguency ratio and is a frequency band from £ to £, where £/, = 2.
1f £ = 4 rad/s, then one octave above f, is : f, = 8 rad/s. The slope of
420 n db/decade = +6 n db/octave.

when w = 1, the term 20 log I(jw) *“l = 20 log(l) = 0. Therefore, the
magnitude plot of a pole or zero at the originv is a straight line with a '
slope = + 20n dB/decade, passing through the 0 db point at freguency
@ =1 (Figure 13.24). The phase angle of (jw) *" is

Arg {(jw) *“} = 4n 90°
as shown in Figure 13.25.

Simple Pole or Zero, (1 + jwt)*“ the magnitude of this term in db is expressed

as

20 log |(1 + jwr)| *” = £20 n log (1 + jut)
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at very low frequency (i.e., wt << 1) the magnit.izde'bf this curve is 0 db. At
frequencies where wr >> 1 the magnitude asymptote has a slope of +20n
db/decade. The 0 @& asymptote and the +20n ab/dec asymptote intersect at the
corner freguency, w, = 1/t, Figure 13.27.

The phase angle is expressed as

Arg (1 + Jut) ™ = +ntan? ur
At w = 0,¢ = 0°and at

W = «, ¢ = =*n n/2 radians

40
, THA
L/
/ //
(1+] wr)’y/ | |
2 20 (40 db/dec) :
S /,\
] L1 M-(1 +jwT)
w L~ , .
2 T (20 db/dec)
w
8 o
LW We=1.0t/s
(=]
E N 1 -
< N /T (1+jor ) :
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g 20 NG| (-20 db/dec) '
g N \
(T+joT)2 T \\ \N\
(- 40 db/dec) N N
—40 1 1 i

1 1.0 10 100
FREQUENCY RATIO- &/ ‘

FIGURE 13.27. BODE MAGNITUDE PLOT OF TERM (1 + jut) 3P
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Table 13.2 shows the variation of the phase anglé with normalized frequency
“’/“’c' for n = ~1.

TABIE 13.2

PHASE ANGLE VARIATION WITH NORMALIZED FRmUENCY[(l + jm't)_]]

-::’;— tan-l wT
C
0 0
1 -5.7°
.5 -26.5°
1.0 | -45.0°
2.0 -63.4°
10.0 -84.3°
® -90.0°

The following techniques are used to plot the (1 + Jjut) M factor.

iocate corner frequency, we = i/1.

Draw +20n db/decade asymptotes through the corner frequency (+20n
db/dec for zero terms and -20n db/dec for pole terms) .

A straight line can C’be used to approximate the phase shift. The
lineois drawn from 0° at one decade below the corner frequency to n
(+90 ) (+ for zero term, - for pole term) at one decade above the
corner frequency. The maximum deviation using this approximation is
about 6°. The specific phase angle values are shown in Table 13.2
and the appropriate corrections can be applied if desired. These

corrections are shown in Figure 13.28.

The error to the magnitude curve (created by using the asymptote
technique) can be determined analytically. First determine the
error at the corner frequency w, = 1/7.

2 2 72
c T becames +20n log 1+—§
T

+20n log l1+ow
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420n log W2 = #l0n log2 = #3.0ln d

This shows that the asymptote can be corrected by adding
appraximately +3n db at the corner frequency. Likewise for a

frequency ane decade above the cornmer frequency,

= = A0
w-—lOwc-_l_

+20n log Y1 + 100 1%/<% = +20n log VIOL

and

-10 log 101 ~20.043 d (actual, for n = -1)

. Our straight line asymptote used -20 db so the total error at one decade is
-.043 db. Similarly the error at wcllo can be found. At v = 2wc (one
octave) = 2/1, the actual Im for n = -1 is

=20 log Y1+ 4 t?/1> = -10log 5 = -6.9897 db

The asymptote method produced a value of -6 db at this point, thus an error
-.9897, or appraximately -1.0 db.

Therefore, the straight line asymptotes can be made closer to the actual
Im curve by applying a +3n db correction at W and a +ln db correction 1
octave above and 1 octave below w..
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Quadratic Term, [1 +(2c/mr) jo + (jm/mn)‘?]in

Consider the quadratic term

G(s) = 1 AT (13.61)
1 + _Z_C_§ + .s__z.
wn W
n

The log magnitude of G(jw), Equation 13.61, in db is

; \2 2 2
20 log G(jw) = -20nlog/ {1 - (-‘:—)-—) +- ZQ(%)’-) (13.62)
n

n

and the phase angle is
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2t =—
Arg G(ju) = -ntant |—D2 (13.63)

- E)

If ¢t > 1, the quadratic term can be factored into two first-order factors
plotted following the technique of the previous section. If ¢ < 1 the
quadratic factors into a camplex-conjugate pair and we plot the entire
quadratic without factoring. The influence of the damping ratio, z, on the
magnitude plot and phase angle plot is illustrated in Figure 13.29. From
Figure 13.29 we see that the maximum value of the resonant peak is a function
of z. The maximm value of the resonant peak is given by

M = 3 (13.64)

Y
20 yf1 - 22
. and the frequency at which this peak occurs is

_ 1/ _ 52
O, = e 1-2¢ (13.65)

The asymptote technique will provide accurate curves provided corrections

ele

are applied.
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‘At very low freqﬁency %— «1

n
201log G(jw) = -20nlogl = 0db

Therefore, at low frequencies the asymptote for the quadratic term is a

straight line with a slope of zero. - At high frequency ww, > 1, Equation

13.62 can be approximated as

ft

20 log G(jw)

-20 n logj(-%j-

-40 n log(-::—) db

[

The last equation represents the equation of a straight line with slope
of -40n db/dec. If the quadratic is in the numerator (i.e., +n) the slope is
positive. The two asymptotes intersect at w , hence, w is considered the
corner frequency of the quadratic factor. The actual magnitude plot for the
quadratic factor differs strikingly from its asymptotic plot in that the
amplitude curve depends not only on W, , but also on . From Figure 13.29,
several values of Lm around w can be plotted for a specific { to obtain an
accurate magnitude plot.

The phase angle plot for a guadratic factor can be obtained by locating
the +90°n point at w and obtaining a few points either side of w for a
specific value of { from Figure 13.29.
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To sumarize, the procedures for plotting the qﬁédrétic term are:

a. Determine the value of r and Wy e

b. Plot the zero db asymptote fram low .'frequencies to w, and a +40n
db/dec asymptote beginning at W

c. Use the curves presented in Figure 13.29 to correct the asymptotes
in the vicinity of the corner frequency.

d. At the corner fregquency, W locate the +90%n phase point. Using
the curves of Figure 13.29 for the specific z, plot enough data
points to permit sketching the phase angle curve.

When each of the four types of factors are plotted on the Bode plot, all
the magnitude curves and rphase angle curves are summed at different
frequencies to camplete the composite curves. The following problem will
illustrate the simplicity of this technique.

Example Praoblem:

640s (s + 1000)
(s + 10) (s2 + 80s + 6400)

Given: G(s) =

where

ZCwn = 80, o = 80, ¢t = 0.5

1. First put G(s) into the fregquency response standard form.

(640) (1000) (jw) (1 + 3 .001w)

2 Bdw

G(jw) =
(6400) (10) (1 + j .lw) (1 - 62’00 + 3 5400)

where

K = (640) (1000)

n = (6400) (10) =10
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2. Find the corner frequencies where w, = 1/t. For a quadratic term
the natural frequency w, is the corner frequency w -

Zeros: w, = 1000, +20 dt/dec
Poles: W = 10, =20 db/dec; w, = 80, =40 db/dec

3. Plot the individual magnitude and phase angle terms on the Bode.
Also 20 log K = 20 log 10 = 20 dk.

4. Apply the appropriate corrections at the corner frequencies.
5. Add the curves. |

6. Figures 13.30 and 13.31 show the contribution of the separate
factors and the composite curve for the example.

We must emphasize that the development on the Bode plot presented here is
based on the steady-state fregquency response of an open-loop system to a
sinusoidal input. Techniques exist to arrive at the closed-loop frequency
response, but these are beyond the scope of our study. The closed-loop
frequency response graph is a plot of magnitude ratio, M(jw) = C(jw)/R(jw),
and phase angle, ¢, wversus frequency. One method of determining the
closed-loop frequency response is by using the Nichol's chart (Reference
13.3).
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13.7.3 Relative Stability . :

The relative stability of a closed-loop system can be determined by
looking at the Bode plot of the open-loop transfer function, KGH(jw). Several
terms are used to relate stability by the Bode Plot. ‘The mathematical basis
for these relationships cames fram the Nyquist Stability Criteria. The terms
are:
13.7.3.1 Gain Margin. Gain margin is the additional amount of gain, measured
in decibels, that the magnitude ratio can be increased before the system goes
unstable. The gain margin is defined as the reciprocal of the open-locp
transfer function, GH(Ju)) , evaluated at the frequency where the phase angle is
-180°.

. . 1

This quantity is illustrated in Figure 13.32.

13.7.3.2 Phase Margin. Phase margin is the amount of phase shift, measured
in degrees, that the phase angle curve can be displaced to produce instability
in the system. Phase margin is measured at the frequency where the Im plot
crosses the 0 db line.

Phase Margin = +180° + ¢
(¢ = phase angle measured at 0 db)

This quantity is illustrated in Figure 13.32.
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Stability requires that the phase margin be positive, i.e., the phase angle at
the 0 d crossover point must be greater than ~180°.
13.7.3.3 The Gain Crossover Point is defined as the point or points where the

magnitude curve crosses the zero db axis.

13.7.3.4 The Phase Crossover Point is the point on the Bode phase angle plot
at which the phase argle is -180°. The frequency at which the phase crossover
occurs is called the gain margin frequency.

13.7.4 Frequency Daomain Specifications

There are several terms used to express the specifications of systems in
the frequency damain. Although these terms are usually used to define the
closed-loop response, they can also be used to express characteristics of the
open-loop Bode plot. .
13.7.4.1 Bandwidth (BW). The definition of bandwidth of a system depends on
an accurate description of the problem. Normally the bandwidth is defined as
the frequency at which the magnitude ratio M(jw) = C(jw)/R(jw) has dropped
to 70.7% . of the zero frequency level or 3 db down from the zero frequency
level as shown in Figure 13.33. This does not cover all cases in that the
magnitude ratio at zero frequency may be low as in Figure 13.34. In this case
the bandwidth is defined as the frequency range over which the magnitude ratio
does not vary more than -3 db fram its value at a specified frequency. For the
purposes of this course the bandwidth can also be determined as the -3 db
point on the Im plot of the open-loop system. This value should correspond
closely to the bandwidth of the closed-loop system. B
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The frequency at which the -3 db point is reached is called the cutoff
frequency, .. ‘Bandwidth is important for two .reasons. First, it is
indicative of the noise filtering characteristics of the system. System noise
is always present and the bandwidth and the corresponding cutoff frequency
dictate at what frequency the response and thus the noise will be filtered.
Secondly, the bandwidth is a measure of the transient response properties of a
system. A large bandwidth will allow higher frequencies to pass to the output
and the system may be characterized by fast rise time and large overshoots.
However, if the bandwidth is narrow, only low frequency signals are passed and
the time response will generally be slow and sluggish.
13.7.4.2 Resonant Peak, M. If the system is of second-order or higher, it
may have a resocnant peak, M - For a second-order system there exists exact
mathematical relationships between z, the damping ratio, and w o the frequency
at which Mr occurs. A higher-order system can often be approximated by a
second-order system to simplify the solution. The resonant peak, M., Figure
13.33, is an indication of the relative stability of the system as a high
value of M correspords to a large overshoot in the time domain., Typical
values of Mr for usable stable systems may vary from 1.1 to 1.5.

13.7.5 Experimental Method of Frequency Response

A Bode plot may be determined experimentally and ultimately will provide
the system transfer function. The method depicted in Figure 13.35 will allow
for measurement of the magnitude ratio and phase angle versus frequency.

SINE WAVE BRUSH RECORDER
GENERATOR CHI CH Il

UNKNOWN |
PLANT >

FIGURE 13.35. EXPERIMENTAL BODE TECHNIQUE
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Once the Lm and phase angle versus f’requency curves are plotted, asymptotes can
be fitted on the curve and the corner frequenc1es determined. 1If a resonant
peak occurs, use the techniques discussed prevmusly to determne Cand @ .

In our discussion, we have been talking about open-loop systems that do
not have poles and/or zeros in the right-half of the s-plane (RHP). These
systems are known as minimum phase systems. A nonminimum phase system is one
which has an open-loop pole and/or zero in the RHP. A nonminimum phase factor
is of the form

. +n
(1-32w)™ or 140 ?s3208

n n
If a system is known to be minimum phase, only the Lm plot is required to
fully determine the system transfer function; while both the Lm and phase

angle plots are required to determine the system transfer function if the

system is nonminimum phase. For example, consider the following transfer
functions:

Gl(S) g{:_]::-l%-)', Gz(S) - ?(%_’%_3_;' G3(S) - (:;1) * and Gq(S) = (::1)

All four transfer functions have similar Lm plots, but their phase angle plots
are all different (G, (s) is minimum phase; G,(s), G,(s), and G,(s) are all
nonminimum phase).

13.8 CLOSED-LOOP TRANSFER FUNCTION

For reasons to be seen shortly, complex control systems are most 6ften
represented by a block diagram in the form of Fiqure 13.36 where the forward
transfer function, G, and the feedback transfer function, H, are expressed as
functions of s, the Laplace transform variable. The closed-loop transfer
function of Figure 13.36 will now be developed in terms of the forward and
feedback transfer functions for our first and second-order systems. No
transfer function present in the feedback loop is called unity feedback (in
Figure 13.5, H(s) = 1).
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E(s)
R(s) + : C(s)
—— G
INPUT ACTUATING (®) OUTPUT
- SIGNAL
H(s)

FORWARD TRANSFER FUNCTION — G(s)

FEEDBACK TRANSFER FUNCTION — H(s)

OPEN-LOOP TRANSFER FUNCTION (OLTF) — G(s) H(s)

CLOSED-LOOP TRANSFER FUNCTION (CLTF) — C(s)/R(s) -

ACTUATING SIGNAL — E(s) } .

FIGURE 13.36. STANDARD FORM OF FEEDBACK CONTROL SYSTEM

In order to find G(s) of the first-order System (Figure 13.5), equate
torques and assume only damping present

ye = b 6
taking the laplace transform and noting that G(s) = 6(s) /E(s) we find

uE(s) = bsb(s)

|~

Gs) = 2 (s) =

=g
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again letting
| ..

G(s) =

o

(13.66)

al~

The same procedure for the case including inertia yields the following -

torque summation:

ue = 160 +bé

I 2 bs
E(s) = “-IS o(s) + ;l_ e(s)

G(s) = -g(s) = -2—”b— (13.67)
Is® + bs

Thus, we have the forward transfer function for our two systems. Referring to
‘ " Figure 13.36, we will now derive an expression for the closed-loop transfer
function in terms of G and H.

Q
n
S

G(s) =

5

and also

" E(s)

R(s) - H(s) C(s)
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substituting
G(s) [R - H(s) C(s)] = Cl(s)

R(s) G(s) = C(s) [1 + GH(s)] (13.68)

the system closed-loop transfer function becames

c - G(s) ,
i (s) - '1' +_GH(S) (13.69)

This is a very important relationship which should immediately be cammitted to

meEmory.
As noted previously, the block diagram of Figure 13.36 is the standard
form of the feedback control system. When in this form the closed-loop
transfer function can be quickly found by Equation 13.69. But most important,
the characteristic equation of the system from which the transient response is
determined is immediately evident. Referring to Equations 13.68 and 13.69 we
will show that the characteristic equation is found fram the denominator of

the right hand term in Equation 13.69.

14+CGH(s) = 0
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' The characteristic equation is merely 1 plus the system open-loop transfer
function, GH(s), which is directly available.
But first, applying our closed-loop transfer function expression to the
first-order system we use the forward transfer function of Equation 13.66.
Since the system has unit feedback, H(s) = 1 and

GH(s) = 1—5

Therefore, using Equation 13.69 yields

1

c _ Gs) _ _1s
RE = Tr@e ~ Tv O
TS

1

o
. ) = 55T

which is consistent with Equation 13.16, the transfer function derived from the
equation of motion of the entire system.

In the case of the second-order system, since H(s) is unity

GH(s) = _TU_...
Is® + bs

For this system, using Equation 13.69

H
C (s) = G(s) - 152 + bs
R 1 + GH(s) 1+ u
2
Is® + bs
% (6 = — 1 (13.70)
Is bs
—_—t=+1
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is again consistent with the more direct method leading to Eiquation 13.18. .
The dencminator of Equation 13.70 is the characteristic equation introduced by
Equation 13.12. "

Transfer functions are written to describe either whole systems or parts
of systems using the appropriate differential equation. When control systems
described by block diagrams, are reduced to some standard form, they quickly
yield both the transfer function of the entire closed-loop system and its
characteristic equation.

We will now discuss the technique of manipulating control systems in
block diagram notation to cbtain the desired form.

'13.9 BIOCK DIAGRAM ALGEBRA

Tt was seen that the simplification resulting fram the use of operational
calculus is further increased when transfer functions and block diagrams are
introduced. The special methods of predicting the transient response of a
system without solving its eqdation of motion are most conveniently employed '
when the block diagram is of the form of Figure 13.36.

In practice, individual transfer functions are written for each integral
unit of a more camwplex system. For example, the system of Figure 13.37
represents the pitch axis of an aircraft autopilot where the input is the
coamanded pitch attitude and the output the actual aircraft attitude. The
autopilot, the elevator servo, and the aircraft itself are described separately
in Gy, G,, and G, respectively. As long as it is realized that transformed
quantities are used the G(s) can be discarded and only G used.

The system of Figure 13.37 can be simplified by cambining the inner loop
into a single transfer function. If we let G, be the closed-loop transfer

4
function of the inner loop we have

Figure 13.37 can then be redrawn as shown in Figure 13.38. This diagram is
then further reduced by noting that .
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and

Denoting

G = §4 6 = Ef" G = gg
GGG, =;-1-%%:=%
Gs = GGG, = cl;lizzz

AIRCRAFT

AUTOPILOT DYNAMICS
\ ELEVATOR SERVO - /
r — Y

Z ACTUATING \
SIGNAL
COMMANDED - ELEVATOR
ELEVATOR ACTUATING
ANGLE SIGNAL

ELEVATOR
ANGLE

FIGURE 13.37. AIRCRAFT PITCH AXIS OCONTROL SYSTEM
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4
FIGURE 13.38. (FIGURE 13.37 REDUCED)
+
-—.ﬁ-—)—@ E Gs C —_—
! o

FIGURE 13.39. (FIGURE 13.37 FURTHER REDUCED)
We have, finally, the control system described in the proper form in Figure
13.39. '

The following block diagram identities, Figure 13.40, will assist in
manipulating complex control systems into the standard form for analysis.
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(a)

Y+

(b)

FIGURE 13.40. BLOCK DIAGRAM IDENTITIES
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FIGURE 13.40. CONT.
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(@)

Yo

H, +H,

BLOCK DIAGRAM IDENTITIES
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(o)

FIGURE 13.40. CONT. BLOCK DIAGRAM IDENTITIES

13.10 STEADY-STATE PERFORMANCE

The steady-state accuracy of a system is of considerable importance and
is often related in terms of the steady-state error. Fiqures of merit for
steady-state performance are the error ccnstants, KP’ Kv, and Ka often
referred to as the position, velocity and acceleration error constants.

A technique used to indicate the steady-state performance of a system is
to classify the system by "Type". The number of free or pure integrators in
the forward loop is the Type system (system must be stable and represented by
unity feedback). For a specified input function, an n-type system will
produce a mathematically predictable steady-state error. Consider the unity
feedback system in Figure 13.41. A unity feedback system is used in this
development sincé we will be relating the performance as a function of the
steady-state error, e(t)ss, where

eltlgg = Tl —clt) g

For this relationship to be valid in this development, the reference input
r(t) and the control variable c(t) must be dimensionally the same and must be
to the same scale.
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R(s) "'QD E(s) - _cm

FIGURE 13.41. UNITY FEEDBACK SYSTEM

E(s) = R(s) - Cl(s)
and
C(s) = E(s) G(s)
therefore
E(s) = R(s) - E(s) G(s)
E(s) [1 +G(s)] = R(s)
E(s) _ 1
R(s) 1+ G(s)
The error signal E(s) is a function of tht.e plant, G(s), and the reference
input R(s).

G(s) can be represented by

Kn('fls + 1) (Tzs + 1) ———

n 2
s (Tas+1)('rbs+l)<§_+_2ﬁ+])

G(s) =
w 2
n wn

Defines "Type"
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‘ wvhere n = 0, 1, 2, eceee FbraTypeOsji‘steﬁin=0; i.e., no free
integrators in the forward loop. G(s) must be expressed in the above form to
properly evaluate the overall gain, Kn’ of the transfer function. This gain
is often referred to as the "DC" gain or "type" gain.

We will seek to show the relationships between the inputs, the n-type
system and the steady-state error. First consider the general error and apply
a step, ramp, and a parabolic input.

R(s)

E(s) 1+ G(s)

13.10.1 Step Input
Iet r(t) = m_l (t) and R(s) = R/s and apply the final value theorem.
Recall for any function F(s).

lim s F(s) = lim £(t) E(s) = ——=—— R(s)
‘ s+ 0 £ = 1+ G(s)
s s R/s
e(t?ss - i._a;rg 1 + G(s)
R
1 + lim G(s)
s+0

Kp Position Error Constant. The position error constant, Kp, is defined as

K = 1lim G(s)
P s+0
Therefore,
_ R
e(t)ss T 1T+K
p
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For a Type 0 system
(=) (=)

XS
; : (===) (==)
= G = ———————
Kp :J;rg (s) i_lxg K, e
Kp = KO' the overall gain of the transfer function.

For a Type 0 system a step input yields

R

e(t)ss = 1-!—K0

and the steady-state en'orvis represented graphically in Figure 13.42

4N P
, .
.(STEP INP
. VAR ‘\un N\
;- A \ ¢ e(t)
c(t)| ' Ctty, (STEADY

v
// STATE RESPONSE) —/

y ,
/ - TRANSIENT
L

| t ==

FIGURE 13.42. STEADY-STATE

TYPE 0 SYSTEM - STEP INPUT

For a Type 1 system

K, (-—) (-—)

G(s) s ) =)
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. Ky (=) (=)

K = limG(s) = p—
P s+0 s+0 © (=== (==)
K = o™
p
Therefore,
= _R =
elt),, = T+s -0

The resulting error fram a step input into a Type 1 system is zero. Similarly
for a Type 2 and 3 system with a step input, the resulting error is zero.

13.10.2 Ramp Input
Consider a ramp input r(t) = Ru_1 (t), R(s) = R/s2

Therefore,

2
_ Ris
‘ B = Tieer

s R/s2

e(t)ss = lim 1 + G(s)

s+0

K, Velocity Error Constant. The velocity error constant, kV is defined as

K, = lim s G(s)
s>0
‘ Therefore,
|




which is the error in displacement (of the output;) due to a ramp. input.
For a Type 0 system

K = lims K

0
V_ s+0 '

0=

and the resulting steady-state error is infinite (Figure 13.43)

c(t)

FIGURE 13.43. STEADY-STATE ERROR - TYPE
"0" SYSTEM, RAMP INPUT

For a Type 1 system

sK1
KV = lim s = Kl'
s+0

the overall gain of the transfer function. The resulting e(t)Ss = R/Kl‘

Therefore,

e(t) ss = R/Kl

Figure 13.44 illustrates a Type 1 system with a ramp input.
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c(t)

FIGURE 13.44. STEADY-STATE RESPONSE OF A TYPE 1

SYSTEM WITH A RAMP INPUT

For Type 2 and Type 3 systems KV = = and the resulting steady-state

error is zero.

13.10.3 Parabolic Input

2

Consider the input r(t) = Rt® u_, ()/2, R(s) = R/s>

&('t:)s

Ka’ Acceleration Error Constant. The acceleration error constant, K

5

S

s»0 52 + 52 G(s)

R

lim s2 G(s)
s+0

is

defined as

a’

k, = lim s G(s)
s+0
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The steady-state ei'ror, : .

e(t) Ss =

mwlw

is the error in displacement (of the output) due to an acceleration type
input.

For a Type O system

K, = Lims? Ky = 0
s»0
and for a Type 1 system
s2K1
Ka=lim p = 0
s+0

For Type 0 and Type 1 systems a parabolic input will result in a parabolic ‘
output with the steady-state error, e(t) ss’ increasing to infinity (Figure
13.45). ‘
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FIGURE 13.45.

For a Type 2 system

e(t)

PARABOLIC
INPUT

TRANSIENT

t = o

STEADY-STATE RESPONSE OF TYPE 0 AND TYPE 1
SYSTEMS TO A PARABOLIC INPUT

s>0 52

the overall gain of the transfer function.
The steady-state error, e(t) ss’

(Figure 13.46).
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c(t) .
PARABOLIC Dee —aB — :
INPUT (t)s: CONST

FIGURE 13.46. STEADY-STATE RESPONSE OF A TYPE 2
SYSTEM TO A PARABOLIC INPUT

For a Type 3 system

52 K3
K. = lim = o

a s+0 s3

Therefore the steady-state error is zero.
The information that has been developed is presented in tabular form in
Table 13.3. ‘
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TABLE 13.3

STEADY-STATE ERROR

Error Constants Stegdy—State Error

Type . Parabolic
System | Step |Ramp | Parabolic| Step Input Ramp Input Input
R R R
= = K = et) .. =——% |let) . == |elt) . =%
% I\r a ss 1+ Kp ss K, ss Ka
o |k, Jo 0 e(t) = —= o o
0 ss 1+ KO
- =R ®
1 © K 0 =0 e(t) ss = X,
= = _ R
2 ® L] K2 =0 =0 e(t)'-__'s = KZ
i
3 o © © =0 =0 =0

13.10.4 Steady-State Response of the Control Variables
The foregoing discussion has been looking at the steady-state error,

based on a specific input to a known plant, G(s). It is also interesting to
loock at the steady-state value of the control variable, c(t) ss’ for a known
steady-state error signal, e(t) ss®

Consider again the following equation:

cls) _ Kn (Tls+1) (125+1) eee
(s) st (s + 1 (1, s+ 1) ...

G(s) =

t

Rewriting yields

('ras + 1) (TbS+ 1) ...

Kn ('rl s + 1) (12 s+1) ...

E(s) s"c (s)
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Applying the final value theorem C . . -
s({as+1)(-rbs+1) T,
e(t) = lim s E(s) = 1lim - s C(s)
ss 550 520 Kn(-r1 s+ 1) (':2 s+1) ...

= lims [s" C(s)]

s+0 Kn
Recall the differential theorem
D® c(t)] = s" Cls)

with initial corditions equal to zero.
2pplying the final value theorem to the differential theorem yields

lim s [s® C(s)] = D" c(b) |
) ([
We may now write
D clt)
e(t) =
K,
or
_
Kn e(t)ss = D c(t)ss

From this eguation and the characteristics of the systems as shown in
Table 13.3, the following conclusions are drawn regarding the steady-state

response:

a. A type 0 system is one in which a constant actuatmg ‘'signal
maintains a constant value of the output, i.e.,

KO e(t)ss = C(t) ss .
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b. A Type 1 system is ome in which a constant actuating signal
maintains a constant rate of change of the output, i.e.,

K, e(tl,, = D c(t)é’s

c. A Type 2 system is one in which the second derivative of the output
is maintained constant by a constant actuating (error signal) i.e.,

_ w2
K2 e(t)Ss = D c(t)ss

13.10.5 Determining System Type and Gain From the Bode Plot

System type and gain can be obtained fram a Bode Plot with the system in
unity feedback form. The slope of the low frequency portion of the Im curve
determines the system type: a 0 db/dec slope represents a Type 0 svstem, =20
db/dec a Type 1 system, and a -40 db/dec slope a Type 2 system. The system
gain (Kn) is determined fram the Im plot by projecting a vertical line from
w = 1.0 rad/sec to the low frequency asymptote (or its projection) and reading
across horizontally the Im value. This Im value represents

Im G(jw) = 20 log K

Depending on system type, Kn = KO, Kl' or K,. Figure 13.47 illustrates how

the Bode Plot is used in the mamner described.

Fan LOW FREQUENCY ASYM PTOTE
(SYSTEM TYPE)

LOG MAGNITUDE-DECIBELS (db)

FREQUENCY (w) RADIANS/SEC

FIGURE 13.47. SYSTEM TYPE AMD GAIN FROM A BODE PLOT
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13.10.6 Sumary
The static error constant can be used to quickly determine the ability of

control system to follow a specific input. The application of error constants
is not limited to systems with inputs classified as one of the three hasic
types of test signals. For linear systems, the concept can easily be extended
to systems with inputs that can be represented by a polynamial, i.e.,

| . 2\
r{it) = R{l+t + 5 u_l(t)
The steady-state error is

.
e(t) oo T+X

* R
v

mw‘w

a superposition of the errors due to each input signal camponent acting alone.

The chief advantage to the foregoing approach to steady-state response is
the ease and timeliness of arriving at the answer. The chief disadvantage of
the error constant approach is that only one of the constants has a finite
value which is not zero or infinity for a particular n-type system. In cases
where the steady-state error is a function of time, the error constant
approach only gives an answer of infinity for e(t) ss and does not provide an
indication of how the error varies with time. Even though the steady-state
error may turn out to be infinite, for an actual problem, the input may be
applied for a finite time, thus the error will be finite. This finite error
- may be well within the specifications.

It would appear desirable to select a large value of K. the overall gain
of the transfer function, to minimize the steady-state error; but not without
a penalty. Too large a value of K, may force the system unstable. As we will
see when we get to root locus analysis, an adjustment of the system gain
effects both the natural frequency and the damping ratio for a closed-loop
system with camplex poles. In many cases the exact value of K which results
in unstable system operation may be found by analysis. Routh's criterion, for
example, will provide the value and the application of the criterion may be
found in the literature (Reference 1). '
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13.11 ROOT LOCUS

An accurate prediction of the system’s performance can be obtained by
deriving the differential equation of a control system and then determining
its solution. This approach is not feasible, however, for any but the
simplest system. Not only is the direct solution method extremely tedious,

but if the response does not meet the required specifications, no indication ==

is given of how to improve its performance.

The aim of the design engineer is to predict the performance of the
system without solving its equations of motion. Also, he would like the
analysis to indicate how to modify the system in order to produce the desired
response characteristics. Several methods are available which both predict
stability and indicate the type of compensation required. Of those, the Bode
plot has already been discussed and the root locus will be discussed next.
Another technique is Nyquist criterion. The theory and application of root
locus will be described.

Definition: The root locus is a plot of the roots of the characteristic
equation of the closed-loop system as the gain is varied from zero to
infinity. The definition itself presents the underlying theory of the root
locus method. The primary objective is to determine system stability. This
leads to another question. What determines stability? The answer, is the
transient solution, which is determined from the roots of the characteristic
equation, which cannot have positive real parts and be stable.

The general approach used in the development of the root locus technique
will be to plot a root locus for a simple system the hard way, 1i.e.,
successive analytic solutions for the roots of the characteristic equation for
selected values of static loop gain, K. Then the significance of the root
locus will be discussed for the simple system, and then for any system.
Lastly, some rules will be developed which permit quick plots to be drawn
using relatively little labor.

13.11.1 Poles and Zeros

This section will define what is meant by poles and zeros and also
discuss their relationship in functions of interest here. Consider the system
represented by the block diagram in Figure 13.48. '
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Rs)  + ES) Cis)
P g}-———> G(s) -

H(s)

FIGURE 13.48. CLOSED-LOOP SYSTEM

and where in general ‘ .

K (1.8 + 1) (t.,s + 1) (...) o N »
_ n 1 2 _ ' _ G(s)
6e) = L TsTDmEr DG L W T Kange) (13.74)
and
(Tus + 1) (TSS + 1)(...) oy NH(s)
HE) = X ey, Do . w7 e (13.72)

where the numbers Tye Tor ceei Tgr Tpr oeeed Tyr Tgr eeei Tyr Typr -e- may be
real, camplex or zero.

We now define two new terms:

ZERO — A zero of a function (like G(s)) is a value of s that makes that
function zero.

POLE — A pole of a function (like G(s)) is a value of s that makes that .
function go to infinity.
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‘ For Example:

s = -1 is a zero of G(s)
T
1

s = -%—isazeroofH(s)
(o ]

- 1 .

s = --T-—lsapoleofG(s)
a
1 .

s = -T—-lsapoleofH(s)
II

In terms of the s-plane, (Figure 13.49), this means that there are values
that cause G(s) and H(s) and incidentally their product G(s) H(s) to be zero
and to be infinite. Figure 13.50 is a plot of the function G(s) H(s).

i
I (o jwy) A S-PLANE
Ta
X
[
o
© X
1 +3
Ta T
1_.~ (axjwy)
Ta 1™a
X

FIGURE 13.49. s-PLANE FIGURE 13.50. SURFACE OF G(s) H(s)




The value of s which results in an infinite value of G(s)H(s). is the pole ‘ .

of G(s)H(s).
The pole gets its name fraom the appearance that a graph of the magnitude
of G(s)H(s) makes as "s" assumes values near the point + 1/-1::[I (Figure 13.51).

A

|G(s)H(s)]

FIGURE 13.51. A POLE OF G(s)H(s)

Note that the poles and zeros of the function G(s)H(s) campletely
describe the function. When we take the composite function like

G(s)/[1 + G(s)H(s)], where presumably we know the poles and zeros of G(s) and

H(s), one must exercise caution regarding the transference of this information
to the camposite function.

For Example:
A zero of G(s) is also a zero of G(s)/[1 + G(s)H(s)]
A pole of G(s) does not result in a pole or zero of G(s)/[1 + G(s)H(s)]
A zero of H(s) does not result in a pole or zero of G(s)/[1 + G(s)H(s)]
A pole of H(s) is a zero of G(s)/[1 + G(s)H(s)]

A zero of 1 + G(s)H(s) is a pole of G(s)/[1 + G(s)H(s)]
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Now, since we want to see if the transients die out let us take. the
expression C(s)/R(s) (Equation 13.69), solve it for C(s) and assume some form
of excitation R(s). Actually any form of excitation (sine,' unit step, unit
ramp, etc.) may be used. .

Substituting Equations 13.71 and 13.72 into Equation 13.69 yields

C(s) _ G(s)
R(s) 1 + G(s)H(s)
K N, (s)
" D (s)
= N_(s) (s)
1+K — T

a D,(5) " D,T8)

K, N, (s) D, (s)
D,(s) D, (s) + KK N_(5)N, (s)

(13.73)

The zeros of DG(s) Dﬁ(s) + K K NG(s) Nﬂ(s) are the same as the zeros of
1 + G(s)H(s) and Equation 13.73 can be factored into the form

K, N.(s) D,(s) _ K, N.(s) D,(s)
C(s) = B (13.74)
(s - rl)(s - rz)(s -5 ... (roots from Root Locus)
where, for convenience we let 6, (s) = 1, the unit impulse function. By

partial fractions Equation 13.74 can be expanded into the fom

C(s) = B A A

+ +
s-r, Ss-r, S-TL

+ ..
3

where r, are the zeros of 1 + G(s)H(s) and the poles of G(s)/[1 + G(s)H(s)].
The factors, r,, may be real or complex and positive or negative. Note that
the inverse transform of each element leads to an exponential term. Assuming
r, is real and positive, then (r; = + o¢,) and
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R +o, t ' A h
s -, s - o A e (13°75‘.

A, A, A, -0, t (13.76).

STABLE

In the first case (Equation 13.75), the amplitude of the transient term
gets large as time gets large because of the 3°it term.

In the second case (Equation 13.76), the transient term disappears

-0, t
because as time gets large e goes to zero.

Thus, if a system under investigation has any positive real poles of
G(s)/[1 + G(s)H(s)] or a positive real zero of 1 + G(s)H(s) then the system is
unstable. '

Conversely, if the system being investigated has all negative real poles
of G(s)/[1 + G(s)H(s)] or all negative real zeros of 1 + G(s)H(s), then:the.
system is stable.

If we assume that r_ is complex then we know there exists another zero of
1 + G(s)H(s) which is the complex conjugate of r_, namely % .

This pair of zeros of 1 + G(s)H(s) leads to a term in the partial
fraction expansion where r_ = « + jw and T = o - jw of the form

ACS + Ad

(5 - o) + (@)

which has the inverse transform of the form

K e%" cos (wt+ ¢ )

where if o is positive, o = +o , then we get an exponentially increasing
cosine term (Figure 13.52).
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4 0°= Ke ‘ctm (wct + _¢c)

e%ct FORMS THE ENVELOPE

FIGURE 13.52. EXPONENTIALLY INCREASING COSINE TERM

However, if e, is negative, @, = —0,. Then the response is of the form
-0 t

Ke © cos (wct + ¢c) which is a cosine term with an envelope that decreases
‘ with time (Figure 13.53).

K

t

Ke C cos(wet+0.)

e ° FORMS THE ENVELOPE

FIGURE 13.53. EXPONENTIALLY DECREASING COSINE TERM

Thus, we conclude that if a complex zero of 1 + G(s)H(s) has a positive

real part, a = +0r then the system is unstable and if a camlex zero of
‘ 1 + G(s) H(s) has a negative real part, a = ~Ogr then the system is stable.
Actually the conditions for real zeros and complex zeros are the same:
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REAL PART POSITIVE —_ SYSTEM UNSTABLE

REAL PART NEGATIVE — SYSTEM STABLE

Now what is the significance of the location of the zeros of 1 + G(s)H(s)
upon the s-plane? Looking at the s-plane we  find that if ANY zeros of

1 + G(s)H(s) are in the RHP the system is unstable. If ALL zeros of . .

1 + G(s)H(s) are in the LHP the system is stable.

Now knowing that instability is caused by a zero or zeros of
1 + G(s)H(s) with a positive real part, the problem of determining stability
degenerates to the problem of determining whether or not there are any zeros
of 1 + G(s)H(s) in the RHP or, equivalently, whether 1 + G(s)H(s) does indeed
have a zero or zeros with positive real parts.

13.11.2 Direct Locus Plotting .

The example to be used for direct root locus plotting will be the second-
order system whose differential equation and transfer functions were derived
earlier. The system is shown in Figure 13.54 and Equatlon 13.67 gives the
forward transfer function: H(s) = 1.

R(s) + K C(s)
— G(s) = ot

1

FIGURE 13.54. UNIT FEEDBACK SYSTEM
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G(s)

1]

Is2 + bs

The following values will be assumed for the constants

Equation 13.67 becomes

G(s)

s(s + 2)

X (13.77)

The problem is to determine the roots of the characteristic eguation for
all values of K and to plot these roots in the s-plane.

. Fram Equation 13.69 the system closed-loop transfer function is
c G(s)
& = TraEe
K __
{ 2
% (s} = S +K’) = X
1+ m- s” + 2s + K

The system characteristic eguation is

2

sT+25+K = 0 (13.78)

The roots of Equation 13.78 are

51,2

-1+ ¥Y1-K

. The location of roots for various values of K is shown in Table 13.4.
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‘TABLE 13.4

CILOSED-LOOP ROOT LOCATIONS AS-A FUNCTION OF K

S2

LK 2
0 | 0 + 30
172 -.3+ 30
1 -1+30
2 -1+31
3 -1+3 V2
o -1+ 3

-2 - j0 (open-loop poles)

-1.7 - 30
-1-jo'
-1 - 31
-1-3 V2
-1 - je

The points fram Table 13.4 are plotted in the s-plane of Figure 13.55
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KcooA Alm,jw

K=3T S-PLANE

X——> 7 X > Re,0
Fx=.5 h

K=.5
K=z-"r
K=3 T
K=oy
FIGURE 13.55.
Root ILocus for GH(s) = K __
s(s + 2)
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The root locus of Figure 13.55, which is the "locus of roots of. the g
characteristic equation as a function of gain, quickly indicates whether o
not the system is stable, and, also, thek form of the transient response for
any selected value of K. From the plot, it can be seen that for 0 < K < 1 the
roots are real and negative resulting in exponential decay from each root.
For 1 < K < =, however, the roots are complex with the real part negative.
The corresponding transient response is oscillatory within an exponentially
decaying envelope. For example, for K = 1.5 the approximate values of s from
the locus are

s, = -1+30.5

s, = -1-30.5

The system transient response fur K = 1.5 is then

c(t) = Ce™* cos(0.5t + ¢)

The time involved in constructing a root locus for a complex system in this
manner is obviously prohibitive. This difficulty will be overcome later.

" To further discuss the significance of the s-plane and the root locus we
will consider a second-order characteristic equation in its standard form

2 2
s + ZCn%s + W = 0

The roots of this equation are

s, , = -G +3jg y1-0 (13.79)
N—J k—w——/
o w

In order to realize what this means in the s-plane, refer to Figure 13.56a.
Any arbitrary value of s will have, from Equation 13.79, a real part o = Qu
and an imaginary part w, = 1 - *. From these values shown in Figure
13.56, and the Pythagorean theorem, the magnitude of the position vector, s is
found to be equal « . The angle ¢ is also significant since

13.100 ‘



COS¢=—-=CA

Figure 13.56a summarizes this information and shows how parameters important
to the tn:ansient-response can be easily obtained from the position of roots in
the s-plane. From the root 1locus, then, the transient response
characteristics for all values of gain, K, can be seen at a glance.

13.11.3 Angle and Magnitude Conditions

Now that the value of the root locus has been established, the rules will
be developed which permit simplified plotting of complex systems. These rules
are based on two conditions, the angle condition and the magnitude condition
which evolve fraom the characteristic equation.

As stated many times, the closed-loop control system may be represented

by

C _ G(s)
g6 = 1 + GH(s)

fram which the characteristic equation is

1+GH(s) = 0O
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T

=

HORIZONTAL LINES -

CONSTANT w; -M

\

o~

———
CIRCLES
CONSTANT w,

T~

,
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T~

VERTICAL LINES ~ CONSTANT 0

—| —o

I | \\
RADIALS - CONSTANT {

(b)

FIGURE 13.56. SIGNIFICANCE OF s-PLANE PARAMETERS

13.102



The system open-loop transfer function can be written in the foliowing form

K(s—zl)(s-zz) .« o .

GHS) = T ~pP)ls=-p) ... (13.80)

where the static gain, K, is factored out and the z's and p's are the

open-loop zeros and poles respectively.
Since the values of s to be determined must satisfy the relationship

1+GH(s) = 0
we can say .
GH(s) = =1 (13.81)

but, since s is, in general, camplex, GH(s) is then a function of a camplex
variable and Equation 13.81 can be written

Gi(s) = 1edil+ 2w _ 4 /(1 + 2n)n (13.82)

where

n = 0,+1,+2,+3, ....

Equation 13.82 says that in order for the value of s to be a zero of 1 + GH(s)
the magnitude of the camplex quantity GH(s) must be equal to 1 and the

. argument be same odd multiple of n. Hence the

' Magnitude condition

)] =1 (13.83)

Angle condition

ZG'I(S) = (1+2n)7 (13.84)

n=0'i1,i2'i3ooo
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Substituting Equation 13.80 into Equation 13.84, ‘the angle condition becames ‘ .

K(s -zl)(s -zz) . ..

(s-p)(s-p) . .. = (1+2n)r (13.85)

Since each factor of GH(s) can be represented by a vector in the s-plane from
the pole or zero to the s-point in question, BEquation 13.85 can be written

/s-zl+ S-2zyt .. .
/s-pl+/s-p2+.. .

= (1 + 2n)n

or

/s-zl+/s-zz+...- fs-pl- é-pz-... = (1+2n)n (13.86)

Thus, using the angle condition, any point in the s-plane can be ‘
investigated to determine whether or not it is a point on the root locus by
measuring the angles of the vectors from the poles and zeros to the point in
question, and adding them according to the left side of Equation 13.86. If
this sum egquals an odd multiple of =, the value of s satisfies the
characteristic equation, and is on the root locus.

Figure 13.57 demonstrates the application of the angle condition. The
vectors representing GH(s) for s = s, are shqm in Figure 13.57. The arngle

condition test to determine if sO is on the root locus is

$ -8, -6, = (L+2)7 | (13.87)
From the figure,
6 = 170°
6, = 195°
6, = 140° ‘lI’

13.104




. Equation 13.87 becaomes

170 - 195 - 140 # + r

-165 # +

S-PLANE

>0 !

GH(s) =

P2

(s +2)
(8+3+]2)(s+3—]2)

FIGURE 13.57.

APPLICATION OF ANGLE CONDITION

13.105




Therefore, s is not on the locus but is fairly bloée. Successive tries will ‘ .
‘allow converging on the point that satisfies the characteristic eguation.
Conbining Equation 13.80 and 13.83 the magnitude condition becames

K-ls—zl.s—zz| . ..
ls-pll-s—p2 o o o o . 1

|s-pl‘.‘s-p21. R

K = =
's-zl‘°‘s-22| .« s o e

(13.88)

Equation 13.88 says that the magnitude of all the vectors from the poles to
the s point in question, divided by the magnitudes of the vectors from the
zeroes is equal to the gain, K. This condition allows us to determine the
value of gain fram any point on a locus in the s-plane.

‘The reader is encouraged to check the example system's root locus
(Figure 13.55), to ensure it is consistent with both the angle and magnitude .
condition.

13.11.4 Rules for Root Locus Construction
The following rules for K > 0 will allow a sketch of the root locus to be
drawn quickly. These rules are based upor the angle condition and an analysis

of the characteristic equation.

a. The number of branches of the locus is equal to the number of
open~loop poles (i.e., the order of the characteristic eguation).

K(s—zl) - . e (s-zz)

1+ GH(s) = 1+(s_pl) — (s-pP)

= 0 (13.89)

(s-py - - (s -g) +K (s -2z) - .. (s-2;) =0
Since we have assumed a rational polynomial, P > Z, and the highest

order of s is P. '
P is the nurber of open loop poles, 2 is the number of openloop‘
zeros. :
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C.

The I.oc1 branches begin at the open—lon ﬁoles where K = 0. If we
write the characteristic equation with the static gain factored out

1+GH(s) = 1+KaH'(s) = 0

then
KGH'(s) = -1
GH'(s) = -~ 1/K (13.90)

for K = 0, GH'(s) = », which means s is at a pole of GH(s).

The branches end at the open-loop zeros where K = =, Fram Equation
13.90, when K = », GH' (s) = 0, which is a zero of GH(s). When P > 2
(the usual case) the additional hbranches end at s = « which may also
be considered an open-loop zero.

The loci branches that do approach s = » do so asymptotically to
radial lines centered at

IR {p's} -~ I Re {z2's }
P-12

The angles of these asymptotes are given by

- (1+2n)n
Y P -2
where
n=0,+1,+2...

A point on the real axis is on a locus branch if it is to the left
of an odd number of open-loop poles and zeros. This can be seen
from Figure 13.58 in which it is cbvious that the net angular
contribution fram a pair of camplex conjugate poles or zeros to a
search. point on the real axis is 0°. The real axis poles and zeros
contribute zero or wm when the search point is to the right or left
of the pole or zero respectively. Therefore, the angle condition is
satisfied only to the left of an odd number of open-loop poles and
zeros.
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Ao - ‘. .

+ 6

+¢

FIGURE 13.58. REAL AXIS IOCI

g. The angle of departure approach of a loci branch from (to) a camplex
pole (zero) can be found using the angle condition as follows. If a
search point is chosen e distance from a camplex pole (zero), the
a(mgle) of this vector is the departure (approach) angle at that pole

zero) .

Consider the situation of Figure 13.59 where it is desired to find the
departure angle from Py- If the magnitude of the vector from Py is ¢ then the
angle of the vectors fram the other poles and zeros can be measured directly

to p;- Solving the angle condition, Bguation 13.86 for {s - P1 (an unknown
quantity) will yield the departure angle.
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FIGURE 13.59.

Equation 13.86 says

DEPARTURE ANGLE DETERMINATION

/s-z—/s—pl—/s-pz—/s—p3-/s-p4 = (1+2n)r
Fram Figure 13.59

¢ =8 -8,-63-86, = (L+2n)m

¢ = 45°

o, = 90°

65 = 135°

13.109




©, = 155°

@
]

Depafture angle is

6, = - 515° = - 155°

h. The pointsat which the loci branches leave or enter the real axis
are sometimes called "breakaway" or "breakin" points, respectively.

Figure 13.60 illustrates the computation of a breakaway point for the

system whose open-loop transfer function is

K
GH(s) = gETTGE+)

From the characteristic equation,

K
s(s + 1)(s + 2)

-1

K = -5 (s+ 1)(s + 2)

K = -5 -38 -2

To find the point where K is maximum, we can differentiate the expression for
K and set it equal to zero. The solution of this equation should produce the

desired result.

Fg= -3 -6s-2 =
s,, = —-1+0.574
s = -1.574 or - 0.426
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S-PLANE

BREAKAWAY POINT

) Y omumnm- § o X enmemm—-
-2 -1

K

GHIs) = e T (e £ 2)

FIGURE 13.60. BREAKAWAY POINT COMPUTATION
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It is obvious from Figure 13.60 that the latter sBlution, s = —0.4257, is g -
the meaningful answer because it appears on a“real axis locus. This, then is.
the breakaway point.

This method of computing breakaway points is restrictive in that more
complex systems with higher-order transfer functions are difficult to solve
since dK/ds is higher than second-order. '

The fact that the root locus is always symmetrical about the real axis is’
advantageous in that only the upper half of the s-plane need be plotted. The
lower half is just a mirror image. The reason for this should be obvious when
one considers that complex roots always appear in conjugate pairs.

The rules above will permit a sketch of the root locus very quickly. If
more accurate data is required, the branches can be checked using the angle
condition and a protractor. After the locus is complete, the values of K that
are deemed important can be computed using the magnitude condition.

Root Locus Examples:

Example 1:

. o
Gls) = gOBs+ 0B+ D .

H(s) = 1

Rewriting in the more useful form

10K’
GH(s) = gEF2)(s+05)

Letting 10K’ = K, we can plot the locus and calibrate it in gain. In the
actual system, however, the gain selected, K’, will be a factor of 10 less than
that found from the locus plot.

From the previous equation

P 3, 2 =0
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. Applying the rules developed in the previous section, the root locus of Figure
13.61 is plotted.

a. The nunber of branches is 3.
b. The locus branches begin at the poles s = 0, -2, -5, where K = 0.

c. Since there are no open-loop zeros, the 3 branches will end along
asymptotes whose real axis intercepts are

I Re {p's} - I Re {2's]
P-12

[0 -2-5 - [0]
3 -0

c = =7/3

The asymptotes angles are

‘ - +2nr

Y T TP <-3%

{ = ..(1_+_3_2M = 60°, 180°, 300°

d. Real axis loci exist between s = 0 and s = -2, and froms = -5 to s

= ==00
-

e. 'Tere are no camplex poles or zeros so rule (g) does not apply.

f. The breakaway point is found as follows:
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K=70
\ f,—©=3.16 RAD/SEC
\\ /
K=10.6 \/
//\ |_—w,=1.4 RAD/SEC
¥
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\
\\
-7/3 \

FIGURE 13.61. EXAMPLE OF A ROOT IOCUS
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K X
GH(s) s(s+ 2)(s + 5).~ -1

=
1
i

s(s + 2)(s + 5)

K = -5 - 7s% - 105
E- -3° -145-10 = 0

s = -3.79, - 0.88

Since - 3.79 is not on a locus branch, s = -0.88 is the breakaway point.
Now that the root locus is plotted, the desired values of K can be found.
It is generally useful to know the value of K for which the system becomes
unstable. By measuring the length of the vectors from each of the poles to
the point where the locus crosses the imaginary axis into the LHP, we find

K = (3.16)(3.7)(6.0) = 70
The system is neutrally stable at K = 70 and the frequency of the oscillation
will be 3.16 rad/sec. For K > 70, the roots of the characteristic equation
are in the RHP where they have positive real parts and the system is unstable.
If some specific transient response parameter is required, such as

¢ = 0.5, the corresponding value of K can be determined.

Since

cos '0.5 = 60°
Where the radial from the origin 60° from the negative real axis crosses the

root locus, the system is at the required operating condition, and the gain
for this point is
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K = (4.4)(1.7)(1.4) = 10.6 g ‘

To find the total transient response, however, it is necessary to find the
point on all branches where K = 10.6. Each branch contributes one term to the
transient response and they all must have the same value of K. Because the
lower half plane is a mirror image, the lower root is the canplex conjugate of
the upper value. The point on the third branch along the real axis where K =
10.6 is found through trial and error. The transient solution, then, for K =
10.6, ¢ = 0.5, has a quickly damped pure exponential term and a dominant more
slowly damped exponentially decaying oscillation at w, = 1.4,

-5.5t -0.7t

'eo(t)transient Cle + C2e "7 cos (1.2t + ¢)
Example 2:
GH(s) = K(52+ 2 |
s(s + 3)(s” + 25 + 2) ‘
GH(s) = K(s + 2) | '

s(s+3)(s+1+3)(s+1-37)

Applying the rules:

-N The number of branches is 4.

b. The locus brancles begin on the open-loop poles at s = 0, -3,

C. One branch will end on the open locp zero at s = -2. The remaining
3 branches will end at s = = along asymptotes centered at

[0-3-1-1] -[-2]
4 -1
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‘ with asymptote angles

(1 + 2n)7
~4-1

y = 60° 180°, 300°
d.

Re:!l axis loci exist between s = 0 and -2, and form s = =3 t0 - =,

e. The departure angle from the camplex poles is found by

o = 45° - 135° - 90° -26.5° + 180°
6 = - 26.5°

Once the value of s for the imaginary axis crossing is found, a graphical
solution for K using the magnitude condition can be used, i.e.,

_ (3.41) (2.81) (1.60) (1.19) _
. XK = L = 7.04

We will continue this development to determine the closed-loop response
for £ = .5. As the open-loop transfer function was specified

GH = K(§+2)
s(s + 3)(s® + 2s + 2)

we shall further specify that

G(s) = 5 K
s(s” + 25 + 2)

and

_ (s + 2)
H(s) = 0N

It can be seen fram the root locus plot that the transient response will

have two pure exponentially decaying terms from the real axis branches and one
‘ oscillatory damped term from the complex loci.

It should also be noted that
the maximum z possible for the oscillatory terms.is ¢ = .7 established by the
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open-loop camplex poles where K = 0. Although the ¢ = .5 radial crosses the e
camplex locus in the vicinity of 51’2 = 0.5 + .9j, the exact crossing can be ‘
found using the angle condition. A point on the ¢ = .5 radial near the
sketchel Mc.cus is tried as a search point and if the point satisfies the angle
condition, the point is on the locus and pins down the exact roots in
question. A couple of search point narrows our locus to s = -.56 + .96j. At
this point the angle condition is satisfied, i.e., Zs -2, - /s - P,
- [s-p,- [fs-p,- fo-p, = 7, or33.6 - 12° - 77° - 21.2° - (-5))
= 179.6 = .

Next, the magnitude condition used at this point is = -.56 + j.96, to
determine the value of gain, K. '

K = |s] Is + 3] |s+1+j| |s+1-—j|
Is + 2|

(2.36) (2.025) (1.12) (.45)
1.74

1.532. ‘

So far we have determined two roots (a complex pair) and the value of gain for
system operation. Two other roots lie on the real axis loci (ore on each
branch) and are found by trial and error by using the magnitude condition and
finding a search point that will yield a value of K = 1.532.

A search point at s = -.8 is determined to be a root corresponding to a
value of XK = 1.532, i.e.,

(.8) (2.2) (1.025) >
1.2)

1.54 = K

(close enough for a graphical solution)

Another search point at s = -3.81 also satisfies the magnitude condition,

i.e.,

2
(.81) (3.81) (2.99) ¢ _ _
2 = 1.525 = K ‘II'

(close enough for a graphical solution)
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Thus we have located the four roots that é'orr‘éspond to the specified
requirements. These roots are s = -.8, s = -3.81, s = ~.56 + 97j, s = - .56 -
.96, with a corresponding operating gain of 1.53 (Figure 13.62).

Recalling Equations 13.71, 13.72, and 13.73-the closed-loop response can
be written using the roots determined from the root locus, i.e.,

NG(S)
G(s) = Knﬁc-;-(-s—)—
NH(S)
B TC)
cts) _ KNg(s) Dy(s)
R(s) DG(s)DH(s) +KnKhNG(s)NH(s)

KnNG(s) DG(s)
(Roots fram Root Iocus)

Substituting in the appropriate quantities yields

cls) _ 1.53(s + 3)
R(s) (s + 3.81) (s + .8) (s2 + 1.12s + 1.23)

K (s + 2)

GH 3
s(s + 3)(s“ + 25 + 2)
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GH = K(s+2

s(s+3)(s?+2s+2)

(S = —.56 +.986))

jo

K=oo
¢ = .5 RADIAL =7
K=
’ K=1.53 I~ —-26.5°
—* A X O«
Z,
. p‘
K=1.53 / K=1.53
(8 = _3-81) (8 = —0-8)
K=1.53

FIGURE 13.62.

1

(s = —.56 — .96))

ROOT 1OCUS PLOT
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13.12 COMPENSATION TECHNIQUES

You have been introduced to theory and technique used to set up a control
system problem and to analyze the results. Unfortunately the system often
needs to be "fixed" to meet the desired performance specifications. This
"fixing" is called compensation and is used to reshape the root locus to

achieve the desired performance specifications. Generally, three performance

specifications are changed by compensation: degree of stability, transient
response, and steady-state error.

Actual compensation is achieved by addition of electrical network, and/or
mechanical devices which may contain levers, springs, dashpots, gyros, etc.
There are two positions in the control system where compensation is usually
performed. In the feedback loop where it is referred to as feedback
compensation and in the forward loop where it is called cascade compensation.
In the forward loop the compensator is normally placed in the low energy point
so the power dissipation will be small.

Common networks used to achieve compensation are lag, lead, and lead-lag,
all of which are passive. Modern control systems often use active networks
which modify the systems to ensure the desired specifications are met by
cancelling the undesirable characteristics and replacing them with the desired
characteristics.

Our approach to compensation will be to look at our basic system then to
see the effect of each type of compensation on the shape of the root locus and
the steady-state performance.

13.12.1 Feedback Compensation :
13.12.1.1 Proportional Control (Unity Feedback). Consider the basic system
in Figure 13.63.
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ST T T T T N T=IC+bC

|
R(s) |+ ® E(s) \ E®) - T P C(s)

| - \

| \

| CLOSED - \\__. -———

| LOOP \

I CONTROL !

\ "
~ e e - o e S S e Gme e e w— V4

FIGURE 13.63. BASIC SYSTEM

where for the first case

A = 1
= u = n/I
G(s) 2 .. SEFED
H(s) = 1
u/1

¢ile) = s+

The closed-loop transfer function is

C u/I
= (s) = (13.90)
R 2 b u

s + T s + -I-
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and

4

Figure 13.64 is the root locus of this basic system.

Ktlco A

K—oo! Y

u/I
= b
2 1/v I
. MK
Al . GH=TGTB/M) ~sE+bN)
WHERE K =5

FIGURE 13.64.

Application of a step, R(s).

C(s)

."il'"v"
o o= g

ROOT LOCUS OF BASIC SYSTEM
WITH UNITY FEEDBACK

= 10/s, results in

10 u/I
s 2 b u
S +—I—s+-f

The inverse transform of Equation 13.91 is

c(t)

-Cu)nt
10 - ——— e sin (wdt+4>)
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After a finite time the transients die out and the responseé settles down ‘
to the camanded value of 10 units with no steady-state error. If the damping

term, b, was zero, the locus would move riglit" to the imaginary axis and pure
harmonic motion would result. By looking at the error coefficients Kp, K, and
K, , we see that this system has zero error for a step, Rb/u error for a ramp
and has infinite error for a parabolic input.

The amount of viscous damping in a practical system is often limited by
physical constraints. To cope with a lightly damped system, artificial
damping is added. An investigation of Equation 13.90 reveals that the damping
of the system can ke increased by incressing the coefficient of the s term (o
term) in the denominator.
13.12.1.2 Derivative Control (Rate Feedback). The problem of adding a KC
term (Ks term) into the forward loop is solved by derivative control or rate
feedback. Figure 13.65 shows the introduction of the XC temm into the block
diagram.

T=1C+bC-
R(s) _+ e | &® T ; C(s)
— 1 b—] > >
— 1s2 + bs
(C + KC)
+
s 1

FIGURE 13.65. RBASIC SYSTEM WITH INTRODUCTION
OF KC TERM

The KC term can be achieved by taking the derivative of C and is often
achieved by means of a rate gyro as shown in Figure 13.66.
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FIGURE 13.67. REDUCTION OF FIGURE 13.66

The control ratio is written for Figure 13.67

Ci(s) _ u
R(s) 1s2 +bs+u (1+ )
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R+ E®) [ ] RS T 1 cis)
———-t®—-> 1 > = > T oe >
+
- 1 |-
+
RATE GYRO
¢ Cps
FIGURE 13.66. BASIC SYSTEM WITH RATE GYRO
ADDED TO FEEDBACK LOCP
R(s) + Es) E(s) T 4 C(s)
>® | 1 p—-| t f— 5 -
is“ + bs
1+Cps




u/I
s2 b——-——-+ "D s+&
I I

The natural freguency of the system is unchanged; however the damping has
been increased by uCD/I. '

The effect of derivative control on the root locus is illustrated in
Figure 13.68. The forward transfer function beccmes

- u/I
Gls) = sE+oT

and the feedback transfer function is

H(s) = (1+CDs)

This in effect adds an open-loop zero to our open-loop transfer function. ‘

=%(1+%9 _% %G*%ﬁ

s@+§)- SG+§)

GH(s)
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ECpls +1/Cp) K’ (8 +1/Cp)

GHie) = ST b)Y ~ se+b/)
]
A E Aio
. _B
WHERE K’ =%¢,
~ H—Ge ¢ ~ o
-k _1
T ~&
CASE (a) CASE (b)
1.b 1.b
< [

FIGURE 13.68. ROOT LOCUS OF BASIC SYSTEM
WITH DERIVATIVE CONTROL

The vaiue of S will determine if the response will have an oscillatory
term. In case (a) of Figure 13.68, l/CD < b/I will result in two first order
roots and oscillation is not possible. However in case (b) where l/CD > b/I,
the locus path allows for an oscillatory response over a wide range of static
loop sensitivity (p/I CD). It is obvious fram Figure 13.68 that high damping
can be achieved with reasonably high values of static loop sensitivity (gain).
Before we can check the steady-state error, we must rearrange the block
diagram (Figure 13.69 a, b, c) to unity feedback.




Ris) + 8 ’ " Cis)
is? + bs .

1+Cps

(a)

R(s) + + u C(s)
—->®——>® > >
+ ~ _ is2 + bs
Cps
1
(b)
R(s) + 7] C(s)
SR .
~ s [is + (b + 4 Cp)l

(c)

FIGURE 13.69. REDUCTION OF DERIVATIVE CONTROL
BLCCK DIAGRAM TO UNITY FEEDBACK
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The corresponding error coefficients are

= X
v (b + uCD)

Ka=0

Therefore we see the steady-state error will increase with the
introduction of derivative control (system type remains the same).

We have discussed two types of feedback campensation and have found that
the transient response can be improved by addition of derivative control, but
only at the expense of the steady-state error. The other campensation
techniques to be considered are used in the forward loop.

13.12.2 Cascade Compensation
The first forward compensation technique to be discussed is error rate

compensation.
13.12.2.1 Error Rate Compensation. Error rate or ideal derivative
campensation is used when the transient response of the system must be

improved. This is achieved by reshaping the root locus by moving it to the
left. This in effect decreases the system time constant, T = 1/ e, thereby
speeding up the response. Error rate compensation is achieved by adding the
rate of change of the error signal to the error signal (Figure 13.70).
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1
Es)
C.s
OR
Es
© 1+C,e - ES)

FIGURE 13.70.4 IDEAL ERROR RATE COMPENSATOR

The physical effect of error rate can be described as introducing anticipation .
into the system. The system reacts not only to magnitude of the error, but,
also to its probable value in the future. If the error is changing rapidly,
then El(s) is large and the system responds faster. The net result is to
speed up the system. Figure 13.71 shows error rate added to the basic system.

. E(s)
R(s) -+ Es) / T 1

FIGURE 13.71. BASIC SYSTEM WITH
ERROR RATE CONTROL
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‘ Now the forward transfer function becomes

u(1+Ces)
Gls) = ——
Is“ + bs
u 1
7% (s+'C')
- e
b
S (S+—I-) .
and
H(s) = 1

Therefore the open-loop transfer function is

] 1
T Ce (s t¢ )
‘ GH(s) : ( <

= , and
(-9
v 1
= C s+ =
cls) _ T e( Ce)
R(s) b+ Cu
2 ( e) U
S +——-—I s+-]—:

We see that error rate has added a zero to the function as well as
achieving artificial damping similar to derivative control. Although the
open~-loop transfer function, GH(s), of the derivative control ard error rate
control are similar, the closed-loop transfer functions are different due to
the cascade zero of the error rate compensator. The root locus for error rate
is illustrated in Figure 13.72. The zero, in effect, draws the locus to the
left; thereby speeding up the response and making the system more stable.
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p 1

TCe (8 +C,)

- GHI = ST ) i
|

g 1
_ K'(s +C,)
- s(s +_?)

P
WHEREK'=7C,

FIGURE 13.72. ROOT ICCUS OF BASIC SYSTEM WITH
ERROR RATE COMPENSATION

looking at the error coefficients we find ‘
- X
A T
and
K _ 0

Therefore the steady-state performance of the system is unchanged fram the
basic system.

In the real world an ideal differentiator is difficult to construct and
other problems with differentiation of system noise arise. A passive element
known as a lead carpensator is used to appraximate ideal error rate control.
The transfer function of this device is

A (s +%) A(s + zc)
G (s) = = s, 0 <1
c (s + ;—) (s +p) ‘

aT
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The pole p,, is located far to the left so that the _angle of the
campensator is nearly all lead due to the zero, Z, which is placed by trial
and error to a point near the or:.gmal locus. This normally results in a
small increase in gain and a large increase in the undamped natural frequency,
thereby reducing settling time. Introduction of this lead compensation into
the basic system could result in a locus as shown in Figure 13.73.

jo
X X
Pe.
_ ANtz K7 (s+2))
GHi(s) = ,(s+pc)(s+_t:_) s(s+P¢N3+%’-)

WHERE K™ = A /I

FIGURE 13.73. LEAD CCMPENSATION APPLIED
TO BASIC SYSTEM
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13.12.2.2 Integral Control. The second cascade éarpensatioﬁ technique is
integral control. Often the transient response of a system is satisfactory
but the steady-state error is excessive. " Integral control produces an
actuating signal that is proportional to both the magnitude and the integral
of the error signal E(s), Figure 13.74.

1
E(s) Eis)
c' I € dt
OR
E®) c Ey(s)
—_——l 1 —
OR
E(S) s+C Ey(s)
»>| —st -

FIGURE 13.74. IDEAL INTEGRAL CONTROL

4 The net result is the increase in system type. The error E1 (s) continues
to increase as long as an error, E(s), is present and eventually becames large
enough to produce an output signal equal to the input. The error, E(s), is
then zero. Since we are not interested in changing the time response of the
system, the positioning of the zero becames very important. The pole at the
origin has the effect of movirg the locus to the right and slowing down the
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response. The zero must be placed very close to the origin to reduce the
effect of the pole on the locus.

Figure 13.75 shows integral control added to out basic system.

E Ey(s)
R(s) +® (s)) s+C | L, T 1 - C(s) >
i d i i

*

FIGURE 13.75. BASIC SYSTEM WITH INTEGRAL CONTROL

Now the forward transfer furction becares

u(s + C;) Y (s+cC.)
Gls) = = 5 5
s(Is” + bs) s s+-I-)
and
H(s) =1

The open-loop transfer function is

GH(s)

u

= (s + C.)

1 1 (13.92)
S

Figure 13.76 is the root locus of Equation 13.92.

13.135




‘l"’.

2s+C)
GH(s) =

l’(s-l-—'l’-

- K(s+C)
o’(s+-|-|’-)

*—
b
|

WHERE K =T

. { o —‘

C| < _I' : Fr

oFc,>2, compLEx LOCUS

LIES IN RHP AND SYSTEM IS
UNSTABLE FOR ALL K)

FIGURE 13.76. ROOT LOCUS OF BASIC SYSTEM WITH -

The additional pole at the origin increases the system type as well as
the scaling of K along the loci. The change in the transient response for the
ideal integral control is minimized by placing the zero very close to origin.
In a real world system there is a limit to achieving this proximity.

The integral control compensator is achieved electrically by a lag
network or mechanically by use of an integrating gyrosccpe.

The lag network transfer function is of the form

A(s+1/1)

e
aT
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where o > 1 and is usually about 10; thefefofe, Equation 13.93 is
approximately

. A(s+ 1/-[).
€& = g ——=—

In design, if the pole and zero are placed very close (at the origin),
the net angle contribution at the dominate poles can be kept to less than 5°
and the locus is displaced only slightly. The resulting increased gain of the
system and increased system type all result in decreased steady-state error.

The error coefficient for the campensated system became

K = o
P
Kv=oo
K = Esi
a b

and the system will now handle a parabolic input with a e(t) ss = R b/uci.
A summary of passive compensations contained in Table 13.5.
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13.13 SUMMARY ‘ : T

In this chapter an attempt has been made to present the fundamentals of
control system analysis. Applications of the theory were held to a minimm so
that full attention could be devoted to leémipg the tools and techniques used
in this type of analysis. '

Once the analysis techniques have been mastered, the more interesting
appropriate areas of flight control and handling qualities may be addressed.
A kndwledge of root locus theory and frequency response is essential in
understanding the applications of feedback analysis to flight vehicle systems.

Despite the introduction of modern control theory (state variables) and
digital flight control, an understanding of these systems is still based in
large measure on knowledge of classical feedback control systems.
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