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INTRODUCTION

This chapter studies the algebra and calculus of vectors and matrices, as
specifically applied to the USAF Test Pilot School curriculum. The course is
a prerequisite for courses in Equations of Motion, Dynamics, Linear Control
Systems, Flight Control Systems, and Inertial Navigation Systems. The course
deals only with applied mathematics; therefore, the theoretical scope of the
subject is limited.

The text begins with the definition of determinants as a prerequisite to
the remainder of the text. Vector analysis follows with rigid body kinematics
introduced as an application. The last section deals with matrices.

2.2 DETERMINANTS

A determinant is a function which associates a number (real, imaginary,
or vector) with every square array (n columns and n rows) of numbers. The
determinant is denoted by vertical bars on either side of the array of
numbers. Thus, if A is an (n x n) array of numbers where i designates rows
and j designates columns, the determinant of A is written

a, a, - . .8,
a21 a22 A a2n
|A|=|a..|= . e e e
13
a, a, - . .a_

2.2.1 First Minors and Cofactors

When the elements of the i*" row and jth column are removed from a (n x
n) square array, the determinant of the remaining (n-1) x (n-1) square array
is called a first minor of A and is denoted by M, ;. It is also called the
minor of a; ;- The signed minor, with the sign determined by the sum of
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the row and column, is called the cofactor of a, and is denoted by '
A. = (-1 M.
i3 1]
Example:
. a11 a12 a13
1f lAI = laijl = 13 a,, a3
231 a;, 333
then,
_ a2 a3 _ a,, 2,
M11 - Maz -
a32 a33 a21 a23

Also, A, = (-1 M, = (1N, and A, = (-1)%*2 M, = ()N,

2.2.2 Determinant Expansion
The determinant is equal to the sum of the products of the elements of
any single row or column and their respective cofactors; i.e.,

n
_ : «th
lAI = a, A, +3,A, + ...+ a, A —jflaiinj, for any single i~ row.
or
n th
= a A+ 8, B * e ¥ a B, = iflaiinj, for any single j
column.

2.2.2.1 Expanding a 2 x 2 Determinant. Expanding a 2 x 2 determinant about
the first row is the easiest. The sign of the cofactor of an element can be
determined quickly by observing that the sums of the subscripts alternate from
even to odd when advancing across rows or down columns, meaning the signs
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alternate also. For example,

a a

. 11 12
if lAI =
21 a2

the signs of the associated cofactors alternate as shown,

By deleting the row and column of a,,, we find its cofactor is just the
element a,, [actually (+1) x a,,] for a 2 x 2 array, and likewise the cofactor
for a,, is (-a,,) for (<1) % a,,]. The sum of the two products of the two
diagonals gives us the expansion or value of the determinant.

IAI = a, A, +a, A, =a, a, +a, (-a,,) = A, 3, -8, 3,

This simple example has been shown for clarity. Actual calculation of a
2 x 2 determinant is easy if we just remember it as the subtraction of the
cross multiplication of the elements. For example,

(+) (-)
8><3
6 5

2.2.2.2 Expanding a 3 x 3 Determinant.

|r[= (8)(5)=(3)(6) = 22

11 12 13
IAI = ,aijl = a1 a2 a3
a a a

31 32 33
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Expanding IAI about the first row gives

IAI = a, A, + a,A, + a,A, =

22 a3 a, a,, 2, 2,
a, (+1) +a,, (-1) +a, (+1) =

a2 A, 23 a5 2, a;,
a, (azz 3 ~ 8y, asz) -3, (az1 Q33 T @y, a31) + 285, (az1 2, 3, a31)

Expanding and grouping like signs,

= a11 a22 a33 + a12 a23 a31 + a13 a21 a32

T3 8, 383, T8y, 83 3, A, 8, a8,
Close inspection of the 1last equation shows another method for 3 x 3
determinants using diagonal multiplication. If the first two columns are
appended to the determinant, six sets of diagonals are used to find the six
terms above. The signs are determined by the direction of the diagonal a.

shown in the illustration.

(+) (+) (+)
a a a a a,
11 12 2 %3 - %1 _-* %12
A = a,, \a a,, >\—; a5 ’\\; az1" a,,
( - )a31 ( - )asz ( - )a33 a3, a2
For example,

(+ )2 (+) ) (+ )6 5 .

- - P -7

= (2)(5)(3) + (-1)(4)(1) + (6)(3)(=2) = (6)(5)(1) - (2)(4)(-2) = (-1)(3)(3)
= 30 + (=4) + (-36) - 30 - (-16) = (-9) = -40 + 25 = -15
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The quicker methods of calculating determinants are useful for the two
simple cases here. The row expansion method will be more useful for
calculating vector cross products. The use of determinants for solving sets
of linear equations will be discussed later in this chapter in the matrix
section. Determinants will also be wused in solving sets of linear
differential equations in Chapter 3, Differential Equations.

While the general tool for evaluating determinants by hand calculation is
simple, for determinants of greater size the calculations are lengthy. A 5 x
5 determinant would contain 120 terms of 5 factors each. Evaluating larger
determinants is an ideal task for the computer, and standard programs are
available for this task.

2.3 VECTOR AND SCALAR DEFINITIONS

In general, a vector can be defined as an ordered set of "n" quantities
such as <a,, a,, a,, ..., 8> In TPS, vector analysm w:.ll be limited to
two-and three-dimensional space. Thus, xi + yj and xi + y] + zk are
representations of vectors in each space, while x1, YJ, and zk are referred
to as components of the vector.

Physically, a vector is an entity such as force, velocity, or
acceleration, which possesses both magnitude and direction. This is the usual

approach in applied physics and engineering, and the results can be directly
applied to courses here at the School.

Almost any physical discussion will .involve, in addition to vectors,
entities such as volume, mass, and work, which possess only magnitude and are
known as scalars. To distinguish vectors from scalars, a vector quantity will
be indicated by putting a line above the symbol; thus ?, ;, and a will be used
to represent force, velocity, and acceleration, respectively.

The magnitude of vector F is indicated by enclosing the symbol for the
vector between absolute value bars, ] ?‘] . Graphically, a scalar quantity can
be adequately represented by a mark on a fixed scale. To represent a vector
quantity requires a directed line segment whose direction is the same as the
direction of the vector and whose measured length is equal to the magnitude of

the vector.
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The direction of a vector is determined by a single angle in t’
dimensions and two angles in three dimensions, angles whose cosines are called
direction cosines. This text will not deal directly with direction cosines,

50 no example is necessary.

2.3.1 Vector Equality

Two vectors whose magnitude and direction are equal are said to be equal.
If two vectors have the same length but the opposite direction, either is the
negative of the other. This is true even when graphically two vectors are not
physically drawn from the same starting point.

A vector that may. be drawn from any starting point is called a free

vector. However, when applied in a problem, the position of a vector may be
important. For instance, in Figure 2.1, the distance of the line of
application of a force from the center of gravity of a rigid body is critical
if calculating moments, although the actual point of appllcatlon along the

line isn’t critical.

M, = |Fld

M., = Fd

LINE OF ACTION

FIGURE 2.1. MOMENT CALCULATION

For other applications, the point of action as well as the line of action
must be fixed. Such a vector is usually referred to as bound. The velocity
of the satellite in the orbital mechanics problem shown in Figure 2.2 is an

@

example of a bound vector.




ORBITAL PATH \

)
SATELLITE _/ \ v /- LINE OF ACTION
—_—/
EARTH

FIGURE 2.2. EXAMPLE OF A BOUND VECTOR

2.3.2 Vector Addition

Graphically, the sum of two vectors A and B is defined by the familiar
parallelogram law; i.e., if A and B are drawn from the same point or origin,
and if the parallelogram having A and B as adjacent sides is constructed, then
the sum A + B can be defined as the vector represented by the diagonal of this
parallelogram which passes through the common origin of A and B. Vectors can
also be-added by drawing them "nose-to-tail." See Figure 2.3.

FIGURE 2.3.. ADDITION OF VECTORS
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Graphically from Figure 2.3, it is evident that vector addition .
commtative and associative, respectively,

;\.+§ - ;4-3 and A+ (E+E) - (;.+-§) +-(-:-
2.3.3 Vector Subtraction
Vector subtraction is defined as the difference of two vectors A and B,

where
(-1)(B) = (-B)

and is defined as a vector with the same magnitude but opposite direction.
See Figure 2.4. This introduces the necessity for vector-scalar multipli-

cation.

FIGURE 2.4. VECTOR SUBTRACTION

2.3.4 Vector-Scalar Multiplication

The product of a vector and a scalar follows algebraic rules. The
product of a scalar m and a vector A is the vector mA, whose length is the
product of the absolute value of m and magnitude of A, and whose direction is
the same as the direction of A, if m is positive, and opposite to it, if m is
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2.3.5 Unit and Zero Vectors

Regardless of its direction, a vector whose length is one (unity) is
called a unit vector. If a is a vector with magnitude other than.zero, then
unit vector 3 is defined as a/lal, where 3 is a unit vector having the same
direction as a and magnitude of one. It happens that the components of a unit
vector are also the cosines of the angles necessary to define the direction.
Unit vectors in the body axis coordinate system will retain the bar symbol;
i.e., -i_, ;j.and -l;

The zero vector has zero magnitude and in this text has any direction.
It is notationally correct to designate the zero vector with a bar, 0.

2.4 LAWS OF VECTOR - SCALAR ALGEBRA

1f X, E, and E are vectors and m and n are scalars, then

1. mA = Am Commutative Multiplication
2. m(pd) = (m)a Associative Multiplication
3. (m+nA = mA+nA Distributive
4. mA+B) = M+ B Distributive

These laws involve multiplication of a vector by one or more scalars.
Products of vectors will be defined later.

These laws, along with the wvector addition laws already introduced,
enable vector equations to be treated the same way as ordinary scalar
algebraic equations. For example,

Ol

ifA+B =

then by algebra
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2.4.1 Vectors in Coordinate Systems .
The right-handed rectangular coordinate system is used unless otherwise
stated. Such a system derives its name from the fact that a right threaded
screw rotated through 90° in the direction from the positive x-axis to the
positive y-axis will advance in the positive z direction, as shown in Figure
2.5. Practically, curl the fingers of the right hand in a direction from the
positive x-axis to the positive y-axis, and the thumb will point in the

positive z-axis direction.

FIGURE 2.5. RIGHT-HANDED COORDINATE SYSTEM

An important set of unit vectors are those having the directions of the
positive x, y, and z axes of a three-dimensional rectangular coordinate system
and are denotedlg, 3, and‘i, respectively, as shown in Figure 2.5.

Any vector in three dimensions can be represented with initial point at
the origin of a rectanqular coordinate system as shown in Figure 2.6. The
perpendicular projection of the vector on the axes gives the vector’s
components on the axes. Multiplying the scalar magnitude of the projection by
the appropriate unit vector in the direction of the axis gives a component
vector of the original vector. Note that summing the component vectors
graphically gives the original vector as a resultant.
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FIGURE 2.6. COMPONENTS OF A VECTOR

In Figure 2.6 the component vectors are Al-i—, Az-:i-, and Aﬁc-. The sum or
resultant of the components gives a new notation for a vector in terms of its
components.

A = AP + AJ + Ak

After noticing that the coordinates of the end-point of a vector A whose tail
is at the origin are equal to the components of the vector itself (A = x, A,
=y, and A, = z), the vector may be more easily written as

.

A = xi + Yyj + zk

The vector from the origin to a point in a coordinate system is called a
position vector, so the vector notation above is also the position vector for

the point P. The same definitions for notation, components, and position hold
for a two-dimensional system with the third component eliminated.
The magnitude is easily calculated as,

A = '\/&52 + A22 + A52 or A = “\/ﬁz + y3 + z

2.11




An arbitrary vector from initial point P(x,, y,, 2,) and terminal poin.
Q(x,, ¥,, 2,) such as shown in Figure 2.7 can be represented in terms of unit
vectors, also.

FIGURE 2.7. ARBITRARY VECTOR REPRESENTATION

First write the position vectors for the two points P and Q.

r, = xﬁ + yl_j- + zlz
and

T, = xT+y,T+zk
Then using addition,

T,+® = T
or

P—Q = I, -1I = (xz-xl)-i-+(y2—y1)§+(zz—zl)Tc'
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2.4.2 Dot Product

In addition to the product of a scalar and a vector, two other types of
products are defined in vector analysis. The first of these is the dot, or
scalar product, denoted by a dot between the two vectors. The dot product is
an operation between two vectors, and results in a scalar (thus the name
scalar product). Analytically, it is calculated by adding the products of
like components. This is, if

A = ai+aj+ak
and
B = bi+b3j+bk
then
A«B = alb1 + azb2 + a3b3

which is a real number or scalar.

Geometrically, it is equal to the product of the magnitudes of two
vectors and the cosine of the angle between them (the angle is measured in the
plane formed by the two vectors, if they had the same origin). The dot
product is written

A+B = |[A] [B|cos ©
Example
(21 - 13 + 4k) ¢ (-1 + 37 + 5k) = (2)(-1) + (-1)(3) + (4)(5) = 15
The magnitudes are

V4+1+16 = 4.6

and
Vi+9+25 = 5.9
Therefore, solving for
cos © = 15 / (4.6) (5.9) = 15/27.1 = 0.553

so
© = 56.1°
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Some interesting applications of the dot product are the gecmetr’
implications. For instance, the geometric, scalar projection of one vector on
another is shown on Figure 2.8.

FIGURE 2.8. GEOMETRIC PROJECTION OF VECTORS

Using trigonometry, the projection of 2 on B is seen to be equal to I-I_\l cos ©.
A quick method to calculate such a projection without knowing the angle is to
calculate the dot product and divide by the magnitude of the vector projected
on. to. . That is, the projection of A on to B is equal to A » B/|B| = |A|cos

Several particular dot products are worth mentioning. If one of the
vectors is a unit vector, the dot product becomes

; '_1-3- = l:l IEI cos © = (1) rB.I cos © = I-gl cos ©,

which is the projection of B on i or more importantly the component of B in
the direction of i. Also note the dot product of a vector with itself is just
equal to the magnitude squared, since the angle is zero and cos © = 1. More
useful is the situation where two non-zero vectors are perpendicular
(orthogonal). The dot product is zero because the cosine of 90 degrees is
zero. Thus, for non-zero vectors the dot product may be a test of
orthogonality. Examples of these properties using standard unit vectors are

i'i‘;'jgk‘kﬁl
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2.4.3 Dot Product Laws
If A, B, and C are vectors and m is scalar, then

1. K « B = B o a Commutative Product
2. A*(B+C) = A*B+AscC Distributive Product
3. mAe<B)=(m)e*B = A e+ (mB) Associative Product

2.4.4 Cross Product

The third type of product involving vector operations is the cross, or
vector product, denoted by placing an "X" between two vectors. By definition
the cross product is an operation between two vectors which results in another
vector (thus, vector product). Again both analytic and geometric definitions
are given.

Analytically, the cross product is calculated for three-dimensional
vectors by a top row expansion of a determinant.

i j X
AXB = al a2 a3
b, b, b,
= 2 3 i +(-1) 1 3 j + 1 2 X
= (a, b, - a, b2)3+(a3 b, - a ba)gj-+(a1 b, - a, b )k
For example, - - - _
(21 + 43 + 5k) X (3i + j + 6k) =
i 3j k
2 4 5
3 1 6

[(4)(6)-(5)(1)]1 - [(2)(6)-(3)(5)13 + [(2)
= 19i + 3§ - 10k

(1)-(3)(4) ]k




The geometrical definition has to be approached carefully because it mu’
be remembered that the geometrical definition is not a vector. The magnitude
(a scalar) of the cross product is equal to the product of the two magnitudes
and the sine of the angle between the two vectors. Thus

5x3| = I3l [3] sin o

while the magnitude is determined as above, the direction of the resultant
cross product vector is always orthogonal to the plane of the crossed vectors.
The sense is such that when the fingers of the right hand are curled from the
first vector to the second, through the smaller of the angles between the
vectors, the thumb points in the direction of the cross product as shown in
Figure 2.9. Note the importance in the order of writing A X B since
AXB#BXA., That AXB=-BXA is easily seen using the right-hand rule.

1 U=AXB

FIGURE 2.9. GEOMETRIC DEFINITION OF THE CROSS PRODUCT

The cross product vector U can be represented as

=1

= AXB = IXI I-I-B']sin eu

where u is a unit vector in the direction of E, which is perpendicular to the
plane containing A and B.

Some practical applications of the above definitions using the sine of
zero and 90° are shown for unit vectors of a rectangular coordinate system.
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u.l = e
MooX M
o) el

3‘ X 3 = kxk = 0 (note the zero vector has any direction)
k and fxi = 1 and kX1i = ; and
--}; and T(x§=——i- and iXk =—§.

These cross products are used often, and an easy way to remember them is to

use the aid

7N

k j

~

where the cross product in the positive direction from i to j gives a positive
k, and to reverse the direction gives a negative answer.

2.4.5 Cross Product Laws

If A, -B, and E are vectors and m is a scalar, then

AXB = -BXA Anti-Commutative Product
AX(B+C) = A X B+AX E Distributive Product
m(X XTB) = (M) XB=2AX (mB) Associative Product

2.4.6 Vector Differentiation

The following treatment of vector differentiation has notation consistent
with later courses and has been highly specialized for the USAF Test Pilot
School curriculum. The scalar definition of the time derivative of a scalar
function of the variable t is defined as,

df(t) _ lim [ £(t + ot) - £(t) 1]
dt  ~ At»0 At
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Before proceeding, a vector function is defined as ‘

F(t) = £(t)1+ £, (8)F + £ (t)k,

where fx, fy, and £ are scalar functions of time and —i', ?i-, and k are unit
vectors parallel to the x, y, and z axes, respectively. A vector function is
a vector that changes magnitude and direction as a function of time and is
referred to as a position vector. It gives the position of a particle in
space at time t. The trace of the end points of the position vector gives the
trajectory of the particle. The time derivative of a vector function with
respect to some reference frame is defined as,

dF(t) _ lim [ F(t + Ot) - F(t) ] _
G Bt =
df (t) -  df (t) .  df (t) — df df, dat, —

it it keE it it W k-
fx-i.+fy‘§+fz—l-<

where the lack of a function variable indicates the function has the same
variable as the differentiation variable, and the dot denotes time
differentiation.

2.4.7 Vector Differentiation Laws

For vector functions A(t) and B(t), and scalar function f£(t)

1. ﬂ%{—é = g—i‘ + g% Distributive Derivative
2. ﬂéa;—.%l = A e g% + 'cT-t_:_ «B Dot Product Derivative
3. i@%{@ = AX %‘E + g—é X B Cross Product Derivative
4. gT: [£(t)B] = £(t) %'-E + gié(_t_) Scalar, Vector Product

Derivative
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2.5 LINEAR VELOCITY AND ACCELERATION

The time derivative of a position vector relative to some reference
system is the linear velocity. Note in particular that the velocity of a
particle is a vector that has a direction and a magnitude. The magnitude of
the velocity is referred to as speed. The second derivative is the linear
acceleration.

Graphically, the derivative of a vector is illustrated as shown in Figure
2.10.

s
ﬁ-As\

PATH OF PARTICLE, P
P

T(t+ AY

FIGURE 2.10. ILLUSTRATION OF THE DERIVATIVE OF A POSITION VECTOR

The difference between position vectors r(t + At) and r(t) is the
numerator of the definition of the derivative. The arc length of the
trajectory for some At is 8s. If we neglect the division by At and are
concerned only with direction of the derivative, the difference of the two
vectors is just Ar which would have the direction as shown in Figure 2.10.
The derivative for a vector T(t) can be expanded by multiplying by the
quantity As/4s = 1, as follows,

dr _lim Ar _ lim Ar 8s _ lim Ar &8s
dt = ats0 At at>0 B8t As At>0 As Bt

but as At-0, |A§|= s, therefore lim Ar/As = 'ét, since its magnitude is one
At-0
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and its direction becomes tangential to the trajectory. The A4s/At portio,
gives the magnitude of the derivative which should be noted as the speed of
the particle or a change of distance per time. In summary, the first
derivative of a vector function is tangential to the trajectory and has a
magnitude that is the speed of the particle.

Using differentiation law four to take the derivative of the vector
written in the form of magnitude times a unit vector,

T(t) = r(t)T, as follows,
dr(t) | dlr(t)T] _ dr(t)a r(ey &
dt at T Tdt dt

note that the linear velocity using this form of a vector has two components,
the first is the rate of change of the scalar function with direction the same

as the original vector itself. The second component is the scalar function
itself with the rate of change of the unit vector as its direction. We know
that the unit vector doesn’t change magnitude, but it may change direction
giving a non-zero derivative. 1In the development of the derivative earlier,
this was overlooked since the rate of change of the —i., _j-, and k vectors tha.
are fixed in a coordinate system do not change direction or magnitude.

2.6 REFERENCE SYSTEMS

Linear velocity and acceleration have meaning only if expressed (or
implied) in reference to another point and only if relative to a particular
frame of reference. In this text for discussions of single reference systems,
the linear velocity and acceleration will always be relative to the origin of
the reference frame in which the problem is given and will be denoted by
single letters, V and @. If there are two reference systems in the problem,
the notation will be changed to read

VA/B

which means the velocity of point or reference A relative to reference B. To
take a time derivative of a vector relative to reference system "A," the

.. notation will be
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AgF

“dt
There should be less confusion in multiple reference system problems con-
cerning which reference frame the derivative is taken by using this notation.
By introducing the concept of multiple reference systems, it is appropriate to
discuss the chain rule. For two reference systems, the chain rule is simply
stated. For point A in reference system B, which in turn is in another
reference system C, the velocity of A relative to C is equal to

Vaje = Vs t

Vs, c (2.1)

while calculating derivatives when given the time function of the
trajectory is seemingly simple, at times the derivatives may be difficult.
Also, if the function is not known, the measurements available to determine
the trajectory may be in terms of translational or rotational parameters which
don’t always lend themselves directly to a time function. Another method of
determining velocities and accelerations will be determined using pure
translation and rotation. Simplification will consist of very specific
problems with convenient alignment of reference systems at specific instances
in time. So it will appear that the time element has disappeared in the
following analysis since the vectors will be constants at the instant we
observe them.

2.7 DIFFERENTIATION OF A VECTOR IN A RIGID BODY

The two basic motions, translation and rotation, will be applied to a
rigid body which is assumed not to bend or twist (every point in the body
remains an equidistance from all others). It will become important to
determine not only the velocity and acceleration of a point in a rigid body,
but also that of a vector which lies in a rigid body.

2.7.1 Translation
If a body moves so that all the particles have the same velocity
relative to some reference at any instant of time, the body is said to be
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in pure translation. A vector in pure translation changes neither it’
magnitude nor direction while translating, so its first derivative would be
zero. An example would be a vector from the center of gravity to the wingtip
of an airplane in straight and level, unaccelerated flight with respect to a
reference system attached to the earth’s surface.. From the ground it changes
neither magnitude nor direction, although every point on the aircraft is
traveling at the same velocity. See Figure 2.11.

FIGURE 2.11. TRANSLATION AND ROTATION OF VECTORS IN RIGID BODIES

2.7.2 Rotation

If a body moves so that the particles along some line in the body have a
zero velocity relative to some reference, the body is said to be in pure
rotation relative to this reference. The line of stationary particles shown
in Figure 2.11 is called the axis of rotation. A free vector that describes
the rotation is called the angular velocity, @, and has direction determined
by the axis of rotation, using the right-hand rule to determine the sense.
The chain rule as described for linear velocity applies to the angular
velocity, as does a definition of its magnitude being angular speed. The
first derivative of the angular velocity is the angular acceleration.

It can be proven that the linear velocity V of any point in a rigid body
described by position vector T whose origin is along the axis of rotation can

" be written
~ 2.22 .




T =V = oXr (2.2)

Note the conventions using the right-hand rule apply, and V is perpendicular
to the plane of T and .

The pure rotation of one reference system with respect to another would
require a transformation of unit vectors from one system to another, unless
the reference systems were conveniently aligned at the instant in question.
Such transformations are considered beyond the scope of this course.

Equation 2.2 can be generalized to include any vector in a rigid body
with pure rotation. Refer to Figure 2.12.

“*———— RIGID
BODY

FIGURE 2.12. DIFFERENTIATION OF A FIXED VECTOR

Let p be a vector fixed anywhere in the rotating rigid body shown in
Figure 2.12. The problem is to find the time rate of change of the vector.
Two position vectors, ?1 and ?2, from the origin to the end points of the
vector p are drawn. From vector addition

T, +p = T,
or solving
P =T, -T,
Differentiating
_; = i—z - -r.:
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From Equation 2.2,

I, = WX,
and

r - =

r, = wXr
s0

P = WXL, -wXT,
Since the cross product is distributive, this equation becomes

P = WX([,-r) = wXDp (2.3)

Therefore, the derivative of any fixed vector in a purely rotating rigid body
is represented by the cross product of the angular velocity of the rotating
body and the fixed vector.

2 7 3 Comb1nat10n of Translation and Rotation in One Reference System
T It is possible to combine the two types of velocity. An important poin
to notice here is that the wvelocities and accelerations are arrived at

directly without the use of position vectors.

E REFERENCE
D

FIGURE 2.13. RIGID BODY IN TRANSLATION AND ROTATION
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’ The velocity of point a in reference system D, Figure 2.13, will be
calculated. The rigid body has a pure angular velocity, ®w, and a pure
translation, ¥V, in reference frame D. The requested velocity is just the sum,

vV =V v

rotation + v;ranslation

is equal to w X p. V is given as Vv, so

rotation translation

€l

V = wXp + Vv

When working in one reference system, the acceleration may be calculated
by taking the derivative of the velocity.

5= _ &% _ d@Xp) a& =
A_a-E— € +aE—wx

. Here, the P is equal to @ X P as was shown in Equation 2.3 and v is the

<l

Xp +

€|

+

e

translational acceleration a. The angular acceleration @ will not receive any
special notation in this text.
So, the acceleration in a single reference system can be written
L]

A = wX(wXp) + wXp + a

2.7.4 Vector Derivatives in Different Reference Systems
The more general problem of relative motion between a point and a

reference system that is itself moving relative to another reference system
will be approached. More than one reference system is often used in order to

simplify the analysis of general problems. As a first step, it is necessary
to examine the procedure of differentiation with respect to time in the
presence of two references moving relative to each other.

A reference system is a non-deformable system and may be considered a
rigid body. So, the work done so far applies here. Figure 2.14 gives the
vectors used in the following analysis.
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REFERENCE

REFERENCE

FIGURE 2.14. MOTION WITH TWO REFERENCE SYSTEMS

- The problem above shows point p with position vector 'fp Y moving with
respect to the reference B, and the origin of B with position vector [
moving with respect to reference system C. The reference system B also has an
angular velocity with respect to C of (T)B ,c- The goal of the following
development will be to find the time rate of change of the position vector in
the B frame as seen from the C frame or notationally

Cq —
at ‘e
It is very important to realize that this is not the same as the velocity of
the point as seen from the C frame. Rather it is the rate of change of a
position vector in one frame as seen from another frame. So the derivative
sought is not Vp sce This velocity would be obtained by using the chain rule
as given in Equation 2.1.

A representative example is the motion of a point on an aircraft with a
body axis system at the center of gravity and the aircraft moving along some
path relative to the ground. The second reference system is attached to the
ground. It will be assumed in this analysis that the two reference systems
have the same unit vectors. Careful attention will be given to circumstances
resulting from axes that may not be conveniently aligned during the analysis.
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Beginning with the position vector in the frame B,

L,g = Xl +Yj + zk

Differentiating this vector with respect to time relative to the C reference
frame presents a problem since the unit vectors of the B system are rotating
as seen in the C system.

So, the derivative must be done in two parts using the fourth law given
earlier.

Cd hd 4 2

— *—

3 S = xi+yj+2zk+xi+yj+ 2k

But the unit vector’s derivatives can be written as vector in a single
reference system with derivatives as seen in Equation 2.3. Thus,

i=oaB/c X i, etc.

So

cd-- *— .- o= = = -
& Yo = xi+yj+z2k+xi+yj+2k

@ -

= xi +ﬁ+%§+x(:)8/c X1i) +y(;;B/c X—j.) + z(a_x;/c x k)
= R +yi+ik+a, X(xD)+a, X (Y] + &, X (2K)
= i§+§§+éi+58/c X (xi + yj + zk)
The first three terms are recognized as the velocity of p in the B system and

the next term is the cross product of the angular velocity of the B system
with respect to the C system and the position vector in the B system.

C .
d - — _ — P
T e T Top t W, XL = Vo W, XTI, (2.4)

- - —
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This equation may be generalized to any vector in one reference syste’

relative to another. This is a very important relationship and will be used

in Chapter 4, in the derivation of the aircraft equations of motion.
The acceleration of a particle at point p would be handled using the
definition of acceleration.

Ca

A = a Yosc (2.5)

Note Equation 2.5 does not address C4 -
at Vo/s

Hopefully, the velocity would be written in a simple form allowing simple
differentiation to obtain the acceleration. If not, a simple exchange of
notation with Equation 2.4 would be necessary.

COMMENT The material presented thus far is sufficient to enable solution of
any linear or angular velocity or acceleration in a kinematics
problem. However, another analysis follows which may clarif
multi-reference problems and will provide definition of som
terms that will be of value in later courses.

2.7.4.1 Transport Velocity. In this analysis of motion relative to two

reference systems, a different approach is taken to the problem. Figure 2.14
is expanded as shown in Figure 2.15 to include the position vector directly
from reference C to the point p.
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REFERENCE

Cc y «+— TRAJECTORY

REFERENCE B

FIGURE 2.15. TWO REFERENCE SYSTEM VECTORS

Thus

ose = Loy v Tpc

- . C C C

v - T -4 N + 97

p/C p/C dt “psc dt “p/B dt “s/c
where the first term is Equation 2.4 and the second is '\75 Jeo Substituting
these terms,

e

VP/C = I, = VP/B + a)B/CXIp/B + VB/C (2.6)
or

Verc = st Vore
where

Vioze = %,c XI5 + V5,

This term is called the transport velocity. The interpretation of
transport velocity defined in this equation is such that Vp ,p 15 still the

is the velocity in C that p would have,

velocity of p relative to B and V.
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if p were fixed in B. Note this is just the sum of the translation an!
rotation of frame B relative to frame C if the point p is considered fixed.
2.7.4.2 special Acceleration. By taking the derivative of the velocity, as
in Equation 2.5, and applying the distributive law to the cross product,

C C C C C
= d 5 d & d = = - d - d s
Bose = FE Vore = a Yers *a& % Xy t %X dE Gy tat Vesc

Now, substituting with the notation for acceleration where possible,

Ca

- - Ca
Bje = a Y%ors

L 4
+ W, c X I"p/xa + %/c XaT-_ rp/B + As/c

The two remaining terms with derivative notation should be recognized as appli-
cations of Equation 2.4. So, substituting

Bje=Wo,p v, XV g) +ay X1 o+, X(V ,+@, X[ )+ B, e

Expanding and noting

ose = By

- —

y o
i .

AP/C=AP/B+ooB/CXVWB -i—mB/Cerﬂ3 +o\>B/CXVp/B +ooB/CX(ooB/Cer/B
%/C

Rearranging and combining the two like terms

rP/B+2w8/cXVP/B+wB/CX(wB/Cer/B) (2.7)

A:»/C = Ap/B + AB/C + ws/c X
Of the five terms remaining in the acceleration equation, the last two
have descriptive names.

ZwB sc X Vp . is called the Coriolis acceleration, and

W, X W, Lo X I_Rp ,s is called the Centripetal acceleration.

The terms in Equation 2.7 that are independent of the motion of p
relative to frame B are called the transport acceleration. These terms
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provide the acceleration in frame C of a point that is fixed at p at the
instant in question. Notationally, the transport acceleration is

[ ]
Are = Bpc v 9, XI5+, X0, X1 g)

These concepts are difficult to realize until a few problems are

attempted.
2.7.4.3 Example Two Reference System Problem. The angular velocity of the

2z
%

I&,| = 10 RAD/SEC |
I@,| = 5 RAD/SEC

51 =O—)2 =0

REFERENCE C

FIGURE 2.16. TWO REFERENCE SYSTEM PROBLEM

arm ap relative to the disk in Figure 2.16 is 10 rad/sec, shown vectorally in
the diagram as 3)1, while the angular velocity of the disk relative to the
ground is 5 rad/sec, shown vectorally as w,. The angular accelerations are
zero. Reference B is attached to the platform, while frame C is fixed to the
ground, three feet below the disk. At the instant in question, the arm ap is
in the vertical position, and the reference axes directions coincide, although

displaced.
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Find the velocity and acceleration of point p relative to the fixe’
reference frame C.
Using Equation 2.6

e = Vot %, c er/B + VB/C

—

Ve (2.6)

.
’UHI

we know the last term, V. = 0, since the B frame is only rotating relative

to C. B/c
W, = w = 5k rad/sec and 'r—p e = 3k feet, by observation
This leaves Vp ,g Which involves angular velocity -‘;1 = —101-, relative to B.
Vo,s = @ Xr . = (-10i X 3k) = (-30)(-j) = 30j ft/sec

Substituting all the parts into Equation 2.6

Voje = 30 +5k X3k +0 = 30j+15(k X k) = 30j ft/sec
For the acceleration, the general expression is Equation 2.7 ‘

L 3

Ap/C = Ap/B + Axa/c + %, c X Lo/s + 2""xa/c X Vp/B + %, c X (ws/c X rp/B)

The only unknown terms are ZB o = 0 and Kp /B The latter is a centripetal
acceleration due to the rotation of the arm. The centripetal acceleration may
be arrived at in several different ways,

B .
— _ - _ d — — _ - — — ——n
Ap = @ Vers = @@ Xr,,5) = o X, + o Xr ,
=0 + & X (& X1,,) = (-101) X (303)

-300k ft/sec’

Substituting this value and the others already calculated
A = -300k + 0 + 0 X 3k + 2(5k X 303) + 5k X (5k X 3k) = -300i - 300k

p/c
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.

while working problems where there is a choice of axes, be careful to
choose so that as many parameters as possible are equal to zero, and most
importantly so that the axes are aligned at the instant in question. Also,
whether a reference system is fixed in a body or not will have profound
effects on the velocities as seen from that origin. Try to place yourself at
the origin of a system and visualize the velocity and acceleration seen to
help avoid confusion. Also check your answers to see if they are logical,
both in magnitude and direction. The right-hand rule is essential.

When working with large systems, with many variables it becomes necessary
to develop a shorthand method of writing systems of equations. The
development of matrix algebra is the solution.

2.8 MATRICES

An m X n matrix is a rectangular array of quantities arranged in m rows
and n columns. When there is no possibility of confusion, matrices are often
represented by single capital letters. More commonly, however, they are
represented by displaying the quantities between brackets; thus,

a,, a3, .-.-.83,

‘A = [A] = "aij" = [a;,] = la,, a,, .. .23,
mxn mxn mxn

ml amz ¢t amn

Note that a, refers to the element in the ith row and jth column of [A].
Thus, a,, is the element in the second row and third column. Matrices having
only one column (or one row) are called column (or row) vectors. The matrix
[X] below is a column vector, and the matrix [Y] is a row vector.

[X] = |x Yl = ly,y, - . - %]
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A matrix, unlike the determinant, is not assigned any "value"; it is‘
simply an array of quantities. Matrices may be considered as single algebraic
entities and combined (added, subtracted, multiplied) in a manner similar to
the combination of ordinary numbers. It is necessary, however, to observe
specialized algebraic rules for combining matrices. These rules are somewhat

more complicated than for. "ordinary" algebra. The effort required to learn
the rules of matrix algebra is well justified, however, by the simplification
and organization which matrices bring to problems in linear algebra.

2.8.1 Matrix Equality

Two matrices [A] = [aij] and [B] = [bij] are equal if and only if they
are identical; i.e., if and only if they contain the same number of rows and
the same number of columns, and a, = bi:i for all values of i and j. Thus,

the statement

a, a, a,, 2 4 3

a,, a,, a,, 1 0 19 .

is equivalent to the statements

il

11

12

etc.

2.8.2 Matrix Addition
Two matrices having the same number of rows and the same number of
colums are defined as being conformable for addition and may be added by

adding corresponding elements; i.e.,
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— - — .
all a1.2 ¢ bll b12 cee all + b11 a12
a,, etc.| + b,, etc.| = a,, +b,,
- AL 4 L
Thus
2 1 2 0 4 1

w
[\
+

=
™

]
(-3
N

2.8.3 Matrix Multiplication by a Scalar
A scalar is a single number. A matrix of any shape may be
a scalar by multiplying each element of the matrix by the scalar.

r— ——r—r

al 1 al 2 * l— kal 1 ka1 2
k[A] = k a21 = ka21
- - -
For example,
2 -1 6 -3
3 =

3 0 9 0

2.8.4 Matrix Multiplication

+ tﬁz

etc.

multiplied by
That is:

Matrix multiplication can be defined for any two matrices when the number
of columns of the first is equal to the number of rows of the second matrix.

This can be stated mathematically as:
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(3] _[B] = [c]
ixm mxj ixj
where
m
CJ.J =k-‘§1 aik bkj

Multiplication is not defined for other matrices.
Equation 2.8 demonstrates the product of two, 2 x 2 matrices.

[a] (B] = [C]
2x2 2x2 2x2
a, a, b, b, €1
4 a2 b, b,, a1
or using the definition of multiplication,
a1 3, ||k by, 3, by, + 3, by a; b, + a,
a'21 a22 b21 b22 a21 bll + a22 b21 aZl b12 + a22

(2.8)

This situation is sufficiently general to point the way to an orderly

multiplication process for matrices of any order.
In the indicated product,

[aA] ([B] = [C]

the left-hand factor may be treated as a bundle of row-vectors,
- -

la,, a,,]
[A] =
[a,, azzu




and the right-hand factor as a bundle of column vectors,

- -
bll b12
[B] =
b21 b22
Then,
— - ™ = = -
[all 812] 11 b12 cll c12
X = (2.9)
I:a21 a22] 21 bZZ_J c21 CZZJ
and by comparison with Equation 2.8
— o .
[all a12] bll [all a12] b12
[all a12:I bll b12 _ LbZIJ L.b22 (2°10)
[a21 322] b21 b22 [a21 a22] E)11 [a21 a22] rblj
b b
21 2
. - J T
where, by definition,
b | = b b
[all alZ:I 11 [all 11 + a 21]
P21
b ] = b b
[all a12] 12 [all 12 + a 22]
b22
etc.

A comparison of Equations 2.9 and 2.10 shows that if the rows of [A] and
the columns of [B] are treated as vectors, then Cij in the product [C] = [A]}
[B] is the dot product of the ith row of [A] and the jth colum of [B]. This
_,rule holds for matrices of any size, i.e.,
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C;; = [ail 8, oo ain] rblj = l_au blj +a, sz + ...+ a bnj]
sz
£Pay]

Matrix multiplication is therefore a "row-on-column" process:

jth column ijth element

ith row X = :""" - ‘:;"‘
————— l —:-—
l ]
|
- - -
[3 2] 1 [3 2] 2 .
L.—'J:J _0_] *
3 2 1 2 -1 4 [1] (=2 a |2
-1 4| |1 0 - 1] 0,
0 2 [~ " [
[0 2] 1 [0 2] 2
:l.f OJJ
1 6
- 5 -2
-2 0

The indicated product [A] [B] can be carried out only if [A] and [B] are
conformable; that is, for conformability in multiplication, the number of
columns in [A] must equal the qumber of rows in [B]. For example, the

. .expression
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11 12 11 12
2 a2 b,, b,
b, b,

is meaningless (as an attempt to carry out the multiplication will show)
because the number of columms in [A] is two and the number of rows in [B] is
three. A convenient rule is this: if [A] is an m x n matrix (m rows, n
cdlumns) and [B] is an n x p matrix, then [C] = [A] [B] is an m x p matrix.
That is,

[a] [B] = [C]

mxn nxp mxp

Matrix algebra differs significantly from "ordinary" algebra in that
multiplication is not commutative. In general, that is,

(Al [B] # [B] [A]

For example, if




Because multiplication is non-commutative, care must be taken in describing
the product

[C] = [a] [B]

to say that [a] "premultiplies" [B], or, equivalently, that [B] "post-~
multiplies" [A].

2.8.5 The Identity Matrix
The identity (or unit) matrix [I] occupies the same position in matrix
algebra that the number one does in ordinary algebra. That is, for any matrix

(al,

[I] [A] = [A] [1] = (A]

The identity [I] is a Square matrix consisting of ones on the principal

(¥—) diagonal and zeros everywhere else; i.e., ‘

1 0 o...4¢]
0 1 0...o0
1] =100 o 1...p0

The order (the number of rows and columns) of an identity matrix depends
entirely on the requirement of conformability with adjacent matrices. For

example, if
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[A] =
100 1
then
1 0 [2 1 3] 2 1 3
[I] [A] = =
o 1] {1 o 1 1 0 1
2 1 311 o o] (2 1 3]
A = 10 1 o 1 o = |1 o 4
0 0 1

Thus, the "left" identity for [A] is 2 x 2 and the "right" identity for
[A] is 3 x 3; however, they both leave [A] unaltered.

2.8.6 The Transposed Matrix

The transpose of [A], labeled [A]®, is formed by interchanging the rows
and columns of [A]. That is,

— — —
an alz e o o aln[ Fan a“ e o o aml
a21 a22 ¢ * a2n a12 a22 ° * amz
a a P - | a a e « o« Qa

h_‘ml m2 mﬂ J_ln 2n m_x”

The jth row vector becomes the jth column vector, and vice versa. For
example,
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-, ) )
3 2 0
2 4 =
1 4 2
0 2 - -
- -
2 5+54(7 [ -10
-10 3 5+74 3
. L. -
1
-
1 2 3]T = 2
3

2.8.7 The Inverse Matrix
Matrix multiplication has been defined; it is natural to inquire next if
there is some way to divide matrices. There is not, properly speaking, a
division operation in matrix algebra; however, an equivalent result is .
obtained through the use of the inverse matrix. ‘
In ordinary algebra, every number a (except zero) has a multiplicative
inverse, a ' defined as follows: A quantity a ' is the inverse of a if

-1

In the same way, the matrix [A] is called the inverse matrix of [A] if

1

(al (a1t = (a1t [a] = (1)

The symbol 1l/a is normally used to signify al.

multiplication is commutative,

Since ordinary

(ra) « (b) = (b) ¢ (lfa) = b =+ a

for any number b. The use of the division symbol (%) in this instance is
useful and unambiguous. In matrix algebra, however, multiplication is not
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. [a]"! (B] # [B) [Al?

and the expression

[B] + [&]

cannot be used since it may have either of the (unequal) meanings in the
previous equation. Instead of saying "divide [B] by [A]," one must say either
"premultiply [B] by [A]"'" or "postmultiply [B] by [A]™*." The results, in
general, are different.

2.8.8 Singular Matrices
Matrices which cannot be inverted are called singular. For inversion to
be possible, a matrix must possess a determinant not equal to zero. For

example, the matrix

2 1
3 0
4 5

is singular because it is not square, and a determinant cannot be computed.
The matrix

is singular because its determinant vanishes.
Matrices which do possess an inverse are called nonsingular.
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2.9 SOLUTION OF LINEAR SYSTEMS
Consider the set of equations

3
.
.
.
L] s o s
.

a,x + a,x + + & X
That is,
[A] [X] = [Y]

(2.11)

Assuming that the inverse of [A] has been computed, both sides of this

equation may be premultiplied by [A]™*®, giving

-1 1

(Al [A] [X] = [A) " [Y]

From the definition of the inverse matrix,

[1] (x] = [A]"' (Y]
from which, finally,

[X] = [a]"! [¥)

Thus, the system of Equation 2.11 may be solved for Xyr Xyp o

computing the inverse of [A].

2.9.1 Computing the Inverse

There is a straightforward four step method for computing the inverse of

a given matrix [A]:

Step 1. Compute the determinant of [A]. This determinant is written as
|A|. If the determinant is zero or does not exist, the matrix

[A] is defined as singular and an inverse cannot be found.
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‘ Step 2. Transpose matrix [A]. The resulting matrix is written [A]T.
Step 3. Replace each element a, of the transposed matrix by its co-
factor A, ;. This resulting matrix is defined as the adjoint of
matrix [A] and is written: Adj [A].
Step 4. Divide the adjoint matrix by the scalar value of the determi-
nant of [A] which was computed in Step 1. The resulting matrix
is the inverse and is written: [A]™'.

This procedure can be summarized as follows: To calculate the inverse of
[A] calculate the adjoint of [A] and divide by the determinant of [A] or

(At - A4 )

Example: Find [A]™!, if
Al = (1 5 1

Step 1. Compute the determinant of [A]. Expanding about the first row

3 2 0
A = 1 5 1

lo 2 -4
A = 3(-5-2) =2(-1 + 0) + 0(2 - 0)
A = 2142+0 = -19

The determinant has the value -19; therefore an inverse can be computed.

Step 2. Transpose [A]

3 1 0
(a)® = 2 5 2
0 1 -1




Step 3: Replace each element a . of [a)* by its cofactor A, . to deter—‘
mine the adjoint matrix: Note that signs alternate from a posi-

tive A,
r —
5 2 2 2 2 5
1 -1 0 -1 0 1
-7 2 2
1 0 3 0 3 1
Adj [A] = - - = 1 -3 =3
1 -1 0 -1 0 1
2 -6 13
1 0 3 0 3 1
5 2 2 2 2 5
8 y

Step 4: Divide by the scalar value of the determinant of [A] which was

computed as -19 in Step 1.

7 2 2
A" =gy |1 -3 -3
2 -6 13

2.9.2 Product Check
From the definition of the inverse matrix

A" [A) [1]

It

This fact may be used to check a computed inverse. In the case just completed

®



-1 1
AT [A] = 5| 1 -3 -3 1 5 1
2 -6 13 0 2 -1
19 0 o
-1 1
(AT [A] = 5| 0 -19 0
| 0 0 -19]
1 o o
(a1t [a) = 0 1 0
0 0 1
[A]™Y [A] = [I)

Since the product does come out to be the identity matrix, the

‘ computation was correct.

2.9.3 Example Linear System Solution

Given the following set of simultaneous equations, solve for X0 Xy and

3° \
3, +2x, - 2x;, =y,
-X, +X%X, +4x, =y, (2.12)
2x, - 3x, +4x, =y,
J/

This set of equations can be written as

[a] [X] = [¥]
or i
[X] = [A]" [Y]
Thus, the system of Equations 2.12 can be solved for the values of A
X, and x, by computing the inverse of [A].
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Step 1:

Step 2:

Step 3:

Compute the determinant of [A]. Expanding about the first row

A

3(4+12) -2 (-4 -8) -2 (3 -2)

A 48 + 24 -2 = 70

Transpose [A]

(al* =1{ 2 1 -3

Determine the adjoint matrix by replacing each element in [A])® by its
cofactor

1 -3 2 -3 2 1
4 4 -2 4 -2 4
-1 2 3 2 3 -1
A3 [a] = |- -
4 4 -2 4 -2 4
-1 2 3 2 3 -1
1 -3 2 -3 2 1
_ il
-
16 -2 10
Adj [A] = 12 16 -10
1 13 5
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Step 4: Divide by the scalar value of the determinant of [A] which was
computed as 70 in Step 1.

16 -2 10
Al = %ﬁ 12 16 -10
1 13 5
Product Check
(A" [(A] = [1I)
16 -2 10 3 2 -2
[aI! [a] = %ﬁ 12 16 -10 -1 1 4
1 13 5 2 -3 4
e - .
70 0 0
(a1-! [a] = %5 0 70 0 (2.13)
0 0 70
b —
[Al-1 [A] = 1 0 0
0 1 0
0 0 1
har e

Since the product in Equation 2.13 is the identity matrix, the
computation is correct. The values of X, X,, and x; can now be found for any
Y,r ¥,, and y, by premultiplying [Y] by [A]™}.

1

[X] = [A)" [¥]
. . 16 -2 10 Y,
x| = 75 |12 16 -10 Y,
, 1 13 5 Y,
2.49




For example, if y, = 1, y, = 13, and y, = 8
x, | {16 =2 10 1]
x, =% 12 16 -10 13
X, 113 5 | 8]
X, = 25 (16-26+80) = 10 -1
X, = 25 (12 +208 - 80) = M0_
X, = 75 (1+169 +40) = 2103

Solution of sets of simultaneous equations using matrix algebra
techniques has wide application in a variety of engineering problems.

-
I.
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PROBLEMS

2

+

5'

k a unit vector?

<1
5

w |

]

L
+

2.1 1Is

w |
w |

2.2 Find a unit vector in the direction of

A = 2i+ 35 _—

2.3 Are the following two vectors equal?

2i +37 -k

5
]

4i + 65 - 2k

wl
l

2.4 The following forces measured in pounds act on a body

F, = 2i+3j-5k
fz = -5i + 5 + 3k
F, = 1-2j+4k
F, = 4i -3j - 2k

Find the resultant force vector and the magnitude of the resultant force
vector.

2.5 If A = 31i-3-4k
B = -2i +4j -3k
C = i+27-k
Find
ZX -B+ 3c =
[E+8+C] =
|3& - 25 + ic| -
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2.6 The position vectors of points P and Q are given by
;1 = 2i+ 35 -k
r, = 4i-37+ 2%

Determine the vector from P to Q (PQ) and find its magnitude.

2.7 Find A » B using A and B from Problem 2.5.

2.8 Given A =21+33-%
B = 41 +67-2k
a. FindA . B _ _
b. Find the angle between A and B.
2.9 Evaluate _
Je(2i - 37+ k) =
(21<3)*(31 + k) =
2.10 1f A = 31 -7 -4k _
B = -2i + 43 - 3k
Find A X B

2.11 Determine the value of "a" so that A and B below are perpendicular.

Wik
o
N
[
+
o]
f .t
+
[

2.12 Determine a unit vector perpendicular to the plane of A and B below.

A = 21—6i—3T(

B = 41 +37-%
2.13 If _ L

B = 20-37-%k

B = T1+47 -2k

Find
3 X3
BXA
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‘ and

2.14 Evaluate
a. 2 X (3i - 4k)
b. (i+25)x%k

(A + B) X (A - B) (the quick way using vector
algebra).

2.15 The aircraft shown below is flying around the flagpole in a steady state
turn at a true velocity of 600 ft/sec. The turn radius is 6,000 ft.
What is turn rate w expressed in unit vectors (i, j, k) of the XYZ system
shown?

o \ &= 45°
., L REAR
ﬂ VIEW

2.16 For the same aircraft and conditions as Problem 2.15, what is turn rate
expressed in unit vectors (i, E, k) of the xyz system shown?

2.17 Given

r = t35-6t§.+6f

Find r with respect to the axis system xyz which has i, j, k as its unit
vectors. Is T a velocity?

‘ 2.53




2.18 If the xyz system in Problem 2.17 is rotating at 3+ 237 -k rad/sec. m.
respect to another system X¥Z, find T.:' with respect to XYz. 1Is r the
velocity of the point whose radius vector is T with respect to XyYz? What
system is the answer of this problem referred to?

2.19 A flywheel starts from rest and accelerates counterclockwise at a
constant 3 J:ad/sec2 . After six seconds the point P on the rim of the
wheel has reached the position shown in the sketch. What is the velocity
of point P with respect to the fixed XYZ system shown?

6#,, .f/—P
N

— 7 @

OUT OF .
PAPER

= 3t’i - tj
= -6ti + tk

2,20 1£f

Wil >

Find d(A-B)/dt relative to the system having i, j, and k as its unit
vectors. Is the answer a vector?
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‘ 2.21 A small body of mass m slides on a rod which is a chord of a circular
wheel as shown below. The wheel rotates about its center with a
clockwise velocity 4 rad/sec and a clockwise angular acceleration of §
rad/sec’. The body m has a constant velocity on the rod of 6 ft/sec to
the right. Relative to the fixed axis system XY shown below, find the
absolute velocity and acceleration of m when at the position shown.
Hint: Let xy system rotate with the disk as shown.

w = -4k
w = -5k

Y,y
\ m p
@ -
- L ﬂv— x
il -
—]1.5 | SFT
FT {
\ X
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2.22 A small boy holding an ice cream cone in his left hand is standing on th’
edge of a carousel. The carousel is rotating at 1 rad/sec counterclock-
wise. As the boy starts walking toward the center of the wheel, what is
the velocity and acceleration vector of the ice cream cone relative to
the ground XY?

Hint: Let xy be attached to the edge of the carousel.

Boy’'s velocity = 2 ft/sec toward center
Boy’s acceleration = 1 ft/sec2 toward center
Carousel’s acceleration = 1 rad/sec’ counterclockwise.

2.23 Solve the following equations for x,, x,, and x, by use of the inverse
matrix.
X, +x, = 2

2x2 +2x3 = 1

-x1+x2+2x3 = 3

2.56 .
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2.24 For a - i let

Compute

A A i L

2.25

2.26 Find x, y, and 2z

(A]

[C]

[X]

[C] - [Aa]
(a] [B]

([a] [B]) [Y]
[al ([B] [Y])

[a] [c)
[C] [A]
[X]" [B]

[X1° ([a) [X])

[X] [D)*

If [Aa])

-4x - 3y - 3z

X+ 2

4x + 4y + 3z

[B]

(D]

[yl

2.57

4
_—l
4
| 2
A
= YZ
Y, |
1
21,
1
1
1
1

Find [A][A]




~

2.27 Read the question and circle the correct answer, True (T) or False (F):

T

89 3 3 4

L]

H 4 3 3 4

F

M M m

e |

g m m m m

A vector is a quantity whose direction and sense are.fixed, but
whose magnitude is unspecified.
A scalar is a quantity with magnitude only.

The magnitude of a unit vector is one.
Zero vectors have any direction necessary.

A free vector can be moved along its line of action, but not
parallel to itself.

Free vectors may be rotated without change.

A 3 x 2 matrix can pre-multiply a 2 x 4 matrix and the result
will be a 3 x 4 matrix.

A 3 x 2 matrix can post-multiply a 2 x 4 matrix and the result
will be a 3 x 4 matrix.

Multiplying a matrix by a scalar is the same as multiplying its

determinant by the same scalar. [ g
Identity matrices are always square. ‘
1 0 0
1 0
0 1 0 =
0 1
0 0 1 =

Both matrices in the preceding question are identity matrices.
Singular matrices can be inverted.

The determinant of a non-singular matrix is zero.

Inverting a matrix is a straightforward process.

AXB =i

J
A4
B, B

& =

o]

3

The determinant of any matrix can be calculated.

The value of a determinant depends upon which row or column it

was expanded about. ’
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2.28

T F Velocity is the time rate of change of a velocity vector.

T F Acceleration is the time rate of change of a velocity vector.

T F Acceleration has to be expressed in (referred to) unit vectors
of an inertial reference system.

T F Bodies moving with pure translation only do not rotate.

T F Reference systems are considered to be non-deformable rigid
bodies.

T F [A] [B] = [B] [A], if the two matrices are conformable for
multiplication on the left hand side of the equation.

v ¢ |5l - |5

T F Igl - |3

T F The magnitude of A/JA] is equal to E/IEI

T F  2(32) = S5A

T F I; 5, and k are orthogonal.

T F |PQ] is the distance between points P and Q.

T F AeB = Be A

T F If A « B is zero and neither A nor B are zero, then A and B
must be parallel.

T F iei = 1

T F AXB = BXA

T F AXB = A B +A B, +A B

Define:

Determinant

Vector

Scalar

Free vector

Bound vector

Velocity vector of a particle’
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Unit vector ‘

Zero vector

Parallel vectors
Position vector
Matrix

Square matrix

Column vector

Row vector

Matrix equality
Matrix conformability
Matrix non-commutativity
Identity matrix

Transposed matrix

N
Singular matrix .

2.29 Find the W's velocity and acceleration vectors:

y

x=8t2 'l

2.30 Find a unit vector parallel to

A = 2i-35+6k
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2.31 what is the magnitude of the following vector?

A = 2;+3§+6.)-<

2.32 Is the axis shown a "right-handed" axis system?

Y 1
y 4

‘ 2.33 Given the following position vector, find the acceleration at time t = 0.

r = 6t°1 - 3tj + 6t°k
2.34 Add the following vectors

= 3i
ak
= 1/2j

al wl >
"
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2.35 Find A + B and the angle it makes with the x axis.

LI I

2.36 what is the angl'e.between the two vectoré given below?

2.37

2.38 Given

Find

= 2i - 7k
- 5§+2§-6§

wy >

>

wi >l
[}
-] O

»>|
4
w!

2.62

1f |2l = 7, .

I8l = 8,
and both vectors
lie in they - 2z
plane, find

AXB



2.39 The angular velocity of a rotating rigid body about an axis of rotation
is given by w = 431 + 23 + k. Find the linear velocity of the Point P on
the body whose position vector relative to a point on the axis of
rotation is i - 23' + 2k.




2.40 The T-38 shown is in a right continuous roll at 2 rad/sec while travelin’
at 480 ft/sec. Find the velocity of the wingtip light with respect to
the axis shown.

L/ V’

XY AXIS IS INERTIAL
(i.e. FIXED)

2.41 The particle, P, is following a path described by : x = 6t?, y=t+1, 2z
= t’. Find the velocity and acceleration of P, with respect to the axis

shown.

I,
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‘ 2.42I1fA=31 -3+ 2k and B = -i + 3j -k, find

a. |l £. RXB |

b. ]iil g. Unit vector, a, parallel to A
c. A+B h. 8 +2

d. | X+ B i. a8

e. A+ B

2.43 The shaft is rotating counterclockwise around the cone in the XZ plane at
5 rad/sec and accelerating at 3 rad/sec’. The wheel is rotating as shown
at 200 rad/sec and decelerating at 50 rad/sec2 . Find the velocity of
point P with respect to reference system C at the instant shown. Hint:
Let x be fixed in the shaft, and xz and Xz planes remain coplanar.

® ' y
‘ - € : 3%+ v
A\
el
P X
\1.5F'r
5 , | RADIUS
|

Z _

| . 2.65




2.44 1f [aA] = 1 -2 3
2 1 0
Find: [A] [B] and [B] [A)
2.45 1f [A] = 1 2
0 1
Find [A] [B] and [B] [A]
] N r
2.46 3 6 -1
+
| 0 2] 2
2.47 1 3 1
+(3)
-1 2 2
- A L
2.48 If [ x 1 4
2 y + 2 B 2
Find X, Yy, and z.
2.49 If 2 ' -4
= k
-a 2a
Find k.
2.50 Compute the inverse of
2 -1
-3 2

2.66
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‘ 2.51 Compute the inverse of

3 2 1
1 5 4
6 4 2

2.52 Compute the inverse of

2 4 1
-1 0 2
1 1 1

2.53 For what value of y is this matrix singular?
1 3 y
2 0 -1

L“1 1 -y

2.54 Find the determinant of

i 6 0 0 0 0 o

8 x 0 0 0 o

12 10 3 0 0 0

1 -1 6 x' 0 0

o o0 2 3 1 0
o 0 0 o 0 4|
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2.55 1f [A] = 2 4 1 .

Find [A][A]

2.56 1f
X+ 2y +3z2 = a
4x + S5y + 6z = a
Tx + 8y + 9z = a,
Find x, y, and z for any value of a,, a,, and a,.
Find x, y, and 2, when a, =1, a, = 2, and a, = 3.

2.57 The mechanism shown below vibrates about its equilibrium position, E. At
the instant shown block A has a velocity of 5 ft/sec to the right and is
decelerating at 4 .*Et/sec2 to the left. The bob B in its counterclockwise -
motion maintains a constant angular velocity l'él of 5 rad/sec. Calcul

i

the velocity and acceleration of the bob relative to the given XY syste '
at the instant shown. Hint: Let the xy axis be fixed to the block A.

AY ’
W Z s
7
? %
w e
Z—fm‘f‘ﬂ‘d\ //i‘a«‘;\ X, x
: 77 %

30°

\
|
|
|
|
i
‘ 2.68 .
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2.58 Capt. Marvel, US Army, is performing a loop with an angular velocity ||

of 1 rad/sec in his Huey Cobra to roll in on a target. At the top of the
loop, the leading rotor blade is just parallel with the helicopter’s
centerline. The rotation of the rotor lﬁl is 3 rad/sec counterclockwise
as viewed from the top of the helicopter. At this instant, what is the
velocity of the leading rotor blade tip? If Capt. Marvel were to raise
the collective and accelerate the rotor speed by 3 rad/sec’, this would
accelerate an angular velocity of his loop by 1 rad/sec’. what would the
acceleration of the leading rotor blade tip be? Hint: Let the xyz
system be attached to the helicopter rotor path plane as shown.

radius of loop = 1,000 ft
radius of rotor path plane = 10 ft

2,z
LEADING

ROTOR TIP -
\ X

Hint: Let the YZ and yz planes remain coplanar.
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ANSWERS
2.1 Yes, magnitude of V = 1

2.2 2i + 37 -k
(14) 1/2

2.3 No, B = 2a
2.4 F, = 2i-3

| = 5

2.5 11i - 8k; J93 ; {398

2i - 65 + 3k

I2gl = Va9

3l
"

[ ]
~
>
.
wi
[}
N

2.8 A+ B

28; ¢ = 0
2.9 -3; undefinedi e 3 = 0
20 AXB = 191 + 17§ + 10k
2.11a = 3

A 37 27 6
2.12u = 71—73 +"-7k

213AXB = 10T +3j+11k; BXA = -10i - 37 - 11k;
(A+B) X A-B) = -20i - 65 - 22k

2.14 -8i - 6k; +2i -3
2.70 '
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2.16 w .073 - .07k

2.17T 3t’i - 63

2.18 (r),,, = (3t® - 6t + 12)1

-(t? + 24)F

-2t + 18t)K

in XYZ system
219V, , = -108j ft/sec

2.20 d(A * B) = -54t2
B

181 + 63; A,

221V, . =
2.2V, = -10i - 3; &,
2.23 x, = -1/4; x, = -1/4;
2.25 5 -3 1

2 1 4

3 -1 2
2.26 x = -10; y = 2; =z
2.29V = 16ti; a = 161
2.30 3 =§,1“:;*j”+gi
2.31 IXl = 7

39i - 88.55
-10j - 71

X, = 9/4
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2.3A+B+C = 31+4k+1/2]3 ‘
2.35A+B = 8i+3j; ¢ = 20°

2.36 ¢ = 27.6°

2.37AXB = -28i
2.33AXB = -2i-5j+2k
2.39V, = 6i-7j- 10k
2.40 V. = 480i + 25k
2417 = 12tT + 3+ 3tk; a = 121 + 6tk
2.42a V14 £ 51+ 3+8k _ ) L
b V11 g  GA/10)i - A/ 195 + (24 14)k ‘
c 2T +27+k h J14 ’
da 3 i -8//14
e -8
2.43V,,. = 300j +7.5i - 15k
A,,. = -70.51 - 75 - 60046.5k
2.44 7 -4 -1 -3 3
[A] [B] =
2 1 [B] [A] =| 6 3 0
4 -3 6
2.45 7
[a] [B] = [B] [A] Cannot do
3
2.6 |2 9
2 2
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248x = 4; y = 3; z = 2
2.9k = -102
2.50 1
(A" =
3 2
2.51 No Inverse
2.52 2 -3 8
(a7t = % 3 1 -5
1 2 4
2.53y = 1/4
2.54 72
2.55 1 9 11
0 -2 1
2 5 4
2,56 No Solution
2.57V,,, = 13.66i +5j; A, . = -29i +43.3j
2.58V, . = -30i - 10003 - 10k; A, = -30i - 900 - 1010k
2.73




