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Preface

RAND has developed and used models of military combat for several decades.
Over the years, model-building capabilities have improved dramatically—in
computer capacity and speed, software for simulation, and experience in
modeling. The end of the Cold War has focused attention on representing and
modeling new and different challenges for U.S. military forces, while maintaining
a balanced, viable defense force despite downsizing. The campaign model has been
a key tool in such joint-force structure analysis, strategy assessment, and
operational planning. This report describes our research into improving the
ability of the campaign model to represent some of the important new
characteristics of combat and using new software capabilities to achieve the
flexibility required of such models in a highly uncertain threat environment.

We designed and coded the Theater-Level Campaign (TLC) model for RAND’s
Project AIR FORCE and the Arroyo Center to improve analysis of theater-level
joint-force issues in the post-Cold War era. This model introduces advanced
features for representing maneuver in “nonlinear” battlefields and structures for
better simulation of command, control, and information systems. The model
takes advantage of improved graphical user interfaces for setup and output and
of state-of-the-art object-oriented simulation software. This report is not meant
to be a user’s manual for TLC or to promote it specifically. Rather, to help other
ongoing efforts move the technology of campaign modeling into the next
generation, we describe the lessons we learned in the design process and the
specific methods we implemented. Our purpose is to complement the activities
of the Air Force, the Army, and others as they examine key joint campaign-
modeling issues, capabilities, and requirements for new campaign-model
development efforts.

The work described here was conducted in two related projects within two of
RAND'’s federally funded research and development centers (FFRDCs) for
national security studies: Project AIR FORCE, sponsored by the United States
Air Force, and the Arroyo Center, sponsored by the United States Army. The
first project, the Airpower Operations in Joint Theater Campaigns task of the
Modeling Improvement Study, was conducted within the Force Modernization
and Employment program of Project AIR FORCE and was sponsored by the
Director of Modeling, Simulation, and Analysis. The second project, the
Nonlinear Combat Modeling Study, was conducted within the Force
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Development and Technology Program of the Arroyo Center and was sponsored
by the Concepts Analysis Agency.

The report should be of interest to the variety of modelers, analysts, and
decisionmakers that use models as part of the campaign-analysis process,
especially those involved in defining requirements and constructing new
campaign models.

Related Documentation

We have produced five reports and a research brief as part of this work.
Modeling For Campaign Analysis: Lessons For the Next Generation of Models—
Executive Summary, MR-710-AF, provides an overview of important issues and
approaches for campaign models designed for analysis. Still to come is the full
report, which will address those issues in detail, describe alternative approaches,
and discuss how a campaign model should be used in the analysis process. The
present report, The Theater-Level Campaign Model: A Research Prototype for a New
Generation of Combat Analysis Model, MR-388-AF, provides a more in-depth
description of the important features we implemented in the Theater-Level
Campaign model. The MAPVIEW User’s Guide, MR-160-AF/ A, 1993, describes a
graphical user interface developed as part of the theater-level campaign work
specifically for the generalized network gameboard that underlies the Theater-
Level Campaign model. An earlier workshop report, New Issues and Tools for
Future Military Analysis: A Workshop Summary, N-3403-DARPA/AF/A, 1992,
describes conclusions reached at the start of this project about the need for new
models for analysis in the post-Cold War era.
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Summary

Motivation for This Research

The bipolar, Cold War era left a legacy that continues to influence both the
analysis and the models used in campaign analysis. The models have underlying
representational structures that reflect the assessment of defense options of
NATO forces facing a Warsaw Pact in Europe. These structures limit the ability
to assess new C41 options, small units, maneuver warfare, new operational
concepts, and operations with severe constraints in terms of casualties, rules of
engagement, and other factors. In general, the legacy models and Cold War-
based defense paradigms limit the ability of analysts to investigate (and
conceive) new options for the new situations facing the United States.

Many analysts and decisionmakers argue that an order-of-magnitude leap
forward in military modeling—particularly campaign modeling—is essential to
improve the quality of analyses, training, acquisition, test and evaluation, and
innovative thinking.1 This research has been a step toward ensuring that the
next-generation campaign models will not be mere rewrites of tools we currently
use. We investigated and implemented alternatives to four aspects of modeling
we think are essential to improving theater-level campaign analysis in the future:
(1) how to create more-flexible structures to simulate the wide range of future
scenarios and their associated uncertainties, (2) how to link to more-detailed
models in an analytically valid way (which we will discuss under the topic of
cross-resolution modeling), (3) how to represent ground forces maneuvering at
the theater campaign level, and (4) how to better represent adaptive behavior
and aspects of command and control in this type of model.

This research, while not resolving all of these issues definitively, has actually
implemented specific promising approaches. We built the Theater-Level
Campaign (TLC) model to improve our own capability to perform analysis in the
post—Cold War era. In many cases, we tried methods and then, finding they
were not promising, removed that code and started over with better alternatives.
An important lesson was that the development of a truly new campaign model
was not just “cutting cookies.” We often had to implement our ideas in more

Igee, for example, Department of the Air Force (1995). Also see the 1995 memo from former
Deputy Secretary of Defense John Deutch, which we quote in the introduction of this report.
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than one way to determine whether they would work. The various sections of
the report describe the results associated with each aspect of our development,
describe the implementation we arrived at, and conclude with more general
observations and recommendations for the future.

Observations and Conclusions

Flexible Structures

We describe a “generalized network” structure developed within TLC that
removes most of the constraints of the more-restrictive piston and regular grid
structures of the legacy models, while retaining most of the efficiencies of the
more-restrictive structures. This type of game-board approach is considerably
more flexible for representing new scenarios and operational concepts.

We have also compared and contrasted various other aspects of the underlying
structure of campaign simulations. These include methods to advance time
(discrete time step and event step), deterministic versus stochastic
representations, object-oriented and hierarchical structures, alternative
approaches to allowing human interaction with the model, and approaches to
distributed and concurrent processing with multiple processors. Each of these is
described and compared in terms of flexibility and importance to campaign
analysis based on our experience in implementing a game-board and TLC.

Varying the Level of Resolution and Cross-Resolution Modeling

Variable-resolution modeling refers to the construction of a single model within
which analysts can readily change the level of scope or detail at which the
phenomena under study are treated. Cross-resolution modeling is the linking of
existing models with different resolutions.

In TLC, we implemented structures that could be used to represent theater
campaigns at various levels of resolution. The structures permit one to select the
level of resolution for a particular scenario and problem at the beginning, then to
set up and run the model at that level of resolution. We used these structures to
represent simulation objects and processes at multiple, selectable levels of
resolution. The report describes some of the pros and cons of taking this
approach.

A key aspect of campaign models is that much of the system and force
effectiveness data must come from other, higher-resolution models. Values for
surface-to-air, air-to-surface, air-to-air, and ground force-ground force




effectiveness must usually be generated by more-detailed models run for a
selected set of input cases. This linkage to higher-resolution models, or cross-
resolution modeling, is important for conducting high-quality analyses at the
theater and operational levels (see Davis and Blumenthal, 1991). We found that,
in general, most current approaches to aggregation, while appearing to be
logical, have no good scientific or mathematical basis and cannot be expected to
provide consistency across the different levels of aggregation, except within very
loose bounds.2 We also found that the strict dependency on other models
increases the cost and difficulty of analysis using the theater-level model and that
community sharing of data and testing of approaches may increase the
practicality and quality of model cross connection. There is a strong need to
perform more testing with various approaches to model cross connection.

Modeling Maneuver at the Campaign Level

During the Cold War, campaign models mostly neglected the maneuver aspects
of warfare and performed dynamic balance assessments between opposing
forces lined up in the pistons of the NATO defensive layer cake, organized
around corps boundaries. In the post-Cold War era, the nature of combat is
much more uncertain, and the defense doctrine is oriented more toward
maneuver. An important goal of the TLC research was to model maneuver in a
campaign model. A model capable of examining the current security
environment—of analyzing command, control, and intelligence capabilities and
considering broad scenario uncertainties in which our forces might be initially
outnumbered—must be able to examine the important aspects of maneuver: the
competitive “nonlinear” movement of force and fire, the role of information, and
the decision cycle. TLC’s operational-level C2 Planner was developed to simulate
the execution of an operational maneuver plan by evaluating the likelihood of
success of an operational plan allocating reserve ground forces and interdiction
assets to maximize the likelihood of achieving the highest-priority objectives, and
planning for either the attacker or defender or both. This adaptive approach
brings to the operational planning process far more dynamic—and sometimes
counterintuitive—allocations of combat and noncombat resources.

Adaptive Resource Allocation

Models that do not react to information and the uncertainty about information by
adapting strategies and resource allocations cannot show the value of C4I assets

2These theoretical issues are discussed in Hillestad and Juncosa (1995).




and capabilities. The Sequential Analytic Game Evaluation (SAGE) algorithm of
the C2 Planner within TLC was designed to support the development of adaptive
strategies for policy analysis. With the SAGE algorithm, the user specifies a
measure of merit (e.g., targets or resources destroyed, final position of the forces,
force ratio at the end of the conflict), and the methodology specifies a sequence of
strategies for the allocation of the resources of the two opposing sides. SAGE,
described in the Appendix B, consists of an algorithm placed within the TLC
multiperiod conflict simulation that allows user specification of overall objectives
to be minimized (e.g., own attrition) or maximized (e.g., attrition of opposing
forces) and engages in an automated search for the “best” strategies to meet the
user-specified objectives.

SAGE solutions indicate the strategy that maximizes the marginal payoff of the
attack aircraft, whether attacking land forces, air bases, or other targets. SAGE is
used in TLC to allocate aircraft, long-range fires, and helicopters to mission types
and interacts with the ground force C2 Planner. It is also used to provide
situation-dependent target values for other algorithms. This combination of
optimizing algorithms, artificial-intelligence-based scripting rules, and decision
tables contributes to treatment of operational strategy as an iterative and
adaptive process, while enabling the user to retain control over the objectives and
the extent of algorithmic optimization in the execution of an operational plan.

Recommendations

We encourage the campaign modeling community to utilize the lessons learned with this
model in terms of approaches to flexibility, model structure, cross-resolution modeling,
maneuver representation, and adaptive decision modeling. The separate sections of the
report deal specifically with these issues and our approaches. We defined,
implemented, and tested important approaches to achieving scenario flexibility
and variable resolution in time, space, objects, and processes. Much of this
flexibility can be achieved while retaining the efficiencies of less-flexible
structures by using generalized networks, event processing, and object-oriented
modeling.

The modeling community is only beginning to understand the issues and
limitations of the cross connection of models and the approaches to aggregation
and disaggregation in achieving consistent results. We know that consistent
aggregation can often be done, but a consistent approach requires research with a
high-resolution model and is often model and data dependent. We also know
that most current approaches are ad hoc and have not been sufficiently tested.




We suggest that other organizations publish their approaches to model cross connection
along with testing that has been done to improve the knowledge base in this area.

Covering the variety of situations encountered in a campaign model’s algorithms
generally requires input of a considerable amount of effectiveness data from
high-resolution models to span the range of situations encountered in the
campaign model. This process is tedious and time-consuming and somewhat
beyond the resource limitations of most campaign-analysis organizations, at least
to do it right. Our conclusion is that successful cross-resolution modeling, in
which detailed results from high-resolution models feed campaign models, will
require data sharing across organizations to provide the variety and depth of
cases required. We recommend that data development be organized within the
Department of Defense. We note that this involves the identification of models to be
used, cases to be run, and data to be stored; definition of aggregate approaches; contextual
description of the data; and development of a process to make the results available to
analysis organizations.

Our research addressed new ways to represent combat phenomena that we think
we understand. However, there are many things we do not understand. These
cannot be resolved by merely declaring that a new model will “include” those
phenomena. We believe there should be specific research to address how to model poorly
understood phenomena, such as information warfare. This research would have a goal of
creating consistent models of the phenomena that cross levels of resolution from high to
low.

It is our belief that simulating adaptive resource allocation is a key element to
understanding the importance of information and command and control systems. The
scripted decisions inherent in many of the legacy campaign models simply do
not react to an information war. In Section 6, we give some illustrations as to
why adaptive decision processes are important and how they can lead to more
robust conclusions in analyses. We developed and tested two approaches to
adaptive resource allocation and those are described in this document. We
expect that advanced distributed simulation experiments with people in the loop
could help further understanding of decisionmaking under uncertainty.

Finally, we note that there are many purposes for modeling and simulation. In
some cases, they help structure and think through problems. In other cases, they
perform less-expensive testing or training. The use of models for analysis, our
primary focus, implies that the models should be transparent, permit sensitivity
analysis, be repeatable, and be usable within the time and resource constraints of
the analysis requirement. On the other hand, modeling for other purposes may
impose requirements for realism, rapid changability, interactivity, etc. Itis
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unlikely that one model will serve all purposes, let alone be useful for the full
range of analytic activities. In our discussion of multiple-resolution features, we
show that the interaction combinatorics between objects get in the way of having
lots of objects at various levels of resolution interacting with all other objects. In
fact, inordinate amounts of development time may be required to deal with
process interactions that would never occur or are unlikely to occur in the real
world. We recommend that any campaign model be developed with a limited goal for use
and range of applications and that multiple models be developed to broaden the range. As
in aircraft design, one model designed for too many purposes is likely not to suit
any of them well because of the compromises that must be made. This does not
agree with what appears to be the conventional wisdom to consolidate most
efforts into a general-purpose model.

An important thread in this report is that many of the model innovations we suggest add
a greater burden or reliance on the analyst. To use a model such as TLC—with its
flexible structures, variable-resolution features, and adaptive, objective-based
resource allocation—the analyst cannot simply turn the crank. The analyst is
forced to be intimately involved in the data and structure—a good thing, we
think.
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1. Introduction

The Problem

U.S. military force structure and defense strategy are increasingly determined
through the use of computer models.! The models are used to game defense
strategies, train forces, and analyze equipment for our military, as well as to

“augment and substitute for live testing of new equipment. New technologies
promise to provide even broader use of models in the Department of Defense
through advanced graphics, networked simulations, and much faster
computation. For example, demonstrations of simulations netted with real
exercises fighting against “virtual” and live forces in widely distributed
geographic locations have already been performed.? The promise of reduced
exercise costs, elimination of some high-cost components of weapon tests, and
using more-realistic models for analysis continues to drive large investments in
modeling and simulation technology and software.3

Despite these investments and the impressive technological demonstrations,
there are important limitations to the current suite of defense models. The new
security environment requires tools that support the examination of first-order
issues related to a squadronwide range of nonstandard contingencies and
campaigns that are not well represented in the current models. This is because
past generations of theater- and operational-level models have been precisely
tailored to meet the specific requirements of analyzing only a few “canonical”
contingencies—Europe and Korea—where many of the operational and strategic
issues were believed to be well understood.

IFor example, the TACWAR campaign model has been a key analysis tool of the U.S. Joint Staff
for evaluating force structure for major regional contingencies. The Air Force uses the TAC
THUNDER campaign model to evaluate aircraft, weapons, and operational concepts in joint theater
campaigns.

25uch demonstrations include the Synthetic Theater of War-Europe (STOW-E) as part of the
Atlantic Resolve (formerly Reforger) exercise, the Ballistic Missile Defense Organization Technical
Engineering Demonstration, the Defense Advanced Research Projects Agency’s (DARPA’s)
Warbreaker, and the Army’s Anti-Armor Advanced Technical Demonstrations.

3Fora description of the distributed simulation plans, see DIS Steering Committee (1994). It is
estimated that DARPA spends $130 million annually on advanced distributed simulation (ADS)
activities including Warbreaker and STOW. The Army is estimated to spend $300 million in DIS-
related areas.




By contrast, uncertainties abound in the new environment—the theater and
terrain; the nature of the forces that will be faced; the coalition, if any, that will be
fighting alongside U.S. forces; the influence of new weapon and information
technologies; and the operational strategies that might be pursued—all place
future defense analysis generally beyond the ability of the last generation of
models. The research reported here was thus motivated by developments that
suggested that these factors—referred to here as “the elements of nonlinear
combat,” including a greater reliance on maneuver, the deep battle, “information
warfare,” and pre-conflict factors—would need to be considered in greater detail
in future analyses.4

The belief that the fundamental nature of the models in use for defense analysis
must change has motivated the Department of Defense to mount an effort to
improve its theater-level campaign models. In February 1995, then-Deputy
Secretary of Defense John Deutch wrote the Director, Plans, Analysis and
Evaluation (PA&E): '

Joint theater models play an important role in assessing the capabilities of
our forces and programs to execute our strategy and in measuring the
impact of changes in the defense program on warfighting capabilities. As
we discussed at the recent review of the mobility requirements update
study, many of our analytical efforts have highlighted the limitations of the
modeling tools currently available. Those models are grounded in Cold
War theory about the use and deployment of forces and the nature of
combat operations. They have only limited capability to address key issues
from an integrated joint operational perspective. They are also unable to
measure adequately the value of the Department’s investments in
reconnaissance, surveillance, and intelligence and new weapon systems.
Nor do they adequately represent the impact of such factors as readiness
and training, logistics, or weapons of mass destruction. Moreover, the
realism of the basic methodologies that drive the models’ results is in need
of review. Therefore, as a matter of immediate concern, it is essential to
upgrade and refine our current models and to begin development of a new
generation of models that the Department will need to address critical joint
warfare issues effectively in the future.

Please initiate and lead, with participation from the Assistant Secretary of
Defense (Strategy and Requirements), and the Joint Staff, a phased
program to upgrade theater models and simulations. In the near-term, the
program should improve existing models and in the longer-term develop
set of next-generation models for the future. Prepare and coordinate a plan
of action, to include funding levels and sources, and brief me on your
approach to this high-priority program by the end of February.

4See, for instance, Hillestad, Huber, and Weiner (1992).

5As a result of the February 1995 Deutch memo to PA&E, a four-pronged initiative began.
Prong 1 specifically deals with the near-term enhancement of an existing model (TACWAR). Prongs
2 and 3 focus on future models and modeling environments for the midterm (called the Joint Warfare




The Campaign Model

This report concentrates on the design and use of military campaign models for
defense analysis. Models for defense analysis range from engineering models of
specific subsystems (a model of an aircraft radar system, for example) to
“engagement” models (a surface-to-air system engaging aircraft) to “mission”
models (a model of the complete flight of a group of aircraft from takeoff to
attack on a target and back again) to the campaign model, which represents a set
of missions, operations, or battles in the pursuance of a military campaign
objective. Models also exist that have even broader scope, such as the RAND-
developed JICM model, which has the capability to simulate global conflict
involving more than one theater of war (Bennett, 1994).6 Campaign models are
also sometimes referred to as “theater” models because their focus and scope is
usually associated with a full theater of conflict, even though there might be
more than one campaign associated with a theater.

Another distinction in models is that between the tactical, operational, and
strategic levels of conflict. We will use the term “campaign” model to encompass
the operational, campaign, and theater levels of conflict, fully understanding that
these represent somewhat different scopes in concepts and analysis.
Nevertheless, our research should be applicable for this range of scopes.

Many other model taxonomies reflect aspects of the models other than their
scope (Hughes, 1989). These may refer to the type of model in terms of its
advance of time, such as time step or event step; in terms of its treatment of
random processes, such as stochastic or deterministic; or in terms of its coding
style, such as object-oriented or process-oriented code. Furthermore, models
may be open or closed, referring to the ability of people to interact with
simulated entities during the simulation. The models may be constructed as
distributed or single-processor simulations. For the purposes of this exposition,
we will sometimes include these various constructs in our discussion but will
restrict ourselves to the scope of a campaign model and its use in analysis.

The importance of the campaign model for analyzing defense problems is that, in
contrast to models with lesser scope, it is the level at which one considers many
of the most important determinants of the outcome of a theater war. The
campaign model shows the big picture in terms of the total forces involved,
including the joint actions of army, air, and naval forces, as well as the play of

Simulation) and long-term. Prong 4 cuts across all these activities to provide field support of the
models.

6Daniel B. Fox of RAND has also prepared an introduction to JICM (unpublished).




coalition forces. At the campaign level, one can start to answer the “how much is
enough” questions about the military forces, because all forces are represented.
Trade-offs between air, ground, and naval forces can be studied at the campaign
level. Generally, the measures of outcome of a campaign model are directly
related to success in the theater, such as territory lost, achievement of air
superiority, and overall attrition in the campaign.

At the campaign level, command and control issues dominate the outcome
because we are concerned with how effectively the forces are allocated in
pursuance of the campaign objectives. Deployment and sustainment are critical
to the success of a campaign, so that the effects of logistics operations are
reflected in the outcome measures. This permits the comparison of the effects of
improvements in logistics support with improvements in fighting systems. The
campaign model is also an important vehicle to study the interaction of strategy,
force allocation, and system capabilities. For example, the addition of a more
effective surface-to-air capability may permit an allocation of more aircraft to
attack enemy ground forces, rather than withholding them for defense.
Cumulative effects over time are important in the campaign model, and multiday
objectives must be considered, rather than the results of single battles. Finally,
the campaign model is the point at which many important scenario factors come
into play, such as timing of the deployment of forces, availability of ports and air
bases, nearness to ocean access, and strategies of the enemy.

In contrast, the “mission” model may focus more on the timing and details of a
single mission, and most scenario, strategy, support, and overall force
capabilities are either exogenous or not important. The engagement model
further narrows the scope to consider only the starting and ending conditions of
a single engagement; the assumptions that led to those conditions may be
consistent with the broader scenario, but this is not that important. The
engineering or system model cannot by its nature deal with questions of strategy,
scenario, or overall force structure. The more detailed types of models provide a
more thorough representation of phenomena and address how effective systems
are within the contexts of specific situations. The more aggregate, broader-
scoped models describe how frequently such conditions occur.

For the foreseeable future, defense analyses will be concerned with two major
policy-level issues: force structure—how many divisions, wings, and carrier
battle groups (and with what capabilities) there are—and security strategy.
Decisions about these will be supported by theater- and operational-level
analyses looking at combined-arms operations and will involve cross-service
trade-offs and trade-offs between combat forces, on the one hand, and
command, control, communications, and intelligence (C3I) on the other. With




potentially new threats and theaters of operation, analyses will also, however,
need to address fundamental questions of strategy and operational art; choices in
time, space and function, including resource allocations for employment,
deployment, and logistics; joint and coalition employment; and exercise of
command and control capabilities. The following subsections describe the
features of the current defense analytic environment that motivated development
of our work and establishes the design goals for the Theater-Level Campaign
(TLC) model. Subsequent sections will describe our research toward these goals.

New Circumstances, New Analytic Demands

The current defense analytic environment is characterized by two major features:
uncertainty and the need to consider in campaign analyses a number of elements
of combat that have lately assumed greater importance.”

Uncertainty

The new security environment is characterized by great unpredictability
regarding location and adversary, asymmetric strategies, coalition arrangements,
and a host of other issues, not least of which are budgetary constraints on
analytic resources. This militates against highly detailed planning against
possible threats and places a premium on high-quality, quick-reaction analyses to
support fast crisis response, yet demands a great many excursions and sensitivity
analyses in campaign analyses.

The New Elements of Combat

Consider the host of combat phenomena most dramatically observed in
Operation Desert Shield /Storm, presented in Table 1.1.

These phenomena strongly suggest the requirement for greater attention to the
modeling and simulation of new elements of combat (many of which were less
important in the stylized analyses of warfare in the central region8) and
consideration of a wider range of scenarios in future defense analysis and
planning. Additionally, certain characteristics of warfare that have in the past
received limited attention in models (e.g., so-called “soft” factors, such as morale,

7For a more detailed treatment of the changed environment, see Hillestad, Huber, and Weiner
(1992); Chu (1991); Hollis {1991); Harrison (1991); and Tragemann (1991).

8Examples of issues that have been inadequately addressed in the past abound and include
maneuver, encirclement, breakthrough, the influence of logistics on maneuver, and the role of
forward observers in counterbattery operations.
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Table 1.1
Phenomena Apparent in Operation Desert Storm

Maneuver Air-to-ground effectiveness

Encirclement and force cutoff Smart weapons

Maneuver of fire? (ATACMS, tactical air, Tailored weapons/delivery

cruise)
Air assault Carpet bombing

Influence of logistics and reconnaissance =~ Weather/day-night influence
on maneuver
Dependence on air superiority, target

acquisition
Attrition (ground-ground) Stealth delivery
Night vision importance
Counterbattery capabilities Deployment and training
Artillery dependence on “eyes” Limited early capability
Potential for side dominance Objectives change with capabilities
Casualty-limiting strategies Capabilities change with training
Fratricide
Air operations
Targets : Separate but not independent of ground
operations
Strategic Sustained
Political
Military Information war
Target selection
Disruption of Air Defenses Deception, concealment of maneuver
Effects of removal of C3I Damage assessment
Lethal SEAD and reaction of fire units
Massing and saturation Coalition, joint, and combined force
operations
Jamming Joint SEAD
Self-protection and stealth Marine operations

Tactical air against artillery
Special forces designation of targets

NOTE: Maneuver of fire means the reallocation of long-range fires to new targets; this can be
done without physically moving those assets.

cohesiveness, the fighting effectiveness of different nations” armies, and
leadership) may well dominate military outcomes, or—in the case of coalition
operations—may constrain operations and will need to be considered more
explicitly in future analyses (Bennett, 1992; Davis and Blumenthal, 1991). Finally,
recent developments in weapons and doctrine have begun to reach the limits of
the ability of the current generation of models to represent them: maneuver, deep
fire assets, precision-guided munitions, stealth employment, the heightened
importance of the information war, and joint and coalition operations—in short,
the elements of nonlinear combat described in Table 1.2. All these introduce new
analytic complexities that are not well represented in today’s models.




Table 1.2

Elements of Nonlinear Combat

Forces Command and control
Joint and coalition Information warfare
Non-homogeneous New political, military, and tactical
objectives/constraints
Technology substitution
Asymmetric strategies
Strategic targeting
Battlefield
Low density Maneuver
Non-contiguous areas of operations Long-range fires
Air-mobile forces
Attrition Shaping the battlefield from the air
Non-lethal warfare Operations in WMD environment
Selective and constrained Highly mobile ground units/logistics

NOTE: We are using the phrase “nonlinear combat” to connote a departure not only from the
linear “piston” models of the NATO-Warsaw Pact conflict studied for decades but also from many of
the other standards assumptions of those models.

Joint Issues

‘The contraction of the defense budget highlights the importance of credible
analyses in the joint arena, requiring not only representation at an appropriate
level of detail for tactical air and ground forces but also a capacity for exploring
air-ground-naval synergisms in different circumstances to identify more clearly
and capitalize on the attendant efficiencies and economies of force arising from
joint and combined-arms operations.® As discussed above, theater-level
modeling enables the analyst to assess the implications of various combinations
of air and ground forces and can assist in identifying the implications of various
types and mixes of air and ground forces, identifying economies arising from
synergisms, and developing appropriate operational strategies for employment
to optimize critical effectiveness measures.

Coalition Issues

Recent experience in Operation Desert Storm, Bosnia, and Somalia lead one to
believe that, in the future, the United States may often choose to operate in a
multinational coalition.10 The vagaries of the coalitions that may be participating
in future U.S. military operations raise a host of issues similar to—and perhaps

9]oint planning was heavily emphasized in a recent report by the Commission on Roles and
Missions (1995).

1OArmy pamphlet 525-5 (U.S. Army, 1994) states that, in future efforts, the United States will
typically be the head of a coalition force.




more difficult to address than—those raised by joint operations: command-and-
control arrangements, sharing of intelligence data, divisions of labor for air and
ground forces, management of multinational combined-arms operations, and so
on. Furthermore, coalitions may be dynamic and change during the course of a
conflict.11

Deficiencies of Current Models for New Security Issues

The current generation of theater campaign models was developed largely to
support analyses of a NATO confrontation with the Warsaw Pact that involved
well-understood terrain; a reasonably linear battlefield; known forces,
operations, and tactics; and highly predictable coalition arrangements. The
models did not adequately handle nonlinear deep penetrations and maneuver,
dynamic coalitions, adaptive planning, or many of the other demands of the
current environment. For e>2ample, the Cold War spawned a set of ground
warfare campaign models that represent ground operations as a set of
“pistonlike” movements. In the Joint Staff’s TACWAR model (U.S. Army,
1994b), the Army’s CEM model (U.S. Army, 1987, 1991), and the Air Force’s TAC
THUNDER model (CACI, n.d.), the ground forces fight linear battles along
several parallel avenues of approach.1?2 This model structure arose from the
layer-cake defense posture of NATO corps arrayed against the Warsaw Pact.
These models simulated battles that presumed a dense linear cohesive defense
that controlled exposed flanks, fell back in coordination with the forces in other
pistons, did not perform flank attacks or other “nonlinear” maneuvers, and
fought an enemy also constrained to the same pistons. This structure was
probably also motivated by the limitations of the computer systems available to
analysts at that time, in contrast to the orders-of-magnitude increase in system
performance available now. The piston structure executes very quickly but
constrains the representation and analysis of maneuver warfare.

In a similar vein, many of the early representations of theater air operations
(TACWAR and Combat IV13) use “time stepped” models of air and ground
operations with relatively large time steps, a few hours to a day. For air
operations, the numbers of sorties that can be generated during each time step
are accumulated, and their effects are calculated in a process that does not really

Han example of this is the possible coalition changes that would have occurred in the Gulf War
if Israel had entered the conflict.

127he pistons are independent of each other so that they can represent avenues of approach that
are noncontiguous. However, the battles are always one-dimensional up and down the piston so that
flanking attacks, large scale encirclements, etc., are not easily represented in the linear structure.

13Combat IV model is a model used by the analysis staff at the Air Combat Command.




simulate the individual flights, their command and control, or individual
engagements. This type of structure, while efficient and satisfactory for many
types of analyses, does not permit many of the details of an integrated air defense
and its command and control to be represented in detail. The Air Force’s TAC
THUNDER model simulates flights explicitly, but the flight paths have been
constrained to a grid structure that presumes a battlefield like the NATO-
Warsaw Pact central region layout.1 Aircraft fly behind and perpendicular to
the forward line of troops, and then cross it when directly opposite the target.
This structure causes some representational problems in the simulation of
Operation Desert Storm, a war in which aircraft took off from air bases at all
points of the compass around Iraq, including bases in Turkey, the United States,
Egypt, and Saudi Arabia and aircraft carriers at various locations.

As noted in the earlier Deutch statement, most of the current generation of
models have severe limitations for the study of command and control and
information warfare issues. Decision processes are typically represented via
nonadaptive scripts of orders or simple code rules. This nonadaptivity does not
permit the representation of either side to respond to variations in tactics or
equipment of either side, as would normally be expected in warfare. This limits
the model’s usefulness in the investigation of new force structures or strategies in
the new security environment.15 Of course, the scripts can be adjusted by human
input for each variation, but this makes for a cumbersome analytical device. Itis
often not obvious to the user how to adjust the script to take advantage of the
new capabilities or to counter those of the other side.

Often, the existing models assume a nearly perfect and instantaneous
information flow on the battlefield, and the simulated forces operate without the
delays, deceptions, and uncertainties that are normally inherent in warfare. This
creates a dilemma when one attempts to evaluate improvements in the C4I
system. There is nothing to be improved on in the CI of the model, and any
attempt to model it more realistically has the effect of degrading the results.

Another characteristic of the post-Cold War defense analysis environment is that
there is a need to evaluate defense options in scenarios of dramatically varying
size. On the one hand, there are the major regional contingencies, such as a new
Korean conflict or a new Persian Gulf war. On the other hand are the lesser
contingencies represented by Panama, Somalia, Haiti, and Bosnia. This variation

Mcyrrent plans for TAC THUNDER include the adoption of a more general network structure
for flight paths.

I5For example, a response to higher-than-expected aircraft attrition is to constrain operations by
region or altitude, or simply to stop flying until the problem is worked out. Most existing models do
not go through this adaptation; rather, they continue the operations in spite of the attrition.
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- in size and character of conflict requires more flexibility and ability to change the
resolution than appears possible with the current set of combat models.

The emphasis on joint planning and analysis as exemplified by the current Joint
Requirements Oversight Council (JROC) and Joint Warfighting Capabilities
Assessment (JWCA)16 processes of the DoD, and stressed in the report of the
Roles and Missions Commission,!” also means that the current service
orientation of many of the models is problematic. The Concepts Evaluation
Model (CEM)18 model of CAA simulates air operations only as they affect
ground forces, not representing such other missions as air base attack, strategic
targeting, and air-to-air. The Air Force TAC THUNDER model utilizes a
simplified version of the CEM model and its data to represent the ground battle
while providing a relatively detailed simulation of air operations. Naval/Marine
models tend to emphasize carrier operations without simulating the Air Force or
details of the ground operations. For credible analysis in the joint arena, it is
desirable to provide a balanced representation of each of the service components.

New Software Opportunities

Software and computer hardware have continued to evolve with dramatic
irnprovemeﬁts in speed, storage, and supporting tools. The improvements
include orders-of-magnitude increases in speed and storage capacity, new
simulation languages, object-oriented programming structures, greatly improved
computer-generated graphics, and networked systems.

Most of the current suite of theater and campaign models were constructed when
the hardware was more constraining and many fewer supporting tools were
available. This led to particular structural choices for those models (the piston
representation, for example) that were compromises between the needs of the
representation and the capabilities of the modeling platform. An important
motivation for our work in this report was to investigate some of the advantages
that the new software tools and hardware capabilities would provide to a theater
and campaign model.

One recommendation coming from a May 1991 workshop held at RAND on
Future Military Analysis was that the defense analytic community should

165 part of the JROC and JWCA, a planning process has been established for joint force
requirements and to help prevent some of the “stovepiping” inherent in the current Planning,
Programming and Budgeting System (PPBS) process.

oint planning was heavily emphasized in a recent report by the Commission on Roles and
Missions (1995).

18ys. Army Concepts Analysis Agency (1987, 1991).
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enhance its capabilities for quick-reaction analysis, since tighter deadlines for
analysis and shrinking analytic resources can be expected to combine to reduce
significantly the time available for analysis. The models need a flexible, rapid
setup capability involving graphical user interfaces and more flexible, variable-
resolution structures to permit quick analysis of new situations and the many
uncertain features about such scenarios. Thus, we were interested in defining
structures to achieve this flexibility in resolution and representation and to
permit rapid problem setup with graphical user interfaces.

TLC Research Goals

The research involved in TLC is thus an outgrowth of RAND’s past analytic
work and a consequence of a recognition that current analytic needs are
unsatisfactorily met by the current generation of theater- and operational-level
models. The research also builds upon RAND’s past work in combat simulation
modeling, which includes:

e TAC SAGE, which provides optimized analytic gaming for air allocation!®

*  APEX,20 which simulates interdiction by fixed-wing aircraft and surface-to-
surface missiles and allocates ground reserves using Correlation of Forces
and Means (COFM)

e The RAND Strategy Assessment System (RSAS).21

A review of other modeling efforts, including those in Europe, has also taken
place to ensure that the most current thinking and the latest tools and approaches
are incorporated into the model. Thus, in the course of its design and
development, TLC has also incorporated learning from other state-of-the-art
modeling efforts outside of RAND. In short, TLC is a research effort—not a
large-scale development effort—that is aimed at improving the next generation
of combat simulation models. With TLC, the intent has been to do this by
enhancing some of the important capabilities of RAND theater models with the
latest generation of hardware and software. TLC thus seeks to capitalize on the
current generation of high-performance workstations (including high-resolution
displays) and on window-based user interfaces, object-oriented programming,

195 AGE is described in Appendix B. A subroutine called TASK extended TAC SAGE to
generate, task, and evaluate ground-support sorties. For a discussion of TASK, see Parker and
Wegner (1989).

20 APEX allocates fires with the TASK algorithm, which attempts to determine the most valuable
ground targets (e.g., bridges) to interdict. For a discussion of APEX, see Hillestad, Weiner, and
Warner (1991). COFM'’s origins may be found in Soviet doctrine.

21See, for example, Bennett et al., (1993).
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graphics, and distributed databases to create a flexible, intuitive graphics-based
user environment. The principal research goals for TLC are summarized as
follows:

* Develop methods for achieving flexibility in tailoring the model to new
environments and problems and to allow quick setup and operation. This
includes flexibility in the representational structure of the models, as well as
flexibility achieved through user interfaces.

¢ Develop model software structures that enhance the ability to represent
uncertainties, and perform analysis at different levels of resolution.

» Utilize cross-resolution modeling, in which there are clear links to detailed
models to ensure credibility and to allow examination of issues other theater-
level models cannot examine.

¢ Develop structures that can represent elements of “nonlinear combat,”
particularly ground combat maneuver.

* Implement adaptive resource allocation processes that represent goal-
oriented behavior in simulated decision processes and that may better
. represent the decisionmaking components of command and control.

The Remainder of the Report

The design goals for TLC can thus be seen to emerge directly from the challenges
of the new analytic environment and the shortcomings of existing modeling
tools. The next five sections detail the research to meet these design goals:
Section 2 describes our investigation into network structures that permit the
tailoring of the model to new environments and problems and graphical user
interfaces to enhance rapid scenario development; Section 3 describes our
research into model software structures; Section 4 describes our research into
cross-resolution modeling in which explicit linkages to more-detailed models
provide the data to drive the attrition processes of the theater-level model;
Section 5 describes our approach to simulating ground force maneuvers and
operational planning; and Section 6 describes some approaches we tried for
adapting resource-allocation processes for representing air and ground force
allocations. Section 7 provides our conclusions and recommendations based on
this research. Two appendices describe the details of simulation process for the
allocation of ground force fires and Air Force assets to missions.
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2. Creating a Flexible Model Game Board:
The TLC Generalized Network

To better meet current defense analysis needs, a new model must be able to tailor
the model to new combat environments and problems. Typically, in the initial
stages of an analysis, there is a need to strike a balance between resolution and
speed in setup and computation, especially when representing a new
geographical area. In later stages, increasingly detailed levels of resolution may
be required. To facilitate this balancing, we investigated environments that are
designed to support variable-resolution modeling, in which the user can specify
the representation at the desired level of resolution during model setup and data
development.] A few examples of variations in resolution include

¢ Explicit representation of surface-to-air-missile (SAM) laydowns or user-
input surface-to-air attrition

e Representation of terrain in detailed grids or as more aggregate regions
* Choices about the size of ground units to be represented in movement
* Aggregate avenues of movement or multiple detailed paths

e Aircraft generation by region or by specific air base or squadron.

The “game board” of a model defines how spatial objects are represented. A key
attribute for a campaign model is that the game board have the flexibility to
represent different aggregations or levels of detail for the spatial objects, as well
as adapting to new scenarios, concepts of maneuver, and geographical regions.
Various types of campaign game boards have evolved historically as needed for
combat analysis. Unfortunately, the structures campaign models currently use
can be quite restrictive in a number of dimensions, as discussed below.

This section begins by describing the evolution of campaign model game boards
over the years, as represented in a number of existing models. It discusses the
common features and limitations of these structures and then goes on to describe
a generalization of the game board that provides considerably more flexibility in
varying the resolution and in the ability to represent new regional scenarios

1By “variable-resolution modeling,” we refer to what Paul Davis and Reiner Huber have called
“internally hierarchical variable resolution,” in which one can quickly change the level of resolution
at which the model operates. See Davis and Huber (1992).
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quickly. We spend some time describing how to represent certain combat
phenomena in this generalized structure and also discuss some important

implementation considerations.

The Historical Use of Network Structures in Campaign
Modeling

The Piston Network Structure

The network structure comes under several guises. The most simple and most
highly aggregated is the “piston” game board. This structure developed from
the need to analyze the NATO-Warsaw Pact force balance in the European
Central Region and the fact that it consisted of relatively dense forces organized
in a layer cake of defensive corps of NATO allies. The movement of attack and
defense forces was assumed to be East and West within these corps areas, and
maneuver would consist of reinforcing the various corps from the rear. The
model representation consisted of parallel bands called pistons marked off at
various intervals into regions called cells. Entities on this structure move and
interact back and forth, but not sideways—thus the name. The network structure
of this game board can be seen by placing nodes in the centers of the cell
boundaries and connecting adjacent cells sequentially with arcs in the direction
of the piston. Little, if any, interaction occurs between entities on different
pistons. The TACWAR (U.S. Army, 1994a) and CEM (U.S. Army, 1987, 1991)
models use such a game board. Figure 2.1 illustrates a piston game board with
the overlaid network.

In the piston structure, terrain is represented by the cells of the piston. The
boundaries between pistons may be used to represent linear objects, such as
rivers. The terrain is assumed to be uniform across a cell. Movement, terrain
resolution, and object representation are tightly bound in the piston model by the
size of the cells and the corresponding network areas. Objects must not be too
large for the cells and also not so small that the aggregate terrain and movement
network do not adequately deal with their spatial distribution. Movement is, of
course, highly restricted to follow the piston aggregation. An example of a
TACWAR piston structure is illustrated in Figure 2.2.

Figure 2.1—Piston Game Board
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Figure 2.2—TACWAR Game Board

Regular Network Structures

Interactions in four directions may be represented on a square grid structure. On
this game board, the area over which entities move is tiled with uniform squares.
Placing nodes in the center of each square and the centers of the sides of each
square and then connecting adjacent nodes with arcs reveals the underlying
network structure. This form is currently used in the TAC THUNDER model for
aircraft flights.2 This type of network is shown in Figure 2.3. This structure, also,
was motivated by the NATO-Warsaw Pact layout of forces. It was assumed that
an adequate representation of flight paths could be given by aircraft flying
parallel to the forward edge of the battle area until they were directly opposite
the target and then flying directly east to west across enemy lines to attack the
target. This representation caused some difficulties when TAC THUNDER was
used to simulate Operation Desert Storm because, in that conflict, aircraft took off
from all directions around Iraq as they were launched from aircraft carriers in the
Red Sea and the Persian Gulf, as well as air bases in Turkey, the Continental
United States, and various Southwest Asia countries.

2Current plans for TAC THUNDER are to develop a more flexible network structure.
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Figure 2.3—Square Grid Game Board

A hybrid between the square grid and piston game structures allows interaction
between pistons by distorting the shape of the squares of a square grid so as to
cover the cells of a piston game board. This was done in the RAND Strategy
Assessment System (RSAS) model,3 but its successor, the Joint Integrated
Combat Model (JICM) (Bennett, 1994)% utilizes a more flexible network structure.

The hexagonal game board, another regular network structure, allows for
movement in six directions by tiling hexagons over the movement area. The
network is formed as in the square grid game, but each node now has six
adjacent neighbors. See Figure 2.4. This structure is used in many popular board
games and in the IDAHEX model (Olsen, Candan, and deJijs, 1985).

The square grid and hexagonal network game boards fall into the class of regular
network structures. In these, each region—square grid or hexagon—is of the
same size. The area inside each region is assumed to have homogenous
attributes. This simplifies the storage and processing of information by entities
on these game boards, because regions may be indexed by vectors of integers and
the data for the regions may be stored in arrays for quick access. In addition,
since each region is of the same size, distance calculations are replaced by table
lookup values. Movement within a region is governed by a uniform set of
parameters and is more easily predictable than on an unconstrained game board.
Interactions between objects, such as detection, also become easier to represent

Figure 2.4—Hexagonal Game Board

3Bennett, Bruce W., et al., RSAS 4.6 Summary, Santa Monica, CA: RAND, N-3534-NA, 1992.
4See Daniel B. Fox of RAND's unpublished introduction to JICM.
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and predict. Searches may be localized to consider only those entities that are
known to be in the same or adjacent regions.

But this simplification into a regular network comes at a price. Information may
be duplicated many times for regions representing large, essentially uniform,
areas. This may cause needless storage and reprocessing of the information
during the simulation. On the other hand, very small areas of uniquely
important information may be overly simplified or ignored. In general, the use
of a single structure with only one size of region may be inappropriate for all the
entities in the simulation. For example, the square grid of the terrain board in
JANUS is too small and at too high a resolution to be efficient in representing
most of the operations of fixed-wing aircraft. To overcome this problem, aircraft
are simulated on another structure by another model and only made visible to
JANUS when required, say, to represent air-to-ground attacks (Marti, Kantar,
Sollfrey, and Brendley, 1994). In general, using a single, regular network
structure as the basis for a model requires that movement, detection, terrain, and
unit size all be intimately tied to the size of the cells of the regular network. This
can severely constrain the flexibility of representation.

The Distributed Integrated Simulation (DIS), which is composed of multiple
models, uses regular network structures and regions of differing sizes in these
models, and this causes some interesting problems (DIS Steering Committee,
1994). Ground entities and fixed-wing aircraft both use polygons for terrain, but
the polygons of the fixed-wing aircraft simulation are usually much larger than
those used for ground-entity simulation. Thus, one of the classic problems
resulting from the collision of two levels of aggregation occurs. When a fixed-
wing aircraft attacks a ground entity represented on the aircraft game board, the
elevation for the ground entity differs from the elevation of that entity on the
ground game board. Sometimes this difference is so great that it significantly
alters the effects of the attack. The terrain effects can be so great that they alter
combat to the extent that tanks appear to fly or to be underground and thus
invulnerable to attack. The lesson is obvious. If differing region sizes are to be
used, great care must be taken to represent interactions between entities
adequately on each. Eventually, as other regular structures with differing region
sizes are added to represent additional types of entities with appropriate
resolution, much of the value of the regular network board structure is lost in the
extra effort required to coordinate the interactions of entities on each.
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The TLC Generalized Network

The “generalized network” structure developed during our research with the
TLC model eliminates the need for equal-size regions and regularity, yet
maintains the efficiency of the network structure. The generalized network is an
extension of the regular network but reduces the coordination problems of
multiple regular game boards with different-sized regions. As an extension of
the regular network game boards, it still possesses much of the efficiency of those
game boards but with added flexibility. The price for this added flexibility is the
requirement for more analyst involvement in the network development and the
necessity of a graphical user interface (GUI) to create the networks.

The generalized network is a combination of “free-form” or irregular networks
with free-form “regions.” There may be multiple, disconnected networks and
many different regions. The networks provide the places that objects might
reside and the paths they might take. Each network consists of a set of nodes
and, usually, some arcs. There may be more than one arc between the same pair
of nodes, and these may represent alternative paths between the nodes. An
arcless network might be the collection of nodes representing air bases, strategic
targets, etc. The regions are used to represent area objects, such as terrain,
country borders, urban areas, coverage of sensors, and lethal areas of SAMs.
Regions may also be used to represent regions of command, such as air
command and control sectors. In some cases, the regions may overlap; for
example, those depicting detection regions may overlap those depicting terrain
regions. In other cases, such as when there must be a clear division of command
and control, the regions may be contiguous but not overlapping. Figure 2.5
illustrates these various network objects. Regions might be shaped as circles,
lines, and polygons. For example, we utilized circular regions to describe lethal
radii of surface-to-air systems; lines to define rivers; and polygons to describe
weather, command and control, and other terrain regions.

One further component of the generalized network is the “grid.” Grids serve the
purpose of localizing detections between objects. The grid divides the network
and/or the regions into segments or subregions. One form of the grid, called
segmenting, divides a set of network arcs into subarcs of equal length. This is
illustrated in Figure 2.6. This form of gridding can be used for simple detection
and engagement decisions. Objects within the same subarc or within some
specific number of subarcs might be considered detected, within fighting range,
etc. A rectangular grid that divides a region into square subelements can also be
used for detection and engagement. Objects within a certain number of squares
or the same square grid element can be assumed to be candidates for detection or
engagement, for example. Figure 2.7 illustrates this localization of the detection
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problem.. The figure also shows that the use of grids permits objects on different
networks to interact. In general, multiple grids are used to define different types
of detections or to define the interactions of objects of different types. For
example, a space-based detector might use a grid with relatively large grid
elements, while the interaction of ground units might require a grid with much

smaller elements.
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Figure 2.7—The Grid Object in a Generalized Network

Each object—arc, node, region, or grid—has a set of attributes describing it. For
example, a terrain region might describe the type of terrain in terms of its
intervisibility, foliage, traversability, elevation, etc. A weather region might be
described in terms of a name pointing to the weather generator for that particular
region. A network of nodes and arcs might describe a logistics network for a
side, or it might define the movement options for maneuver forces.

The efficiency of this structure comes from the significant amount of
preprocessing that can be performed. The preprocessing determines
intersections of networks, grids, and regions. For example, the intersection of a
network with a grid creates nodes at each grid line on each arc of a network
crossing the grid line. A crossing of a network arc into a new terrain region is
also marked by a new node at the point of the crossing through preprocessing.
This ultimately facilitates the processing of events in the model. These new
nodes, created through preprocessing, might be called “event nodes”; in the
model, they trigger events to occur. For example, as an aircraft flight moves
along a path of the network and comes to an event node marking the entry into a
detection region, the detection event routine would be called to predict the time
of detection of the flight. This preprocessing need be done only once for multiple
Monte Carlo trials or small scenario variations.

Each arc is assigned the information or events from the regions it lies in. A node
that lies within or at the boundary of a region gets the information or event from
that region. Figure 2.8 shows an example of such a network crossing two
regions.

Each type of entity exists on a network appropriate to its own level of resolution
and command and control structure. Each generalized network is governed by
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Figure 2.8—Generalized Network Game Board

its own information and event regions or lines. In addition, networks can share
some of these regions or lines, to represent the interactions of entities between
two networks. The addition of a new network or the modification of an existing
network is facilitated by this structure because changes only affect other
networks through these shared interfaces.

The resulting network will be flexible and detailed enough to capture the
significant information and events required to represent the area of interest, but
no more so. Additional regions or areas may need to be added later on, but this
can be done rather easily. The price to be paid for this benefit is the increased
effort required to define the area, to identify the significant regions therein, and
to construct the network. The development of a generalized network is
facilitated by a GUI for the interactive presentation and modification of the data
of the network. In fact, the productive use of a generalized network probably
requires a GUL. We note that there are probably positive benefits in the heavier
involvement of the analyst in the simulation structure in terms of increased
understanding of the simulation and the causes and effects of events.

Preprocessing a Generalized Network with a GUI

Figure 2.9 depicts the layout of an initial ground network of nodes and arcs, as
well as rivers, boundaries, and terrain and detection regions for a Southwest Asia
scenario using a GUI tool called MapView (McDonough, Bailey, and Koehler,
1993).

MapView operates on the user-designed networks and regions to create a
network with new nodes and arcs at the intersection of every event and
information region. This GUI permits a background map to be imported from
various sources, satellite imagery, World Data Bank (U.S. Department of
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Commerce, 1977), Defense Mapping Agency maps, and scanned maps. The user
then draws the networks, regions, and grids of interest on this map background.

The background exists for context only and never enters the model. Figure 2.10
shows the actual network derived from the objects in Figure 2.9. Notice that
nodes have been added to the networks where the network intersected with the
information or event regions.

Arcs and nodes in overlapping regions are assigned the information from each
region unless logic is provided during preprocessing to refine the data. For
example, if a water region overlaps a mountainous region, the overlapping
terrain might be called water or mountain or both, a mountain lake. In
MapView, a special construct is used to partition an area into nonoverlapping
regions and to resolve overlapping or conflicting data.

The exact meaning of each region is specified in the data and can thus be
changed by manipulating those data without requiring a change to the structure
of the network. Thus, very detailed and very aggregate terrain representations
may exist for the same network as two sets of data, not as two separate network
representations.
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Figure 2.10—Generalized Network Arcs and Nodes

Although automated terrain processing can aid in the construction of these
terrain regions, the analyst must be engaged in the process to remove
ambiguities and to aggregate needlessly detailed representations. In addition,
the analyst must assure himself that the network is drawn fairly. That is, paths
should not be drawn around disadvantageous movement regions, either
purposefully or accidentally, unless such paths are feasible and units would have
the information necessary to select those paths. For example, units with good
maps and access to the Global Positioning System would be allowed to take
paths around swamps, while those without might be allowed to move into them.
Aircraft crews with good information about defenses could avoid high-threat
areas en route, while those without would not. Suppose, for example, an air
network for Iraq is constructed separately from the air defense regions. When
both are combined, one may notice that some air defense regions do not cover an
arc from the network and thus will not play in the simulation. Or one may see
that some arcs pass through air defense regions that could easily be avoided.
Figure 2.11 is an example of such a construction.

Notice that this figure immediately highlights the problem. This shows that the
use of a GUI greatly aids the visualization of the game board and data entry for
the game board.
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Figure 2.11—An Air Network Overlaid on Air Defense Regions

In general, automated network generation at the campaign level is difficult
because of the need to aggregate. Several roads may be designated as a single arc
for the move of a division, or routes through a region may be simply defined as a
region with a given capacity and trafficability. This aggregation may be better
left to the analyst.

Moving Objects on Network Structures

Network structures can be used to define the movement options for entities in
the simulation. As such, they constrain directions for movement and permit
simplification of movement rules, choices, and decisionmaking. Data associated
with the areas and nodes of the network can be used to define capacities, terrain
as it interacts with movement, and bottlenecks.

An entity moves on a network structure by dead reckoning along an arc. Two
methods are used to depict this movement: “head-to-tail” movement and “point
mass.” In head-to-tail movement, a moving entity is explicitly represented as a
homogeneous object stretching from the location on the network farthest along in
its direction of movement, its head, to the least advanced location, its tail. The
entity occupies all or part of the nodes and arcs between the head and tail, thus
congesting the network. This representation is derived from the way that
ground units tend to move along a road network. The bookkeeping necessary to
simulate this movement can be quite complicated. Entities tend to move like
inch worms along their paths. The problems associated with this method
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become exacerbated if the entity is allowed to separate or spread out because of
enemy attack or movement conditions. For example, if a unit that is spread out
on the network is attacked on the flank, there are the problems related to how
much of the unit is engaged, how the movement of the head and tail changes, etc.
This method is most often used on piston game boards, where entities move up
and down the linear structure and do not get attacked on the flank.

With point-mass movement, the entities are disaggregated into one or more
subentities. Each subentity moves along the parent entity’s path. A subentity
occupies the capacity of the nodes and arcs on which it moves for an amount of
time dependent upon its speed and size, again congesting the network. But each
subentity is represented as a point mass with only one location on the network.
Now, if an enemy attacks an opposing entity on its flank, it does not face the
entire entity but only the subentities it encounters, as they are distributed on the
networks. In addition, units following have the option to traverse alternative
paths between adjacent nodes to take advantage of opportunities to reduce the
time for the completion of the move or to avoid or attack an enemy. These
alternative paths might represent alternative roads or modes of movement. The
modeling of point-mass movement is generally simpler than that used in head-
to-tail movement;especiaﬂy when the subentities become widely separated.

In the piston models, objects move up and down the pistons on which they are
located and generally do not move between pistons. Each cell is unit-capacity
constrained to account for traversability and battlefield width. In addition,
because the pistons are the same for each side, the underlying network is also the
same for both, requiring each to move along the same routes. An actual
attacking force might try to split the opponent by attacking down the seam
between two major opposing commands. The piston structure does not allow
the explicit representation of this type of attack since one cannot get between two
pistons. Detections for close battle occur only near the linear boundary called the
forward edge of the battle area between forces on opposing sides.

Movement of entities on regular networks has more flexibility but may be
somewhat artificial, moving in a zigzag manner, because of the rectangular or
hexagonal structures. This artificiality can cause important distortions in
movement distances and interactions with other entities and objects.

Movement of activities on the generalized network structure can be made more
realistic and sometimes more efficient in terms of processing. Networks of low
resolution can be used to represent paths in areas where few interactions are
expected and exact paths are not of interest. High resolution can be provided in
other areas of interest by increasing the number of nodes and arcs. Furthermore,
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multiple networks of different resolution can be used for the movement of
different types of entities (air and ground units or combat units and support
units, for example).

Representing Detection in Network Structures

The simulation of the detection of objects is a key function of a combat simulation
because the detections lead to the command and control decisionmaking and
ultimate combat. In a campaign model, the actual sensor-object interactions are
typically not simulated, but objects enter detected states under certain triggering
events, such as coming within range of an opposing force or entering cells of
sensor coverage. Network representations can facilitate this type of
representation of detection.

On piston or regular networks, detections are controlled by the cell, square, or
hexagon in which the entities are located. Thus, the detection process is tied to
the resolution and form of the game board representation. The representation of
detection may be simplistic. For example, the location of every entity in the same
cell or grid may be known. Or close battle detections may only occur near the
forward line of battle area, a boundary between the opposing forces toward
which units either advance or retreat. Sophisticated representations of detection
may require that each unit continually scan for other units in the same or
adjacent cells and grids.

On the generalized network, detections are governed by a subset of the regions,
called detection regions, that are overlaid onto the network specifically to
represent detection processes or systems. These independent structures are more
flexible and adaptive than those used in the regular network structures or
pistons. For example, in the piston model, detections for the purpose of close
combat occur at the boundary between opposing sides on each piston, the
forward line of troops (FLOT). In generalized networks, detections and close
combat may occur anywhere. To have this flexibility and efficiency, the analyst
may be required to predetermine and lay out detection regions for all sensor-
platform-profile combinations for high-resolution representations.

Consider a flight of aircraft on the generalized network structure. As the aircraft
moves along its path, it may enter the node at the boundary of a detection region
or line. At that point, a process is triggered that computes the time—perhaps
stochastic—when the flight will be detected and intercepted by opposing aircraft.
The time depends upon the penetrating aircraft and the enemy defenses. Several
types of detection processes may be represented this way, each with its own
detection region. Several such regions may be encountered along the flight’s
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path. A highly aggregate model will have a few, a detailed model many. Thus,
preprocessed data control the detection event execution and level of aggregation,
while the same modeling event routine can be used across all cases. Figure 2.12
illustrates this type of detection modeling.

One of the difficult problems associated with campaign simulations when they
have many combat entities is that each simulated object must often determine its
nearness to all other objects to determine if it is in detection range or within a
range at which it must do battle. This can involve many n x n distance
calculations when n objects are represented. With a generalized network
structure, it is possible to localize the problem so that such range calculations are
performed only for objects in the appropriate vicinity. This is done in the
following manner.

The analyst decides the area in which detections might occur. This area is
partitioned into nonoverlapping detection regions that depend upon the
detection process. When an entity enters the node at the boundary of any
~detection region, it is entered into a list of entities in that region. When it departs
the region, it is removed from the list. Since each entity moves along its own
network by dead reckoning, one may predict the next entity it will detect or
contact. The only entities that need to be considered are those in its own and
adjacent detection region lists. The search has been made efficient through
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Figure 2.12—Predicting Detection Time in a Detection Region
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localization to the detection regions, and the search itself is executed only once
for each detection. Frequently, the detection regions are square grid elements,
but this is not required. Figure 2.13 illustrates this process.

Note that entities may move on different networks and are not necessarily the
same type of object. That is, aircraft may detect ground units using this scheme.

SAM defenses may detect and attack aircraft as well. An interesting example of
this type of detection scheme is the observation by overhead and wide-area
sensors of ground units, using the Joint Surveillance Target Attack Radar System,
or of air units with Airborne Warning and Control System aircraft. As the sensor
moves on its network, it monitors one or more adjacent detection regions. Units
in those regions become eligible for detection when they enter the region. Not all
such units are detected, and the information is not globally available. The sensor
must report this information along its communication network for the detections
to be further processed. Figure 2.14 illustrates this example.

The exact structure of the detection regions is governed by the detection process
itself and should represent the command, control, communication, computers,
and intelligence (C4I) for that process. This process is not hampered by the
structure of the movement network or other detection networks. The flexibility
and adaptability of the generalized network structure allow additional detail to

Unit reports entry
to new grid cell and
departure from old
grid cell

Unit in adjacent
grid cell—possible

Unit in non- detection
adjacent I 3
grid cell OO

Figure 2.13—Use of Grids for Detection
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be added or removed from the detection process without disturbing the structure
of other networks. Again, this entire process is aided by and probably requires
the use of interactive GUISs.

Routing Objects on Networks

One of the key advantages of network structures is the ability to define routes
quickly for objects in the campaign model. In piston networks, the routing is
simply the movement up and down the arcs defining a piston. In a regular grid
structure, the shortest routing between the center of any two grid elements is
easily defined. In the generalized network, the routing must be determined
algorithmically. Shortest-path algorithms, operating on node arc networks, can
execute quickly to determine the fastest route between any two nodes of the
network. In fact, most shortest-path algorithms can be used in a preprocessing
mode to predefine the shortest routes between any two points in a network.
Thus, during the simulation, the route determination is merely one of looking up
the path. “Shortest” can be defined in terms of distance, time, and even detection
probability.5 In combat, however, the shortest path may not always be the most

SFor a route that minimizes detection, if one can define a detection probability on each arc, the
minimum probability of detection is on the path that maximizes the product of nondetection on each
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desirable. It might be better, for example, to take the path that is the shortest but
with the least danger. Algorithms that automatically find such paths can also be
defined. In TLC, we defined an algorithm to find the least threatening path for
an aircraft flight that was within the range constraint of the aircraft. Thus, with

the generalized network, as with the simpler network forms, it was possible to
define routing with great efficiency and with attention to avoiding or routing \
around threats.

Frequently, it is desirable to obtain the routing to an object that is not on the
movement network of the object being routed. An aircraft attack of a ground
unit is one such instance, because the ground unit may be moving on one
network and the aircraft on another. The routing can be determined by
associating with any network a set of contiguous regions encompassing the areas
to which objects will be routed. The aircraft routing network might then have a
set of regions called “flight-path regions.” The ground unit movement network
would be preprocessed against this set of regions so that, as ground units enter a
new flight-path region, an event is triggered that causes the flight-path region to
store the ground unit as one of the entities it contains. Also associated with the
flight-path region would be a node of the flight path network that represents the
point to fly to when going to that region. Then, when the aircraft must attack a
ground unit, the location of that ground unit in terms of flight-path region is
obtained, the flight-path node of the flight-path region is determined, and then
the aircraft is routed from its base to that flight-path node on the flight-path
network. Depending on the level of detail and aggregation desired, the flight-
path regions can be made quite small and the network detailed, or they can be
made large with a more aggregate network. Figure 2.15 illustrates this process.

It is also possible to “fly off” the network to the specific location of the ground
unit from the flight-path node by adding a time delay corresponding to a
distance calculation from the node to the ground unit. However, when objects
move off the network, they no longer have the advantage of the preprocessed
network information; the determination of defense interaction, terrain, etc., must
be done more dynamically, losing much of the value of the network efficiency. It
is probably more desirable to increase the complexity of the network and to keep
objects constrained to it.

arc. By using the logarithms of the nondetection probabilities on each arc and maximizing the sum
(because the logarithms are negative, this is like minimizing the sum of the negation of the
logarithms), it is possible to use a shortest-path algorithm to define the path with the lowest
cumulative detection probability.
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Figure 2.15—Path Determination for Objects on Different Networks

Dynamic Network Objects

Preprocessing is important to attain the efficiency of the generalized network.
However, some of the regions that one needs to use in a combat simulation are
more dynamic. Regions of surface-to-air coverage may change as defenses move
around. Bridges may be destroyed, so that capacity and trafficability change on a
route. And as regions of terrain are won or lost, air bases may be closed, sensors
may be moved, and the routing of ground units must change. These dynamic
changes can be handled in several ways with the generalized network structure.
Additional regions can be predefined to take into account such contingencies,
and these can be activated as the situation in the simulation changes. For
example, several detection zones could be defined as contiguous polygonal
regions, and as defenses move, the characteristics of these regions would change
to accommodate the new situation. As the characteristics of arcs in the network
change, it may also be desirable to recalculate the shortest or least-threatening
routings. These approaches permit dynamic changes to the network but retain
the advantages of preprocessing.
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Some Final Comments About Network Structures

The generalized network structure includes the piston and regular grid
structures as possible representations. It achieves the most flexibility, with the
exception of a completely unconstrained structure, for the representation of
movement, terrain, detection, and C4 in a campaign model. Itis a variable-
resolution structure that also permits significant computational efficiency and is
highly suited to event process time management. It is made possible by
advances in GUIs.

On the other hand, for many analysis problems, the piston or regular network
structures are perfectly adequate and carry much less overhead than the
generalized networks. They do not require GUIs (as much), do not require
preprocessing for efficiency, and do not generally require as much modeling or
analytical expertise to implement. The choice depends on the needs of analysis
and the desire to have variable resolution and flexibility imbedded in the model.
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3. Flexible Software Structures for
Campaign Models

The Importance of Model Software Structure

The choice of software structure is one of the most important decisions with
respect to campaign-model development and is the basic foundation on which
the simulation is built. The underlying structure of a campaign model refers to
its treatment of simulated time and events, its representation of spatial objects, its
approach to representing command and control, its representation of random
events, the type of software construction used, the choice of distributed
structures, its interface with operators, and whether or not the model has
variable-resolution capabilities. The structure affects the level of resolution
possible with the model, the efficiency in processing, the adaptability of the
simulation to new problems, the transparency of cause-and-effect relationships,
and the ease with which future changes can be made and generally limits the
analysis applications of the model. Structural choices must be made early in the
design phase of a model and subsequently affect all other aspects of model
development.

We have already discussed a model structure for spatial representation in the
previous section. This section addresses our investigation of other aspects of
structure necessary to achieve flexibility in a campaign model.

It is not so much that any specific structural choices are inherently bad but that
their limitations should be understood when the choice is made. Furthermore,
some structures are less limiting in terms of campaign-level representation than '
others. For example, as we have shown, a piston model cannot be easily used to
represent complex maneuvers, but a more generalized network structure can
represent piston movement as well as nonlinear maneuvers. A Monte Carlo
model can simulate both random and deterministic events, but a deterministic
model, by its nature, does not simulate random events. In the remaining
subsections of this section, we will describe and critique some of the structural
choices we have studied within TLC for campaign level simulation.
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Components of Structure to Be Discussed

The components of structure of a campaign simulation we will discuss are

1. Simulation time management—whether time is advanced in event steps, in
fixed time steps, or continuously

2. Stochastic structure—random or deterministic

3. Software structure—the software paradigm, such as object-oriented coding,
structured programming, and process-oriented programming

4. Distribution structure—distributed processes, distributed trials, single
processor, parallel processing, etc.

5. Resolution structure—fixed, variable, selectable resolution.

The following subsections discuss each of these structures from the standpoint of
a campaign model designed for analysis. In Section 6, we will take up the
discussions of the command and control architecture—whether the model is
closed, open, or scripted; uses a human in the loop; has semiautomated planning;
uses a decision table; etc.

Simulation Time Management

One of the primary considerations of a simulation is the method used to advance
time.l Three basic methods are used to move through simulated time on digital
computers: continuous approximations, time steps, and event steps. Continuous
time advance is approximated by the solution to differential equations. In
reality, we look only at the solutions to the differential equations at discrete
points in time, but the continuous solution is approximated by a series of
iterative steps that reduce and control the discretization and rounding error.
Most campaign-level models are not represented by a set of differential equations
and consequently do not use the continuous approach.2 The time step has been
historically popular because of its simplicity, the ability to create relatively
aggregate models, and the degree of control over the processing sequence. The
event-step method simulates events when they occur during a simulation and
provides an efficient way to advance time in large steps when nothing is

LIThere are, of course, models that do not advance time. Analytic queuing models, some cost
models, etc., do not explicitly represent time. However, campaign models are generally simulations
that must explicitly advance time. :

2The exceptions to this are models using the Lanchester differential equations of combat.
However, with constant coefficients, these can be solved analytically; in other cases, they have been
approximated with the time-step methodology.
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happening and to use very small steps when important events occur. The event
step method schedules and unschedules events, moving forward in time by
stepping to the next earliest event, then processing only that event. This new
event may include the scheduling and unscheduling of additional events.

The following subsections describe these alternative approaches to time
management in more detail.

Time-Step Method

Suppose we wish to simulate the state of a dynamic system, say the detection of
penetrating aircraft, over some time interval. Let S,denote the state of the system
at time £. We are interested in simulating S, for ¢ between some initial time, ),
and final time, T. Figure 3.1 presents a hypothetical time line for the system. The
times for the discrete events of the system, aircraft detections, are indicated by
the set {E,- :i=0, 1,...}. The times for a time step of fixed length, At = t, —t,
are indicated by the set {¢;:i=0,1,...}.

In the time-step method, the next time step is determined exogenous to the
simulation. Events for a system are not simulated at their exact time of
occurrence, but are aggregated to the end (or beginning) of each interval.
Consider the simulation of aircraft detections with a fixed time step of At = t, - £,
The initial detection is simulated at time £,. By #;, no detections have occurred, S0
nothing needs to be simulated. During the next interval, two detections occur.
Both are simulated at £,.

From Figure 3.1, one can observe that a simulation using a small time step will
tend to have smaller deviations from the actual system than simulations with
larger time steps. The choice of a small time step minimizes both the likelihood
of multiple system events occurring in the same interval and the difference
between the actual time of occurrence of the event and when its occurrence is
simulated.

Each state of the simulation depends on its previous state. Thus, deviations
occurring at early time steps in the simulation may interfere, constructively or
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Figure 3.1—System Time Line
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negatively, with the events in subsequent time steps of the simulation. This
implies that the likelihood of more-significant deviations of the simulation from
the real system tends to increase with time.

Using a smaller time step may not be a practical alternative in all situations.
Reducing the time step increases the number of time steps that need to be
simulated and increases the likelihood that many time-step intervals will include
no events. Both effects increase the effort, sometimes needlessly, required to
perform the simulation. For some systems, the step size for the simulation may
be so intimately related to the intrinsic nature of the system that changing it may
not be possible. In addition, smaller time steps may cause numerical round-off
instabilities or discretization errors to occur, because of the precision of the
representation of various quantities during the execution of the simulation (Press,
1989). Requirements to maintain integrality of systems may also limit the choice
of time step. If, for example, the number of kills in an interval is estimated by
taking the average firing rate times the probability of kill, but the time step is so
small that this computes to a fractional kill, then rounding to an integer number
of kills may grossly overestimate or underestimate the correct number over the
course of the simulation.

A time-stepped process can be implemented with some additional flexibility. It
may be desirable to increase the accuracy of the simulation in some areas but not
in others. These processes may be simulated with smaller time steps than the
others. For example, the weather-generation process of a simulation could be
performed on a daily basis, while the movement process could use an hourly
time step.

The important advantages of the time step method are its simplicity and the
degree of control one can establish regarding the order of processing. As we will
discuss in the next subsection, the order of processing is strictly defined at each
time step so, for example, the high level planners develop their plans, the
midlevel planners then develop theirs, and finally the lowest-level planners
produce their plans, each using information from the other.3

The time-stepped approach is also used in highly detailed simulations and games
that require very small time steps.# In such simulations, it is often easier to check
all processes at every step than to attempt to predict the next event. For example,
when aircraft fly through a dense radar coverage, it is easier to move the aircraft

3Inan event-stepped simulation, unless precautions are taken, the processes to be done at the
same time may get done in the order that the events appear in the event queue rather than the desired
order.

4The Army’s JANUS model and the Corps Battle Simulation (CBS) model, for example.




37

a small distance along its flight path and then make detection calculations for
each radar system given the exact geometries than it is to predict an event time of
the future at which detection would occur. Also, some processes, such as
planning, day, and night, have natural time steps.

The primary disadvantages of the time-stepped approach are the potentially
large approximation errors in large time steps and the possible inefficiencies
when using very small time steps. Furthermore, variable resolution cannot be
achieved by merely changing the time-step size without also changing the object
representation in the simulation, because time steps that are too small can cause
integrality problems, and time-steps that are too large may require too many
implicit assumptions about what occurred during the time step.

Event-Step Method

In the event-step method, the length of the next time step is a variable
determined within the simulation.> When using this method, at any time f, the
occurrence time of the next simulated event in the system is predicted. For
example, in Figure 3.1, the time for the next detection of an aircraft after time £, is
E,. The prediction of the next event is crucial to the event-step method. Suppose
that, at time £,, a detection has occurred. When using the event-step method, the
simulation would be required to predict the time of the next detection,? in this
case E,. The simulation might use dead reckoning based on the flight paths of
the aircraft in the simulation to compute the next detection time and the aircraft
to be detected.

At time E;, a detection would occur unless the paths of the aircraft in the
simulation had changed in the meantime. An aircraft changing its path causes
the simulation to adjust the time of occurrence of the next detection or perhaps
cancel the if a detection will no longer occur. When a detection event does occur,
the time of the next detection, E,, would be predicted, and the process would
continue.

The event-step approach to time management provides for somewhat greater
efficiency than does the time-step method (for some objects), in that it allows for
large advances of time when nothing is happening and very small steps when
very much is happening. Modern simulation languages, such as SIMSCRIPT
(Kiviat, Villanueva, and Markowitz, 1984), are organized around an event-step

55ee Fishman (1978), for a complete treatment of this subject.

60r next “possible” detection. This could be done simply by stepping ahead to the next radar
sweep.
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approach so that the developer is not required to build the necessary library of
routines for managing the list of events (called the event queue).

The primary disadvantages of the event-step approach are the need to be able to
predict the next event, the difficulty of controlling the order of event processing
for simultaneous events, and the skill required to reduce a process to a series of
events. We have already briefly discussed the problem of predicting the next
event. Sometimes, given a highly complex set of interactions, or an almost
continuously variable state, it is difficult to determine when the next event will
occur. Given many radars observing many flights, the equations to predict the
time of detection may be formidable. It may just be easier to use a small time
step to advance the aircraft a short distance, then calculate who might have
detected it in that interval. Of course, there is nothing that precludes using the
small time step in the event-stepped method as the next event to process, but this
does preclude the efficiency argument made earlier.

The problem of the order of processing simultaneous events is a common one.
Scheduled events are generally stacked in a queue, and those to be done at the
same event time are typically processed in the order they entered the queue. It
may be that the planning functions for several different levels of a command
hierarchy are simulated to happen simultaneously but that the order of
processing is important. The higher-level commands must determine and pass
their orders on to the lower levels before the lower levels can properly plan. But
if the lower-level planning function were somehow scheduled first, the sequence
would not occur properly. This can be controlled in two ways, first by making
sure that the processes are scheduled with a small amount of time between them
to cause the proper order to occur or, second, by obtaining control of the event
queue and the order of event processing for those events scheduled at the same
time.

Developing and using an event-stepped simulation requires somewhat more skill
than models with fixed time steps. However, the efficiency advantages, the
almost infinite ability to vary the time resolution, and the ability to avoid making
implicit assumptions about processes occurring during fixed time intervals can
make event-stepped time management the time structure of choice. The fact that
time steps can be represented as event steps in an event-stepped model (although
less efficiently) means that this approach provides a flexible underlying structure
for simulating complex systems in which there may be natural time steps but that
also have other asynchronous processes.

TLC was implemented as an event-stepped simulation in the MODSIM II
language (CACI, 1991). This language provides a library of event management
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routines so that the user does not need to program his own. Event management
is provided in most event simulation languages such as MODSIM and
SIMSCRIPT (Kiviat, Villanueva, and Markowitz, 1984).

Simulating Random Processes

Many of the early and current campaign simulations are deterministic models.
Because large numbers of events occur during fairly large time steps in these
models, mean values of attrition and system states are considered representative
and subject to the law of large numbers.” These deterministic models run
quickly and produce repeatable results given the same starting conditions,
making them very attractive to the analysis process. As time steps grow smaller
and as more-detailed representations of individual objects become important and
feasible, the deterministic approach encounters important limitations. Much
about combat at higher resolution appears to be stochastic. At higher resolution,
it is much harder to appeal to the law of large numbers because the numbers are
not large. The detection of a single flight of aircraft by various radar sensors
must be a discrete event that happens at a random point in time depending on
the flight path, the sensors, the operators of the sensors, etc.—the aircraft cannot
be half-detected. Similarly, a ship cannot be half-killed by a missile given a 50
percent probability of kill.

Consider the following example of the effect of random attrition in a ground-
combat engagement. It demonstrates that results for stochastic behavior are very
different from those for a deterministic engagement with the same parameters.

A battle is simulated over short time intervals of length At with the respective
numbers of the Red, R, and Blue, B,, systems surviving the battle at time
t > 0 satisfying the system of difference equations,

Ript =R =-a B, eGZfAt
Bypt =By =-b R *4 AL,

where 6 is a non-negative constant and Z? and Z} are independent standard
normal random variables. The battle terminates when either side suffers
55-percent attrition to its systems; the other side is then declared to be the winner
of the battle. Ten simulations of the battle for R, = 300, B, = 100,4 =1.35, and

7This law states that the sample mean or average will converge probabilistically to the mean for
large sample sizes. See virtually any elementary statistics or probability textbook.
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b = 0.15 were run with At =0.01 and 6 =0.7. The graph in Figure 3.2 plots the
force ratio, F; = R,/ By, versus time for each simulated battle.

In this example, when ¢ is 0.0, there will be no stochastic component to attrition,
and the force ratio will equal 3.0 throughout the battle until it terminates as a
draw. When ¢ is positive, the force-ratio plot fluctuates until it becomes flat
when the battle terminates. If the force ratio is below or above 3.0 at that point,
Blue or Red is the winner of the battle, respectively. As demonstrated in this
example, when the battle is simulated stochastically, both Red and Blue can
achieve significant victories. The probability of a draw is zero.

Why Stochastic Simulation?

At the heart of a deterministic simulation of a stochastic system is the
substitution of the assumed mean, j1y,o0f the random variable X for the random
variable itself. The stochastic properties of entities in the system are thus
ignored, and it is assumed that mean equivalence holds. Mean equivalence is the
concept that, for a function, f, the expected value of the function of the random
variable, E(f (X)), equals the function evaluated at the mean of the random
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Figure 3.2—Stochastic Results of a 3:1 Ground Battle
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variable, f(11,). But mean equivalence hardly ever applies in the simulation of a
stochastic system.

The fact that the average of a repeated number of observations of a random
variable may tend strongly to its mean in no way guarantees that any other
function of those random variables converges to the function evaluated at the
mean. The repeatability of a mean value equivalent simulation gives false
security that the effects of the variance associated with the stochastic model have
been eliminated.

Stated mathematically, assume that a function f (*) has a second order Taylor’s
expansion. That is, it has first and second derivatives f’ (¢) and f” (¢). Then, if
the random variable X has mean py and finite variance o%,

2 2
B500) = o)+ S8 (X5 e o <5 <1
X

Thus, a mean equivalence assumption ignores the contributions of variance to
the functions and processes of the simulation being studied unless the functions
and processes are linear near the expected values of the random variables in the
simulation.

As an example, suppose entities arrive at a server independently, with
interarrival times , I, that are identically distributed. Further, suppose that the
probability that I is greater than some nonnegative x is exp(~Ax). These
assumptions imply that the arrivals follow a Poisson process. The quantity A is
assumed to be nonnegative and is known as the arrival rate. These entities wait
in a first-in first-out queue to be serviced. The service times, T, are assumed to be
randomly distributed with mean p and variance 6%. One measure of the
congestion in the system is the number of entities waiting to be serviced. This is
known as the queue length, L, When the system reaches steady state, the
expected value of L is

M|t +oF
E(LQ) = 2[[1 _ }"HT]] :

Two observations can be made about this equation. The first is well known: The
queue of waiting entities will grow without bound if the expected number of
arrivals during an expected service time is greater than one. The second
observation is that the variance of the service-time process contributes to the mean of
the queue length and the expected waiting time and thus to the congestion in the
system. This is a common result for random variables that are the result of a




sequence of stochastic processes, such as this arrival or a service-type system.

The means and variances of the subprocesses contribute to the mean of the
random variable of the overall process. To put this in layman’s terms: variance
causes congestion. We note that queues are quite common in combat models,
e.g., in communication, detection, and transportation.

If this system is simulated by a deterministic simulation using expected values in
place of the interarrival and service times, the length of the queue in the
simulation will be infinite if AjL;.is greater than one and zero otherwise. The
totally deterministic simulation sees infinite congestion or none. If, instead, only
the service times are deterministically simulated, the expected queue length
would be an underestimate with relative error of 6> / (u% + G%) and would
grow with the variance of the service time. The partially deterministic system
sees less congestion, perhaps much less congestion, than would be expected.

Another reason to avoid deterministic simulation of inherently random events is
that the evaluation of f(L) may not make sense in the system under study. If
f(X)is the number of X aircraft returning from a mission that need extensive
repairs, f(®) is not defined for nonintegers. To get around these problems,
deterministic simulations generally treat entities as infinitely divisible flows
rather than indivisible quanta. This then creates its own representation
problems, especially if only a few, high-value entities exist in the simulation.
How does 0.6 of the only aircraft carrier in a simulation function?

An alternative to simuléting random processes with a Monte Carlo approach is to
represent the distribution of outcomes analytically. It may be possible to predict
the mean and variance of a process and use a one-time calculation of those
functions rather than rerunning the many cases representing Monte Carlo trials.
This is done for example in the Dyna-METRIC estimation of the aircraft
availability under various maintenance and supply policies (Pyles, 1984;
Hillestad, 1982; Hillestad and Carrillo, 1980). Much of the time however, it is
easier to simulate the process through a series of random number draws than to
estimate distribution functions or stochastic moments for complex and nonlinear
processes.

The most common reason given for avoiding stochastic simulations is the
number of independent runs required to achieve confidence in the results. If a
campaign model requires several hours to run and scores of trials are needed for
statistical confidence, it becomes a rather awkward tool for an analysis that may
also need many sensitivity variations to test other assumptions. The number of
runs required to achieve a given confidence level can be estimated. The estimate
is computed as follows:
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Suppose we are interested in forming confidence bounds for the mean value of
some random variable X. We wish the length of the interval to be I. First make
ng independent runs of the simulation with run i producing observation x;for X.
Compute the sample mean

and variance

[

o= 5 -

i=1

of the observations. We will let ti denote the value that puts 8 in the upper tail
of the Student’s t distribution with k degrees of freedom. Our confidence interval
for the mean value of some random variable x will then be

[ixi/n_é’ ixi/n+§‘|

i=1 i=1

after taking only n — n, more observations, where

n= max[no, Mzstﬁoff 1 /I)ZJ + 1].

If x is normally distributed, this estimate is exact. See Stein (1945). Thus, the cost
of the required runs may then be balanced against the confidence desired.

If one suspects that there is variance in the system to the extent that the number
of observations estimated above will be too great, the answer given by assuming
mean equivalence and performing a deterministic simulation almost certainly
will be subject to high uncertainty and bias. Hillestad and Owen found exactly
this in their experiments (see Hillestad and Owen, 1995). Simulations of systems
with high amounts of random variation tended to diverge significantly from
their deterministic equivalents. In addition, the initial 7y runs may be invaluable
in exposing this possible source of variation and may help the analyst to do a
better designed analysis.

The conclusion thus is clear. If the system under study has well-behaved random
variation present in the quantities of interest, there is no reason to perform a
deterministic simulation. The number of runs required of a stochastic or Monte Carlo
simulation in this case may be estimated and will not be great. If the system under study
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is not well behaved, this is exactly the situation in which a stochastic simulation is
required to perform analysis with reasonable confidence or at least to help bound the
uncertainties. The choice of choosing or building a deterministic model instead of a
Monte Carlo model should depend on the nature of the system represented and not merely
on expediency of processing. TLC was implemented as a Monte Carlo simulation,
but the user is provided with choices to use deterministic functions if desired.

Software Paradigms

The current choices of software structure for a campaign model are quite rich.
The dynamics can be simulated using a process-interaction or event-scheduling
paradigm. The entities in the simulation can be modeled as objects in various
object-oriented language structures, or they can be modeled with a top-down,
hierarchical structure. The architecture may strictly enforce “message passing”
between objects to promote ease of multiprocessor distributed simulation or may
allow more global information structures and function calls between objects.
Each of these has its advantages and disadvantages as far as ease of
development, modification, transparency, interfaces to data, and ability to
operate as a distributed simulation. This subsection describes and compares a
number of such paradigms.

Dynamic Modeling Schemes

Two schemes are commonly used to represent the dynamics of a complex
system: process interaction and event scheduling.8 A process represents the
sequence of actions an entity experiences as part of the system. The event-
scheduling scheme concentrates on a complete description of each event in the
system. No simulation time elapses during the execution of an event. Between
events, either the time-step or event-step method may be used to manage time,
although the latter method is a more natural fit. With care, both schemes may
coexist in the same simulation. The following discussion describes and compares
these approaches.

Process Interaction Structures. Processes interact with each other by

”u 7 o4

interrupting,

” 10

“activating,” “waiting, resuming,” and “deactivating”
themselves and each other. For example, suppose that an airplane is an entity in
a simulation. To take off from a runway, it might execute the following activities

in sequence: start up engine, taxi to the runway, wait for the runway to be clear,

8For more detail see Fishman (1978).
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take off, and clear the runway for the next aircraft. Figure 3.3 presents a
schematic of this process.

Time may elapse during an activity denoted by an ellipse. They themselves may
be processes. Also notice that, while an airplane is taking off from the runway, it
forces other airplanes to wait in a queue. At the “Clear Runway” activity, the
airplane interrupts the wait of the first airplane waiting in the queue, if any, and
allows it to proceed. Passive entities, those with no explicit processes, such as the
runway in this example, are usually called resources. MODSIM I, used in the
TLC simulation, uses the process-interaction paradigm.

Event Scheduling Structure. An event instantaneously modifies the state of the
system and contains all the information and methods needed to do so. Every
operation that possibly changes the system in a significant way should be
represented as an event. Events “schedule” and “unschedule” other subsequent
events with time possibly elapsing between them. An internal schedule handler,
usually provided by the simulation language, advances from each scheduled
event to the next. As an example, again consider the airplane in the previous
example. The interesting events are the “Taxi Begin,” “Taxi Complete,” “Take
Off Begin” and “Take Off Complete” events (Figures 3.4-3.7) .

The “Taxi Begin” event, when executed for an airplane, will start the taxi of the
airplane to the runway, compute the taxi time of the airplane to the runway, and
schedule a “Taxi Complete” event at that time. No time elapses during the event
processing. Figure 3.4 shows this event.

Begin Jaxito runway i
Start Wait for
Takeoff i Enal g1 Compute Taxi Taxi Ti
Process ngine Time axt Time
Wait for Clear
i Interrupt = = = - = Loy Runway
H
]
]
i
End . Takeoff
Clear Wait for e
Takeoff ol Runwa Clsar Time Compute Clear
Process y Time

Figure 3.3—Takeoff Process




46

Begin Compute S'chedule End
. . L Taxi Complete . .
Taxi Begin Taxi Time B for Airpl =1 Taxi Begin
Event for Airplane Jor Alrplane Event
in Taxi Time

Figure 3.4—Taxi Begin Event

As depicted in Figure 3.5, when the runway is not clear, the “Taxi Complete”
event puts the airplane in a runway holding queue. If the runway is free, this
event will allocate the runway to the airplane and schedule a “Take Off Begin”
event for the airplane (Figure 3.6).

Note that no time elapses during the event processing.

The key difference between the two modeling schemes is that time elapses during
a process but only between events. In process-interaction software the event
scheduling and unscheduling are done implicitly by defining “waits” and
“interrupts”; in event-scheduling languages, the events are scheduled and
unscheduled explicitly. In our experience, the process-interaction scheme
initially appears to be simpler to use in modeling and more transparent to
describe. This is because the entire process is described in one routine. The
event-scheduling approach does not depict the whole process involving separate
event processes. Instead, one must remember its components and abstractly
visualize their interaction.

Put Airplane
r-» in Runway
No Queue
Begin R End
Taxi Complete C;::’ﬁ,y Taxi Complete
Event ) Event
Yes Schedule
L_» Takeoff Begin
for Airplane
Now

Figure 3.5—Taxi Complete Event
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. Schedule
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Figure 3.6—Takeoff Begin Event
Schedule
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Figure 3.7—Takeoff Complete Event

But the devil is in the details. The process-interaction scheme may have less
control of the flow of the simulation than the event-scheduling scheme. This is
because the programmer using the process-interaction scheme frequently has
little direct control over the exact timing and order of execution of the
“resuming” and “interrupting” functions. Instead, he must control them using
“tie breaking” routines executed by the internal scheduler of the simulation. The
initial benefits of simplicity may then be lost. With care, both schemes may
coexist in the same simulation. It is interesting to note that many simulation
languages support both schemes and internally convert the process-interaction
scheme to an event-scheduling equivalent.?

Object-Oriented and Hierarchical Simulation

Conventional procedural modeling concentrates on what entities do in the
system, while the object-oriented concentrates on what entities are. Conventional
models generally become monolithic with a master procedure overseeing the
execution of subprocedures performed by the entities of the simulation. The

9For example, MODSIM II, a CACI simulation language, is organized around the process-
interaction paradigms but implements the simulation using an event processor.
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construction of conventional models is usually linear, with each subprocedure
largely being a unique construct. The data for such models also take on a
monolithic central role supporting the master procedure and are accessed by
each subprocedure during execution. An example of a simulation language
supporting the procedural modeling style is SIMSCRIPT. The use of a modular,
hierarchical modeling style within a procedural model can achieve most of the
benefits of object orientation. The formalism of object-oriented modeling
reinforces good structured modeling habits.

Object-oriented modeling is a methodology for the design, implementation,
maintenance, and evolution of a model. The system to be modeled is broken
down into subsystems, sub-subsystems, and so on, which interact by passing
messages among themselves. This style encourages a modular, decentralized
approach to modeling. The components, the objects, are independent, localized
reservoirs of knowledge. Allied with object-oriented modeling is object-oriented
programming, which applies and extends the concepts of object-oriented
modeling to software.

The design of an object-oriented model concentrates on two separate aspects: the
internal construction of each object and the external interactions between objects.
Two objects with different internal constructions are interchangeable if their
external interfaces are identical. This feature allows the simulation to evolve as
older objects are extended, replaced, and reused within the simulation. For
example, it allows for seamless changes in resolution as higher- and lower-
resolution implementations of objects are swapped. The construction of such
models is inherently hierarchical. Higher-level objects are constructed from
couplings of lower-level objects ultimately derived from a base of atomic objects.
Simulation languages, such as MODSIM and SIMPLE++,10 have been developed
to aid in object-oriented modeling.

Object-oriented programming has four key features. The first feature is the
encapsulation of data and code. This feature enforces the independent modular
structure of the objects and data for the model. The second feature is inkeritance,
which promotes the hierarchical structure of the model. Once an object is
defined, other objects may be built using that object, and these inherit its data
and methods. Suppose a “Moving Entity” object is defined with a generic
“Move” method and data describing the position of the object. Then both “Tank
Entity” and “Aircraft Entity” objects may inherit from the “Moving Entity” and
use or override the data and methods of the “Moving Entity.” The third feature

10SIMPLE++ is a product of AESOP GmbH, Stuttgart, Germany.
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is polymorphism. Two different objects may have methods by the same name
which do much different things. The “Aircraft Entity” and “Tank Entity” objects
discussed previously both have “Move” methods, and each might be asked to
“Move” by another object. The asking object may not know if it is addressing a
“Tank Entity” or “Aircraft Entity” but only that it is addressing a “Moving
Entity.” The type of movement induced would depend on the internal
implementation of the “Move” method within each type of object.

These three features of an object must be used with moderation. They are not
necessarily that useful in the definition of real objects. “Tank Entity,” “Aircraft
Entity,” and “Ship Entity” objects may differ so greatly that inheriting from one
common object that moves may not simplify things much. Each of these objects
will inherit from a common base of simple objects, which will be augmented by
data and methods unique to the entity. For example, each may have data values
for latitude, longitude, and altitude but also highly differing movement methods.

The fourth feature of the object-oriented modeling style is message passing.
Objects are treated as equals and can ask other objects for data or to perform
methods using messages. Other objects have the right to refuse to release the
data or to perform the requested method. This feature is quite different from the
conventional procedural model, in which data are accessed from a central
repository, and procedures are executed by function calls from other procedures.
This is an important distinguishing characteristic between object-oriented
modeling and conventional modular, hierarchical modeling. Message passing
puts the emphasis on the objects rather than the procedures.

The actual implementation of message passing depends on the simulation
language used and the computer environment in which the model is executed.
In a distributed processing environment, actual messages may be passed
between objects—sometimes over thousands of miles of network. For efficiency
when using single processors, the messages may actually be function calls. On
parallel concurrent processors, a combination of the two methods may be used.

The advantages, then, of object-oriented modeling are maintainability of the
existing model, extendability of the model to other levels of resolution or other
types of objects, reusability of existing objects, and evolvability of the model as
one’s understanding of the system increases. One does not begin to realize these
advantages until the model is fairly complete and in use. The setup cost to
achieve these advantages is a concise definition of the requirements for the
model, a description of the eventual uses of the model, and a design to achieve
those goals. It may actually be easier to take a procedural modeling approach for
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“quick and dirty,” “one shot” models. And object-oriented modeling is not the
only way to achieve these advantages—just a good way.

We, on the other hand, have found in our TLC research that the distributed,
fractionated nature of the object-oriented style can lead to a very opaque model
unless each object is well described along with its external interfaces. Each data
value must be well defined and each method must be described along with any

* “side effects” that may be caused when executed. For example, when an
“Aircraft Entity” is asked to “Move,” it must be noted that several other types of
objects, such as “Runway Entity” or “Flight Path,” may be modified. Achieving
adequate vision into such side effects is one of the most important concerns in the
design and development of an object-oriented model.

Most of the legacy campaign models have been built in the hierarchical style
using non-object-oriented languages. Our experience with the development of
TLC in an object-oriented language indicates that the modularity adds important
advantages in terms of modifiability and replacement of objects, but it is no
panacea. The hard work of modeling is defining these data structures, processes,
and process interactions to represent various military phenomena, and these are
complex regardless of the underlying modeling and software structure.

One purported advantage of object-oriented modeling and programming is the
replaceability of objects. Theoretically, as long as the replacing object provides
the same public attributes and functions,!! it should work within the simulation
regardless of how those attributes and functions are actually implemented. In
TLC, we created a number of alternative objects and processes, and this type of
modularity works fairly well. For example, for surface-to-air adjudication, we
created several alternative methods of computing attrition, from simple attrition
tables to more complex time-of-exposure and probablity of kill (P, ) calculations.
The real difficulty comes in creating new objects, for example, when introducing
aggregate objects. All other objects in the simulation that interact with the new
object are likely to need new processes, and these functions need to know the
new object’s attributes, etc. For example, if one introduces a company object in a
simulation that previously had only tank objects and if the company is an
aggregation of tanks, the aircraft need to know how to find and attack a
company; command entities need to know how to issue orders to a company;
intelligence objects need to know how to detect and track a company; etc. We
found that object-oriented modeling programming does not make the problem of

1pyblic attributes and functions of an object are those accessible by other objects.
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adding entities to a simulation any worse, but it does not really make it much

easier either.

Distributed Modeling, Processing, and Analysis

Distributed simulations attempt to deal with two important problems:
improving execution time and linking disparate models.

There are several approaches to improving execution time. Concurrent
simulation involves executing components of a single simulation model on
several processing units simultaneously. If the processing units reside and
execute in parallel on the same computer, this type is also known as a parallel
simulation.12 A parallel processor may be used to do concurrent simulation.
Without a parallel computer, significant time may be lost sending information
between processors. The purpose of concurrent simulation is to minimize the
time required to complete a single simulation run with the model.

For example, ground battles may be assigned to one processor and air battles to
another. Then, battles can proceed independently and in parallel until a point in
time at which the state of the aircraft affects the state of the ground battles, or the
ground battle affects the air war (such as an air base being overrun by ground
forces). Alternatively, the flight-generation operations at different air bases may
run simultaneously on several independent processors. Other parallel schemes
provide a dynamic assignment of functions to processors based on their current
loading and availability.

A great deal of synchronization is required to distribute the individual
computational tasks efficiently over the processors. Even so, there are usually
some tasks that cause bottlenecks in the execution. Various schemes have been
proposed to accomplish synchronization. Among these schemes is the “time-
warp” mechanism (Jefferson and Sowizral, 1982; Marti, Kantar, and Sollfrey,
1994). This allows some parts of the simulation to advance time faster than other
parts. The divergent parts get back in step only when necessary by rolling time
back to the required point. The speedup achieved using this type of distributed
simulation is less, sometimes much less, than the number of processing units
used to make the run (Marti and Gates, 1988; Marti and Burdorf, 1990). That is,
doubling the number of processing units generally reduces the time to
completion by less than a half.

12gor example, EADSIM is designed to run on four processors.
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Recognizing that, for most analytic purposes, many trials are usually needed for
sensitivity analysis or, in the case of Monte Carlo models, for statistical
significance, the problem is not so much getting a single run to execute quickly
but to get a large number of runs done. This leads to another distribution
alternative known as distributed cases, involving execution of separate,
independent runs of a simulation model simultaneously on several computers.
This approach takes advantage of local area networks and the explosion in the
capabilities and numbers of scientific workstations available. The individual
runs must be coordinated, usually by a script (or an operator) that ensures that
each computer always has a run to execute and that all the runs finally get
executed. Since an entire run is performed by the same computer, no
coordination within the simulation is needed. Each run usually requires some
initialization that might not be needed if all the runs were performed
sequentially on the same computer. The speedup achieved using distributed
runs is equal to the number of computers used to make the runs, in that doubling
the number of computers will halve the required time to complete the runs
(except possibly for the initialization time costs). This was the approach we
adopted for TLC.

Interaction Structures

Interactive or man-in-the-loop simulations allow varying degrees of human
interaction with the flow of the simulation during the run, whereas a closed
simulation only takes input from the human at the initiation of the run. The
purpose is to provide better simulation of human decisions. Much real combat
consists of the interaction of both human decision processes and physical
processes. This becomes even more true at the campaign level, where command,
control, and intelligence functions play such an important role. We understand
relatively little about how humans actually make decisions, and we have
adequately modeled even less. Thus, the appeal of interactive analytic campaign
simulations is to capture innovation, risk taking, risk avoidance, and other
human behavior in the decision process. Furthermore, we may well desire to
capture adaptive behavior based upon incomplete or erroneous human
perceptions.

There are various levels of human interaction. The first level is already
employed in all good analysis efforts. The analyst examines the outputs of the
model runs and will perhaps change the data for the runs to improve the
credibility of the outcomes. This might consist of fixing erroneous pieces of data
or adjusting the parameters on various decision processes. So, the human analyst
is already in the loop.
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The second level consists of stopping the model at specific points and allowing
the human to enter decisions or to modify previous decisions. The model then
continues using the new decisions. This approach overlooks some of the
responsiveness and spontaneity of human decisionmaking, but it is often
adequate for the representation of campaign planning cycles.

Finally, there is true interaction, in which the human may interrupt the machine
at any time during the run to obtain information and to provide input. One way
to achieve a truly interactive simulation is to modify a closed simulation so that
its execution may be stopped at any time and the total current state can be saved.
This is usually called “checkpointing” the model. Then, a separate interface may
be used to display the saved results of the model and to allow the human to
modify that state. The model can then be restarted in the modified state. Great
care must be exercised to limit what the human may change and to be sure that
the new state is logically consistent. It would not seem appropriate that time
could be changed, for example. This presents an opportunity for existing closed
models to be used in an interactive mode. The U.S. Army confederation of
models used in Prairie Warrior 95 is an example of such a use (Bailey et al., 1995).

With respect to the flexibility of the underlying structure of a simulation, it is
important to decide on the mode of human interaction early in the model
definition. A model that permits human interaction during the course of the
simulation requires that several additional features be introduced. First, some
provision must be made to save the entire state of the simulation at any
checkpoint or preprogrammed stop. For example, in an event-stepped model,
the state and order of all events in the event queue must be saved. Second, if the
human is going to be able to make decisions, the model should be capable of
displaying all relevant information for those decisions, such as aggregate
measures of performance at each stop. Finally, the input processes to capture
human decisions must be provided along with the processes to change the
necessary variables, states, and events of the model that are dependent on the
human inputs. Retrofitting a closed simulation with these interactive capabilities
can be quite difficult.

The use of interactive simulation has some drawbacks for analysis. Humans do
not necessarily make the same decisions in a model that they do in actual combat.
This can be due to the lack of finality in the outcome of the model run. No one
will die due to the outcome of the model. The opposing force, at the National
Training Center, fights to the death daily over the most insignificant piece of
terrain. And then they fight again the next day. A second problem for analysis is
that the addition of human behavior to decisionmaking in the model adds
unknown variability to one of the most critical drivers for the outcomes from the
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model. This variability occurs between human subjects and within each subject
as well. Humans have a learning curve, and their decisions for the same
situation may change from one run of the model to the next. For these reasons,
the introduction of humans into the model reduces the chance for the
repeatability of the runs in the analysis; the design of experiments for the
simulation must accommodate this fact.

The third drawback of having humans in the loop is the extra requirements for
an adequate interface between the model and the human. The types of
information that people use to make decisions are not necessarily the same as
those calculated by the model. (The computer typically makes decisions by
optimization techniques or exhaustive searches.)

Finally there is the problem of time. The decision process of human beings is
based on real time; computers work much faster. If the decision process is sped
up, the human decision may be biased toward the expedient, rather than the
innovative. Alternatively, the necessity to run the simulation in real time may
limit the number of analytic variations possible.

The reasons it is desirable to have interactive simulations are strongly related to
the reasons their construction is difficult. TLC was implemented largely as a
closed simulation with adaptive decision processes, which will be discussed in a
later section.

Variable-Resolution Structures

Variable-resolution modeling (see Davis and Hillestad, 1993) refers to the
construction of a single model within which analysts can readily change the level
of scope or detail at which the phenomena under study are treated. Cross-
resolution modeling is the linking of existing models with different resolutions.
We may distinguish between various aspects of resolution. “Entity” resolution
refers to the level of the objects modeled, such as battalions, divisions, and corps.
“Attribute” resolution refers to the detail of the attributes of an object—for
example, describing a unit by its total size and point location, as opposed to
including additional characteristics that might include specific system counts and
locations, weaponry, sensors, etc. Logical-dependency or “constraint” resolution
refers to the level at which restrictions are enforced on the representations. That
is, the actual position of a division may be required to obey the laws of
Newtonian mechanics, while the battalions are only required to fit into some
template around the division’s location. “Process resolution” refers to the level
at which various effects are calculated. An example is a sensor that uses just a
cookie cutter detection range or one that incorporates other aspects of the
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sensor’s capability (power, filtering), the target’s signature, and the environment
(line of sight, attenuation). Higher “spatial” and “temporal” resolution refers to
the sizes of the slices used for space and time. These various types of resolution
are interconnected. For example, an entity resolution that identifies individual
platforms will require attribute data within a range that permits the appropriate
description of these systems.

High-resolution models help an analyst to model and understand, or at least
experiment upon, important underlying phenomena. The model itself captures
the current level of our understanding of the phenomena and points us in
directions that increase that understanding. They also help us to educate and
train others. And they provide important data and insights for lower-resolution
models. Low-resolution models provide us with broad screening tools that allow
us to make initial cuts at the significant aspects of problems. Low-resolution
models give us the “big picture” and allow us to make broad decisions in the face
of uncertainty in the details of the problem at hand. They also give us a
framework to judge when and if high-resolution models are applicable. Until the
very nature of war itself becomes entirely predictable, we will need models at
multiple levels of resolution to increase our understanding of combat (see Simon,
1981).

The process of changing resolution should be consistent. Suppose we have two
functions, one, g, of the lower-resolution states of the model and another, g’, of
the higher-resolution states. These functions may be the ones that determine for
their respective resolutions the next event or the outcome of an engagement or
the orders to be issued at some time in the future. We define the aggregation
function A such that A(S) is the lower-resolution state to which the higher-
resolution state S aggregates. The functions g and g’ are said to be consistent if,
for each higher-resolution state S, g(A(S)) equals A(g’(S)). The model is said to be
consistent across levels of resolution for the functions g and g’ if g and g’ are
consistent.13 Although this method is simple to describe, achieving consistency
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