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ABSTRACT

For decades, the modeling and prediction of human target identification has relied on physical parame-
ters generalized over the whole target, such as physical size, range to the sensor, and apparent thermal con-
trast, defined as six cycles on the target in the ACQUIRE model. Identification performance for targets
that meet this criteria are on average accurate. However, variation in the identifiability of objects meeting
the ACQUIRE criterion is so wide that it suggests that some other factor, something bound up in the way
people perceive and identify objects, is also influencing identification performance. The evidence for this
is that some targets are easier to identify than the model would predict, while others are much more diffi-
cult; some aspect angles are more difficult, while others are more readily identified. Many perception
experiments which had been performed for sensor design yielded general results of value to system design
parameters but resistant variance remained in the results to baffle those demanding definitive results for
specific target configurations. For the last few years, NVESD has embarked upon a strategy of understand-
ing the human perception of thermal imagery from the standpoint of neuroscience theory, the most promi-
nent of which are Recognition-by-Components (Biederman, 1987) and computational vision (e.g., Wilson,
1995; Fiser, et al., 1995; Lades et al., 1993).

The representation of objects in terms of an arrangement of viewpoint-invariant parts (or geons) has
received considerable support from psychophysical experiments. Do these representations actually predict
target identification performance in the real-world military environment under difficult conditions of iden-
tification? Two analyses were performed on the correct identification and confusions among targets result-
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ing from a perception experiment conducted at NVESD in which trained military observers attempted to
identify vehicles in infrared imagery. A similarity measure for all pairs of vehicles was derived from a
contingency tree that expressed the similarity of the vehicle’s parts according to the saliency of the parts
and the degree to which viewpoint-invariant properties could be employed to distinguish among them.
The confusion rate between a pair of vehicles was strongly correlated (.97) with a negative exponential
function of the nodal distance (proximity of vehicles in a contingency tree) between these vehicles in the

similarity trees.

In a further confirmation for the critical role of a parts-based representation, a different analysis
showed that virtually all the effect of the traditional modeling variables (range, size, thermal contrast)
could be predicted on the basis of whether the two most diagnostic parts were identifiable in the image.
Prediction of part detection could therefore account for more variance in accuracy than global parameters.

1.0 BACKGROUND

The present range performance model (ACQUIRE) was developed by NVESD and is used by govern-
ment and industry to evaluate thermal sensors and in wargames. The model predicts the range at which
targets can be detected, recognized and identified. The main parameters of the model are target size (square
root of the projected area), an average temperature deviation between the target and background, range,
and sensor Minimum Resolvable Temperature Difference (MRTD) (Scott, 1992). There are two condi-
tions of the present models which this research effort is addressing: 1) The model cannot predict which
targets will be confused with each other; and 2) Some targets and viewing angles require more resolution
than others for correct identification.

The ACQUIRE modeling methodology is applicable for an ensemble of targets but is not always accu-
rate for particular targets due to the fact that some vehicles are relatively easy to identify while others are
more difficult. It was hypothesized that some targets are less confusable with others because they may
possess specific, easily detectable features which the traditional modeling methodology does not take into
account. To determine whether a feature-based identification model for predicting observer performance
could be developed, the Department of Army Model Improvement Program (AMIP) sponsored an experi-
ment which was performed at NVESD in 1993. The results of this experiment formed the database for
testing a similarity model to explain target confusions and predictions of correct identification based upon

critical features.

The most prominent theory of human object identification states that there are specific geometric prim-
itives (features) in an object that the human uses for identification. Biederman (1987) calls these primi-
tives “geons”. These geons are recognizable no matter what the observers’ viewpoint on them, thereby
allowing identification of objects at any orientation. However, empirical data upon which this theory has
been developed and verified have been line drawings. The question at issue was whether this theory would
also apply to grey scale, less highly resolved images from thermal systems.

1.1 RECOGNITION-BY-COMPONENTS (RBC) THEORY

The fundamental assumption underlying the RBC theory is that objects are represented as an arrange-
ment of parts that are drawn from a vocabulary of simple shapes (geons) distinguishable by viewpoint-
invariant properties. There are several advantages of parts-based representations over global shape tem-




plate models (e.g., Poggio & Edelman, 1990; Lades, et al., 1993). Global shape can vary dramatically
when an object is rotated in depth, has lost a part or parts, or is partially occluded. However, parts-based
representations often degrade only moderately, if at all (Biederman and Cooper, 1991; Biederman and Ger-
hardstein, 1993). In the case of grey-scale thermal imagery, the parts-based representation is based on
contrast patterns from parts of the vehicle in a more or less blurry, somewhat ambiguous image. Identify-
ing a variation of a thermal image as a particular tank is perhaps one of the most stringent tests of a parts-
based representation. This analysis attempted to determine whether observers used object parts in per-

forming identification.

The investigation was concerned with whether an extension of the RBC model could account for dis-
criminations among different models of tactical vehicles. At least three different perceptual bases for dis-
tinguishing among different subordinate level classes have been proposed which might be governed by
very different representations (Biederman & Gerhardstein, 1993, 1995). The difference might be in 1) the
shape of the largest part, 2) a relatively small part which has viewpoint invariant properties or 3) funda-
mentally metric differences. This latter is perhaps the most difficult case for humans to distinguish. View-
point invariant differences are much more readily discriminated than are metric differences, which can be
produced by rotation in depth or foreshortening (Cooper, Biederman, & Hummel, 1992).

2.0 THE EXPERIMENT

A perception experiment was conducted at NVESD in which thermal images of targets at three aspect
angles were presented in random order to military observers. A form of hybrid imagery was produced
based upon the actual thermal signatures but manipulated with simulations to produce target signatures
which might potentially occur. First, the targets were segmented manually from the background. Then,
specific features were electronically “painted” to be either hot or at the temperature of the background (not
visible). A range simulation was then performed on the target after which it was re-embedded in a back-
ground. Finally, sensor, atmospheric and noise simulations were added. Observers first attempted identifi-
cation on all imagery and then reviewed each image a second time declaring which parts of the object were

visible.

2.1 IMAGERY

Field imagery collected with a calibrated thermal system in the 8-12 micron spectral band was used in
the experiment. The vehicles and their descriptions are given in Table 1. Each vehicle was positioned at
three orientations (front, left front oblique, and right rear oblique). The targets were manually segmented
from the background and electronically manipulated by “painting” the features to blend in with the back-
ground according to a matrix (Table 2). Then each image was processed with a sensor, range, and atmo-
spheric simulation (Horger, 1990) to produce imagery which corresponded to the ranges and transmissions
shown in Table 3. A nominal Tank Thermal Sight (TTS) sensor simulation was used for the sensor simu-
lation. Real-time noise was created using 30 Hz frame rate with 30 noise frames added to the sensor simu-
lation. These conditions were predicted by the ACQUIRE model to produce identification performance in
the range of 20% to 75% (+/- 20%), which would include the entire range of possible performance
(Table 3). An outline of the imagery generation procedure is shown in Figure 1.




2.2 PRE-TRAINING

Observers completed a self-scoring, software training package developed at NVESD with E-OIR Mea-
surements, Inc. Images were shown in training without reference to features as cues. The trainee was
required to reach a criterion level of above 90% on identification of the training set prior to participation in
the experiment. Training time varied depending upon the individual and ranged from about two to four
hours. Nine training images were created for familiarizing observers with the test procedures and response

menus.

2.3 RESPONSE METHODOLOGY

Observers were seated before an individual PC computer and display (EO_Vision, 486DX) which
displayed each scenario in random order. Subjects reviewed and responded to the complete set of imagery
twice, the first time with an identification, and the second time through with a list of the parts of the vehicle
which they could detect in the image. For the identification portion, observers were provided with a
response menu containing the names of the vehicles and a “Don’t Know” option. For the parts detection
option, observers were given a list of features (gun, turret, hull, track, roadwheel, and engine) from which
to select responses.

2.4 SUBJECTS

The observers were 30 tank crewmen with extensive experience in the use of thermal sights.

2.5 DESIGN

The design was a 9 (vehicles) X 2 (Range: Near = 960 m and Far = 1500 m) X 2 (atmospheric trans-
missions 30 and 90% for the first km) X 3 (aspects: front, left front oblique, and right rear oblique) matrix.
This set was sufficient to convey all of the vehicles’ major features. For the case where none of the fea-
tures were deleted, the total number of trials was 9 X 2 X 2 X 3 = 108. Each target was then in ten other
scenarios in which parts were variously deleted yielding a total of 1,080 trials X 30 subjects = 32,400 tri-

als.

Table 1: Targets (APC- Armored Personnel Carrier; MBT-Main Battle Tank; RV-Reconnaissance
Vehicle; FSU- Former Soviet Union).
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Table 1: Targets (APC- Armored Personnel Carrier; MBT-Main Battle Tank; RV-Reconnaissance
Vehicle; FSU- Former Soviet Union).
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Table 2: Target Feature Variations
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Table 3: Matrix of Ranges and Transmission for each Experimental Cell. Predictions are based
upon the ACQUIRE model and for Scenario A.

ol e Atmospheric || Pred Probability of
. ‘Name - B g Transmission ST T | ) I
1 960m 90% 75%
IB 1500m 90% 38%
IC 1500m 30% 20%
D 960m 30% 65%
Figure 1. Procedure for generating hybrid imagery.
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3.0 SIMILARITY AMONG VEHICLES

When asked to distinguish among basic level classes (dog from elephant), people list parts as the pri-
mary basis for characterizing the classes (Tversky & Hemenway, 1984). The Hummel & Biederman
(1992) model provides a basis with which to establish the similarity of pairs of objects in terms of the over-
lap of a structural description specifying an arrangement of geon feature assemblies (GFA). A GFA repre-
sents a particular geon (its cross section and axis shape [straight or curved), the parallelism of its sides, and
whether it is truncated), the geon’s attributes (coarse orientation [vertical, horizontal, or oblique] and
coarse aspect ratio), and its relations to other geons (e.g., above, larger-than, perpendicular to). A set of
GFAs corresponds to an object’s structural description.

In the absence of an automatic means for extraction of viewpoint-invariant parts, the GFAs must be
identified by human judgment. GFAs are available to human consciousness and descriptions of them are
readily verbalized and employed in identifying objects (Biederman & Shiffrar, 1988; Biederman & Ger-
hardstein, 1993).

However, features are not processed in a linear fashion. Mental representations of contingencies cause
some features to be part of the distinguishing characteristics of objects only in certain cases. For example,
when judging which type of airplane is being observed, one would probably look at whether the plane has
propellers or jets. If one were trying to tell the difference among cars, one might look at the logo for a rap-
idly recognized viewpoint invariant distinguishing feature.

In that study, subjects were required to use a contingency structure, noting, for example, the size when
the stimulus was red or the orientation when the stimulus was green. Subjects would not process the orien-
tation when the stimulus was red or the size when the stimulus was green. This effect was particularly evi-
dent when the head of the contingency was more discriminable than the secondary dimension, apparently
so that subjects could avoid making the more difficult discriminations.

Gibson (1947) strongly advocated the inclusion of such an organizational scheme in the training of air-
craft identification:

“First an analysis should be made of the identifying (i.e., distinctive) features of the list of
aircraft to be learned -- not simply of the descriptive features... Second, these distinguish-
ing features should be used to make a classification of the aircraft by shapes, such as
would permit a conceptual organization of their similarities and differences.” (p. 152).
“Members of a group of four-engined planes are more similar to each other than they are
to any other planes on the total list. Among this group of four-engined planes some mem-
bers are more apt to be confused than others. The B-17 is more like the C-54, which has
a single tail, than it is like the B-24 which has twin tails.” (p.153).

Discrimination among the three twin-tailed planes, for example, was based on whether the tail was oval
vertical (B-24), pear-shaped (Lancaster), or triangular vertical (Halifax).

The similarity determination of the present investigation was represented by a contingency tree that, in
retrospect, is reminiscent of Gibson’s aircraft tree. In describing the tree, rather than refer to what would be
a random structural description of the different parts, the tree will be labeled in terms of the common
names of the parts, as was done by Gibson. Thus the gun will be referred to as a “gun” rather than an elon-
gated, horizontal cylinder side-projecting, and end-to-end with a half cone, wedge, or brick.




3.1 SIMILARITY TREE

An inverted similarity tree (with the “trunk” on the top) is shown in Figure 2 as constructed by exam-
ining near range (30 m), high contrast thermal imagery similar to that used in the study portion of the train-
ing for the subjects. Salient, easily detectable features which could distinguish the vehicles from one
another were noted (e.g., whether the vehicle had wheels or tracks, whether the vehicle had a gun, whether
the vehicle had a cargo bed). The trees were constructed without any knowledge of the confusion proba-

bilities among the vehicles.

The most salient features, wheeled or tracked, divide the target set into two parts with three wheeled
vehicles and six tracked. Whether the tracked vehicle has a turret or not separates out one target, and as
the flow chart progresses, the distinguishing parts become more metric oriented (long or short gun, high or
low profile) until a final decision is made based upon the bore evacuator on the gun, a small feature located
in a particular location. The use of contingencies would be especially valuable to quick identification in
allowing observer to avoid making difficult discriminations of details on every trial. Naturally, these dis-
tinguishing features are not by any means the only set which could be surmised, but represents one possi-

ble scheme for a similarity tree.

Figure 2. Similarity Decision Tree
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3.2 RESULTS - CONFUSIONS AMONG VEHICLES

The first analysis of the results described here will focus on the confusions among the vehicles. Each
vehicle pair was designated as a number of nodes apart in the flow chart, determined by the number of
questions intervening. The maximum number for this set of targets was seven, as between those at either
pole (for example, the Luchs vs the Leopard, or the BTR vs the T62). Each pair of vehicles was designated
the number of nodes apart and then the average confusion for each nodal distance was plotted in Figure 3.
There was an extremely high correlation between a negative exponential of the nodal distances (the solid
function) and the confusion error rates: 0.974. Chance value is shown by the dashed line.

Figure 3. Nodal Distance chart
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4.0 CRITICAL FEATURES ANALYSIS!

As discussed above, current models to predict target identification (e.g., NVESD’s ACQUIRE model)
incorporate global aspects of the stimulus, such as target size, range, and thermal contrast. In contrast,
recent theoretical and empirical work in the psychology of object identification has emphasized the role of
object parts in identification as in the RBC theory (Biederman, 1987). If, as these theories predict, detec-
tion of critical parts is essential to object identification, then prediction models for observer identification
of military vehicles might be greatly enhanced by including information about whether a vehicle’s critical
parts are visible in the stimulus. The purpose of this second analysis was to determine if the prediction of
identification performance of military vehicles in thermal imagery could be significantly enhanced by
including critical part information in the prediction model.

The purpose of this second analysis was to attempt to predict the identification probabilities for vehi-
cles in the experiment described above using both the global features that are currently employed to predict
identification as well as the information about the visibility of the critical features of the vehicles. If the
visibility of the critical parts determined identification performance, then such information should be

included in future modeling enhancements.

The first determination to be made was whether there were parts that were associated with identifica-
tion of particular vehicles. Some questions asked were: 1) Was there a good predictive value in knowing
whether specific parts were visible in the image? 2) Were the critical parts the same for all vehicles? 3)
Did knowing whether the parts were visible add to the prediction accuracy beyond knowing range, thermal

contrast, and target size?

4.1 CRITICAL FEATURE DETERMINATION

A skilled analyst (Dr. Cooper) attempted to identify the vehicles in all 1080 scenarios. For each sce-
nario, the analyst would record his attempted identification response, his confidence in the guess on a scale
from 1-10 (with 1 being completely unsure and 10 being absolutely sure), the features of the vehicles
which were illuminated, those features which were not illuminated but visible nevertheless. On those trials
in which the analyst was fairly confident a correct identification had been made, the feature that was key
for identification was noted as well. After performing this procedure for all 1080 scenarios (presented in
random order, just as for the observers in the experiment proper), for those trials in which a correct identi-
fication was made, the number of times each feature (gun, turret, hull, tracks, roadwheels, engine) was con-
sidered the critical feature for identification was tallied. The tallying was done separately for each of the
three aspects for every vehicle. This tallying led to the following list of critical features shown in Table 4.

It is possible, of course, that the features which were used by the skilled analyst were not the same as
those used by the observers in the experiment. In order to better determine which features might actually
have been used by the observers in the experiment, the critical features for identification were determined
again in a slightly different way. For each of the three aspects of every vehicle, the correlation between the
percentage of observers who detected each of the six features in a scenario and the percentage of observers

1. The critical features analysis was performed by Dr. Eric Cooper under an Army Research Office contract
DAAI03-91-C-0034 sponsored by the U.S. Army CECOM RDEC Night Vision & Electronic Sensors
Directorate. The discussion is taken partly from the unpublished final report.




Table 4: First Critical Features as Determined by A Skilled Analyst®

ASPECT
Vehicle Front Oblique Front Re.ar
Oblique
BMP Turret (Hull) Turret Engine (Hull)
BRDM Wheels Hull (Wheels) Wheels
BTR Wheels Hull (Wheels) Wheels
LEOPARDI1 Gun (Hull) Turret Engine
LUCHS Wheels Turret Wheels
M113 Hull Hull (Tracks) Hull
M3 Turret Hull (Engine) Turret
MARDER Turret Turret Turret
T62 Gun Turret Gun

a. The observers’ first critical features were also determined and when different from the skilled analyst
are shown in parentheses.

who correctly identified the vehicle in a scenario were computed. Such an analysis was performed to
determine which features’ presence best predicted identification performance at each aspect. This method
of determining the critical features showed fairly high (but not perfect) agreement with the skilled analyst
method. In 20 out of 27 cases (76%) the same critical feature was revealed by the two methods. Potential
reasons for this disparity could be that there was more than one critical feature (as will be shown below)
that contributed to the identification, that the skilled analyst was more highly trained than the observers
and able to detect more subtle features, or that there is a significant amount of observer dependent variance
in which particular feature is most critical for any vehicle.

4.2 MODELING

After collection of the data was completed, the identification performance was modeled with linear
regression using both the global variables (range, transmission, size and aspect) and the critical features
variables (both as determined by the skilled analyst and as determined by the military observers in the
experiment). The variables used in all the models are summarized below in Table 5.




Table 5: List of Independent Variables Used in the Regression Models

Ind. Var. Name Values
Range 960m and 1500m
Size Square root of the vehicle’s visible area
Transmission % 30% and 90%
FO Dummy variable 1 if aspect is Front oblique, O otherwise
FR Dummy variable 1 if aspect is front, O otherwise
Critical Feature 1 % of observers who detected the most critical feature (as determined by the
(Skilled Analyst) skilled analyst) in a particular scenario
Critical Feature 2 % of observers who detected the second most critical feature (as determined by
(Skilled Analyst) the skilled analyst) in a particular scenario
Critical Feature 1 % of observers who detected the most critical feature (as determined by the
(Military Observers) | military observers) in a particular scenario
Critical Feature 2 % of observers who detected the second most critical feature (as determined by
(Military Observers) | the military observers) in a particular scenario
Random Critical % of observers who detected a feature that had been chosen randomly from the
Feature set of possible features

In all models, the dependent variable is the percentage of observers who correctly identified the target
object in a particular scenario (trial). Each trial (consisting of one target at a certain range, aspect, environ-
mental transmission, and feature manipulation) served as a single case in each of the regression models. A
summary of the results are shown in Table 6. Each run of the regression model shows the variables put
into the equation and the resulting adjusted RZ, which is the proportion of the variance accounted for by the
model corrected for the number of predictors employed. The adjusted R? provides an unbiased estimator
of the population RZ, and thus is the proper value to use when the proportion of variance accounted for by

each model is reported.

An Analysis of Variance (ANOVA) was also run on each of the predictor models and it was found that
the ACQUIRE model (Model 1 jn Table 6) has reliable predictive value (F(3.1076) = 102.277, p<.0001)
and accounts for 19% of the variance in the data. Reliable effects of all of the independent variables
(range, size and transmission) were found. Whereas it does predict much better than chance, there is still a
great deal of variance to be accounted for by other variables, such as those proposed.




Table 6: Variance accounted for (RZ) by each set of predictors.

l\gﬁfl Predictors (31(11;.)
1 Range, Size, Transmission ‘ .189
2 Range, Size, Transmission, Aspect 250
3 SA’s 1st Critical Feature 446
4 SA’s 1st and 2nd Critical Feature S544
5 SA’s 1st Critical Feature, Range, Size, Transmission, Aspect 565
6 SA’s 1st and 2nd Critical Feature, Range, Size, Transmission, Aspect 627
7 O’s 1st Critical Feature .643
8 O’s 1st and 2nd Critical Feature 663
9 O’s 1st Critical Feature, Range, Size, Transmission, Aspect .689
10 O’s 1st and 2nd Critical Feature, Range, Size, Transmission, Aspect 703
11 Random Ceritical Feature 133
12 Random Critical Feature, Range, Size, Transmission, Aspect 306

Adding aspect (front, front oblique, rear oblique) to the equation adds a small, but statistically greater
amount of predictive power (Model 2). Size correlates strongly with aspect (the front aspects have small
size values and the two oblique aspects have large size values), and front aspect vehicles are particularly
difficult to recognize, even taking into account their size. When adding aspect to the model, size drops out

as a statistically reliable predictor of recognition performance.

The third model in Table 6 predicts identification performance based only on the percentage of observ-
ers who detected the most important vehicle feature as determined by the skilled analyst. Compared to
Model 2, the results are very striking. The percentage of observers detecting the critical feature when used
alone as a predictor accounts for far more variance (44.6%) than all of the global variables put together
(25%). (Naturally, the ACQUIRE model could theoretically be used to predict whether the observers
would be able to detect the feature, if the feature size is taken into account.) If the percentage of observers
who detected the second most important critical feature (as determined by the skilled analyst) is added to
the above equation, the adjusted R? increases to .544 (Model 4).

When the model incorporated all the global variables as well as the percentage of observers who
detected the critical features, the former variables added a small, but statistically significant, amount to the
predictive power (Model 6) - 44.6% with critical feature alone, 56.5% with global information included as
well. This may not be surprising. In some instances, observers may have been able to detect whether the
critical feature was present or not, but unable (because of small target size, distant range, or poor signal to




noise ratio) to see the critical feature clearly enough to discern its unique properties. For example, the
MARDER has a unique turret (relative to the other vehicles in the set) which is wider at the top than at the
bottom. In some scenarios, it is possible to see that the vehicle has a turret, but not possible to determine
whether the turret bears the distinctive MARDER shape. The global variables might thus be expected to
add some predictability to the equation because factors causing poor visibility (small size, long range, poor
transmission) may hamper identification of a part's unique features even when the part can be detected.

In the above critical feature models, the feature critical for identification was determined by a skilled
analyst who examined the set of vehicles carefully and determined which feature was most useful in distin-
guishing a particular vehicle. It is, as stated above, of course, possible that the skilled analyst was not
using the same critical features as were the observers in the experiment. The purpose of the next model
was to determine the upper limit of the amount of variance in identification performance that can be pre-
dicted by the percentage of observers who could detect a particular critical feature for each vehicle and
aspect. In order to accomplish this, the feature that would be the best predictor of identification perfor-
mance was determined by computing the correlations (for each vehicle at each of the three aspects)
between the percentage of observers who identified a target in a given scenario, and the number who
detected each of the vehicle features in that scenario. The feature with the highest resulting correlation
will thus be considered the best predictor of identification performance.

This method of determining critical features must, necessarily, result in better predictive power than
the skilled analyst method of determining critical features. The critical features chosen using the experi-
mental observers' data are chosen using the criteria that they are the best predictors of identification perfor-

mance.

Note from Table 6 that this model (Model 7) is the best predictor of all those which were so far tried.
Using only the detection rate of one critical feature (as determined by the observers), 64.3% of the variance
in identification accuracy can be predicted. Thus with a single independent variable, almost three times as
much of the variability in the identification data is accounted for than by the three global variables used in
the first model. If the second best critical feature (as determined by the observers) is added to the above
model, the percentage of variance accounted for increases slightly to 66.3% (Model 8).

In Model 10, the purpose was to determine the maximum amount of variance in the identification data
that can be accounted for by all the independent variables that have been considered. Every independent
variable except size added a statistically significant amount to the predictive power of the model. (The size
variable may have been less important in this experiment than in others, due to the fact that all of the vehi-
cles were approximately the same physical size.) The additional size variables in this model do account
for reliably more variance than the single variable model above, however, the absolute gain is fairly small

(6% of the variance).

The above models strongly suggest that including feature detection information in the models accounts
for the majority of the variance in the data. However, what all of these models fail to establish is whether
it is necessary that the features used be critical features. That is, certain features of the vehicles make the
vehicles distinctive relative to others in the set, and the assumption that has been made is that detection of
certain features is more diagnostic of identification than others. However, it is possible that the detection
of any feature (distinctive or not) might be all that is necessary for good prediction of identification perfor-

mance.




Model 11 shows the prediction based upon a random feature chosen for each of the three aspects of
each of the nine vehicles in the experiment. Some of the features chosen were, by chance, the critical fea-
tures used in the previous models, and some were not. The percentage of observers who detected the ran-
dom critical feature in a particular scenario was then used as the predictor for the percentage of observers
who correctly identified the vehicle in that scenario. While detection of the random critical feature did pre-
dict a reliable amount of variance in the data (13.3%), it predicted significantly less variance than either the
critical feature as determined by the skilled observer (44.6%, Z=9.84, p<.01) or as determined by the
observers in the experiment (64.3%, Z=16.73, p<.01). The results suggest that detection of "any old" fea-
ture is not sufficient for identification. Certain distinctive features are present for each target, and it is
detection of those features which is critical for predicting identification performance. Thus, in order to
realize the predictive gains which accompany including feature detection information in the model, some
method of determining which features of a vehicle are distinctive must be included.

5.0 SUMMARY

The results of the above analysis of a perception study and the modeling comparisons are quite clear.
The first analysis showed that a contingency tree can be used as a basis for a similarity measure of vehicles
and predict the average confusability of targets, even when the tree is very general, based upon one partic-
ular view, and applied to all views. This type of tree can be very useful in training.

The second analysis showed that models which included detection of a vehicle's critical feature(s) pre-
dicted identification performance far better than models that included only global variables. Indeed, criti-
cal feature information alone predicted performance far better than all of the global variables taken
together. Further, this predictive power did not extend to detection of every vehicle feature. Detection of
features which are distinctive to a vehicle predicts identification performance much better than a randomly
selected feature, which is even less effective than the global variables.

6.0 CONCLUSIONS

The results of this study and modeling analysis have potential implications for automatic target recog-
nition system development, war game predictions, and military observer identification training. Specifi-
cally, the results suggest that performance of automatic vehicle recognition systems might be greatly
improved if, rather than being based on matching global properties of the stimulus (e.g., global shape or
overall spatial frequency analysis), such systems were designed to detect and identify distinguishing parts
of vehicles as human observers appear to do.

Further, in current war game simulations, it is necessary to be able to determine in a particular set of
environmental circumstances whether an individual observer can detect and identify a particular target.
Virtually all tactical decisions in the simulation must start with this piece of information. Thus, accuracy
in predicting whether the observer can identify a target is vital to accurate war game simulations. The data
here suggest that including information about whether critical features are detectable can greatly enhance
the accuracy of predictions about whether observers can identify vehicles, and the incorporation of such
information could potentially make simulations more accurate. Unless the critical features are known for a
particular set of vehicles, predictions can only be made after the fact. However, after some work with this
type of feature analysis, it is hoped that the critical features will become known for analysis, prediction,
and training for a defined set of representative vehicles.




Finally, the data presented here have implications for how we teach soldiers to identify military vehi-

cles. The results presented are suggestive (though not conclusive) that observers distinguish vehicles by
looking for a distinctive critical feature rather than by using more global properties of a stimulus. Training
performance in vehicle identification might possibly be enhanced, therefore, by instructing soldiers as to
the most distinctive and easily detectable features in a particular identification set.
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