"High Performance Computer Models in Computational Acoustics"

Diana C. Resasco
Martin Schultz, P.I.

Yale University
Suzanne K. Polmar, Ph.D. Director
Grant and Contract Administration
12 Prospect Place
New Haven, CT. 06511-3516

Administrative Grant Officer
Office of Naval Research Regional Office
495 Summer Street Room 103
Boston, MA 02210-2109

None

DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited

The long term goals of this project is to develop accurate models and efficient algorithms for the numerical solution of wave propagation problems for Navy applications.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract
G - Grant
PE - Program
PR - Project
TA - Task
WU - Work Unit
Element
Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."
DOE - See authorities.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UN (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
PART A

1. Principal Investigator: Diana C. Resasco, Martin H. Schultz
2. Title: High Performance Computer Models in Computational Acoustics (N00014-96-1-0442) 1/1/96 - 12/31/97
3. Address: Diana C. Resasco
 Yale University
 Department of Computer Science
 P.O. Box 208285
 New Haven, CT 06520-8285
4. Internet email addresses: resasco@cs.yale.edu schultz@cs.yale.edu
5. Phone: (203) 432-1207 FAX: (203) 432-0593
6. Category of Research: Propagation (theory, modeling & computation)

PART B

1. Long Term Goals
 To develop accurate models and efficient algorithms for the numerical solution of wave propagation problems for Navy applications.

2. Scientific and Technological Objectives
 Through our continued collaboration with Dr. Ding Lee, our objective is the development of a 3-dimensional coupled wave propagation model in a fluid-elastic environment.

3. Background
 In previous years, the Computational Ocean Acoustics group at Yale has contributed through the design and analysis of new numerical schemes, the enhancement of the FOR3D code, and its implementation on parallel machines. The fluid-elastic model will be considered an important extension of the code.

4. Approach
 We continue to work with Dr. Lee in the development and analysis of the mathematical model. Issues that require special attention include the numerical implementation of the solution to a complex system of differential equations that results from a parabolic approximation of the problem, stability analysis and efficient implementation.
5. Accomplishments and Results
 In recent fiscal years, the group at Yale contributed through the design and implementation of fast algorithms for PE approximations and the development of parallel algorithms and their implementation on parallel supercomputers.
 This fiscal year, we collaborated with Dr. Lee in the development of a numerical solution to the parabolic elastic wave equations developed by Lee et.al. on the previous FY.
 A set of fluid-elastic interface conditions has been formulated in ODE form which can be incorporated to the coupled 3D fluid-elastic interface model.
 We continue to collaborate with Dr. Lee in the development and analysis of numerical techniques to solve the resulting coupled system. A paper reporting preliminary results on the elastic model is in preparation.
 Yale continues to sponsor and contribute to the International Conference on Theoretical and Computational Acoustics, which provides a forum for the discussion of state-of-the-art development and results in the field of acoustics.

6. Impact on S & T
 The FOR3D model and code has been a useful tool for research, application and reference for many users worldwide. We expect that the added capabilities of a fluid-elastic environment will make it even more useful to practicing acousticians.

7. Relationship to other Projects
 This research project is related to Computational Shallow Water Acoustics.
FY96 STATISTICAL INFORMATION

1. Diana C. Resasco - Martin H. Schultz
 Yale University
 Department of Computer Science
 P.O. Box 208285
 New Haven, CT 06520-8285

2. Book (authored): NUMERICAL ACOUSTIC PROPAGATION IN THREE DIMENSIONS
 Ding Lee and M.H.Schultz
 Book (Edited): THEORETICAL AND COMPUTATIONAL ACOUSTICS '95
 Ding Lee, Y-H. Pao, M.H. Schultz and Y-C. Teng

Graduate students (state if female or minority)
None

PostDocs
None

Percentage of funds sent on to other performing organizations
None