4. TITLE AND SUBTITLE
Seminar on Stress-Turbine and Compressor Blades

6. AUTHOR(S)
Prof. Dr. Wieslaw Ostachowicz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Institute of Fluid Flow Machinery
Polish Academy of Sciences
ul Gen J. Fiszer 14
8—952 Gdansk, Poland

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
EOARD
PSC 802 BOX 14
FPO AE 09499-0200

13. ABSTRACT (Maximum 200 words)
Prof. Ostachowicz presented a seminar to the Aeropropulsion Laboratory, Dayton, Ohio on 5 May 1992 concerning: stress-strain analysis of a turbine blade root, vibrations of turbine and compressor blades, stiffness matrices of cracked finite elements, and vibrations of a cracked rotor and a cracked turbine blade.

Distribution Statement A
Approved for public release; Distribution Unlimited

DTIC Quality Inspected

14. SUBJECT TERMS
- NSN 7540-01-280-5500

15. NUMBER OF PAGES
- 2

16. PRICE CODE
- UL

17. SECURITY CLASSIFICATION OF REPORT
- UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
- UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
- UNCLASSIFIED

20. LIMITATION OF ABSTRACT
- U
Prof.Dr. Wieslaw Ostachowicz
Institute of Fluid Flow Machinery
Polish Academy of Sciences
ul. Gen. J. Fiszera 14
80-952 Gdansk, Poland

REPORT
Ref. SPC-92-4012

Date of the visit: 5-7 May 1992
Date of the Seminar: 5 May 1992 (Main Conference Room)
45 min. + 25 min. discussion
Place of the Seminar: Wright-Patterson Air Force Base
Aeropropulsion Laboratory
WL/POTC Dayton OH 45433-6563
Persons who listened the Seminar: Capt. Richard Heim and ca 16
persons (between others Capts. Driver and Murawski)
Also I met Dr. J. S. Przemieniecki, Senior Dean of the
Air Force Institute of Technology.

In the first part of the seminar I briefly described activity
of the Institute of Fluid Flow Machinery, Polish Academy of
Sciences. In particular I presented the activity fields of its 10
departments.

In the second part I presented the following topics:

- Stress-strain analysis of a turbine blade root
The object of analysis is stress-strain problem in turbine and
compressor blade roots including contact problems. A blade root
and a fragment of disk are modelled by 3-dimensional finite
elements. We used the finite element with 20 nodes (60 d.o.f).
The discrete model contains superelements. On a surface between a
blade root and a cut of a disk we introduced special point finite
elements which model sliding and broken properties of a joint.
Using this model we can calculate stresses including adhesion,
sliding (Coulomb forces) and broken contact. The calculations
were provided for elastic and elasto-plastic properties of a
material. During the seminar I presented results of calculations
for the real system.
- Vibrations of turbine and compressor blades
 The object of analysis are vibrations of blades. Blades were
 modelled by finite elements. We used 3-dimensional finite
 elements (8-node, 16-node or 20-node), thick shell finite
 elements and transition finite elements. We formulated four
 models of a blade. Each model contained the combination of
 described above finite elements. We considered separately short
 and long blades and also special blades (for example the blades
 of Baumann stage). During the seminar I presented results of
 calculations for three first natural frequencies. Numerical
 calculations were compared to experimental results. The best
 results we obtained for the model which contained both
 3-dimensional FE (20-node), thick shell FE and transition FE.

- Stiffness matrices of cracked finite elements
 A crack in a structure causes local changes in stiffness. These
 changes, in turn, affect the dynamics of the system. Both
 frequencies of the natural vibrations and the amplitudes of
 forced vibrations are changed. During the seminar I presented the
 method which we used to formulation of stiffness matrices for few
 cracked elements. I described these matrices for the following
 finite elements: bar, beam, disk, plate, solid. The examples
 illustrated the possibilities of calculations and also their
 accuracy. We compared the results of numerical calculations to
 analytical results and also to experimental data.

- Vibrations of a cracked rotor and a cracked turbine blade
 Using described above stiffness matrices we analyzed the
 influence of cracks on the natural frequencies of torsional and
 bending vibrations of rotor shaft and turbine blades. Also
 dynamic instability of cracked beams were considered. During the
 seminar I presented the results of calculations which illustrated
 changes of dynamic properties of cracked structures. Natural
 frequencies decrease their values when the depth of a crack
 increases. These frequencies also depend on location of cracks. I
 discussed the results of forced vibrations. In particular I
 explained the dependence between crack's properties and
 amplitudes of vibrations. Also the dependence between the regions
 of dynamic instabilities and crack parameters were discussed.