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Abstract 

The problem of rollback-recovery in message-passing systems has undergone extensive 
study. In this survey, we review rollback-recovery techniques that do not require special 
language constructs, and classify them into two primary categories. Checkpoint-based 
rollback-recovery relies solely on checkpointed states for system state restoration. 
Depending on when checkpoints are taken, existing approaches can be divided into 
uncoordinated checkpointing, coordinated checkpointing and communication-induced 
checkpointing. Log-based rollback-recovery uses checkpointing and message logging. 
The logs enable the recovery protocol to reconstruct the states that are not checkpointed. 
There are three different log-based approaches, namely, pessimistic logging, optimistic 
logging and causal logging. We identify a set of desirable properties of rollback- 
recovery protocols, and compare different approaches with respect to these properties. 
Log-based rollback-recovery protocols generally rely on the assumption of piecewise 
determinism and pay additional overhead to allow faster output commits and more 
localized recovery. We present research issues under each approach, and review existing 
solutions to address them. We also present implementation issues of checkpointing and 
message logging. 



1   Introduction 

Rollback-recovery achieves fault tolerance by periodically saving the state of a process 
during failure-free execution, and restarting from a saved state upon a failure to reduce 
the amount of lost work. The saved process state is called a checkpoint, and the 
procedure of restarting from previously checkpointed state is called rollback-recovery. 
A checkpoint can be saved on either stable storage or the volatile storage of another 
process, depending on the failure scenarios to be tolerated. For long-running scientific 
applications, checkpointing and rollback-recovery can be used to minimize the total 
execution times in the presence of failures. For mission-critical service-providing 
applications, checkpointing and rollback-recovery can be used to improve service 
availability by providing faster recovery to reduce service down time. 

Rollback-recovery in message-passing systems is complicated by the issue of roll- 
back propagation due to interprocess communications. When the sender of a message 
m rolls back to a state before sending m, the receiver process must also roll back to a 
state before m's receipt; otherwise, the states of the two processes would be inconsistent 
because they would show that message m was not sent but has been received, which 
is impossible in any correct failure-free execution. Under some scenarios, cascading 
rollback propagation may force the system to restart from the initial state, losing all 
the work performed before a failure. This unbounded rollback is called the domino 
effect [144]. The possibility of the domino effect is highly undesirable because all 
checkpoints taken may turn out to be useless for protecting an application against 
losing all useful work upon a failure. 

In a message-passing system, if each participating process takes its checkpoints 
independently then the system is susceptible to the domino effect. This approach is 
called uncoordinated checkpointing or independent checkpointing. One way to avoid 
the domino effect is to perform coordinated checkpointing: the processes in a system 
coordinate their checkpoints to form a system-wide consistent state. Such a consistent 
set of checkpoints can then be used to bound the rollback propagation. Alternatively, 
communication-induced checkpointing forces each process to take checkpoints based 
on some application messages it receives from other processes. This approach does not 
require system-wide coordination and therefore may scale better. The checkpoints are 
taken such that a consistent state always exists, and the domino effect cannot occur. 

The above approaches rely solely on checkpoints, thus the name checkpoint-based 
rollback-recovery. In contrast, log-based rollback-recovery uses checkpointing and 
message logging.1 Log-based rollback-recovery relies on the assumptions underlied in 
apiecewise deterministic (PWD) execution model [51,167]. Under the PWD model, 
each process execution consists of a sequence of deterministic state intervals, each 
starting with the occurrence of a nondeterministic event. By logging and replaying the 
nondeterministic events in their exact original order, a process can deterministically 

'Logging is not confined to messages only. It also includes logging nondeterministic events. Earlier 
papers in this area have assumed a model in which messages represent nondeterministic events in addi- 
tion to interprocess communications. In this paper, we use the terms event logging and message logging 
interchangeably. 



recreate its pre-failure state even if it has not been checkpointed. Log-based rollback- 
recovery in general enables a system to have a recoverable state beyond the most recent 
set of consistent checkpoints. It is therefore particularly attractive for applications that 
frequently interact with the outside world. The outside world consists of all input and 
output devices that cannot roll back. 

This survey is organized as follows. Section 2 describes the system model, the 
terminology and the generic issues in rollback-recovery; Section 3 surveys checkpoint- 
based rollback-recovery protocols, and classifies them into three primary categories: 
uncoordinated checkpointing, coordinated checkpointing and communication-induced 
checkpointing; Section 4 covers log-based recovery techniques including pessimistic 
logging, optimistic logging and causal logging; Section 5 addresses the implementation 
issues; Section 6 gives additional references to emerging new research topics and related 
research areas, and Section 7 concludes the survey. Rollback-recovery techniques that 
rely on special language constructs such as recovery blocks [144] and transactions [64] 
are not covered in this survey. Also, we do not address the use of rollback-recovery to 
tolerate Byzantine failures. 

2   Background and Definitions 

2.1   System Model and Failure Model 

A message-passing system consists of a fixed number of processes that communicate 
only through messages. Throughout this survey, we use N to denote the total number 
of processes in the system. Processes cooperate with each other to execute a distributed 
application program, and interact with the outside world by receiving and sending input 
and output messages, respectively. Figure 1 shows a sample system consisting of three 
processes, where horizontal lines extending toward the right hand side represent process 
executions, and arrows between processes represent messages. 

Rollback-recovery protocols generally assume that the communication network is 
immune to partition, but differ in the assumptions they make about the reliability of in- 
terprocess communication. Some protocols assume that the communication subsystem 
delivers messages reliably in First-In-First-Out (FIFO) order. Other protocols assume 
that the communication subsystem can lose, duplicate, or reorder messages. The two 
different assumptions lead to different treatments of in-transit messages, as will be 
described shortly. Their practical implications are discussed in Section 5. 

A process may fail, in which case it loses its volatile state and stops execution 
according to the fail-stop model [150]. Processes have access to a stable.storage 
device that survives failures. State information saved to the device during failure-free 
execution then can be used for recovery. The number of tolerated process failures 
may vary from one to N, and the recovery protocol needs to be accordingly designed. 
Whether failures that occur during recovery need to be tolerated or not also affects the 
choice of recovery protocols [51,157]. 



Outside world Input message Output message 

Message-passing system 

Processes >/> 

Messages 

Figure 1: Example message-passing system with three processes. 

2.2   Consistent System States 

The state of a message-passing system is the collection of the individual states of all 
participating processes and the states of the communication channels. Intuitively, a 
consistent system state is one that may occur in a legal execution of a distributed 
computation. A more precise definition of a consistent system state is one in which 
every message that has been received is also shown to have been sent in the state of 
the sender [38]. For example, the cut in Figure 2(a) straddles a consistent state of the 
three processes in Figure 1, while the cut in Figure 2(b) straddles an inconsistent cut 
because process P% is shown to have received m but Pi's state does not reflect sending 
the message. 

Consistent cut Inconsistent cut 

Process 
states        (a) (b) 

Figure 2: (a) Consistent cut; (b) inconsistent cut. 

Messages that are sent but not yet received may not cause the system state to be 



inconsistent. These messages are called in-transit messages (see for example message 
m' with respect to the cut in Figure 2(a)). Whether a consistent system state should 
include the in-transit messages depends on whether the system model assumes reliable 
communication channels or not. For reliable communication channels, a consistent 
state must include in-transit messages because they will always be delivered to their 
destinations in any legal execution of the system. For example, in Figure 3(a), the 
reliable communication protocol can handle only the in-transit messages potentially 
lost in the lossy communication channels during failure-free executions; lost in-transit 
messages due to process failures need to be separately handled by the rollback-recovery 
protocol itself. On the other hand, if a system model assumes lossy communication 
channels, then omitting in-transit messages from the system state does not cause any 
inconsistency. In such a model, there is no guarantee that the communication subsystem 
will deliver all messages to their destinations in a legal execution. For example, in 
Figure 3(b), lost in-transit messages due to rollback-recovery cannot be distinguished 
from those caused by lossy communication channels; a reliable communication protocol 
at a higher layer can guarantee the delivery of both types of messages. 

User applications 

Rollback-recovery protocol 

Reliable communication protocol 

Lossy communication channels 

User 

applications 

Reliable 

communication 

protocol 

User 

applications 

Rollback-recovery protocol 

Lossy communication channels 

(a) (b) 

Figure 3:  Implementations of rollback-recovery protocols (a) on top of a reliable 
communication protocol; (b) directly on top of lossy communication channels. 

An inconsistent state represents a state that can never occur in any legal execu- 
tion of the system. Inconsistent states occur because of failures. For example, the 
inconsistency in Figure 2(b) can occur if process P\ fails after sending message m 
to Pz. A fundamental goal of any rollback-recovery protocol is to bring the system 
into a consistent state when inconsistencies occur due to a failure. The reconstructed 
consistent state is not necessarily one that has occurred before the failure. It is sufficient 
that the reconstructed state be one that could have occurred before the failure in a legal 



execution. 

2.3   Checkpointing Protocols 

In checkpointing protocols, each process periodically saves its state on stable storage. 
The state should contain sufficient information to restart process execution. A consistent 
global checkpoint refers to a set of N local checkpoints, one from each process, which 
forms a consistent system state. Any consistent global checkpoint can be used for 
system restoration upon a failure. To minimize the amount of lost work, the most 
recent consistent global checkpoint, called the recovery line [144], is the best choice. 

Figure 4 gives an example where processes are allowed to take their checkpoints in- 
dependently, without coordinating with each other. A black bar represents a checkpoint, 
and each process is assumed to start its execution with an initial checkpoint. Suppose 
process P% fails and rolls back to checkpoint C. The rollback "unsends" message m 
and so P\ is required to roll back to checkpoint B to "unreceive" m. The rollback of P2 
thus propagates to Pi, therefore the term rollback propagation. Pi's rollback further 
"unsends" m' and forces PQ to roll back as well. Such cascading rollback propagation 
can eventually lead to an unbounded rollback, called the domino effect [144], as illus- 
trated in Figure 4. The recovery line for the single failure of P% consists of the initial 
checkpoints. Thus, the system has to roll back to the beginning of its execution and 
loses all useful work in spite of all the checkpoints that have been taken. To avoid the 
domino effect, processes need to coordinate their checkpoints so that the recovery line 
is advanced as new checkpoints are taken. 

Recovery 

pi 
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■ 
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Checkpoint 

■ ■ 
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Figure 4: Recovery line, rollback propagation and domino effect. 

2.4   Logging Protocols 

Log-based rollback-recovery uses checkpointing and logging to enable processes to 
replay their execution after a failure beyond the most recent checkpoint. This property 
is useful when interactions with the outside world are necessary. It enables a process 



to repeat its execution and be consistent with output sent to the outside world without 
having to take expensive checkpoints before sending such output. Additionally, log- 
based recovery generally is not susceptible to the domino effect, allowing processes to 
use uncoordinated checkpointing if desired.2 

Log-based recovery relies on the assumptions underlied in apiecewise deterministic 
(PWD) execution model [51,167] and employs an additional logging protocol. Under 
the PWD assumption, a process execution consists of a sequence of state intervals, each 
starting with a nondeterministic event such as a message receipt from another process. 
The execution within each state interval is deterministic. Thus, by logging every 
nondeterministic event during failure-free execution and replaying the logged events 
in their original order during recovery, a process can replay its execution beyond the 
most recent checkpoint. A process state is recoverable if there is sufficient information 
to replay the execution up to that state despite any future failures in the system. 

In Figure 5, suppose messages m5 and m6 are lost upon the failure affecting both 
processes Pi and P2, while all the other messages survive the failure. Message m7 

becomes an orphan message because process P2 cannot guarantee the regeneration of 
the same me after the rollback, and Pi cannot guarantee the regeneration of the same 
m-j without the original m6. As a result, the surviving process P0 becomes an orphan 
process and is forced to roll back as well. As indicated in Figure 5, process states X, Y 
and Z then form the maximum recoverable state [89], i.e., the most recent recoverable 
consistent system state. Process P0 (P2) rolls back to checkpoint A (C) and replays 
message m4 (m2) to reach X (Z). Process Pi rolls back to checkpoint B and replays 
m\ and m^ in their original order to reach Y. 

2.5   Interactions with The Outside World 

A message-passing system often interacts with the outside world to receive input data 
and show the outcome of the computation, or to receive service requests and reply with 
the requested information. The outside world cannot be relied on to roll back if a failure 
occurs in the system. For example, a printer cannot roll back the effects of printing a 
character; an automatic teller machine cannot recover the money that it dispensed to 
a customer; a deleted file cannot be recovered (unless its state is included as part of 
the checkpoint [166,191]). It is therefore necessary to ensure that the outside world 
perceive a consistent behavior of the system despite failures. Thus, before sending 
output to the outside world, the system must ensure that the state from which the 
output is sent will be recovered despite any future failure. This is commonly called the 
output commit problem. Some rollback-recovery protocols may need to run a special 
algorithm to ensure the recoverability of the current state, while some protocols can 
commit output directly without the need for special arrangements. 

2We use the terms of event logging and message logging interchangeably. Log-based recovery has 
traditionally been called message logging, as earlier papers have assumed that nondeterministic events can 
be converted to messages. Also, "message logging" has sometimes been used in the literature to refer to the 
recording of in-transit messages [42,187]. This naming convention is not common and we do not use it in 
this survey. 
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Figure 5: Message logging for deterministic replay. 

Similarly, the input messages that a system receives from the outside world may 
not be reproducible, as it may not be able to regenerate them. Therefore, a recovery 
protocol must arrange to save the input messages so that they can be retrieved when 
needed for execution replay after a failure. A common approach is to save each input 
message on stable storage before allowing the application program to process it. 

2.6 Stable Storage 

Rollback-recovery uses stable storage to save checkpoints, event logs, and other 
recovery-related information. Stable storage in rollback-recovery is only an abstrac- 
tion, although it is often confused with disk storage which is usually used to implement 
it. Stable storage must ensure that the data stored will persist through the tolerated 
failure modes. Therefore, in a system that tolerates a single failure, stable storage 
may consist of the volatile memory of another process [29,88]. A system that wishes 
to tolerate an arbitrary number of transient failures can implement stable storage by 
storing information on a reliable disk local to each host. And a system that tolerates 
non-transient failures must ensure that the recovery information related to a particular 
process is always stored on a persistent medium outside the host on which the process 
is running. A highly-available file system can be used in that case [103]. Independent 
of the technique that implements stable storage, we call an event or a message fully 
logged if it has been stored such that it would persist the tolerated failures in the system. 

2.7 Garbage Collection 

Checkpoints and event logs consume storage resources. As the application progresses 
and more recovery information is collected, a subset of the stored information may 



become useless for recovery. A common approach to garbage collection is to identify 
the recovery line and discard all information relating to events that occurred before that 
line. For example, processes that coordinate their checkpoints to form consistent states 
will always restart from the most recent checkpoints, and so all previous checkpoints 
can be discarded. Garbage collection is an important pragmatic issue in rollback- 
recovery protocols. Running a special algorithm to discard useless information incurs 
overhead but may be necessary to free up space on stable storage, posing two conflicting 
requirements to the system implementors. Recovery-protocols differ in the amount and 
nature of the recovery information they need to store on stable storage, and therefore 
differ in the complexity and invocation frequency of their garbage collection algorithms. 

3   Checkpoint-Based Rollback-Recovery 

Upon a failure, checkpoint-based rollback-recovery restores the system state to the most 
recent consistent set of checkpoints, i.e., the recovery line [144]. It does not rely on 
piecewise determinism, and so does not need to detect, log, and replay nondeterministic 
events. Since there is no guarantee that pre-failure execution can be deterministically 
regenerated after a rollback, it is more suitable for applications that do not frequently 
interact with the outside world. Checkpoint-based rollback-recovery techniques can be 
classified into three categories: uncoordinated checkpointing, coordinated checkpoint- 
ing, and communication-induced checkpointing. 

3.1   Uncoordinated Checkpointing 

3.1.1   Overview 

Uncoordinated (or independent) checkpointing allows each process to decide indepen- 
dently when to take checkpoints. The main advantage is the lower runtime overhead 
during normal execution because no coordination among processes is necessary. Au- 
tonomy in taking checkpoints also allows each process to select appropriate checkpoint 
positions to further reduce the overhead by saving a smaller amount of state information. 
The main disadvantage is the possibility of the domino effect, as shown in Figure 4, 
which may cause a large amount of useful work to be undone regardless of how many 
checkpoints have been taken. In addition, each process needs to maintain multiple 
checkpoints, and a garbage collection algorithm needs to be invoked periodically to 
reclaim the checkpoints that are no longer useful. 

During normal execution, the dependencies between checkpoints caused by mes- 
sage exchanges need to be recorded so that a consistent global checkpoint can be 
determined during recovery. The following direct dependency tracking technique is 
commonly used in uncoordinated checkpointing [25,178,192]. Letc,|X(0 < i < N—l, 
x > 0) denote the xth checkpoint of process P,, where i is called the process id and 
x the checkpoint index (we assume each process P{ starts its execution with an initial 
checkpoint c,-i0); and let IitX (0 < i < N - 1, x > 1) denote the checkpoint interval 



(or interval) between CiiX-\ and c,-|ä,. As illustrated in Figure 6, when process Pj at 
interval Ii>x sends a message m to Pj, the pair (i, x) is piggybacked on m. When P,- 
receives m during interval IjiV, it records the dependency from J,iX to Ij<y, which is 
later saved onto stable storage when checkpoint CJIV is taken. 

'iy- 

pj 

cj,0                     cj,l                                 cj,y-l cj,y 

I 1" "I  

i,0 c i,l c i, x-1 

hx 

Figure 6: Checkpoint index and checkpoint interval. 

If a failure occurs, the rollback initiator will broadcast a dependency_request 
message to collect all the dependency information maintained separately at each pro- 
cess. When a process receives the dependency-request message, it stops its execution 
and replies with the stable dependency information and the dependency information 
associated with its current volatile state (called a volatile checkpoint), if available. The 
initiator then calculates the recovery line based on the global dependency information, 
and broadcasts a rollback_request message containing the recovery line. Upon receiv- 
ing the rollback_request, if a process's volatile checkpoint belongs to the recovery 
line, it simply resumes execution; otherwise, it rolls back to an earlier checkpoint as 
indicated by the recovery line. 

3.1.2   Dependency Graphs and Recovery Line Calculation 

Given the checkpoint and communication pattern shown in Figure 7(a), there are 
two approaches proposed in the literature to determining the recovery line. The first 
approach is based on a rollback-dependency graph [25,35,184] in which each node 
represents a checkpoint and a directed edge is drawn from Ci]X to Cjiy if (1) i ^ j, and a 
message m is sent from J,|X and received in i))9 or (2) i = j and y = x + 1. The name 
"rollback-dependency graph" comes from the observation that if IiiX is rolled back, 
then Ij>y must also be rolled back. The rollback-dependency graph corresponding to 
the pattern in Figure 7(a) is illustrated in Figure 7(b). To calculate the recovery line, the 
graph nodes corresponding to the volatile checkpoints of the failed processes Po and 
Pi are initially marked. A reachability analysis [25,184] is performed by marking all 
the nodes reachable from any of the initially marked nodes. The last unmarked node 
of each process then forms the recovery line as shown in Figure 7(b). 
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Figure7: (a) Example checkpoint and communication pattern; (b) rollback-dependency 
graph; (c) checkpoint graph. 

The second approach is based on a checkpoint graph [178,183]. Checkpoint graphs 
are similar to rollback-dependency graphs except that, when a message is sent from I,->a. 
and received in IjtV, a directed edge is drawn from Ci<x-\ (instead of c,-|!r) to CJI9, as 
shown in Figure 7(c). The recovery line can be calculated by first removing the nodes 
corresponding to the volatile checkpoints of the failed processes, and then applying the 
following rollback propagation algorithm [178,187] on the checkpoint graph: 

I* Initially, all checkpoints are unmarked */ 

include the last checkpoint of each process in a root set; 
mark all the checkpoints strictly reachable from any checkpoint in the root 

set; 
while (at least one checkpoint in the root set is marked) { 

replace each marked checkpoint in the root set by the last unmarked 
checkpoint of the same process; 
mark all the checkpoints strictly reachable from any checkpoint in the 
root set; 

} 

10 



the root set is the recovery line. 

The example demonstrates that the two approaches are equivalent and result in the same 
recovery line. The choice usually depends on which graph is more convenient for the 
issues to be discussed. 

3.1.3   Garbage Collection 

The garbage collection algorithm for independent checkpointing consists of calculating 
the recovery line, and discard the obsolete checkpoints before the states that form the 
line. The calculation proceeds as follows: construct a nonvolatile rollback-dependency 
graph by omitting the incoming edges of volatile checkpoints (which correspond to 
volatile dependency information), and initially mark all volatile checkpoints to start the 
reachability analysis. Figure 8 illustrates the nonvolatile rollback-dependency graph 
and the global recovery line of Figure 7(a). Only the first checkpoint of each process 
is obsolete and can be garbage-collected. As demonstrated by the figure, when the 
global recovery line is unable to advance due to rollback propagation, a large number 
of nonobsolete checkpoints may need to be retained. 

To reduce the number of retained checkpoints, Wang et al. derived the necessary 
and sufficient condition for a checkpoint to be useful for any future recovery [185,186]. 
It was shown that there exists a set of N recovery lines, the union of which contains all 
useful checkpoints. Each of the N recovery lines is obtained by initially marking one 
volatile checkpoint in the nonvolatile rollback-dependency graph. Figure 9 illustrates 
the execution of the optimal checkpoint garbage collection algorithm to find these N 
recovery lines. Since the four nonobsolete checkpoints {A, B, C, D} and the four 
obsolete checkpoints do not belong to the union, they can be safely discarded without 
affecting the safety of any future recovery. It was also proved that the number of useful 
checkpoints can never exceed N(N + l)/2, and the bound is tight [185]. 

3.2   Coordinated Checkpointing 

3.2.1   Overview 

In consistent checkpointing, the processes coordinate their checkpoints to form a global 
consistent state. Consistent checkpointing is not susceptible to the domino effect, 
since the processes always restart from the most recent checkpoint. Also, recovery 
and garbage collection are both simplified, and stable storage overhead is lower than 
in uncoordinated checkpointing. The main disadvantage is the sacrifice of process 
autonomy in taking checkpoints. In addition, a coordination session needs to be 
initiated before committing any output, and checkpoint coordination generally incurs 
message overhead. 

A straightforward approach to coordinated checkpointing is to block interprocess 
communications until the checkpointing protocol executes [43,174].   This can be 

11 
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achieved by using the following two-phase blocking protocol: the initiator (coordina- 
tor) broadcasts a checkpoint-request message; when a process receives the check- 
point-request message, it takes a checkpoint, stops sending application messages, 
and replies with a local_checkpoint_done message; once the initiator receives lo- 
cal-Checkpoint_done from every other process, it broadcasts a global_checkpoint_done 
message; upon receiving globaLcheckpoint-done, each process commits its new 
checkpoint and resumes sending application messages. If a failure occurs, a simple 
recovery procedure is to roll back all processes in the system to the latest committed 
global checkpoint. When it is desirable to minimize the number of processes involved 
in a rollback, the general recovery line calculation algorithms based on dependency 
tracking (as describe in Section 3.1) can still be applied [100]. 

3.2.2 Nonblocking Checkpoint Coordination 

Instead of blocking interprocess communications, an alternative is to shift the respon- 
sibility of maintaining checkpoint consistency from the sender side to the receiver 
side. A fundamental problem in nonblocking checkpoint coordination is to avoid post- 
checkpoint messages like m in Figure 10(a), which is sent after process PQ receives 
checkpoint-request, and received before checkpoint-request reaches Pi. Under the 
assumption of FIFO channels, this problem can be solved by always generating a check- 
point-request before sending any post-checkpoint messages, and forcing each process 
to take a checkpoint upon receiving the first checkpoint-request, as illustrated in Fig- 
ure 10(b). Chandy and Lamport's distributed snapshot algorithm [38] provides such a 
nonblocking checkpoint coordination protocol. (The checkpoint-request message is 
called a marker in their paper.) Note that, since we only need the checkpoint-request 
to be processed before any post-checkpoint messages, checkpoint-request can be pig- 
gybacked on every post-checkpoint message m and examined by the receiver before m 
is processed [101], as shown in Figure 10(c). This modification also allows non-FIFO 
channels. In practice, checkpoint indices can serve as the checkpoint-request mes- 
sages: a checkpoint is triggered when the receiver's local checkpoint index is lower 
than the piggybacked checkpoint index [50,154]. 

3.2.3 Synchronized Checkpoint Clocks 

Loosely synchronous clocks can facilitate checkpoint coordination [42,143,177]. More 
specifically, loosely-synchronized checkpoint clocks can trigger the local checkpointing 
actions of all participating processes at approximately the same time without the need 
of broadcasting the checkpoint-request message by a coordinator. A process takes a 
checkpoint and waits for a period that equals the sum of the maximum deviation between 
clocks and the maximum time to detect a failure in another process in the system. The 
process can be assured that all checkpoints belonging to the same coordination session 
must have been taken without the need of global-Checkpoint-done messages. If a 
failure occurs, it has to be detected within the specified time and the protocol is aborted. 
To guarantee checkpoint consistency, either the sending of messages is blocked for 

13 
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Figure 10: Nonblocking coordinated checkpointing, (a) Checkpoint inconsistency; 
(b) FIFO channels; (c) non-FIFO channels (short dashed line represents piggybacked 
checkpoint-request). 

the duration of the protocol, or the checkpoint indices can be piggybacked to avoid 
blocking as explained before. 

3.2.4   Minimal Checkpoint Coordination 

It is possible to reduce the number of processes involved in a coordinated check- 
pointing session. Only those processes that have communicated with the checkpoint 
initiator either directly or indirectly since the last checkpoint need to take new check- 
points [21,100]. The following two-phase protocol is due to Koo and Toueg [100]. 
During the first phase, the checkpoint initiator sends a request to all processes with 
which it has communicated since the last checkpoint. Upon receiving such request, 
each process sends a similar message to all processes it has communicated with since 
the last checkpoint and so on, until all processes are identified. During the second 
phase, all processes identified in the first phase take a checkpoint. The result is a 
consistent checkpoint that involves only the processes that participate. Interprocess 
communication has to be blocked during this protocol as explained before. In Koo and 
Toueg's original scheme, if any of the involved processes is not able or not willing to 
take a checkpoint, then the entire coordination session is aborted; Kim and Park [93] 
proposed an improved scheme that allows the new checkpoints in some subtrees to be 
committed while the others are aborted. 
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3.3   Communication-induced Checkpointing 

3.3.1 Overview 

Communication-inducedcheckpointing [81] is another way to avoid the domino effect 
in uncoordinated checkpointing protocols. A system-wide constraint on the check- 
point and communication pattern is specified to guarantee recovery line progression. 
Sufficient information is piggybacked on each message so that the receiver can ex- 
amine the information prior to processing the message. If processing the message 
would violate the specified constraint, the receiver is forced to take a checkpoint before 
the processing. In contrast with coordinated checkpointing, no special coordination 
messages are exchanged. We distinguish two types of communication-induced check- 
pointing: model-based checkpointing maintains certain checkpoint and communication 
structure that is provably domino effect-free, and index-based coordination enforces 
the consistency between checkpoints with the same index. 

3.3.2 Model-based Checkpointing 

Several domino effect-free checkpoint and communication models have been pro- 
posed in the literature. Russell [147] proved that if within every checkpoint interval 
all message-receiving events precede all message-sending events, then the system is 
domino effect-free. Such a model, called an MRS model, can be maintained by taking 
an additional checkpoint before every message-receiving event that is not separated 
from its previous message-sending event by a checkpoint [2,184]. In the Programmer- 
Transparent Coordination (PTC) scheme [98], Kim et al. proved that the domino effect 
can be eliminated if each process takes an additional checkpoint before processing any 
message that will cause the process to depend on a checkpoint that it did not previously 
depend on. Wu and Fuchs [197,198] proposed that taking a checkpoint immediately 
after every message-sending event can eliminate rollback propagation and therefore the 
domino effect. Some heuristics have also been developed to reduce rollback propaga- 
tion [188,199], although they in general do not guarantee domino effect-free recovery. 

In addition to achieving domino effect-free recovery, another branch of research 
work aims at providing the benefits of piecewise determinism (such as efficient output 
commit and recovery) without requiring applications to satisfy the piecewise determin- 
istic model. It is based on the observation that piecewise determinism can be modeled as 
having a logical checkpoint [91,179,190] before every nondeterministic event. There- 
fore, checkpoint-based rollback recovery can mimic piecewise determinism by taking 
an actual checkpoint before every nondeterministic event. The main challenge is how 
to reduce the number of checkpoints while still preserving desirable properties. It has 
been shown that [182] the three domino effect-free models described in the previous 
paragraph can all be viewed as special cases of a more general Fixed-Dependency- 
After-Send (FDAS) model: the receiving of any message that causes its receiver Pj to 
causally depend on a checkpoint c,^ for the first time must precede any sending of 
messages from the same checkpoint interval. The main advantage of the FDAS model 
is that it allows rollback dependency to be tracked on-line, a property that leads to many 
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desirable features of the piecewise deterministic model. The ability to track rollback 
dependency is also preserved in the adaptive checkpointing algorithm of Baldoni et 
al. [16]. In their scheme, an additional boolean vector and another boolean matrix are 
piggybacked on each message. These data structure allow a receiver to determine if 
an additional checkpoint needs to be taken to prevent some other checkpoints from 
becoming useless, i.e., not belonging to any consistent global checkpoints [199]. 

3.3.3   Index-based Coordination 

Checkpoint coordination can also be considered as a mechanism to be incorporated 
into an uncoordinated checkpointing protocol to eliminate the domino effect. A naive 
way to employ checkpoint coordination is to start a coordination session whenever 
a local checkpoint is taken. Alternatively, inconsistency between checkpoints of the 
same index can be avoided in a lazy fashion if checkpoint index is piggybacked on 
each message. Upon receiving a message with piggybacked index greater than the 
local index, the receiver is forced to take a checkpoint before processing the message 
to avoid inconsistency at the last minute [33,101]. 

The lazy coordination protocol described above has two disadvantages. First, the 
induced checkpoints push the checkpoint indices at some processes higher which may 
cause more induced checkpoints to be taken and, in the worst case, result in an ex- 
cessive number of induced checkpoints. Second, the additional checkpoint overhead 
is determined by the checkpoint and communication pattern and is not otherwise con- 
trollable. Wang and Fuchs [189] introduced the notion of laziness (a positive integer) 
to provide a tradeoff between the checkpoint overhead and rollback distance. When 
a system specifies the laziness to be Z, only checkpoints with the same index which 
is a multiple of Z are required to be consistent. By increasing the laziness, additional 
checkpoint overhead can be reduced at the expense of a potentially larger rollback 
distance. Manivannan and Singhal [119] presented a quasi-synchronous checkpointing 
algorithm to reduce the number of forced checkpoints. Every process increments its 
next-to-be-assigned checkpoint index at the same regular time interval to keep the index 
of the latest checkpoint of each process close to each other. A scheduled checkpoint is 
skipped if the next-to-be-assigned index is already taken by an induced checkpoint. 

4   Log-Based Rollback-Recovery 

Log-based rollback-recovery assumes a piecewise deterministic system model in which 
a process execution consists of a sequence of deterministic state intervals. Each interval 
starts with the occurrence of a nondeterministic event. Such an event can be the receipt 
of a message from another process or an internal event to the process. Sending a 
message, however, is not an event in this model. For example, in Figure 5, the 
execution of process Po would be a sequence of four deterministic intervals. The first 
one starts with the creation of the process, while the remaining three start by the receipt 
of messages mo, rrn, and m7, respectively. 
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Log-based rollback-recovery protocols save information about the nondeterministic 
events on stable storage in addition to checkpointing. During recovery, the events in 
the log are replayed at the same points they occurred during the pre-failure execution. 
Thus, the failed process reconstructs its pre-failure execution during recovery since the 
execution within each deterministic interval depends on the nondeterministic event that 
started it. 

Log-based rollback-recovery contrasts checkpointing schemes in one important 
way. In checkpointing schemes, the system restarts one or more processes after a 
failure to restore a consistent state. The execution of a failed process during recovery 
is not necessarily identical to its pre-failure execution. This property simplifies the 
implementation of failure-recovery but makes it difficult for the system to interact 
efficiently with the outside world. Log-based rollback-recovery does not have this 
problem and can interact more efficiently with the outside world. 

Log-based rollback-recovery protocols have been traditionally called "message 
logging protocols." The association of nondeterministic events with messages is rooted 
in the earliest systems that implemented this style of recovery [23,28]. These systems 
translated nondeterministic events into messages according to the CSP model [71]. 
It is important however to emphasize that these protocols are not only limited to 
message-passing systems. They have found applications in other style of interprocess 
communication, such as in distributed shared memory systems [37,170,197]. 

Log-based rollback-recovery protocols come in three major variants: pessimistic 
logging, optimistic logging, and causal logging protocols. They differ in their failure- 
free performance overhead, latency of output commit, simplicity of recovery and 
garbage collection, and the potential for rolling back surviving processes. 

4.1   Pessimistic Logging 

4.1.1   Overview 

The basic assumption in pessimistic logging systems is that a failure can occur after 
every nondeterministic event in the computation. This assumption is "pessimistic" 
since failures are rare in reality. Pessimistic logging systems arrange for the information 
about each nondeterministic event to be logged before the event is allowed to affect the 
computation. For example, a message is not delivered to the application program until 
it is logged. This form of logging is often called synchronous logging. Each process 
also takes periodic checkpoints to limit the amount of work that has to be repeated in 
execution replay during recovery. Should a failure occur, the application program is 
restarted from the most recent checkpoint and the log of events is replayed to recreate 
the execution. Because the execution is deterministic between nondeterministic events, 
an exact replay of the pre-failure execution is produced. 

Consider the example in Figure 11. During failure-free operation the logs of 
processes PQ, Pi. and Pi are {m0, m,4,m7}, {mi, m^, me}, and {mi, ms}, respectively. 
If processes Pi and Pi fail as shown, they respectively restart from checkpoints B and C. 
Each replays its message log and because the execution is deterministic, each restores 

17 



its pre-failure execution and both will be consistent with the state of Po including its 
receipt of message m-] from Pi. 

Maximum 
recoverable 

state 

Figure 11: Pessimistic logging. 

The state of each process in a pessimistic logging system is always recoverable. 
This property has four advantages: 

• A process can commit output to the outside world without running a special 
protocol. 

• Recovery is simplified because the effects of a failure are confined only to the 
processes that fail. Functioning processes continue to operate and never become 
orphans. This property is true because a process always recovers to the state that 
included its most recent interaction with any other process or the outside world. 

• Processes restart from their most recent checkpoint upon a failure, therefore 
limiting the extent of execution that has to be replayed. Thus, the frequency 
of taking checkpoints can be determined by trading off the desired runtime 
performance with the desired protection of the execution. 

• There is no need to run a complex garbage collection protocol for the recovery 
information. Information about nondeterministic events that occurred before the 
most recent checkpoint and older checkpoints can always be reclaimed since they 
will never be needed for recovery. 

The price to be paid for these advantages is a performance penalty incurred by syn- 
chronous logging. Implementations of pessimistic logging must therefore resort to 
special techniques to reduce the effects of synchronous logging on performance. 
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4.1.2 Techniques for Reducing Performance Overhead 

The simplest form of pessimistic logging is to locally save in stable storage information 
about each event as it occurs and before it affects the application program [72,73]. This 
form of logging potentially has a high performance overhead but allows each host to 
recover independently which is desirable in practical systems [74]. 

Special hardware that assists logging can lower the overhead. This special hardware 
can take the form of a fast non-volatile semiconductor memory to implement stable 
storage [18,163]. Synchronous logging in such an implementation would be orders 
of magnitude cheaper than with a traditional implementation of stable storage using 
magnetic disk devices. Therefore, performance is only slightly affected. Another 
form of hardware support is to use a special bus that guarantees atomic logging of all 
messages exchanged in the system [29,140]. Such hardware support ensures that the 
log of one machine is automatically stored on a designated backup without blocking 
the execution of the application program. This scheme, however, requires that all 
nondeterministic events be converted into external messages [23,29]. 

Some pessimistic logging systems reduce the overhead of synchronous logging 
without relying on hardware. For example, the sender-based message logging (SBML) 
protocol logs each message at the sender in volatile memory [88]. A receiver of a 
message sends an acknowledgment to the sender including the order in which the 
message is received. The sender includes the receipt order in the log. The log thus 
contains the information necessary to help the receiver recover from future failures 
should they occur. This scheme avoids the overhead of accessing stable storage but it 
can tolerate only one failure and cannot accommodate nondeterministic events internal 
to a process. Extensions to this technique can tolerate more than one failure in special 
network topologies [91]. 

4.1.3 Relaxing Logging Atomicity 

The performance overhead of pessimistic logging can be reduced by delivering a 
message or an event and deferring its logging until the host communicates with another 
host or with the outside world [77,88]. In the example of Figure 11, process Po may 
defer the logging of message rrn and m7 until it needs to communicate with another 
process or the outside world. Thus, these messages are allowed to affect process P$ 
but this effect is local - no other process or the outside world can see it until the 
messages are logged. The observed behavior of each process is the same as with an 
implementation that logs events before delivering them to applications. Event logging 
and delivery are not performed in one atomic operation in this variation of pessimistic 
logging. This scheme reduces overhead because several events can be logged in one 
operation, reducing the frequency of synchronous access to stable storage. Latency 
of interprocess communication and output commit are not reduced since a logging 
operation may often be needed before sending a message. 

Systems that decouple logging of an event from its delivery may be susceptible to 
losing the last messages that were delivered before a failure (an instance of the "last 
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message problem" [124]). This problem occurs only in systems where the communica- 
tion channels are assumed to be reliable. Consider the example in Figure 11. Assume 
process PQ fails after delivering m* and my but before logging them. Process PQ must 
receive these messages during recovery to be consistent with process P\. Some proto- 
cols that rely on the receiver to log the messages cannot retrieve these messages [77]. 
This problem does not occur in protocols that rely on sender logging or those that do 
not assume reliable communication channels [50,89]. 

4.2   Optimistic Logging 

4.2.1   Overview 

Unlike pessimistic logging protocols, optimistic logging protocols [87,89,91,134,157, 
168] log messages asynchronously. These protocols make the optimistic assumption 
that logging will complete before a failure occurs. A volatile log contains information 
about the events to be logged, and is flushed to stable storage periodically. Optimistic 
logging does not require the application to block and thus has better failure performance. 
However, this advantage comes at the expense of more complicated recovery, garbage 
collection, and output commit compared with pessimistic logging. Should a process 
fail, the information in the volatile log will be lost and cannot be used during recovery. 
The execution that depends on the lost information cannot be recovered. Furthermore, 
if the failed process has sent a message during any of this unrecoverable execution, 
the receiver of the message then becomes an orphan process and must roll back to 
"unreceive" this message. For example, suppose Pi in Figure 12 fails before message 
m$ is logged to stable storage. Process P\ then becomes an orphan process and must 
roll back to unreceive the orphan message m^. The rollback of P\ further forces PQ 

to roll back to unreceive my. Optimistic logging protocols must therefore perform 
dependency tracking during failure-free execution. Upon a failure, the dependency 
tracking information is used to calculate and recover the maximum consistent state 
of the entire system, in which no process is in an orphan state. The above failure 
scenario also illustrates that optimistic logging protocols require a nontrivial garbage 
collection algorithm. While pessimistic logging protocols need only keep the most 
recent checkpoint of each process, optimistic logging protocols may need to keep 
additional checkpoints. In the example, process Pi's restart from checkpoint B instead 
of the most recent checkpoint D due to Pi's failure. Finally, since messages are logged 
asynchronously, output commit in optimistic logging protocols generally requires multi- 
host coordination to force the logging progress at some processes to ensure that no 
failure scenario can revoke the output. For example, if process Po needs to commit 
output at state X, it must log messages m4 and my to stable storage and ask Pi to log 
mi and m$. 
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Figure 12: Optimistic logging. 

4.2.2   Synchronous vs. Asynchronous Recovery 

Recovery in optimistic logging protocols can be either synchronous or asynchronous. 
In synchronous recovery [157], all processes run a recovery protocol to compute the 
maximum recoverable system state based on dependency and logged information, 
and then perform the actual rollbacks. During failure-free execution, each process 
increments its state interval index at the beginning of each state interval. Dependency 
tracking can be either direct or transitive. In direct dependency tracking [89,157], the 
current index of a message sender is piggybacked on each outgoing message to allow 
the receiver to record the dependency directly caused by the message. These direct 
dependencies can then be assembled at recovery time to obtain complete dependency 
information. Alternatively, transitive dependency tracking [157] can be used: each 
process P,- maintains a size-TV vector TDi where TD{[i] is Pi's current state interval 
index, and TDi\j], j ^ i, records the highest index of any state interval of Pj on 
which Pi depends. Transitive dependency tracking generally incurs a higher failure- 
free overhead for piggybacking and maintaining the dependency vectors, but allows 
faster output commit and recovery [87]. 

In asynchronous recovery, a failed process restarts by sending a rollback announce- 
ment broadcast [160] (or recovery message [168]) to start a new incarnation. Upon 
receiving a rollback announcement, a process rolls back if it detects that it has become 
an orphan with respect to that announcement, and then broadcast its own rollback an- 
nouncement. Since rollback announcements from multiple incarnations of the same 
process may coexist in the system, each process in general needs to track the de- 
pendency of its state on every incarnation of every other process to correctly detect 
orphaned states. Strom and Yemini [168] introduced the following blocking at some 
message receiving events to allow tracking dependency on only one incarnation of 
each process: before process Pi receives any message carrying a dependency on an 
unknown incarnation of process Pj, Pi must first receive rollback announcements from 
Pj to verify that Pi's current state does not depend on any invalid state of Pj's previous 
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incarnations. To eliminate the blocking and achieve completely asynchronous recov- 
ery, the protocol by Smith et al. [160] piggybacks all rollback announcements known 
to a process on every outgoing message. The protocol was later improved to require 
piggybacking only a provably minimum amount of information [161]. 

Another issue in asynchronous recovery protocols is the possibility of exponential 
rollbacks: a single failure in the system may cause a process to roll back an exponential 
number of times [157]. Figure 13 gives an example, where each integer pair [i,x] 
represents the xih state interval of the iih incarnation of a process. Suppose Po fails 
and loses its interval [1,2]. When Po's rollback announcement ro reaches Pi, Pi rolls 
back to interval [2,3] and broadcast another rollback announcement n. If r\ reaches Pz 
before ro does, Pz will first roll back to [4,5] in response to r\, and later roll back again 
to [4,4] upon receiving ro. By generalizing this example, we can construct scenarios in 
whichprocessPj.i > 0, rolls back 2*'_1 times inresponse to Po'sfailure. It was pointed 
out that Strom and Yemini's original protocol suffers from the exponential rollbacks 
problem [157]. Three approaches have been proposed to eliminate the problem by 
ensuring that any process will roll back at most once in response to a single failure. The 
protocol by Lowry and Strom [117] piggybacks the original rollback announcement 
from the failed process on every subsequent rollback announcement that it triggers. 
For example, in Figure 13, process Pi piggybacks ro on r\. Damani and Garg [45] 
reduced the number of rollback announcements based on the important observation 
that announcing only failures, rather than all rollbacks, suffices to detect orphans. In 
other words, rollback announcements generated by non-failed rolled-back processes 
are always redundant with respect to those generated by failed processes in terms of 
finding the maximum recoverable state. If rollback announcements are only generated 
by failed processes, messages like n in Figure 13 no longer exist and so exponential 
rollbacks will not happen. The recovery protocol by Smith et al. [160,161] also avoids 
exponential rollbacks because all rollback announcements are piggybacked on every 
application message and so always reach a process at the same time. 

Figure 13: Exponential rollbacks. 
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4.3   Causal Logging 

4.3.1 Overview 

Causal logging has the failure-free performance advantages of optimistic logging with- 
out making optimistic assumptions. It avoids synchronous access to stable storage 
except during output commit. Causal logging also retains most of the advantages of 
pessimistic logging. It allows each process to commit output independently and isolates 
it from the effects of failures that occur in other processes. Furthermore, causal logging 
limits the rollback of any failed process to the most recent checkpoint on stable storage. 
This reduces the storage overhead and the amount of work at risk. These advantages 
come at the expense of a more complex recovery protocol. 

The basic invariant in causal logging is that information about each event that 
causally precedes the state of a process is either fully logged or is available locally 
to the process. Consider the example in Figure 14(a). While messages ras and rri(, 
may be lost upon the failure, process Po at state X would have information about the 
nondeterministic events that precede its state in causal order according to Lamport's 
happened-before relation [102]. These events consist of the receipts of messages mo, 
mi, 77i2, ra3 and 7714. The information about each of these nondeterministic events is 
either logged on stable storage or is available locally to process P0. Thus, process PQ 

will be able to guide the recovery of Pi and P2 because it has the order in which Pi 
should replay messages mi and ra3 to reach state Y, and the order in which P% should 
replay message ra2 to reach state Z. Such messages can be replayed from the sender 
log of Po or will be regenerated during the recovery of Pi and P2. 

Each process maintains information about all the events that have causally affected 
its state. This information acts as an insurance to protect the process from the failures 
that occur in other processes. It also allows the process to make its state recoverable 
by simply logging the information available locally. Thus, a process does not need to 
run a multi-host protocol to commit output. 

4.3.2 Tracking Causality 

The Manetho protocol [51 ] propagates the causal information in an antecedence graph. 
The antecedence graph provides every process in the system with a complete history of 
the nondeterministic events that have causal effects on its state. The graph has a node 
representing each nondeterministic event that precedes the state of a process, and the 
edges correspond to the happened-before relation. Figure 14(b) shows the antecedence 
graph of process P0 of Figure 14(a) at state X. During failure-free operation, each 
process piggybacks on each application message the receipt orders of its direct and 
transitive antecedents, ie. its local antecedence graph. The receiver of the message will 
record these receipt orders in its volatile log. 

In practice, carrying the entire graph on each application message may lead to an 
unacceptable overhead. Fortunately, each message carries a graph that is a superset 
of the one piggybacked on the previous message sent from the same host. This fact 
can be used in practical implementations to reduce the amount of information carried 
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Figure 14: Causal logging, (a) Maximum recoverable states and (b) antecedence graph 
ofPo at state X. 

on application messages. Thus, any message between two hosts p and q carries only 
the difference between the graphs piggybacked on the previous message exchanged 
between these two hosts. Furthermore, if p has recently received a message from q, it 
can exclude the graph portions that have been piggybacked on that message. Process q 
already contains the information in these excluded portions, and therefore transmitting 
them serves no purpose. Other optimizations are also possible but depend on the 
semantics of the communication protocol [48]. An implementation of this technique 
shows that it has very low overhead in practice [48]. 

Further reduction of the overhead is possible if the system is willing to tolerate a 
number of failures that is less than the total number of processes in the system. This 
observation is the basis of Family Based Logging protocols (FBL) that are parameterized 
by the number of tolerated failures [6,7]. The basis of these protocols is that to tolerate 
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/ process failures, it is sufficient to log each nondeterministic event in the volatile 
store of / + 1 different hosts. Sender-based logging is still used to support message 
replay during recovery. The event information is piggybacked on application messages. 
However, unlike Manetho, propagation of information about an event stops when it has 
been recorded in / + 1 hosts. For f < n, where n is the number of processes, FBL 
protocols do not access stable storage except for checkpointing. Reducing access to 
stable storage in turn reduces performance overhead and implementation complexity. 
Applications pay only the overhead that corresponds to the number of failures they are 
willing to tolerate. An implementation for the protocol with / = 1 confirms that the 
performance overhead is very small [6]. The Manetho protocol can be considered a 
member of FBL protocols corresponding to the case of / = n. 

4.4   Comparison 

Various rollback-recovery protocols offer different tradeoffs with respect to perfor- 
mance overhead, latency of output commit, storage overhead, ease of garbage col- 
lection, simplicity of recovery, freedom from domino effect, freedom from orphan 
processes, and the extent of rollback. Table 1 summarizes the comparison between 
the different variations of rollback-recovery protocols. Uncoordinated checkpointing 
generally has the lowest failure-free overhead but suffers from potential domino ef- 
fect. This can be avoided by paying certain degree of performance overhead either to 
coordinate checkpoints or to log messages under the assumption of piecewise deter- 
minism. The PWD assumption also has the additional advantages of allowing faster 
output commits and orphan-free recovery. Since garbage collection and recovery both 
involve calculating a recovery line, they can be performed by simple procedures under 
coordinated checkpointing and pessimistic logging, both of which have a predeter- 
mined recovery line during failure-free execution. The extent of any potential rollback 
determines the maximum number of checkpoints each process may need to retain. Un- 
coordinated checkpointing can have unbounded rollbacks, and a process may need to 
retain up to N checkpoints if the optimal garbage collection algorithm is used [186]. 
Several checkpoints may need to be kept under optimistic logging, depending on the 
logging progress. 

5   Implementation Issues 

5.1   Overview 

While there is a rich body of research on the algorithmic aspects of rollback-recovery 
protocols, reports on experimental prototypes or commercial implementations are rela- 
tively scarce. The few experimental studies available have shown that buildingrollback- 
recovery protocols with low failure-free overhead is feasible. These studies also indicate 
that the main difficulty in implementing these protocols lies in the complexity of han- 
dling recovery [48]. It is interesting that all commercial implementations of message 
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Uncoordinated 
Checkpointing 

Coordinated 
Checkpointing 

Pessimistic 
Logging 

Optimistic 
Logging 

Causal 
Logging 

PWD Assumed? No No Yes Yes Yes 

Overhead Low Higher Highest Higher Higher 

Output Commit Not possible Very slow Fastest Slow Fast 
Checkpoint/process Several 1 1 Several 1 
Garbage Collection Complex Simple Simple Complex Complex 

Recovery Complex Simple Simple Complex Complex 
Domino Effect Possible Not possible Not possible Not possible Not possible 
Orphans Possible Possible Not possible Possible Not possible 

Rollback Extent Unbounded Last 
checkpoint 

Last 
checkpoint 

Some previous 
checkpoint 

Last 
checkpoint 

Table 1: Comparison between different flavors of rollback-recovery protocols. 

logging use pessimistic logging because it simplifies recovery [29,74]. 
Several recent studies have also challenged some premises which many recovery 

protocols rely on. Many of these protocols have been incepted in the 1980's. Dur- 
ing that era, processor speed and network bandwidth were such that communication 
overhead was deemed too high, especially when compared to the cost of stable storage 
access [26]. In such platforms, a protocol that requires multi-host coordination incurs 
a large overhead due to the necessary control messages that carry out the protocol. A 
protocol that does not require such communication overhead at the expense of more 
stable storage access would perform better in such platforms. Recently, processor speed 
and network bandwidth have increased dramatically, while the speed of stable storage 
access has remained relatively the same.3 This change in the equation suggests a fresh 
look at the premises of many rollback-recovery protocols. Specifically, recent results 
have shown that [53,106,135]: 

• Stable storage access is now the major source of overhead in checkpointing 
systems. Communication overhead is much lower in comparison. Such changes 
favor coordinated checkpointing schemes over message logging or independent 
checkpointing systems, as they require less access to stable storage and are 
simpler to implement. 

• The case for message logging has become the ability to interact with the outside 
world, instead of reducing the overhead [53]. Message logging systems can 
implement efficient protocols for committing output and logging input that are 
not possible in checkpoint-only systems. 

3While semiconductor-based stable storage is becoming more widely available, the size/cost ratio is too 
low compared to disk-based stable storage. It appears that for some time to come, disk-based systems will 
continue to be the medium of choice for storing the large files that are needed in checkpointing and logging 
systems. 
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• Recent advances have shown that arbitrary forms of nondeterminism can be 
supported at a very low overhead in logging systems. Nondeterminism was 
deemed one of the complexities inherent in message logging systems. 

In the remainder of this section, we address these issues in some detail. 

5.2   Checkpointing 

All available studies have shown that writing the state of a process to stable storage is 
an important contributor to the performance overhead [135]. The simplest way to save 
the state of a process is to suspend it, save its address space on stable storage, and then 
resume it [92,99,106,114,159,194]. This scheme can be costly for programs with 
large address spaces if stable storage is implemented using magnetic disks as it is the 
custom. Several techniques exist to reduce this overhead. 

5.2.1 Reducing Checkpointing Overhead 

Concurrent checkpointing techniques greatly reduce the overhead of saving the state 
of a process [109-111]. Concurrent checkpointing does not suspend the execution of 
the process while the checkpoint is saved on stable storage. It relies on the memory 
protection hardware that is commonly available in modern computer architectures. 
The address space is protected from further modification at the start of a checkpoint 
and the memory pages are saved to disk concurrently with the program execution. 
If the program attempts to modify a page, it will incur a protection violation. The 
checkpointing system copies the page into a separate buffer from which it is saved on 
stable storage. The original page is unprotected and the application program is allowed 
to resume. 

Adding incremental checkpointing to concurrent checkpointing can further reduce 
the overhead [50]. Incremental checkpointing avoids rewriting portions of the process 
states that do not change between consecutive checkpoints. It can be implemented 
by using the dirty-bit of the memory protection hardware or by emulating a dirty- 
bit in software [12]. A public domain package implementing these techniques is 
available [136]. 

Incremental checkpointing can also be extended over several processes. In this 
technique, the system saves the computed parity or some function of the memory pages 
that are modified across several processes [137]. This technique is very similar to parity 
computation in RAID disk systems. The parity pages can be saved in volatile memory 
of some other processes thereby avoiding the need to access stable storage. The storage 
overhead of this method is very low, and it can be adjusted depending on how many 
failures the system is willing to tolerate [137]. 

5.2.2 System-level versus User-level Implementations 

Support for checkpointing can be implemented in the kernel [48,86,135], or it can be 
implemented by a library linked with the user program [62,106,136,159,165,191]. 
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Kernel-level implementations are more powerful because they can also capture kernel 
data structures that support the checkpointed process. However, these implementations 
are necessarily not portable. 

Checkpointing can also be implemented in user level. System calls that manipulate 
memory protection such as mprotect of UNIX can emulate concurrent and incremental 
checkpointing. The fork system call of UNIX can implement concurrent checkpointing 
if the operating system implements fork using copy-on-write protection [62]. User- 
level implementations however cannot access kernel's data structures that belong to the 
process such as open file descriptors and message buffers, but these data structures can 
be emulated at user level [149,191]. 

5.2.3   Compiler Support 

A compiler can be instrumented to generate code that supports checkpointing [108]. 
A compiled program would contain code that decides when and what to checkpoint. 
The advantage of this technique is that the compiler can decide on the variables that 
must be checkpointed, therefore avoiding saving unnecessary data. For example, 
dead variables within a program are not saved in a checkpoint though they have been 
modified. Furthermore, the compiler may decide the points during program execution 
where the amount of state to be saved is small. 

Despite these promising advantages, there are several difficulties with this approach. 
It is generally undecidable to find the point in program execution most suitable to take 
a checkpoint. There are, however, several heuristics that can be used. The programmer 
could provide hints to the compiler about where checkpoints could be inserted or what 
data variables should be stored [24,138,152]. The compiler may also be trained by 
running the application in an iterative manner and observing its behavior [108]. The 
observed behavior could help decide the execution points where it would be appropriate 
to insert checkpoints. Compiler support could also be simplified in languages that 
support automatic garbage collection [9]. The execution point after each major garbage 
collection provides a convenient place to take a checkpoint at a minimum cost. 

5.2.4   Coordinated versus Uncoordinated Checkpointing 

Many checkpointing protocols were incepted at a time where the communication over- 
head far exceeded the overhead of accessing stable storage [26]. Furthermore, the 
memory available to run processes tended to be small. These tradeoffs naturally fa- 
vored uncoordinated checkpointing schemes over coordinated checkpointing schemes. 
Current technological trends however have reversed this tradeoff. 

In modern systems, the overhead of coordinating checkpoints is negligiblecompared 
to the overhead of saving the states [50,125]. Using concurrent and incremental 
checkpointing, the overhead of either coordinated or uncoordinated checkpointing is 
essentially the same. Therefore, uncoordinated checkpointing is not likely to be an 
attractive technique in practice given the negligible performance gains. These gains 
do not justify the complexities of finding a consistent recovery line after the failure, 
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the susceptibility to the domino effect, the high storage overhead of saving multiple 
checkpoints of each process, and the overhead of garbage collection. 

5.3   Communication Protocols 

Rollback-recovery complicates the implementation of protocols used for interprocess 
communications. Some protocols offer the abstraction of reliable communication 
channels such as connection-based protocols like TCP [139] or RPC-style communica- 
tions [27]. Alternatively, other protocols offer the abstraction of an unreliable datagram 
service such as UDP [139]. Each type of abstraction requires additional support to 
operate properly across failures and recoveries. 

5.3.1 Location-Independent Identities and Redirection 

For all communication protocols, a rollback-recovery system must mask the actual 
identity and location of a process or a remote port from the application program. This 
masking is necessary to prevent any application program from acquiring a dependency 
on the location of a certain process. Such a dependency would make it impossible to 
restart a process on a different machine after a failure. A solution to this problem is to 
assign a location-independent, logical identifier to each process in the system [176]. The 
system translates the logical identifier to the actual network address of the process in an 
application-transparent manner. This scheme also allows the system to appropriately 
redirect communication to a restarting process after a failure. 

5.3.2 Reliable Channel Protocols 

Identity masking and communication redirection after a failure are sufficient for com- 
munication protocols that offer the abstraction of an unreliable channel. Protocols that 
offer the abstraction of reliable channels require additional support. These protocols 
usually generate a timeout upcall to the application program if the process at the other 
end of the channel has failed. These timeouts should be masked since the failed pro- 
gram will soon restart and resume computation. If such upcalls are allowed to affect 
the application, then the abstraction of a reliable system is no longer upheld. The 
application will have to encode the necessary support to communicate with the failed 
process after it recovers. 

Masking timeouts should also be coupled with the ability of the protocol implemen- 
tation to reestablish the connection with the restarting process (possibly restarting on a 
different machine). This support includes the ability to clean up the old connection in 
an orderly manner, and to establish a new connection with the restarting host. Further- 
more, messages retransmitted as part of the execution replay of the remote host must 
be identified and if necessary suppressed. This requires the protocol implementation to 
include a form of sequence number that is only used for this purpose. 

Recovering in-transit messages that are lost due to a failure is another problem 
for reliable communication protocols. In TCP/IP communication style, for instance, a 
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message is considered delivered once an acknowledgment is received from the remote 
host. The message itself may linger in the kernel's buffer for a while before the 
receiving process consumes it. If this process fails, the in-transit messages must be 
resent to preserve the semantics of the reliable communication channel. Messages must 
be saved at the sender side for possible retransmission during recovery. This step can 
be combined in a system that performs sender-based message logging as part of the log 
maintenance. In other systems that do not log messages or log messages at the receiver, 
the copying of each message at the sender side introduces overhead and complexity. 
The complexity is due to the need for executing some garbage collection algorithm 
with other sites to reclaim the volatile storage. 

5.4   Message Logging 

Message logging introduces two sources of overhead. First, each message must in 
general be copied in the local memory of the process. Second, the volatile log must be 
flushed on stable storage. The first source of overhead may directly affect communica- 
tion throughput and latency. This is especially true if the copying occurs in the critical 
path of the interprocess communication protocol. In this respect, sender-based logging 
is considered more efficient than receiver-based logging because the copying can take 
place after sending the message over the network. Additionally, the system may com- 
bine the message logging with the implementation of the communication protocol and 
share the message log with the transmission buffers. This scheme would avoid the extra 
copying of the message. Logging at the receiver is more expensive because it is in the 
critical path and no such sharing between the message logging and the communication 
protocol logic can be implemented. 

Another optimization for sender-based logging systems is to use copy-on-write to 
avoid making extra-copying. This scheme works well in systems where broadcast 
messages are implemented using several point-to-point messages. In this case, copy- 
on-write will allow the system to have one copy for identical messages and thus reduce 
the storage and performance overhead of logging. No similar optimization can be 
performed in receiver-based systems [53]. 

5.4.1   Message Logging and Coordinated Checkpointing 

Message logging has been traditionally presented as a scheme that allows the system 
to use uncoordinated checkpointing with no domino effect. However, there is nothing 
that prevents the system from using coordinated checkpointing in a message logging 
system [53]. Such a scheme has many advantages with respect to performance and 
simplicity. It retains the ability to perform fast output commit as in log-based sys- 
tems. It also retains the simplicity of recovery and garbage collection that comes from 
coordinated checkpointing. Furthermore, it allows a sender-based logging system to 
avoid flushing the logs on stable storage, reducing the overhead and complexity of 
maintaining logs on stable storage. The combination of coordinated checkpointing and 
message logging has been shown to outperform one with uncoordinated checkpointing 
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and message logging [53]. Therefore, the purpose of logging should no longer be the 
avoidance of taking uncoordinated checkpointing but the desire for enabling fast output 
commit. 

5.5 Stable Storage 
Magnetic disks have been the medium of choice for implementing stable storage. 
Although slow, their storage capacity and low cost combination cannot be matched 
with other alternatives. An implementation of a stable storage abstraction on top of a 
conventional file system may not be the best choice, however. Such an implementation 
will not generally give the performance and reliability needed to implement stable 
storage [48]. The KifLog package offers a log abstraction on top of which support 
for checkpointing and message logging can be implemented. The package runs in 
conventional UNIX systems and bypasses the UNIX file system by accessing the disk 
in raw mode [146]. 

There have been also several attempts at implementing stable storage using non- 
volatile semiconductor memory [18]. Such implementations do not have the perfor- 
mance problems associated with disks. The price and the small storage capacity remain 
two problems that limit their wide acceptance. 

5.6 Support for Nondeterminism 

Nondeterminism occurs when the application program interacts with the operating 
system through system calls and upcalls. Log-based systems must track the non- 
determinism during failure-free operation and replays it with the same effect during 
recovery. 

5.6.1   System Calls 

System calls in general can be classified into three types. Idempotent system calls 
are those that return deterministic values whenever executed. Examples include calls 
that return the user identifier of the process owner. These calls do not need to be 
logged. A second class of calls consists of those that must be logged during failure- 
free operation but should not be re-executed during execution replay. The result from 
these calls should simply be replayed to the application program. These calls include 
those that inquire about the environment, such as getting the current time of day. Re- 
executing these calls during recovery might return a different value that is inconsistent 
with the pre-failure execution. Therefore, the previous result is simply returned to the 
application. The last type of system calls are those that must be logged during failure- 
free operation and re-executed during execution replay. These calls generally modify 
the environment and therefore they must be re-executed to re-establish the environment 
changes. Examples include calls that allocate memory or create processes. Ensuring 
that these calls return the same values and generate the same effect during reexecution 
can be very complex [48,149]. 
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5.6.2   Asynchronous signals 

Different flavors of logging have been suggested with different performance and re- 
silience characteristics [7]. These protocols, however, do not support general forms 
of nondeterminism that are found in practice. It is inefficient for example to track the 
nondeterminism resulting from software interrupts such as UNIX signals. Such signals 
must be applied at the same execution points during replay to reproduce the same 
result. Systems that support this form of nondeterminism simply take a checkpoint 
after the occurrence of each signal, which can be very expensive [48]. Alternatively, 
the system may convert these asynchronous signals to synchronous messages such as 
in Targon/32 [29], or it may queue the signals until the application polls for them 
such as in Delta-4 [22,39]. Both alternatives convert asynchronous event notifications 
into synchronous ones, which may not be suitable or efficient for many applications. 
Such solutions also require substantial modifications to the operating system or the 
application program. 

Another example of nondeterminism that is difficult to track is shared memory 
manipulation in multi-threaded applications. Reconstructing the same execution during 
replay requires the same interleaving of shared memory accesses by the various threads 
as in the pre-failure execution. Systems that support this form of nondeterminism 
supply their own sets of locking primitives, and require applications to use them for 
protecting access to shared memory [62]. The primitives are instrumented to insert 
an entry in the log identifying the calling thread and the nature of the synchronization 
operation [62]. However, this technique has several problems. It makes shared memory 
access expensive, and may generate a large volume of data in the log. Furthermore, if 
the application does not adhere to the synchronization model (due to a programmer's 
error, for instance), execution replay may not be possible. 

A promising technique for solving this problem is to use instruction counters to 
efficiently track nondeterminism due to asynchronous software interrupts and multi- 
threading on single-processor systems. An instruction counter is a register that is 
decremented upon the execution of each instruction. The hardware generates an ex- 
ception when the register content becomes 0. An Instruction counter can be used in 
two modes. In one mode, the register is loaded with the number of instructions to be 
executed before a breakpoint occurs. After the CPU executes the specified number 
of instructions, an exception is generated and propagated to a pre-specified handler. 
This mode is useful in setting breakpoints efficiently, such as during debugging. In the 
second mode, the instruction counter is loaded with the maximum value it can hold. 
Execution proceeds until an event of interest occurs, at which time the content of the 
counter is sampled, and the number of instructions executed since the time the counter 
was set is computed. The use of instruction counters has been suggested for debugging 
shared memory parallel programs [36,122,148]. 

Instruction counters can be used in rollback-recovery to track the number of in- 
structions that occur between asynchronous interrupts. A replay system can use the 
instruction count to force the execution of the same number of instructions between 
asynchronous interrupts. An instruction counter can be implemented in hardware, such 
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as in the PA-RISC precision architecture. It also can be emulated in software [122]. 
A recent implementation on a DEC 3000/400 workstation shows that the overhead of 
program instrumentation and tracking nondeterminism is less than 6% for a variety of 
user programs and synthetic benchmarks [158]. 

5.7 Dependency Tracking 

There are three forms for implementing dependency tracking. The first is the simplest 
and consists of tagging the message with an index or a sequence number [86]. Depen- 
dency tracking also can take the form of piggybacking a vector or a graph on top of each 
message. There are techniques for optimizing these forms of tracking by exploiting the 
semantics of the communication system and by piggybacking only incremental changes 
over application messages. Prototype implementations have shown that the overhead 
resulting from tracking is negligible compared to the overhead of checkpointing or 
logging [48]. 

5.8 Recovery 
Handling execution restart and replay is a difficult part of implementing a rollback- 
recovery system [48,104]. Implanting a process in a different environment during 
recovery can create difficulties if its state depends on the pre-failure environment. For 
example, the process may need to access files that exist on the local disk of the machine. 
The simplest solution to this problem is to attempt to restart the program on the same 
host. If this is not feasible, then the system must insulate the process from environment- 
specific variables [48]. This can be done for instance by intercepting system calls that 
return environment-specific results and replace these results with abstract values under 
the control of the recovery system [149]. Also, file access could be made highly 
available by placing all files in network-wide highly available file servers or by using 
dual-ported disks. In any case, the system must reconstruct the state of the process and 
also the supporting kernel-level data structures during recovery. 

6   Related Work 

Most existing papers on rollback-recovery either assume all processes are piecewise 
deterministic or do not take advantage of piecewise determinism at all. In practice, it is 
important to support systems consisting of both deterministic and nondeterministic pro- 
cesses [87,90]. One challenge is to handle unreplayable nondeterministic events while 
still preserving the advantages of piecewise determinism [41,184,190]. Although most 
rollback-recovery techniques were originally designed for tolerating hardware failures, 
they have also been applied to software and protocol error recovery [169,184,190,193]. 
Rollback-recovery in shared-memory and distributed shared-memory systems has also 
been extensively studied [4,20,54,75,80-83,109,132,170,197,198]. 
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This survey has covered mostly rollback-recovery techniques which do not require 
or take advantage of special linguistic supports. A substantial amount of research 
efforts has also focused on coordinated recovery based on special language constructs 
such as recovery blocks and conversations [34,65,66,79,94,96,144,145,200]. Nett 
et al. addressed recovery problems in dynamic action models [126-128]. Kim et 
al. addressed recovery problems in the Programmer-Transparent Coordination (PTC) 
scheme [95,97,98]. Orphan elimination problem in nested transaction systems has 
also been studied [69,70,113]. 

Theoretical aspects of distributed snapshots also have been studied outside the 
context of recovery [1,5,38,43,67,101,162,180]. Several fundamental properties 
regarding consistent global states have been derived [13,16,120,131,184]. Vector 
timestamps [55,121,151,155] and the context graph used in em Psync [133] bear sim- 
ilarities to the various dependency tracking techniques. Checkpointing and message 
logging can also be used to facilitate the debugging of parallel and distributed pro- 
grams [57,63,129,130]. In the area of distributed discrete-event simulation [59,124], 
the Time Warp optimistic approach, which inspired the seminal work on optimistic 
message logging [168], uses rollbacks to cancel erroneous computations due to the 
out-of-order arrivals of time-stamped event messages [59,60,85,118,141]. 

7   Conclusions 

We have reviewed and compared different approaches to rollback-recovery with respect 
to a set of properties including the assumption of piecewise determinism, performance 
overhead, storage overhead, ease of output commit, ease of garbage collection, ease 
of recovery, freedom from domino effect, freedom from orphan processes, and the 
extent of rollback. Uncoordinated checkpointing generally has the least constraints 
and the lowest overhead. But since it suffers from potential domino effect, uncoordi- 
nated checkpointing often needs to be combined with other techniques to be useful in 
practice. For applications involving multiple processes executing in coordinated steps, 
coordinated checkpointing is often the natural choice to simplify both failure-free and 
recovery-time operations. It can also be combined with log-based recovery proto- 
cols to simplify the garbage collection task. When desirable, communication-induced 
checkpointing with index-based coordination can be used to coordinate checkpoints in 
a distributed fashion. For applications that frequently interact with the outside world, 
log-based rollback recovery based on piecewise determinism is often a better choice 
because it allows efficient output commit. The simplicity of pessimistic logging makes 
it attractive for practical applications which can tolerate a higher failure-free overhead. 
Causal logging can be employed to reduce the overhead while still preserving the 
properties of fast output commit and orphan-free recovery. Alternatively, optimistic 
logging provides a tradeoff between the overhead of logging and the extent of rollback 
upon a failure. Finally, model-based checkpointing can be used to mimic piecewise 
determinism by taking additional checkpoints instead of relying on message logging. 
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