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1. INTRODUCTION

With the anticipated completion of a multilateral comprehensive nuclear test ban

treaty in the near future, it is essential for monitoring efforts that multidisciplinary
"reference" information on any given region is readily available and accessible in a

digital, on-line format via electronic networks or on host computers for use by

concerned researchers and decision makers. We are building, organizing, and

updating a digital geophysical and geological information system for the Middle East

and North Africa region and conducting original seismological studies to characterize

and calibrate complex tectonic structures of the region for the purpose of adding

accurate results into the developed GIS databases. Our databases and results will be

of direct relevance to the US efforts in enhancing regional seismic monitoring and

discrimination capabilities, and to the implementation and operation of the US NDC

and monitoring efforts.

Crustal and lithospheric structure variations as well as major topographic relief

along regional seismic wave propagation paths and at the source and receiver sites

are crucial information to understand the excitation and propagation of high-

frequency regional seismic phases, and other aspects of the problems of verification

and estimation of the yield of nuclear and chemical explosions. We digitized all

available crustal scale profiles in the Middle East region. By using these

interpretations we produced a more detailed and accurate Moho and basement maps

which can be used in modeling efforts. We developed the first digital tectonic map of

the Middle East. We are also concentrating on "metadata" information for all the

developed databases. Each data set entered into the system is accompanied by type

of information indicating resolution, accuracy, limitations of the databases. Data

access tools are also an important part of the whole system, since it would be very

cumbersome to access a specific data set among all types of databases that are kept on

the system. The newly developed system allows a user to search, manipulate, and

interact with the databases with ease and efficiency.



2. DIGITAL DATABASE DEVELOPMENT FOR THE MIDDLE EAST AND
NORTH AFRICA

We continuously add more information into our database in order to construct a
complete crustal structure database as well as other types of geophysical and

geological databases for the Middle East and North Africa. The database system is
divided into four different categories: Geographic, geologic, geophysical, and

imagery. Iti this annual report, we present all available data and access tools that we
have developed during the past year. The entire database system is developed on an
ArcInfo GIS system. All data are kept in ArcInfo format and can be accessed through

custom designed, menu-driven access tools. The entire system is self sufficient and
requires no prior knowledge of ArcInfo software commands. A user can search,

study, manipulate, download and make hard copies of any parts of the database
using this menu-driven system. One of the biggest advantage of the developed
system is that all the data are available in one computer and the user can select and
display any parts of the various databases. Multiple layers of data sets can be
displayed in the same graphic window allowing the user to comprehend the study
area in its entirety.

2.1. Menu Driven Access to Cornell Databases

Accessing the entire database is through the main control menu (Figure 1). A

colored topography image showing the Middle East and North Africa region is also
displayed on a separate window (Figure 1). This is the default setting. The main
menu includes several buttons grouped together according to their functionality, such

as map parameters buttons, database access buttons, map display buttons, and
various system and auxiliary buttons. There are two types of buttons used in the
menu driven systems: check buttons, and regular buttons. Check buttons are usually
used in displaying any individual data sets and are activated as soon as they are
checked. The regular menu buttons are used for either an action or to start up a new
sub menu. The ones starting up additional sub-menus are indicated by three dots at
the end of the function names.
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2.1.1 Map Parameters

This section in the menu system is used for setting up a map area to work on
and to annotate the map. There are four regular menu buttons each starting a new

sub menu.

Set map limits

Set map limits button is used for establishing a region of interest in the Middle
East and North Africa region. The region of interest is set either by clicking on one of

the three regional area buttons: Middle East and North Africa (this is the default),
Middle East, and North Africa or by just typing the latitude and longitude values of

the lower left and upper right longitude and latitude values of the area of interest,
respectively (Figure 2). Done and Cancel buttons will quit this sub-menu with or
without performing the action, respectively.

Set map projection

Set map projection button allows one to select a map projection to be used
during the session (Figure 2). It is possible to change the projection at any time
during a session. All data sets except imagery and gridded data sets are stored in
geographic coordinates. Map projection is handled on the fly as one requests a new
data set to be plotted in the graphics window. The default projection is Mercator. All
image and grid files are stored in Mercator projection. In order to display them
Mercator projection must be defined. A warning message will be displayed if a user
attempts to display an image file when a different projection is active. In this release
there is no option of using a user defined projection. This will be added to the system

in future releases.

Latitude longitude grid

This button is used to add a latitude longitude grid and grid labels to the map.
A sub-menu allowing a user to choose grid interval, and label interval and their
locations appears on the screen (Figure 3). After typing desired numbers and

4
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checking the On button, the grid is displayed once the Done button is clicked. It is
also possible to set the label format with this menu. Grid label formats are DD, DDM,

and DMS representing Decimal Degree, Decimal Degrees - Minutes, and Decimal Degrees -

Minutes - Seconds, respectively.

Add legend

This button is used to add a legend for the map that is displayed on the screen.

Not all data sets can be seen in the legend. It is possible to have items like tectonic
units, mine location, crustal profile locations, but items like coast lines, country

borders will not appear in the legend box. It is automatically determined which items
are displayed on the screen and appropriate items are placed in the legend box

position and scale of which can be adjusted manually to fit the screen.

2.1.2 Data Sets

Under the data sets segment of the main menu there are four buttons
representing our four categories of data classes: Geographic, geophysical, geological,

and images/grids. This segment forms a bridge to access the entire Cornell databases

on the Middle East and North Africa region.

Geographic data sets

Geographic data sets are kept and accessed through this menu button. All

geographic data sets were extracted from the Digital Chart of the World CD-Rom.
The data are from 1,000,000 scale maps. We extracted polygons covering land and

ocean areas in the Middle East and North Africa region as well as coast lines, country
borders, rivers, lakes, main roads, and main city locations. All of these data are

accessible through check buttons which get activated as soon as they are checked.

Figure 3 shows an example of how this menu is used. The metadata related to these

geographic data are kept under the metadata sub-menu. By clicking this menu button
a new sub-menu is activated and the user is asked for which data set metadata

information is needed (Figure 4). In a text window detailed explanations are

displayed.

7
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GEOGRAPHIC DATASETS .,.

Sheametadata,v S ha d e la n d ............... ........................ ....... ............................. ..........................................

SShade oceans HELP * METADATA FOR

16 Coast lines Shade land and oceans

16 Country borders metadata...- -r- Coast lines and country borders

SRivers Rivers

. Lakes Main roads

J Main roads Main cities

_J Main cities A About all of them..

Select and shade some countries ........ DONE

CANCEL) DONE

Text

DATA LINEAGE INFORMATION FOR ALL THE "DATA CHART OF
THE WORLD" DATABASE

Source: Digital Chart of the World for use with
ARC/INFO software. Environmental Systems Research
Institute, 1993.

Modifications to the database

Any coverage was originally composed by many tiles that
represented 5 degrees by 5 degrees on the globe. Tiles with
identical attributes have been appended to be used in this
application. The following is metadata obtained from the
"Data Chart of the World" (DCW) CDROM.

This table documents the lineage characteristics of the t:1,000,000-
scale component of the Digital Chart of the World (DCW) database. It
supplements information in the DCW Data Quality Table (DQT), a standard
VPF table residing at the DCW library level that is the main repository
of information on source data characteristics. This table contains
information on development techniques that are common to all DCW
1:l,000,O00-scale library coverages. Information specific to individual
feature classes (including special processing techniques, feature
coincidence between classes, and database design issues) can be found in
narrative files associated with master feature tables at the coverage
level of the database. These narrative files are present within
individual coverage directories and use a naming convention of the
feature class name followed by a .DOC suffix. Quality attributes that
vary spatially are stored in the DCW Data Quality (DQ) coverage.

General Production Process:

All DCW coverages are derived from copies of color/feature film
separates on 7-miu stable Mylar or acetate prepared from original
Defense Mapping Agency (DMA) negatives that are used in the Operational
Navigation Chart (ONC) lithographic production process. The number of
separates available for each source chart varied from 7 to 30 pieces.
Following reproduction, separates underwent an extensive map preparation
process to verify registration tic coincidence between separates and to
inventory the data present on each sheet. Where necessary, data
represented with broken line symbols on the source were manually
connected into continuous lines to facilitate the automation process.
For example, the dash/dot symbols used to represent intermittent
drainage were connected with drafting ink to become continuous, smooth
flowing lines. Map preparation tasks were verified through independent
quality control inspection.

Following map preparation, the data were automated. Point features were
manually digitized using large format CalComp 9100 digitizing boards.
All line features were captured through optical scanning on a SCAN-
GRAPHICS CFIO00 scanner at a resolution of 500 dots per inch (dpi).
Nearly all data were vectorized using SCAN-GRAPHICS RAVE software
resident on a DEC VAX 6320 minicomputer. Some utility line data were
captured using Hitachi CadCore Tracer software in conjunction with 300-
dpi scanned images. Vector output files were converted to a DXF format
and transferred to the main processing environment.

Following scanning/vectorization, the data were converted into an
ARC/INFO coverage format (ver 5.0.1) in a SUN SPARC processino,

CONTINUE PAUSE sit

Figure 4
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It is also possible to highlight the boundaries of a country by using the "select
and shade some countries" button. This button activates another sub-menu which

allows one to select a few country names to be highlighted. This can be used when a
user is working on a country and wants to highlight it to differentiate from the
surrounding countries.

Geophysical data sets

Geophysical data sets are grouped under three different categories: Seismicity
related, seismic station coverage, and crustal scale cross sections (Figure 5). We have
entered the two main earthquake catalogues available for the past several years, the

USGS PDE catalog, and the International Seismological Center's earthquake

catalogue. The PDE catalog covers all events between 1960 and 1990 in the Middle
East and North Africa region. The ISC catalogue covers seismicity between 1987 and
1992. All attributes related to each event such as location, depth, origin time,
magnitude are also entered into the system. In Figure 5, an example of the ISC
seismicity catalogue is shown for a selected region in the Middle East. The symbols
are automatically scaled to events' magnitudes, and it is possible to obtain
information on any event by clicking on the event with the mouse.

The third kind of data set developed is the Harvard earthquake focal
mechanism solutions. A sub-menu allows the user either to choose all focal
mechanisms to display or select a region or select a specific event and display the
focal mechanisms. It is also possible to see all attributes of any selected event in the
database (Figures 6 and 7).

Another type of geophysical data set is the locations of short period and broad
band seismic station locations in the Middle East and North Africa region (Figure 8).

Although the list is not complete at this time in the near future we will be adding
more local network stations from the other countries of the region. The broad band
station coverage, however, is complete. Each broad band station also includes basic

information about them such as which seismic network that they belong to and when
the station started operating. This information can be obtained by clicking the "i"
button on the left and then clicking on the station of interest.

9
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Geophysical data

* HELP

- SEISMICITY . focal-mechanisms
metadata Plot all seismicity Options:

01*. POE Catalog~ select area
Plot selected events.,slcoeevn

01 SC Catalogclasecio

x-offset (deg): 0.
-- 1 CMT Catalog y-offset (deg): 0.

Plot focal mechanisms ...-' N
compressilonal color

-SEISMIC STATION LOCATIONS dilatatiornal color-
_!metadata) 01 I Short period stations offset line color..

_j Broad band stations

- CRUSTAL. SCALE CROSS SECTIONS Scaling factor 1 . Scale by magnitude
rnetadata') 0 jDisplay profile locations Symbol size - ill.. Fsdsmblsz

display crustal s-sections..

--- -- -- --- -- -- --- -- -- --- -- -- -- Cancel Done

CANCEL' DONE

AR CIPLOT

Pan/Zoom X,V: 24.7(3057,6,771 16 Area: 2.78152
......... ..... .... dx,dy: 16.22257,-10.62696 dist: 19.39340

200 1100 100 100 200 300 400 500 00& 00

Figure 6



Geophysical data
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Figure 7
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Crustal scale profile locations and their interpretations also form a significant

part of the geophysical databases. Figures 9 and 10 show the profile locations. The

interpretations of selected three profiles are shown in Figure 10. Both gravity and

seismic refraction profiles were digitized and entered in the database system. Each interface is

assigned values representing either seismic velocity or density values above and below the

interfaces. These profiles can be dumped into an ASCII file for future use in modeling programs.

These profiles are also used as constraining points to a more detailed Moho and basement maps

that are being developed for the region.

We also added information about the quality of the profiles. These kinds of

information can be obtained by selecting the "i" button and then clicking on any

profile in the database (Figure 9).

Geological data sets

Geological data sets are the third kind of databases that are under

development. Up to the present time we have developed a complete tectonic map of

the Middle East region and mine locations in some selected countries (i.e., Iran, Iraq,

Libya, Algeria). The tectonic map of the Middle East is composed of nine separate

elements: Faults, volcanics (Neogene/ Quaternary), volcanics (Paleogene), ophiolites,

volcanoes active, volcanoes (inactive), basement outcrop locations, basement depth

contours, and some major depression locations (Figure 11). Each of these items are

digitized from several maps from individual countries and merged carefully to have

this first digital tectonic map of the region. Any of these nine features was assigned

appropriate attributes. For example, in order to obtain some information about a

certain fault in the region, the user only needs to select the correct "i" button and then

click on the fault that is of interest. Available information on the type of fault, active

vs. inactive information will be displayed on the screen.

Mine locations in some of the Middle East and North Africa countries were

also entered in the database. An example is shown in Figure 12. In each country

shown both producing and prospect mine locations are marked separately. It is also

possible to obtain information about these mine sites by simply clicking on any

selected mine location. Type of mine and what is mined will be displayed on the

screen in a text window.

14
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Images and grids

Image and grid files form the fourth type of databases. Databases included
under this category include topography, hill shaded representation of topography,

basement depth, moho depth, Bouguer gravity, free air gravity, and Landsat TM
imagery.- The topography data in our databases is 1 km in resolution and obtained
from the USGS based on DMA's higher resolution topography data. We added

ETOPO5's bathymetry data and merged these two data sets to obtain a full coverage

for the entire area of interest (Figure 1). The second kind of topography data set is the
hill-shaded representation of the same topography data. This type of representation

highlights the relief and gives the image a three-dimensional perspective. The third
data set under this category is the basement depth map obtained from the Institute of
the Physics of the Earth (IPE) of the former Soviet Union. Although this map has
accuracy problems, it still gives a first order differences in sediment thickness in the

region. The fourth data set is the Moho depth map (Figure 13). This map is also
obtained from the IPE publications. Similar to the basement map this map also has
accuracy problems and should only be used to see the first order changes in Moho

depth.

Another type of geophysical databases that are kept under the images and
girdded data set is the Bouguer gravity and free air gravity values for parts of the

Middle East and North Africa region (Figure 14). This map was obtained from

several sources. Gravity values from Syria, Lebanon, Israel, Egypt and parts of the
western Mediterranean region came from digitized contoured gravity maps. The rest
of the areas have point readings. These two kinds of data sets were merged and the
entire data set was gridded (Figure 14). The free air gravity values cover a smaller
area and they were girdded using only point data.

Also kept under the gravity databases are original point and contour files.
These can be displayed using the sub menu called "coverages used" (Figure 15). This

type of data give an indication of reliability of the gridded data for a given region.
The metadata button in the same menu gives further information about the data such

as the source, contact person, addresses etc. (Figure 16).
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bouguer-cou erages ............ ........................................... ....

Coverages used to generate Bouguer grid METADATA FOR THE COVERAGES

yf North-Africa point data North-Africa point data

__South-Spain & Morocco point data J South-Spain & Morocco point data
South-spain countours South-spain countours

-~Syria-Lebanon-Israel contours _J Syia heanon-Israe I contours
9Zagros point data

~ Egpt cntous J Zagros point data,v Egypt contours

metadata for the coverages .. l1'Egypt contours

'CANCEL' DONE) C CA NCEL' DO0N E

IText
METADATA FOR BOUGUER EGYPT CONTOURS

Source: It was digitized from a photocopy of a map whose sponsors
were: Agip, Amoco, Arco, BHP, BP, Chevron, Conoco, Exxon, Marathon, V
Mobil, Philips, Placid/Hunt Int., Shell, Texaco, Total and Unocal
oil companies.

Compiled by Pierre CHEVALIER, Chris GREEN and Ian WINDLE from surveys
supplied to the University of Leeds Industrial Services (ULIS) as
part of the African Gravity Project (AGP).

Further details from
J.D. Fairhead (leeds) and A.B. Watts (Lamont)
c/o University of Leeds Industrial Services
175 Woodhouse Lane, Leeds LS2 9AR (UIJ

Telephone Leeds (0532)422407
Telex 556473 UNILDS C

* University of Leeds Industrial Services 1988.

The source map is a good quality photocopy of a 1:2,000,000 scale map, The
contours represent Bouguer anomalies on land and Free Air anomalies offshore.
The original map was in Equatorial Mercator projection but after digitizing
it was stored in geographic coordinates. The coverage contains arcs with
the standard ARC/INFO attributes plus an extra attribute "GRAVITY' for the
bouguer gravity values.

CONTOURS
Gravity contours constructed from a minimum curvature derived grid of sides
5 minutes latitude and 5 minutes longitude. Isogal values in mGal.
(1 mGal = 10 g.u.).

GRAVITY DATUM
Gravity calculated using the International Gravity Formula 1967 (IGF67) and
referred to the International Gravity Standard Network, 1971 (IGSN71).

DENSITIES
Density for Bouguer correction on land 2.67 g/cc.

Bouguer gravity values computed using terrain corrections where available.
(For details refer to technical documentation)4

Quit)

Figure 16
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Another important tool that was developed is the "profile maker". This tool

can be used to extract profiles along two arbitrary points either typed in or selected

from the screen. Using this tool one can either extract the values along two points in

any of these gridded data sets or make crustal scale profiles including topography,

basement, and Moho depths (Figure 17). This tool can be used to extract a profile and

download the values into an ascii file that can be used with other modeling programs.

For example, the crustal structure between a seismic event and station can be

extracted. This 2-D crustal profilel can then be used for producing synthetic

seismograms.

The last type of data under this category is Landsat TM imagery. We have a

significant amount of TM coverage in North Africa and the Middle East. However, in

this release we only provide a TM coverage along the entire Dead Sea fault system

(Figure 18). This is a mosaic of 5 original TM scenes. The other TM scenes we have

are being processed and will be made available in future releases.

2.1.3. User Input

Running ArcPlot commands

This part of the menu is designed for ArcInfo users. This menu can be used

when a user wishes to add an external data set to be displayed and manipulated. The

window allows five separate command lines to be executed. These lines can also

include run commands to execute longer Arc Macro Language (AML) codes. Options

include running the commands as first or last commands (Figure 19).

2.1.4. Display Parameters

This part of the menu system is related to map display, color changes, and

hardcopy making.

Zoom in and zoom out

These two buttons are alternatives to setting map area by "set map limit"

button discussed earlier. The zoom in button allows interactive zoom in on the screen

instead of entering numbers. The zoom out button zooms out to whole area of the

Middle East and North Africa.
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runarcplot_command

Enter an ArcPlot command per line or run your own AMLS:

linecolor magenta
arcs data/egypt/mohodepth.,

Clear command lines_)

apply first -! a jpp•l-as•t

WARNING: These commands will be included in hardcopies
and so on, unless you delete them from here,

CANCEL

Figure 19
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Redraw

The redraw button is used after-some changes are made to display parameters.

It automatically checks which options have been checked and re-reads the parameters

then displays the requested data sets.

Line/marker/shade sets

This menu button is used to change default colors and line and shade colors,

resizing the text, line thickness, point symbol and size (Figure 20). Before displaying

the appropriate data sets colors and symbols can be selected for each data set, and

then the data request button should be checked. The set values are permanent for the

work session. Once the system is quit, these set parameters are lost.

Hard copy

This button is used to make a hardcopy of the screen. Most of the data sets can

be plotted from this menu. A few others have their own hardcopy buttons that

should be used for that specific purpose only. It is possible to make a Postscript, GIF,

Illustrator, and CGM formatted hard copies (Figure 21). At this time the system

allows only page size copies. In future releases hard copies based on map scales will

be made available for larger maps. A user needs to define a directory path and a file

name. Extension will be added according to hardcopy format selected.

2.1.5. Menu System Functions

Save algorithm and load algorithm buttons

These two menu buttons are used in saving a user environment, and loading it

back to the system as needed (Figure 22). Save algorithm button is used once a user

progresses in setting up data sets that are of interest, color and symbol sizes, map

area. All these environment variables can be saved into a file that will be used at a

later session. This allows to re-establish several pre-setup conditions with ease.
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Create a Hardcopy

Hardcopy format .,

Postscript G Illustrator CGM

output directory: /tmp

output file name: syriamap],

CANCEL) DONE)

Figure 21
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SCORNELL DATABASE 1.1

" HELP)

..... ...... .• .. ....

MAP PARAMETERS
Set maplimits...

Set map projection... )
Latitude Longitude Grid ....

Add Legend

DATASETS-- --

Geographic Data Sets .) - savealgorithm

Geophysical Data Sets ... )
Geological Data Sets ) output directory: /doe4/marisa/menu

Images/Grids ...

output file name: syriamapalgor,

USER INPUT CANCEL) DONE."

Run ArcPlot commands... . ,

DISPLAY PARAMETERS . load-algorithm
Zoom in Zoom out

Redraw ....... Dir: /doe4/marisa/menu

Line/Marker/Shade Sets

Hardcopy ... Agrtm
MENU-SYSTEM FUNCTIONSYramapaigoalg

Save algorithm ...

Load algorithm ... _ _-_

Clear & Reset All Variables
...........---.------.. .......... .............. ....... C ancel D one

QUIT MENU .- "........... ......................................................................../

Figure 22
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Clear & re.qet all variables

This button is used to refresh and re-establish the default variables.

Quit menu

This button terminates the whole session and exits from the databases.

2.2 World Wide Web (WWW) Access to Cornell Databases

Considering that access to ArcInfo software is not available for several research

groups, we are also developing an ArcInfo - WWW interface to our developed

databases. A prototype system is now available and functioning well. With this

release we are switching our regular Web address and host computer from a shared

system to a specifically designated computer with a new address. A SUN Ultra 1

server has been established to speedily serve data sets to CTBT researchers. Our new

web address is "http://atlas.geo.cornell.edu"

Access to ArcInfo databases is provided through a specially designed

programs. We are trying to keep the architecture in the Web pages as close to those in

ArcInfo menu system as possible. Although this will not give as much flexibility in

data manipulation, 80-90% of the menu driven functionalities available in the menu

driven system will be accomplished under this system (Figures 23 and 24).

3. ORIGINAL RESEARCH IN SUPPORT OF THE MIDDLE EAST AND

NORTH AFRICA GIS DATABASE DEVELOPMENT

Another essential component to our GIS development is the addition of new

geophysical databases that we are incorporating into our GIS. The research we are

pursuing is designed to address those regions and datasets that previously have not

been investigated. We are presenting here three different areas of research that have

helped make the information available in our GIS databases more complete.
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3.1 Discrimination of Chemical Explosions in Morocco

3.1.1 Introduction

To examine the limitations in the techniques for discriminating between

chemical explosions and earthquakes at local and regional distances, we have applied

several standard heuristics to seismic events in northwest Morocco where little a priori

information was available. Although the 8 Oud Zem phosphate mine explosions (see

Figure 25) have similar geographic locations, total charge magnitudes, and

presumably ripple fired mechanisms, the seismic recordings are characterized by a

surprising amount of diversity. Time and path independent modulations, owing to

the periodic source mechanism of the ripple fired explosions, rarely unequivocally

distinguish the explosions from the earthquakes. Our findings imply that more often

than the current literature suggests, source inconsistencies have a role in the failure of

common discriminants. Furthermore, crustal seismic velocity and the attenuation

structure seemed to shape the seismic signals more than the nature of the source

mechanism. The 10-15 Hz Pg/Sg ratio test proved to be the most precise and accurate

discriminant. Finally, we argue that a regional case-based approach requires

extensive regional information to meet the demanding verification goals of the

proposed Comprehensive Test Ban Treaty.

Large industrial explosions for mining and excavating are almost always

chemical explosions which can be as large as 500 metric tons (Smith, 1989). Usually

chemical explosions over a few tons are actually a series of time-delayed sub-

explosions, or ripple fired explosions, whose spatial and temporal layout are determined

by the purpose of the explosion, the topography, and the equipment available for the

blasts. The source multiplicity inherent in ripple fired explosions is often the

characteristic used to discriminate large chemical explosions from nuclear explosions

and earthquakes (e.g., Baumgardt and Ziegler, 1988; Smith, 1989; Kim et al., 1994).

Various compressional and shear wave ratios (amplitude and spectral) have been

used to discriminate between all types of explosions and earthquakes, in an attempt

to apply the basic physical conclusion that explosions excite more compressional

waves than earthquakes relative to shear waves (e.g., Pomeroy et al., 1982; Taylor et

al., 1989; Kim et al., 1994; Walter et al., 1995).
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This study applies many of the techniques and tools mentioned above to a new
geologic setting, Morocco, under less favorable circumstances. The constraints and
limitations of spectral discrimination techniques will be qualitatively explored by

examining source and path effects. Also, some of the previously cited discrimination
methods will be employed in an attempt to develop a systematic discriminant that
minimizes case-by-case analyses. To some extent, our study can serve as an
assessment of current discrimination techniques in a complicated world of inadequate

information. Attention will be paid to failures, particularly when those failures could
be a result of geologic conditions, such as crustal structure.

The seismic events and stations used in this study are located in northwest
Morocco (Figure 25). The collision of the African and Eurasian plates governs
Morocco's geomorphology (e.g., Jacobshagen et al., 1988). The Atlas mountains of
Morocco are an active intracontinental mountain system composed of two inverted
Mesozoic rift systems: the High Atlas that runs approximately east-west, and the
Middle Atlas that trends northeast and merges into the interplate Beltic-Rif mountain
system.

Although most refraction velocity profile data for the Moroccan crust and

uppermost mantle are not well established, two studies provide pertinent, but
approximate, profile information about the two paths. The Makris et al. (1985) profile
(labeled "Makris" in Figure 25) showed that the direct P-wave travels at a velocity of
5.5 km/s and is finally overtaken by Pg after nearly 40 km at an apparent velocity of
6.0 km/s, because the thickness of the sediments is almost 4 km and the velocity
contrast is small. The Pn velocity is somewhat slow at 7.8 km/s and does not appear
as the first arrival until approximately 140 km, if it can be seen over the background
noise. Also, Makris et al. found an Sg apparent velocity to be approximately 3.3 km/s
homogeneous along the profile, and the Moho to be about 30 km deep. Wigger et al.

(1992) found from their profile (labeled "Wigger" in Figure 25) the Moho's depth to be
approximately 35 km with an average Pn velocity at the uppermost mantle of about
7.7-7.9 km/s, also relatively slow, as was found in the Makris et al. profile. They also

determined that the maximum thickness of the crust was under the northern border

of the High Atlas at 38-39 km.

3.1.2 Data
The Oud Zem phosphate mines in the Moroccan Meseta provide an

opportunity to analyze recordings produced by ripple fired explosions significantly
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different than those already noted in the literature (Figure 25). After subjecting all

available explosion seismograms to a number of tests, the explosion population was

trimmed down to 8 explosions (labeled Xa through Xh) with a total of 33 recordings.

Because of both their total charge magnitude and their presumed purpose (phosphate

surface mining), the explosions are assumed to be ripple fired. Spatial-temporal

layout data independent of the seismic analysis were not available.

Although the orogenic regions of Morocco are seismically active, the same

cannot be said of the Moroccan Meseta near the phosphate mines. After searching

through a database of hundreds of recent Moroccan seismic events, only 6 (labeled Qa

through Qf) events were found that might have similar propagation paths as that of

the explosions. After subjecting the seismograms of these events to a number of tests

like those of the explosions, the record population was reduced to only 13 recordings.

Each of the non-Oud Zem phosphate mine events were located usually using about 5

or 6 recordings. Owing to typical errors found in hypocenter inversions, the locations

could vary by several kilometers. Finally, not all of the seismic events (labeled as

earthquakes) are necessarily earthquakes. Qb and Qc are located near a region

known to have had phosphate mines at one time, but they are not located on the

active phosphate mines themselves. The origin times of Qb and Qc are both in the

early evening. Most of the known explosions, however, were blasted in mid-

afternoon. Qd is most certainly an explosion, but it is still not labeled as such since it

cannot be independently confirmed as an explosion. It is located near the phosphate

mines, but once again it is not on the known mines themselves. The Qd origin time is

in mid-afternoon, prime time for the explosions.

3.1.3 Processing Methods

Only short period seismic stations with 1 Hz geophones that recorded both

earthquakes and explosions in proportionate numbers were included in the analysis

in order to control for station effects and thus to allow direct comparisons between

events. Recordings that have under a 2:1 rms signal to noise ratio were eliminated

from the population. These two tests eliminated over 50 recordings for the events and

disqualified 6 other events completely.

The seismic recordings of the 8 Oud Zem phosphate mine explosions were

characterized by a surprising amount of diversity in view of their similar purpose,

total charge magnitude, ripple-fired mechanism, and location. While phase and path

independent spectral scalloping were noticeable in many of the signals to some
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extent, those features were hardly ubiquitous. Furthermore, among the signals for
which spectral modulation was clearly evident, the frequencies of their maxima and

minima were not related, even for those cases where the propagation path, recording
station, and total charge size were similar. These observations suggest that the

spatial-temporal arrangement of the source varied considerably, whether
intentionally as a result of blast requirements or crew preferences, or as a result of
misfirings. For example, Figure 26 shows the seismograms and velocity-frequency
distributions for two explosions, Xa and Xb, both comparable in magnitude and both

exploded at the Oud Zem site. The signals shown in Figures 26a and 26b are
recorded by the same seismograph station, KSI. Explosion Xa is much more coherent

and impulsive than explosion Xb. From Xa's spectrogram, two phase independent
modulations can be noted, one at about 3 Hz and the other at about 7 Hz. From Xb's
spectrogram, any phase independent modulations are not obvious (the vertical scale

of the spectrogram is linear, so possible scalloping at higher frequencies is obscured).
The destructive interference apparent in Xb's spectrogram could be the result of a

second blast bench, if it is significant in charge size in relation to the initial rippled-
fired blast. This hypothesis is supported by a large arrival on Xb's seismogram just
after the section labeled Pg (in accordance with the Pg velocity window established
from the first motion). The brief listing for Xb in the blast log only notes one blast
bench, however. This abnormality is one of the more conspicuous variations among

the observed ripple fired source mechanisms.

Surficial features such as topography seemed to affect the seismic signals.
Figures 26c and 26d are the recorded signals of explosions Xa and Xb, respectively, at
station TNF (Figure 25). The recordings' back-azimuths to the location of the

explosions are comparable to those at the KSI station. The seismic signals from
explosions Xa and Xb are similarly filtered presumably by their propagation through
the Middle-High Atlas junction. The Sg phase is much more attenuated than the Pg
phase. The resulting spectrograms are dramatically different than their counterparts

constructed from the signals recorded at the KSI station. Note that at this distance,
the consequences of that postulated second blast bench to the velocity-frequency
distribution are minimal. Explosion Xa's spectrogram, Xa's modulations are much
more prominent than those of Xb. The phase independence of Xb's scalloping is still
not apparent.
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Xa-KSI (dis=72km, baz=2880 ) Xb-KSI (dis=76km, baz=2850 )
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Propagation effects concealed differences between the seismic signals of

explosions and earthquakes. An explosion and earthquake which were quite
distinguishable at one station (whose back-azimuth and distance to each event were

similar), were in some cases much less distinguishable by recordings at other stations.
A representative case is that of explosion Xb and earthquake Qe. For both events the
Pg and Sg amplitudes recorded at MSH are of the same order of magnitude, and the

energy of the phases is distributed similarly in frequency space. The explosion's Pg /
Sg ratio is larger than that of the earthquake, and more of the explosion's energy spills
over into higher frequencies. A comparison of explosion Xb's recording at MSH with
that at KSI and TNF shows the importance of azimuthal and propagation effects, as
well as highlights the similarities between Xb's and Qe's signal at MSH. As seen in
Figure 26, the scalloping of the explosion signal is relatively consistent for the lower
frequencies inside of two path groups, that of CLZV and TNF, and that of KSI, MSH,
and TAZ. Above 8 Hz, the frequency maxima and minima within these groups no
longer correlate. As in Xb's case, for Qe's power spectra the lower frequency maxima

and minima of CLZV and TNF correlate. Because of the above similarities, it is
difficult to recognize path independent modulations for one power spectrum and not
the other. These observations indicate that path dependencies, rather than source
characteristics, seem to dominate the signal's form.

As discriminants, the most successful ratio tests were the 5-10 Hz Pg / 5-10 Hz
Sg and 10-15 Hz Pg / 10-15 Hz Sg spectral tests (Figure 27). The variance in the
performance of both tests, due to differences in the recording station, was still
considerable. The spectral ratio tests within phases (e.g., 1-2 Hz Sg / 6-8 Hz Sg) were
unable to separate the explosions from the earthquakes. The Pg/Sg maximum
amplitude test was also ineffective. Any first order dependency on propagation
distance was removed from the ratios with a linear least squares fit. The discriminant
line was rather arbitrarily chosen as the median value of the earthquakes. The
authors are aware of statistical methods for selecting the discriminant line (e.g.,

Elvers, 1974; Taylor et al., 1989; Woodward and Gray, 1995), but as will be explicated
below, our small and uncertain training set does not warrant such approaches. If the
two spectral discriminants are integrated by a union (vis-a-vis intersection) and

seismic information from only a single station is available, then a single explosion
recording has a 12% probability of being classified as an earthquake, and a single
earthquake recording has a 23% probability of being classified as an explosion. If all
of the recordings of an event are used in the discrimination scheme (a networked
system), then only "earthquake" Qd would be "missclassified." As already mentioned
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in the Data section, judging from a priori information such as origin time and location,

event Qd is most likely an explosion and not an earthquake (but independent

confirmation is not available through blasting logs, etc., so the event is assumed to be

an earthquake). If Qd is considered an explosion in the training set, then the network

approach would classify every event correctly. Thus, since the original discriminant

is based on a flawed training set, its results represent a worst case scenario which

reflects some of the challenges of constructing a discriminant in a world of uncertain

and incomplete information.

3.1.4 Discussion and Conclusions

The large regional variability of source mechanisms, source geologic

conditions, and propagation paths and the geophysical and seismological

community's relative lack of a comprehensive physical understanding of propagation

effects, have encouraged site-dependent, case-based approaches for discriminating

between earthquakes, industrial explosions, and nuclear explosions. As shown by

our study, the empirical heuristics utilized in case-based approaches have limitations

that must be considered by any CTBT verification system.

Our findings argue that more often than the current literature suggests, source

inconsistencies may result in the failure of time independent spectral modulations to

discriminate between earthquakes and ripple-fired explosions. Specifically, we agree

with the observations of Baumgardt and Young (1990) and Kim et al. (1994) that for

some ripple fired explosions time independent spectral modulations may or may not

exist, and that if they do exist, they need not be consistent among different explosions,

even if those explosions originate from the same mine or quarry. Irregular source

delays have been noted elsewhere (e.g., Richards et al., 1991). As our results imply,

the inability of time independent modulations to discriminate between earthquakes

and explosions may not necessarily be the exception.

Low frequency path independent modulations advocated by Gitterman and

van Eck (1993) also can be inconclusive for discrimination purposes, possibly as a

result of the spatial-temporal layout of the explosion, the earthquake mechanism's

radiation pattern, or disproportionate phase attenuation. We found that the travel

path through the Middle-High Atlas junction significantly attenuates shear waves (in

our case, Sg) with respect to the compressional waves. This observation agrees with,

for example, the Kim et al. (1994) finding that Lg propagation was disrupted when

significant structural variations were encountered, such as in their case the
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Appalachian platform in southern New York-New Jersey. We also found that in the
low frequencies, earthquakes often seemed to demonstrate path independent spectral
modulation similar to that of ripple fired explosions; at higher frequencies, the

scalloping from ripple fired explosions was often incoherent among recording
stations. As in the case of time independent modulations, path independent

modulations might exist for a significant portion of the ripple fired explosion
recordings, but they might not be conclusive enough in comparison to earthquake
power spectrum data to use consistently and reliably as a discriminant.

Our attempts to discriminate between earthquakes and explosions using
spectral ratios confirm several findings in the literature. As noted by Baumgardt and
Young (1990), for separating ripple fired explosions from earthquakes the P/S

spectral discriminants seem to perform considerably better than spectral
discriminants within the same phase. This directly contrasts with efforts to

discriminate between nuclear explosions and earthquakes in the Western United
States (Bennett and Murphy, 1986). The Walter et al. (1995) analysis suggests that this
difference is not due to differences in source mechanism or tectonic paths, but to the
source medium. We, however, observed that path propagation will make a
significant difference in the discriminant's value. For example, the TNF station
recordings usually had the highest Pg/Sg values. This dependency on propagation
path agrees with the findings of Lynnes and Baumstark (1991) for P/S discriminants

for Nevada Test Site explosions. Also in agreement with Richards et al. (1991) and
Blandford (1995) our highest frequency P/S discriminant was our most successful
ratio test. Finally, as Wuster (1993) has emphasized, empirical discriminants are
fundamentally limited by their training sets. No doubt, this caveat is especially
applicable for our relatively small data set.

This study applied many of the standard methods for discriminating between
earthquakes and ripple fired explosions to a new geologic setting, northwest
Morocco, in an effort to examine the limitations of these techniques. We found that
although time and path independent spectral modulations can be useful, they are far
from ubiquitous. Source mechanisms for explosions may vary substantially even
among events from the same quarry or mine. Furthermore, crustal structure
determines the character of the seismic signal to a greater extent than the source
mechanism. Despite the susceptibility of spectral discriminant values for a given
event to propagation effects, we were able to construct a discrimination technique
that could systematically discriminate the events in our data set. The training set,
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however, imposes fundamental constraints, especially since nuclear explosions are

not constituent of that data set.

Since the source and path effects noted in this study are likely to play a role in
all efforts to seismically discriminate among nuclear explosions, chemical explosions,

and earthquakes, databases that organize regional geological, geophysical,

seismological, and crustal information are critical components to the success of any
seismic CTBT verification project. By recognizing the complexity of seismic
discrimination, our study emphasizes that the regional case-based approach which

has shown much promise requires nothing less than the best empirical information.

3.2. Upper Crustal Seismic Velocity Structure in Eastern Syria

3.2.1 Introduction

We present the interpretation of seismic refraction data collected along a north-

south profile across the Euphrates depression and other zones of structural interest in

eastern Syria (Figure 28). The results from refraction data are refined and supported

by additional information from well-logs, seismic reflection and gravity data. The

interpretation of these data is used to establish metamorphic basement depth in

eastern Syria. This, along with indications of basement and deep sedimentary

structure in the area, can help to better understand regional wave propagation and to

better locate and calibrate regional events.

Eastern Syria is situated at the northern end of the Arabian platform which is

believed accreted from several discrete continental blocks during the Proterozoic (e.g.

Pallister et al., 1987; Stoesser & Camp, 1985). Suture zones corresponding to this

accretion have been documented in the Arabian shield where basement rocks are

exposed (Stoesser & Camp, 1985). Although it is reasonable to suppose similar

sutures exist in the northern part of the Arabian platform (Barazangi et al., 1993; Best
et al., 1990; Best et al., 1993), their location is difficult to ascertain because of thick

sedimentary cover across much of the region. It has been suggested that the major

present-day structural features of Syria are products of reactivation along these
sutures which act as zones of weakness in the platform (Best et al., 1993; Litak et al.,

1996a; Stoesser & Camp, 1985). Although an appreciable amount of research has been
conducted in the Palmyride mountains of western Syria (e.g. Al-Saad et al., 1992;

Barazangi et al., 1992; Chaimov et al., 1990, 1992), relatively little work has focused on

eastern Syria. In particular, the Euphrates depression has received limited attention in
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comparison to its geologic and economic importance (de Ruiter et al., 1994; Lovelock,

1984). Recent work (Alsdorf et al., 1995; Litak et al., 1996a; Litak et al., 1996b; Sawaf et

al., 1993) has increased understanding of the Euphrates system but detailed
assessment of basement structure and depth in eastern Syria has hitherto been

unavailable.
The lack of constraints on basement depths in Syria is a consequence of an

almost complete absence of basement outcrops and well penetration. Leonov et al.

(1989) constructed a depth to basement map within Syria and established the broad

trends which are still generally accepted although new results presented herein
disagree somewhat with this earlier assessment. Seber et al. (1993) used refraction

data to establish basement depths in western Syria and determined seismic velocity of

the basement to be -6 km/s. However, the lack of previous investigations in eastern
Syria means that the results presented here significantly further current knowledge.

3.2.2 Method

The model of basement depth and deep sedimentary structure developed

herein relies on the analysis of several data sources, particularly a high density

seismic refraction line. The refraction data was collected as part of a larger seismic

profiling effort spanning all of Syria conducted in 1972-3 (Ouglanov et al., 1974).

Figure 28 shows the exact location of the refraction line which is 302.2 km long

oriented essentially north-south. In total data from 23 shots, each with forward and

reverse geophone spreads, are used here yielding a fold of coverage of at least 700%

in most places.

After digitization of first arrivals from the original records, the refraction data

were interpreted using a ray-tracing approach utilizing the software of Luetgert

(1992). In an initial interpretation the positions and velocities of various user-defined

layers in the software were subtly altered until travel times of calculated ray-paths

through the computer model matched those of the digitized observed arrival times.

Although this approach naturally produced a model in agreement with the refraction

data, the velocity interfaces in this model were found to be in disagreement with

velocity boundaries observed in sonic logs and two-way travel times from seismic
reflection data. The disagreement was largely a consequence of the limitations in the
refraction method, in particular the inability to detect low-velocity layers which are

clearly demonstrated by the sonic logs.
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However, the ambiguity of low-velocity layers can be eliminated if velocity
information and/or reflection times are available from an independent source.

Therefore, an interpretation strategy was adopted in which the refraction, reflection
and well data were used simultaneously in the refinement of the velocity model thus

establishing a model consistent with all available data. An initial model, based on
reflection profiles and sonic logs, was refined through ray-tracing to improve
agreement with the refraction data (Figure 29), with particular attention to ensure

compatibility with the other data sets. Correlations using sonic logs and seismic
reflection data were used to guide modeling of the refraction data.

The modeling effort culminated in the 'final velocity model' (Figure 30) which

satisfactorily fitted all the available data. Velocities from sonic logs agreed with those
in the model. Two-way reflection times to certain interfaces in the model

corresponded to two-way times in numerous intersecting seismic reflection profiles.
Observed gravity data (not shown here) were compared to the gravity signature of
the refraction model with each velocity layer assigned a density and the analysis
showed broad agreement between the two profiles. Above all, the calculated
refraction arrivals agree to within acceptable limits with the measured arrival times.

Figure 30 shows that velocities generally increase with depth in the model (as
found in the refraction modeling of Seber et al. (1993). However, some low-velocity
channels are observed which are thought to be controlled by lithology. For example,
the upper Paleozoic strata, which are predominately shales and sandy shales
represent a low-velocity layer when compared to the overlying Triassic dolomites and

anhydrites. Such low-velocity layers would not have been detected by the refraction
data alone. Only through the use of independent sources of velocity data, such as the
sonic logs and reflection data can these low-velocity zones be identified.

Despite direct evidence for the majority of the model, a few uncertainties
remain. Some of the low-velocity layers are not detected by the refraction method, are
not penetrated by wells, and are not located unambiguously by seismic reflection
data. Thus, positions of parts of these layers are uncertain and shown in the figures
with dashed lines. It is also not possible to get exact measures of the velocities of the
low-velocity zones in some of these cases and so velocities have been given which
are interpolations between known data. Additionally, the depth to basement in the far

south of the model is only believed to be a minimum constraint. No refractions were
observed in this part of the refraction line at velocities considered typical of those for
basement rocks. It is believed this is because geophone spreads were too short to
detect refractions from this depth; therefore, the depth to basement shown is a
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minimum (Figure 30). However, the majority of the final velocity model is based on
direct evidence and the errors in the bulk of the model can be shown to be relatively

small, with approximately ±200 m error on depth to most interfaces and ±0.1 km/s in
velocities.

3.2.3 Conclusions

Basement depth beneath eastern Syria is found to be greater than previously
supposed. In the south across the Rutbah uplift the basement is at least 8.5 km deep,
in the Euphrates depression it is around 9 kin, and to the north of the Euphrates
basement is at about 6 km (Figure 30). Velocities of sedimentary formations are found
to increase with depth and age although some low-velocity layers controlled by
lithology are documented. The identification of these low-velocity zones would not be

possible using the refraction data alone and only through the integrated use of several
data sources can the low-velocity channels be unambiguously detected.

Deeply penetrating faults are identified in the Euphrates graben demonstrating
the thick-skinned tectonic style of this region. Clearly different trends in basement
depth on the northern and southern sides of the Euphrates graben could be further
evidence for the Proterozoic accretion of the northern Arabian platform with the
Euphrates system as a suture zone.

Our results significantly contribute to any modeling efforts to understand
regional wave propagation in this critical area of the Middle East. Moreover, our
accurate velocity determinations will improve event locations and calibrations.

3.3 Receiver Function Inversion in the Middle East and North Africa

3.3.1 Introduction

In the Middle East and North Africa there exist only a very sparse coverage of
three-component broadband stations; therefore, we are limited in the types of

seismological investigations we can employ. Hence, in order to obtain some idea of
the velocity structure in this region we have used data from these stations to compile
receiver functions, a single station method, for all broadband stations in the Middle

East and North Africa. By inverting these receiver functions we hope to place some
constraints on Moho depth's and average shear-wave velocities in regions where
previously there has been very little information on crustal velocities and thicknesses.

51



We have chosen to only invert for first-order features in the crust and upper mantle in

order to avoid over interpreting our receiver function data.

3.3.2 Data

We have collected over 600 Megabytes of broadband, three-component

teleseismic waveform data from IRIS, MEDNET, GEOSCOPE and GEOFON
broadbancL stations in the Middle East and North Africa (Figure 31). We have
examined all of these records for good signal to noise ratios and eliminated those with
signal to noise ratios of less than 5 to 1. We have also attempted to eliminate the

effects of large scale lateral velocity heterogeneity by calculating the radial direction

using the first motion of the teleseismic P-wave waveform. We have minimized the
"corrected" tangential component and then rotated the horizontal components into

these corrected radial and tangential directions. Although this procedure will not
remove the effect of smaller scale crustal and upper mantle heterogeneity we have
found that it does remove the effect of large scale mantle heterogeneity that can cause
the teleseismic P-wave ray-paths to bend outside the great circle path.

We have employed the standard "water level" spectral division technique (e.g.,
Langston, 1979, Ammon et al., 1990) to calculate each of the receiver functions used in
this study. In order to solve for receiver functions that are sensitive primarily to first-
order features, we have used a guassian filter with an a = 1.5. This filter produced
receiver functions that contained data with frequencies of .5 Hz and lower. From the

24 stations that we have collected data for, we have been able to calculate high quality
receiver function waveforms for 12 stations (Figure 31).

3.3.3 Inversion Method

In order to invert the receiver function data for crustal and upper-most mantle

shear-wave velocity structure we employed a grid search scheme using a maximum

of six layers in our model. For simple receiver functions we used a one-layer crustal

model (see stations BNG and DBIC in Figure 31) and still obtained a reasonable fit.

The advantage of our grid search scheme, unlike other techniques, is the guarantee

that we will solve only for global minima. We have used a grid spacing for the shear-

wave velocities of 0.1 km/sec and a grid spacing for layer thicknesses of typically 2

km, and in some cases, 1 km for the first layer thickness. It is doubtful that with the
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approximations we have made, that the receiver function inversion will be able to

resolve model fluctuations smaller than these grid spacings.

By using only 10 model parameters ( 5 layers where we vary both the layer

thickness and shear-wave velocity) in our inversion, the receiver function inversion's

non-uniqueness problem is reduced. The longer period receiver functions are fit

reasonably well by a 5 layer model (Figure 32). We also have been able to invert for a
bulk Poisson's ratio for station's which only require 4 or less layers to model the

receiver function waveforms. For example, at stations DBIC and BNG we have

solved for a bulk Poisson's ratio of 0.25.

The grid search scheme allows us to map the RMS error surface. This allows

us to examine for the possibility of non-uniqueness in our inversions. If multiple

minima's exist within our error surface then our inversion results are non-unique.

Figure 33 is a portion of the 9-dimensional error surface for station KEG in which we

do not see evidence for large local minima which are located far from the global

minima. However, this is only a portion of error surface from the grid search

inversion. We are currently working a method in which we can estimate the noise

contained within the receiver function which would then allow us to solve for a

confidence region from our error surface.

We have found that comparisons between the grid search technique and the

linearized least squares (LLS) method yield significantly different results if one does

not consider the non-uniqueness of the LLS technique. For those receiver functions

that are relatively simple in nature (i.e., only a P-to-S conversion at the Moho) then

the results are similar. Figure 34 is an example of the difference given between these

two methods. We have employed Ammon's et al. (1990) method of using multiple

starting models (Figure 34).

3.3.4 Results

Crustal thickness in North Africa is found to be generally on the order of 38 to
41 km (see Figure 31) except station ATD which is located on exposed oceanic crust.

We have found a Moho depth of 8 km for station ATD which is consistent with an

oceanic crust. Data from three coastal stations in North Africa (MBO, TBT, and MEB)

contain evidence of very strong lateral heterogeneity and teleseismic P-wave multi-

pathing. In the Middle East, our estimated crustal and basement thicknesses compare

well with the available seismic refraction profile interpretations. There is some

ambiguity in where to interpret the Moho for station KEG's shear-wave velocity
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model. There are two relatively large velocity discontinuities: one at 30 km (3.5

km/s to 4.0 km/s) and the other at 40 km (4.0 km/s to 4.5 km/s). Makris et al. (1987)

report crustal thicknesses on the order of 30 km (30 to 34 km) which would

correspond to the first velocity discontinuity that we observed in our model. For

other stations in North Africa we have found that the crust is usually on the order of

40 km thick. However, in the Moroccan Middle Atlas we do find a crustal thickness

of 35 km.

We have also found evidence of a pronounced mid-crustal low-velocity zone in

central Turkey beneath station ANTO. There has been no prior indication of a low

velocity zone in this region although this is a region where the mantle lid is slow and

highly attenuating. It is not clear whether this low-velocity zone is related to the

heating of the middle crust, some rheological change within the crust or due to 2-

dimensional lateral velocity heterogeneity affecting our 1-dimensional model. We

have found a Moho depth of 30 km beneath station BGIO which is located near the

Dead Sea fault. This crustal thickness is consistent with a refraction profile that was

run parallel to the Dead Sea fault (Makris et. al., 1989).

The thickest crust, approximately 55 km, was found beneath station GNI in the

Caucasus Mountains. However, data at station GNI are of relatively low quality and

contains a fair amount of noise within the stacked receiver function. Also, at station

GNI we have observed a large amount of coherent and azimuthally dependent

energy which appears on the tangential receiver functions which is an indication of a

dipping Moho as well as dipping interfaces within the middle crust.

The above results are currently being used and integrated with other available

information to produce an accurate gridded Moho map for the Middle East region.
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APPENDIX I: LIST OF AVAILABLE DATA SETS

Geographic data sets:

"o Coast lines

" Country borders

"o Rivers

"o Lakes

" Main roads

"o Main city locations

Geophysical data sets:

"o PDE seismicity catalogue

"o ISC seismic catalogue

"o CMT event locations and focal mechanisms

"o Short period seismic stations locations

"° Broad band seismic station locations

"° Crustal scale seismic and gravity profiles and their interpretations
"o Bouguer and Free air gravity maps

" Moho depth map of Middle East and North Africa

"o Basement depth map of Middle East and North Africa

Geological data sets:

"o Complete tectonic map of the Middle East

"o Mine locations in the Middle East and North Africa

Images:

o A complete coverage of the Dead sea fault system in the Middle East
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