Effective Numerical Methods for Vehicle Dynamics

Linda Petzold

University of Minnesota
Department of Computer Science
4-192 EE/CS Bldg., 200 Union St SE
Minneapolis, MN 55455

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution unlimited.

This research project focused on the enhancement of current vehicle simulation capabilities of TARDEC. Problems addressed included development of new numerical algorithms for efficiently simulating mechanical systems with low-amplitude, high-frequency vibrations, and development of numerical methods and models for impacts and collisions.

19961025 009

DTIC QUALITY INSPECTED

impacts, collisions, constrained dynamics, multibody systems, differential-algebraic equations, numerical methods, highly oscillatory systems

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UL
EFFECTIVE NUMERICAL METHODS FOR VEHICLE DYNAMICS

FINAL PROGRESS REPORT

LINDA R. PETZOLD

SEPTEMBER 17, 1996

U.S. ARMY RESEARCH OFFICE

CONTRACT/GRANT NUMBER DAAH04-94-0208

UNIVERSITY OF MINNESOTA

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.
1 Statement of the problem studied

This research project focussed on the enhancement of current vehicle simulation capabilities of TARDEC. Problems addressed included development of new numerical algorithms for efficiently simulating mechanical systems with low-amplitude, high-frequency vibrations, and development of numerical methods and models for impacts and collisions.

2 Summary of the most important results

High-frequency oscillations in nonlinear ODE/DAE systems are a problem in vehicle simulation because following the oscillations necessitates the use of an extremely small timestep. However, many of the oscillations are not important for the overall numerical solution. We have shown that methods based on local linearization can fail because the local eigenstructure of the problems oscillates at the high frequency. Experiments have demonstrated that certain implicit methods combined with automatic stepsize control can damp out the oscillation safely, in regions where its amplitude is too small to be important. The usual stepsize selection strategies must be modified so that they are correct for the limiting high-index DAE. There is also some theory to support this technique for the equations of motion. However, once the stepsize is increased, problems with Newton iteration convergence again restrict the timestep. These problems are also due to the rapidly changing local eigenstructure. Some formulations of the equations of motion are more advantageous than others in terms of Newton iteration convergence for highly oscillatory systems. A coordinate-split (CS) method has been developed that, together with a modified Newton (CM) iteration is particularly effective. Numerical results for a number of highly oscillatory multibody systems demonstrate that the new method is particularly effective for highly oscillatory systems where the oscillation is small and can be damped. Recently developed theory explains the Newton convergence results. Investigation of the high-frequency oscillation problem was motivated by discussions with Roger Wehage and Jim Overholt (TARDEC).
Modeling impact of bodies or particles during a physical system simulation is problematic and may cause many difficulties in the numerical solution. On the other hand, it can better define the dynamics of some systems, such as in track vehicle simulation. It is well-known that a purely algebraic treatment of the rigid impact problem can lead to incorrect results in some cases. To remedy this, Keller proposed a set of evolution equations which can be used for non-trivial three-dimensional impact problems. For the hypothesis of impact, Stronge proposed a restitution model that overcomes the difficulty of using either Newton's or Poisson's stopping criterion. A rigid impact model between the road-wheel and track has been developed using Keller's evolution equations. The coefficients of friction and restitution are the only input parameters. By adjusting the coefficients, accurate tensional forces applied to the track can be computed using the tangential impulse. Two-body impact evolution equations were generalized for the constrained multi-rigid-body impact model, e.g., rigid impact between the road-arm and road-wheel composite body and the chain of track segments. Compared to the conventional track model, where one has to guess the soil deformation, and then compute the shear and normal forces between the ground and track, this approach yields a more accurate and effective computational scheme to treat the complex track model. This work has been in collaboration with G.P. Mac Sithigh at the Mechanical and Aerospace Engineering and Engineering Mechanics department, University of Missouri-Rolla.

3 Publications and Technical Reports


J. Yen and L. R. Petzold, Computational Challenges in the Solution of Nonlinear Highly Oscillatory Multibody Systems, in Numerical Analysis of Or-


4 List of all participating scientific personnel

The personnel participating in this project were: PI: Linda R. Petzold, Post-doctoral research associate: Jeng Yen, Graduate research assistants: T. Maly (M.S. in Computer Science, 1995), S. Li, S. Raha.

5 Report of inventions

None.