REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. **AGENCY USE ONLY** (Leave blank)

2. **REPORT DATE**
 - August, 1996

3. **REPORT TYPE AND DATES COVERED**
 - Final
 - 15 Jun 92-14 Jun 96

4. **TITLE AND SUBTITLE**
 - hp-ADAPTIVE FINITE ELEMENT METHODS FOR TIME DEPENDENT PROBLEMS WITH APPLICATIONS TO STRESS WAVES IN SOLIDS

5. **FUNDING NUMBERS**
 - DAAL03-92-C-0253

6. **AUTHOR(S)**
 - J. Tinsley Oden

7. **PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)**
 - The University of Texas at Austin
 - TICAM, TAY 2.400
 - Austin, TX 78712

8. **PERFORMING ORGANIZATION REPORT NUMBER**
 -

9. **SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 - U.S. Army Research Office
 - P.O. Box 12211
 - Research Triangle Park, NC 27709-2211

10. **SPONSORING / MONITORING AGENCY REPORT NUMBER**
 - AR 30297.9-M-4

11. **SUPPLEMENTARY NOTES**
 - The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. **DISTRIBUTION / AVAILABILITY STATEMENT**
 - Approved for public release; distribution unlimited.

13. **ABSTRACT (Maximum 200 words)**
 - The general goals of this project included the development of new, high-order, adaptive methods for the computer simulation of stress-wave propagation phenomena in solid mechanics, particularly elastodynamics.

 The motivation for using adaptive methodologies is to control and optimize the computational process, to use a posteriori error estimates to optimize meshes and spectral orders of approximation. Such orchestrated meshing can produce exponential rates of convergence, thereby allowing complex simulations to be done using orders-of-magnitude fewer unknowns than standard methods.

14. **SUBJECT TERMS**
 - A posteriori error estimates, adaptivity.

15. **NUMBER OF PAGES**
 - 3

16. **PRICE CODE**
 -

17. **SECURITY CLASSIFICATION OF THIS REPORT**
 - UNCLASSIFIED

18. **SECURITY CLASSIFICATION OF THIS PAGE**
 - UNCLASSIFIED

19. **SECURITY CLASSIFICATION OF ABSTRACT**
 - UNCLASSIFIED

20. **LIMITATION OF ABSTRACT**
 - UL
Hp-ADAPTIVE FINITE ELEMENT METHODS FOR TIME DEPENDENT PROBLEMS WITH APPLICATIONS TO STRESS WAVES IN SOLIDS

FINAL PROGRESS REPORT

Professor J. Tinsley Oden
The University of Texas at Austin

August, 1996

U.S. ARMY RESEARCH OFFICE

DAAL03-92-G-0253

THE UNIVERSITY OF TEXAS AT AUSTIN

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.
Statement of Problem Studied

The general goals of this project included the development of new, high-order, adaptive methods for the computer simulation of stress-wave propagation phenomena in solid mechanics, particularly elastodynamics. The motivation for using adaptive methodologies is to control and optimize the computational process, to use a posteriori error estimates to optimize meshes and spectral orders of approximation. Such orchestrated meshing can produce exponential rates of convergence, thereby allowing complex simulations to be done using orders-of-magnitude fewer unknowns than standard methods.

Summary of Results

This project has led to a number of completely new and powerful methods for the computer simulation of complex problems, including, in particular, problems of wave propagation. These include the following:

- High-Order Multistage-Taylor Galerkin Methods. These represent one of the only new unconditionally stable high-order time integration schemes developed in decades. They are designed to overcome a well-documented deficiency of splitting methods: the loss of time accuracy due to splitting of boundary conditions.
- A Posteriori Error Estimation Methods. New techniques for the estimation of error in numerical approximations of wave problems in two space dimensions have been developed; theorems have been established to guarantee that rigorous error bounds are possible.
- Adaptive methods. Local error estimates provide data for adaptively changing mesh sizes and spectral orders to optimize hp meshes and accelerate convergence.
- Parallel Discontinuous Methods. A surprisingly parallelizable scheme based on Discontinuous Galerkin methods has been developed and tested on model problems.
- Clouds: A New family of Meshless Methods. Error estimates and preliminary results on the mathematical foundations of a new type of meshless technique for solving partial differential equations have been established.

List of Publications

Participating Scientific Personnel

J. Tinsley Oden, Principal Investigator
A. Safjan, Ph.D. received in Fall 1993
T. Zohdi, Graduate Student
C. Armando Duarte, Graduate Student
K. Vemaganti, Graduate Student