Interactive Computer-Aided Control System Design

Stephen Boyd and Arash Hassibi

13a. TYPE OF REPORT
Final Technical

13b. TIME COVERED
FROM 6/1/93 TO 5/31/96

14. DATE OF REPORT (Year, Month, Day)
October 14, 1996

18. SUBJECT TERMS (C
19961031 043

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
We consider parameter estimation in linear models when some of the parameters are known to be integers. Such problems arise, for example, in positioning using phase measurements in the global positioning system (GPS). Given a linear model, we address two problems: the problem of estimating the parameters; the problem of verifying the parameter estimates. Under Gaussian measurement noise: maximum likelihood estimates of the parameters are given by solving an integer least-square problem. Theoretically, this problem is very difficult to solve. Verifying the parameter estimates (computing the probability of correct integer parameter estimation) is related to computing the integral of a Gaussian PDF over the Voronoi cell of a lattice. This problem is also very difficult computationally. However, by using a polynomial-time algorithm due to Lenstra, Lenstra, and Lovasz (LLL algorithm): The integer least-squares problem associated with estimating the parameters can be solved efficiently in practice. Sharp upper and lower bounds can be found on the probability of correct integer parameter estimation. We conclude the paper with simulation results that are based on a GPS setup.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Final Technical Report
AASERT #F49620-93-1-0411

Parent Award: AFOSR F49620-92-J-0013

AASERT Students: Michael Grant & Arrash Hassibi

PI: Stephen Boyd

Two students, Michael Grant and Arrash Hassibi, were supported during the period of this grant. The work of Michael Grant has been summarized in the two previous annual reports. Here the focus is on the research activities of Arrash Hassibi.

Arrash Hassibi has worked on the application of advanced optimization methods on signal processing problems that arise in the Global Positioning System (GPS). The Global Positioning System is revolutionizing navigation and vehicle control for both military and civilian users. Military applications include navigation, search and rescue, smart weapons, aircraft, and missile guidance. Civilian applications include surveying, precision time transfer for communications, automatic landing systems incorporating the FAA’s Wide Area Augmentation System and navigation for general aviation, marine and automotive applications.

Due in part to the extremely rapid rate at which the field is developing, many of the signal processing techniques that critically affect the performance of a GPS receiver are based on heuristics. While these heuristic-based techniques generally work well, there is a growing need to determine both the limits of performance and efficient methods that approach or achieve these limits.

The accuracy of relative GPS positioning can be improved by at least two orders of magnitude by using carrier phase interferometry techniques. Applications include precise relative positioning and attitude determination. This requires the user to resolve the unknown number of carrier cycles (integer ambiguities) between the GPS antenna and each of the satellites. Estimating the integer ambiguities can be cast as an integer least-squares problem, a global optimization problem involving integer variables, which in theory is very hard to solve. However, it is shown that by using recently developed algorithms, that were first derived in the field of geometry of numbers, the integer ambiguity estimation problem can be solved very efficiently in practice.

Another important problem that has been addressed by the research efforts is in real-time accuracy and integrity monitoring (RAIM). When a GPS receiver is part of a larger critical system, it must monitor its integrity. The proposed method is based on computing the probability of error in estimating the integer ambiguities. It turns out that the exact probability calculation is intractable so useful upper and lower bounds should be computed instead. In fact it is shown that sharp upper and lower bounds that are computationally efficient can be found.

A detailed technical report will soon be made available. A brief version is attached.
Integer Parameter Estimation in Linear Models with Applications to GPS

Arash Hassibi & Stephen Boyd
Information Systems Laboratory
Department of Electrical Engineering
Stanford, CA 94305-4055 USA
arash@ISL.Stanford.EDU & boyd@ISL.Stanford.EDU

Abstract

We consider parameter estimation in linear models when some of the parameters are known to be integers. Such problems arise, for example, in positioning using phase measurements in the global positioning system (GPS). Given a linear model, we address two problems:

1. The problem of estimating the parameters.
2. The problem of verifying the parameter estimates.

Under Gaussian measurement noise:

- Maximum likelihood estimates of the parameters are given by solving an integer least-squares problem. Theoretically, this problem is very difficult to solve (NP-hard.)

- Verifying the parameter estimates (computing the probability of correct integer parameter estimation) is related to computing the integral of a Gaussian PDF over the Voronoi cell of a lattice. This problem is also very difficult computationally.

However, by using a polynomial-time algorithm due to Lenstra, Lenstra, and Lovász (LLL algorithm):

- The integer least-squares problem associated with estimating the parameters can be solved efficiently in practice.

- Sharp upper and lower bounds can be found on the probability of correct integer parameter estimation.

We conclude the paper with simulation results that are based on a GPS setup.

1 Problem Statement

1.1 Setup
Throughout this paper, we assume that the observation $y \in \mathbb{R}^n$ is related to the unknown vectors $x \in \mathbb{R}^p$ (real) and $z \in \mathbb{Z}^q$ (integer) through

$$y = Ax + Bz + v,$$

where $A \in \mathbb{R}^{n \times p}$ (full column rank) and $B \in \mathbb{R}^{n \times q}$ are known matrices. The measurement noise $v \in \mathbb{R}^n$ is assumed to be Gaussian with zero-mean and covariance matrix identity, i.e., $N(0, I_{n \times n})$. This can be assumed without loss of generality, as we can always rescale equation (1) by the square root of the covariance matrix of v. Given y, A, and B, our goal is to find and verify estimates of the unknown parameters x and z. Some previous results are given in [6] and [7] and references therein.

1.2 Estimation problem
We consider maximum likelihood (ML) estimates x_{ML} and z_{ML} for x and z respectively that maximize the probability of observing y, i.e.,

$$\argmax_{(x, z) \in \mathbb{R}^p \times \mathbb{Z}^q} \{p_Y|X, Z(y|x, z)\}. \quad (2)$$

1.3 Verification problem
Since z is an integer-valued vector, we have the chance of estimating (or detecting) it exactly. As a result, for the verification step, we compute the probability of estimating z correctly, i.e.,

$$P_c = \text{Prob}(z_{\text{ML}} = z), \quad (3)$$

Clearly, the larger this value the higher the reliability on the estimates x_{ML} and z_{ML}. Another reliability measure can be

$$\text{Prob}(\|x - x_{\text{ML}}\| < \epsilon), \quad (4)$$

where $\| \cdot \|$ denotes the 2-norm. This gives us the probability of the real parameter estimate lying in a ball.

Key words: Integer parameter estimation, Linear model, Integer least-squares, GPS.

1Research supported in part by AFOSR (under F49620-95-1-0318 and AASERT grant F49620-93-1-0411), and NSF (under ECS-9222391 and ECS-9222391). The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
of radius ϵ of its actual value. A combined reliability measure is

$$\text{Prob}(\|x - x_{ML}\| < \epsilon \ & \ z_{ML} = z) = \text{Prob}(\|x - x_{ML}\| < \epsilon | z_{ML} = z) \cdot \text{Prob}(z_{ML} = z).$$

(5)

In practical cases, ϵ is small only if $z_{ML} = z$, and therefore, (4) and (5) are almost equal.

2 Problem formulation

Since v is Gaussian we get

$$(x_{ML}, z_{ML}) = \arg\min_{(x, z) \in \mathbb{R}^p \times \mathbb{Z}^q} \|y - Ax - Bz\|^2,$$

Using completion of squares arguments it can be shown that

$$(x_{ML}, z_{ML}) = \arg\min_{(x, z) \in \mathbb{R}^p \times \mathbb{Z}^q} \left\{ (x - \hat{x}_{|z})^T \Xi^{-1} (x - \hat{x}_{|z}) + (z - \hat{z})^T \Upsilon^{-1} (z - \hat{z}) + y^T \Delta y \right\},$$

(6)

where

$$\Xi = (A^T A)^{-1},$$
$$\Upsilon = (B^T (I - A \Xi A^T) B)^{-1},$$
$$\hat{x}_{|z} = \Xi A^T (y - Bz),$$
$$\hat{z} = \Upsilon B^T (I - A \Xi A^T) y,$$

and $\Delta > 0$ is a constant matrix. Clearly, from (6)

$$z_{ML} = \arg\min_{z \in \mathbb{Z}^q} \{(z - \hat{z})^T \Upsilon^{-1} (z - \hat{z})\},$$

(8)

$$x_{ML} = \hat{x}_{|z_{ML}}.$$

(9)

As a result, z_{ML} (and therefore x_{ML}) is given by the solution to a least-squares problem involving integer variables. Because of the integer nature of z, computing z_{ML} is very difficult and is known to be NP-hard (cf. [1]).

In order to calculate the measures of reliability P_c and $\text{Prob}(\|x - \hat{x}\| < \epsilon | z = z_{ML})$ we need to know the probability distributions of our estimates. Note that we can easily read the covariance matrices of \hat{z} and $\hat{x}_{|z}$ from (6) as

$$\text{cov}(\hat{z}) = \Upsilon \text{ and } \text{cov}(\hat{x}_{|z}) = \Xi.$$

Therefore

$$\hat{z} \sim N(z, \Upsilon) \text{ and } \hat{x}_{|z} \sim N(x, \Xi),$$

(10)

so for example $\hat{z} = z + u$ where $u \sim N(0, \Upsilon)$. Multiplying both sides by $G := \Upsilon^{-1/2}$ (the whitening matrix of u) and by defining $\hat{y} := G \hat{z}$ we get

$$\hat{y} = Gz + \bar{u}, \text{ where } \bar{u} \sim N(0, I_{q \times q}).$$

(11)

Also, (8) can be written in terms of G and \hat{y} in the following equivalent form

$$z_{ML} = \arg\min_{z \in \mathbb{Z}^q} \|\hat{y} - Gz\|^2.$$

(12)

The set $\{Gz | z \in \mathbb{Z}^q\}$ is a lattice in \mathbb{R}^q. Equation (12) states that z_{ML} is found by computing the closest lattice point to the vector \hat{y}. In addition, according to (11), \hat{y} is off from Gz by \bar{u}. Therefore, as long as \bar{u} is small enough such that \hat{y} remains closer to Gz than any other point in the lattice, the estimate of z is correct (i.e., $z_{ML} = z$). This is equivalent to $Gz + \bar{u}$ remaining inside the Voronoi cell of the lattice point Gz. Thus

$$P_c = \text{Prob}(\bar{u} \in V_0) \text{ where } \bar{u} \sim N(0, I_{q \times q}),$$

(13)

and V_0 is the Voronoi cell of the origin. According to (10), $\hat{x}_{|z} = x + w$ where $w \sim N(0, \Xi)$, and if $z = z_{ML}$ we have

$$\text{Prob}(\|x - z_{ML}\| < \epsilon | z = z_{ML}) = \text{Prob}(\|\Xi^{1/2} w\| < \epsilon),$$

(14)

which is equal to the probability of w falling inside the ellipsoid $\|\Xi^{1/2} z\| \leq \epsilon$.

Formulas (8), (9), (12), (13), and (14) give the estimates and their measures of reliability.

3 Verification Problem

As noted in §1, the probability of detecting the integer parameter z correctly, P_c in (13), can be used to verify the ML estimates. The reliability measure given in (5) also requires the calculation of P_c. Therefore, an essential step in verifying x_{ML} and z_{ML} is the calculation of P_c.

It turns out that computing P_c is very difficult computationally and therefore we are motivated to find fast ways to approximate P_c that enable real-time reliability tests instead. In fact, as we will see, easily computable upper and lower bounds on P_c exist which become tight as P_c approaches unity.

In §3.1 we see that the choice of G for a given lattice is highly nonunique. Although P_c only depends on the lattice and not on the specific choice of G, this is not true for the upper and lower bounds on P_c. Therefore, we can sharpen these bounds by optimizing over the family of admissible matrix representations for the lattice. We introduce the LLL algorithm that is an extremely useful tool for sharpening bounds on P_c, and as will become clear later, it is also useful for improving the efficiency of the algorithm for solving the integer least-squares problem for computing z_{ML}.

\footnote{The Voronoi cell of a point Gz in a lattice, is the set of all points in space that are closer to Gz than any other point in the lattice.}
3.1 Lattice Bases
Let us denote a lattice \(L \in \mathbb{R}^q \) generated by the matrix
\(G = [g_1, g_2, \ldots, g_q] \in \mathbb{R}^{q \times q} \) by
\[L = L(G) = \{ Gz \mid z \in \mathbb{Z}^q \}. \]

The set of vectors \(\{g_1, g_2, \ldots, g_q\} \) is called \('a' basis for \(L \) since all lattice points are linear combinations of integer multiples of these vectors. We say \('a' and not \('the' because a lattice \(L \) has infinitely many bases. The lattice generated by the matrix \(GF \), where \(F \) is any \emph{unimodular} matrix, and that of \(G \) are identical. Such matrices \(F \) have the property that the elements of \(F \) and \(F^{-1} \) are integers (or equivalently, the elements of \(F \) are integers and \(\text{det} F = \pm 1 \)).

Of the many possible bases of a lattice, one would like to select one that is in some sense nice or simple, or reduced. There are many different notions of reduced bases in the literature; one of them consists of requiring that all its vectors be short in the sense that the product \(\|g_1\| \|g_2\| \cdots \|g_q\| \) is minimum. This problem is known as the \emph{minimum basis problem} and has been proved to be \(\mathcal{NP} \)-hard (cf. [1]).

Although the \emph{minimum basis problem} is \(\mathcal{NP} \)-hard there exists a \emph{polynomial-time algorithm} for computing a basis for a given lattice that is in some sense reduced. This algorithm is due to A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász (LLL) and is very efficient in practice. Given a lattice generator matrix \(G \), the LLL algorithm gives a new lattice generator matrix \(GF \) with \(F \) unimodular such that \(GF \) has two nice properties. Roughly speaking these are:

- The columns of \(GF \) (the new basis vectors) are \emph{almost} orthogonal.

- The 2-norm of the columns of \(GF \) (the length of the new basis vectors) are not arbitrarily large.

For an exact discussion of these properties refer to Chapter 5 of [1]. The LLL algorithm is described in the appendix.

3.2 Calculating \(P_c \)
Computing \(P_c \) as given in (13) requires the calculation of a suitable description of \(V_0 \) the Voronoi cell of the origin in the lattice generated by \(G \). This is possible of course, but it is very difficult computationally (cf. [8]). Adding to this the computational cost of the numerical algorithm to perform the integral of the Gaussian probability density function over \(V_0 \), we conclude that, although the exact calculation of \(P_c \) is possible, it requires extensive computation that might be infeasible in practice or not worthwhile. Therefore, finding easily computable bounds on \(P_c \) become of practical importance.

3.3 Computing upper and lower bounds on \(P_c \)

3.3.1 Upper bound using \(|\text{det} G| \): A well-known result of multi-dimensional geometry is that the volume of the parallelopiped formed by the basis vectors of a (nondegenerate) lattice is given by \(|\text{det} G| \). Since the Voronoi cells of the lattice points partition the space with the same density (cells per unit volume) as the parallelopipeds, it follows that the volume of the Voronoi cells are also equal to \(|\text{det} G| \). Therefore, \(|\text{det} G| \) which is the volume of the region for integrating the noise probability density function, gives an idea of \(P_c \), and, roughly speaking, the larger this value, the larger the probability of correct integer estimation. Of course, the shape of the Voronoi cell is also a major factor in \(P_c \), however, when the variance of noise in every dimension is equal, an upper bound for \(P_c \) is found if we assume the Voronoi cell is a \(q \)-dimensional sphere.

The volume of a \(q \)-dimensional sphere of radius \(\rho \) is \(\alpha_q \rho^q \) where \(\alpha_q = \pi^{q/2}/\Gamma(q/2 + 1) \) (\(\Gamma(\cdot) \) is the Gamma function.) Therefore, the radius of a \(q \)-dimensional sphere with volume \(|\text{det} G| \) is \(\rho = \sqrt[q]{ |\text{det} G| / \alpha_q } \) and an upper bound on \(P_c \) becomes

\[P_{c,up} = \text{Prob} \left(\|v\| < \sqrt[q]{ |\text{det} G| / \alpha_q } \right), \]

with \(v \sim N(0, I_q \alpha_q) \). The sum of squares of \(q \) independent zero-mean, unit variance normally distributed random variables is a \(\chi^2 \) distribution with \(q \) degrees of freedom. If we denote the cumulative distribution function (CDF) of a \(\chi^2 \) random variable with \(q \) degrees of freedom by \(F_{\chi^2}(\chi^2; q) \) we get

\[P_{c,up} = F_{\chi^2} \left(\left(|\text{det} G| / \alpha_q \right)^{2/q}; q \right). \]

(15)

This bound is a very cheap one computationally since it only requires the determinant of \(G \) followed by a \(\chi^2 \) CDF table lookup.

3.3.2 Lower bound based on \(d_{\text{min}} \): Given

the lattice \(L = L(G) \) with \(G \in \mathbb{R}^{q \times q} \), the \emph{shortest lattice vector} or the \emph{minimum distance of the lattice} \(d_{\text{min}} \) is defined by

\[d_{\text{min}} = \min_{z \in \mathbb{Z}^q, z \neq 0} \|Gz\|. \]

(16)

\(d_{\text{min}} \) is actually the distance between the origin and its closest neighbor in the lattice. A ball of radius \(d_{\text{min}} / 2 \) is the largest ball centered at the origin that lies in \(V_0 \).

Clearly, the probability of noise falling in a ball centered at the origin and of radius \(d/2 \) where \(d \leq d_{\text{min}} \) gives us a lower bound on \(P_c \). This lower bound is given by

\[P_{c,low} = F_{\chi^2} \left(\frac{d^2}{4}; q \right) \]

where \(d \leq d_{\text{min}} \).

(17)
So far we have not discussed how to compute d_{min}. Unfortunately, computing d_{min} is conjectured to be NP-hard, and so far, no polynomial-time algorithm has been found to compute d_{min}. Therefore, methods are preferred that compute bounds on d_{min} that have very low computational complexity. These bounds can be used in (17) to get very fast bounds on P_c. There are many ways to bound d_{min} as given in [8]. One method is the following.

Gram-Schmidt method lower bound on d_{min}.

Suppose $G = [g_1, g_2, \ldots, g_q]$ and $(g_1^*, g_2^*, \ldots, g_q^*)$ is the Gram-Schmidt orthogonalization of (g_1, g_2, \ldots, g_q) as defined in (22). Then

$$d_{\text{min}} \geq d = \min(\|g_1^*\|, \|g_2^*\|, \ldots, \|g_q^*\|).$$

(18)

Re-defining G by finding a reduced basis for the lattice using the LLL algorithm would result in a tighter bound since the basis vectors (and hence the g_i^*s) will become shorter.

4 Estimation Problem

4.1 Nearest Lattice Vector Problem

The nearest computational task of the estimation step is the solution to the integer least-squares problems (8) or (12). Problem (12) is known as the nearest lattice vector problem and is NP-hard (cf. [1]). However, in practice, there are reasonably efficient ways to solve this problem which is the main topic of this section.

When $T \geq 0$ in (8) is diagonal, z_{ML} can be simply found by rounding the components of \tilde{z} to the nearest integer since the integer variables are separable as

$$(z - \tilde{z})^T \bar{Y}^{-1} (z - \tilde{z}) = \sum_{i=1}^q (z_i - \tilde{z}_i)^2 / Y_{ii},$$

where Y_{ii} is the ith diagonal entry of Y. A diagonal Y corresponds to a G with orthogonal columns. Intuitively, this observation suggests that if Y is almost diagonal, or equivalently, the columns of G are almost orthogonal, rounding off \tilde{z} in (8) would give a close approximation to z_{ML}. However, G is not always initially given as almost orthogonal even if the lattice $L = L(G)$ is orthogonal.

As noted before, the LLL algorithm is a useful tool for finding an almost orthogonal basis for a given lattice $L = L(G)$. Rounding can then be applied to \tilde{z} to get a hopefully good approximation for z_{ML}. This approximation can serve as a good initial guess for z_{ML} in any algorithm for solving the global optimization problems (8) or (12). A similar idea can be found in [6] and [7].

4.2 Suboptimal Polynomial-Time Algorithms

In this subsection, we address suboptimal polynomial-time algorithms for calculating the minimum of $\|\tilde{y} - Gz\|$ over the integer lattice. These suboptimal algorithms are important for a few reasons. First, they can be performed efficiently with a guaranteed low worst case complexity. Secondly, suboptimal algorithms provide a relatively good initial guess or relatively tight upper bound for any global optimization algorithm. Finally, these suboptimal algorithms might find the global optimum as they often do in practice. If any lower bound d on d_{min} ($d \leq d_{\text{min}}$) is known, a sufficient condition for the suboptimal minimizer z_{sub} to be the global minimizer z_{ML} is simply given by

$$\|\tilde{y} - Gz_{\text{sub}}\| \leq \frac{d}{2} \implies z_{\text{sub}} = z_{\text{ML}},$$

(19)

as there is only one lattice point in a ball centered at Gz_{sub} and with radius $d_{\text{min}}/2$. Note that d is usually a byproduct of the verification step, and therefore, condition (19) can be checked without any additional computation for finding d.

One suboptimal polynomial-time algorithm is the following (cf. [4].)

Suboptimal algorithm for finding an approximately nearest lattice point based on rounding.

Suppose $G \in \mathbb{R}^{q \times q}$ and $\tilde{y} \in \mathbb{R}^q$ are given. A suboptimal solution $z_{\text{sub}} \in \mathbb{Z}^q$ in the sense that

$$\|\tilde{y} - Gz_{\text{sub}}\| \leq \left(1 + 2q (4.5)^{q/2}\right) \min_{z \in \mathbb{Z}^q} \|\tilde{y} - Gz\|,$$

(20)

exists and is given by $z_{\text{sub}} = F[\bar{G}^{-1}\tilde{y}]$ where \bar{G} is the lattice generator matrix after performing the LLL algorithm on G and $\bar{G} = GF$.

Note that although the worst case bound in (20) appears to be loose, this suboptimal algorithm works much better in practice as reported in the literature (cf. [5]).

Another suboptimal polynomial-time algorithm for finding an approximately nearest lattice point is due to Babai (1986) (cf. [1], [4] and [8]).

4.3 Searching for Integral Points Inside an Ellipsoid

Once a candidate (or guess) $z = \tilde{z}$ to the minimizer of $\|\tilde{y} - Gz\|$ is found, we need to check whether there exists any other $z \in \mathbb{Z}^q$ satisfying $\|\tilde{y} - Gz\| < \|\tilde{y} - G\tilde{z}\|$. If no such z exists then \tilde{z} is the global minimizer, otherwise, we can find a better candidate for the optimum of $\|\tilde{y} - Gz\|$ that we need to check for its global optimality as well and so on. Therefore, an important step in finding \tilde{z} is the componentwise rounding operation to the nearest integer.
the minimum of \(\| \tilde{y} - Gz \| \) is searching for integral points (points with integer coordinates \(z \)) inside an ellipsoid \(\| \tilde{y} - Gz \| < r \). Refer to [8] for a method to perform this exhaustive search. It is shown that by putting \(G \) into a lower triangular form using a unitary transformation, this search can be performed more efficiently.

4.4 Global Optimization Algorithm

Basically, the global optimization algorithm for finding the minimizer of \(\| \tilde{y} - Gz \| \) consists of a good initial guess (using suboptimal algorithms of §4.2) followed by an efficient exhaustive search (§4.3.) Refer to [8] for details.

4.5 Summary

In this section we sketched a method for solving the integer least-squares problem for resolving the integer parameters in the linear model. In practice, this method is very efficient for problems with a few ten integer variables. The success of this method mainly relies on a guaranteed reasonably good initial guess for the minimizer by using the LLL algorithm.

After \(z \) is estimated by the global optimization algorithm in §4.4, the maximum likelihood estimate of \(z \), the real parameter, is straightforward. \(z_{ML} \) can be found as in (9).

5 Extensions

In this section we point out extensions to model (1). If there is a priori knowledge on the distribution of \(z \), similar formulas as in §2 can be given for the (maximum a posteriori) estimates (cf. [8].) Now suppose that we assume a state-space structure for the real parameter \(z = \begin{bmatrix} z_1^T & \cdots & z_N^T \end{bmatrix} \) as

\[
\begin{align*}
\xi_{k+1} &= F_k \xi_k + G_k u_k, \quad \xi(0) = \xi_0, \\
x_k &= H_k \xi_k + v_k \quad \text{for} \quad k = 0, 1, 2, \ldots, N
\end{align*}
\]

and the observation \(y_k \) is assumed to depend on the unknowns \(x_k \in \mathbb{R}^p \) and \(z \in \mathbb{R}^q \) through the linear relationship

\[y_k = A_k x_k + J_k z + w_k \]

in which \(\xi_0, u_k, v_k \) and \(w_k \) are Gaussian variables. In this case, the matrices \(G \) and \(\tilde{y} \) in (12) can be updated recursively such that

\[z_{ML}^{(k)} = \operatorname{argmin}_{z \in \mathbb{Z}^q} \| z_{ML}^{(k)} - G^{(k)} z \|, \quad k = 1, \ldots, N. \quad (21) \]

This recursive method (similar to the Kalman filter) has many numerical advantages and reduces data storage for applications in which the data comes in sequentially (e.g., GPS surveying.) A standard two-pass smoothing algorithm (cf. [3]) can be used to find the estimates of \(z_i \) for \(i = 1, \ldots, k \) once \(z_{ML}^{(k)} \) is computed from (21). Refer to [8] for details.

6 Simulations

The simulations in this section are based on a setup similar to the global positioning system (GPS) but in two dimensions (Figure 1.) In general, navigation using phase measurements from sinusoidal signals transmitted from far away locations in space with known coordinates can always be cast as an integer parameter estimation problem in a linear model. The unknown integers enter the equations as the number of carrier signal cycles between the receiver and the satellites when the carrier signal is initially phase locked.

Figure 1: Simulations in this section are based on a simplified GPS setup in two dimensions. The radius of the shaded circle (earth) is 6357km. Three satellites are assumed to orbit the earth at an altitude of 20200km and period of 12 hours.

In our simulation, we have assumed a constant receiver located at \(x^T = [-50 100] \) (of course this is not known a priori.) However, \(x \) is known to be Gaussian with mean zero and variance \(\sigma_x = 100m \) in both the \(x_1 \) and \(x_2 \) directions. The wavelength of the carrier signal and angular velocity for all three satellites is \(\lambda = 0.19m \) and \(\omega = 1/120^\circ \text{sec}^{-1} \) respectively. The satellites make angles of \(90^\circ \), \(120^\circ \) and \(45^\circ \) with the \(x_1 \) axis initially and the direction of rotation for all of them is clockwise. The variance of phase measurement noise in units of length is taken as \(\sigma = 0.01m \). The receiver measures the (sinusoidal) carrier signal phase from each of these satellites every \(T = 2 \) seconds for a period of 200 seconds. Refer to [2] and [8] for details.

Figure 2 gives the exact \(P_c \) (computed using Monte Carlo with 1500 random variates), and the upper and lower bounds \(P_{c,\text{up}} \) and \(P_{c,\text{low}} \) (lower bound using Gram-Schmidt method lower bound on \(d_{\text{in}} \)) as a func-
tion of time. Clearly, the upper bound \(P_{c,up} \) appears to be a very good approximation to \(P_c \) and as \(P_c \to 1 \), the lower bound \(P_{c,low} \) becomes exact as well. This is a very good feature as we are not conservative in bounding \(P_c \) when \(P_c \) is high and there is high reliability in our estimates.

![Figure 2](image)

Figure 2: \(P_c \) (dash-dot curve), \(P_{c,up} \) (upper bound using \(|\text{det } G| \)); upper solid curve, \(P_{c,low} \) (lower bound using lower bound on \(d_{\text{min}} \) using Gram-Schmidt method; lower solid curve) as a function of time.

In practice we might never compute the exact \(P_c \) and we have to live with (the inexact but much more easily computable) bounds. Given these bounds as in Figure 2, we can conclude that \(P_c \) is not greater than 0.99 after 132 seconds, so with a confidence level of 99\%, our reliability on \(z_{ML} \) is low. We have to wait for another 30 seconds until the lower bound hits the \(P_c = 0.99 \) line. From hereon, it is guaranteed that \(P_c > 0.99 \) and therefore \(z_{ML} \) is reliable.

We have plot the number of inner iterations in the global optimization algorithm to compute \(z_{ML} \) vs. time in Figure 3. A number of iterations equal to zero means that the initial value for \(z \) found in the algorithm (by performing the LLL algorithm and rounding off) is guaranteed to be the global minimizer according to (19) where \(d \) is the lower bound found on \(d_{\text{min}} \) using the Gram-Schmidt method in §3.3.2. Note the low number of iterations (cf. [8] for details.) In fact, the global optimization algorithm is very efficient in practice and can be solved instantly by a computer.

![Figure 3](image)

Figure 3: (a) \(P_c \) as a function of time. (b) Number of inner iterations in the global optimization algorithm for finding \(z_{ML} \) as a function of time. For high \(P_c \), the initial guess for the global minimizer is guaranteed to be the global minimizer using a very cheaply computed lower bound on \(d_{\text{min}} \) (using the Gram-Schmidt method.) Therefore, the global optimization algorithm becomes extremely efficient for high \(P_c \).

Figure 4 shows \(P_c \) as a function of time and the times at which the integer parameter \(z \) is resolved correctly using global optimization and the times at which it is resolved correctly using rounding off (i.e., \(z_{\text{est}} = [G^{-1}\hat{y}] \); without using the LLL algorithm of course.) The results clearly show that simple rounding shouldn’t be used in practice since even after 200 seconds we are still not able to resolve \(z \) by this method. On the other hand, using global optimization, \(z \) is resolved after 90 seconds or when \(P_c > 0.8 \).

7 Conclusions

In this paper we considered parameter estimation in linear models when some of the parameters are known to be integers. Simulation results show that if we neglect the integer nature of the parameters (treat these parameters as being real and then round off), we get very inexact estimates in practice. The main computational effort in the estimation step turns out to be the solution to an integer least-squares problem which is in fact \(\mathcal{NP} \)-hard. Verifying the maximum likelihood estimates seems to be a problem as hard as the estimation step (conjectured to be \(\mathcal{NP} \)-hard.) The probability of correct integer parameter estimation \(P_c \) was chosen as a useful reliability measure for our estimates. A polynomial-time algorithm due to Lenstra, Lenstra and Lovász (LLL algorithm) found to be very useful in the estimation and verification problems.

Very easily computable bounds can be found on \(P_c \) and
these bounds become exact as P_c is close to one; the only case that we are really interested in our parameter estimates because of their high reliability. The algorithm for solving the integer least-squares problem works very well for problem sizes of a few tens of variables which is typical in applications such as GPS. Moreover, the algorithm becomes even more efficient for high P_c.

These observations suggest the following general outline for integer parameter estimation in linear models.

General outline for integer parameter estimation in linear models. Under the setup of §1:

- **Update G**: After every measurement, say recursively, as noted in §5.
- **Compute $P_{c,up}$**: In (15) which is the upper bound based on the determinant of G. In practice, this bound is very close to P_c as demonstrated in the simulations.
- **When $P_{c,up}$ is large enough** (say $P_{c,up} > 0.99$), compute the lower bound $P_{c,low}$ in which the Gram-Schmidt method is used to provide a lower bound on d_{min} (apply the LLL algorithm on G to get a tighter bound.)
- **When $P_{c,low}$ is high** (say $P_{c,low} > 0.99$), we can assume that $z = z_{ML}$. Therefore, only at this step eventually solve the global optimization problem (12). Since P_c is close to unity, the algorithm for solving (12) would be extremely efficient.

- **Once $z = z_{ML}$ has been resolved**, there is no integer parameter to worry about. Use standard methods to estimate the real parameter x (e.g., two-pass smoothing algorithm.)

References

Appendix: Lenstra, Lenstra, Lovász (LLL) Algorithm

Suppose a lattice $L = L(G)$ with $G = [g_1, g_2, \ldots, g_q]$ is given. A reduced basis for L can be obtained as follows,

- Perform the Gram-Schmidt orthogonalization procedure on the vectors g_1, g_2, \ldots, g_q, i.e., compute the vectors g'_1, g'_2, \ldots, g'_q through the recursion

$$g'_j = g_j - \sum_{i=1}^{j-1} \frac{g_i \cdot g'_j}{\|g_i\|^2} g'_i \quad \text{for} \ j = 1, 2, \ldots, q. \quad (22)$$

$\{g'_1, g'_2, \ldots, g'_q\}$ will be an orthogonal basis for the subspace spanned by g_1, g_2, \ldots, g_q. From the definition (22), it is trivial that any vector g_i can be expressed as a linear combination of the vectors g'_1, g'_2, \ldots, g'_q as

$$g_i = \sum_{i=1}^{j} \mu_{ji} g'_i, \quad \text{where} \quad \mu_{ji} = g'_j \cdot g_i / \|g'_i\|^2 \quad \text{for} \ i = 1, 2, \ldots, j - 1 \text{ and with } \mu_{jj} = 1. \quad (23)$$

- For $j = 1, 2, \ldots, q$, and, given j, for $i = 1, 2, \ldots, j - 1$, replace g_j by $g_j - \lfloor \mu_{ji} \rfloor g_i$ where $\lfloor \mu_{ji} \rfloor$ is the integer nearest to μ_{ji}.

- If there is a subscript j violating

$$\|g'_{j+1} + \mu_{j+1,j+1} g'_j\|^2 \geq \frac{\alpha}{4} \|g'_j\|^2, \quad (24)$$

then interchange g_j and g_{j+1} and return to the first step, otherwise, stop. $G' = [g'_1, g'_2, \ldots, g'_q]$ is the reduced generator matrix of the lattice L.

The choice of $3/4$ in (24) as the allowed factor of decrease is arbitrary: any number between 1/4 and 1 would do just as well. The most natural choice (giving a best upper bound on the product $\|g_1\| \|g_2\| \cdots \|g_q\|$) would be $3/8$, but the polynomiality of the resulting algorithm cannot be guaranteed.