Abstract (Maximum 200 words)

This standard describes four ASCII (American Standard Code for Information Interchange) event count status formats to be used to transfer event count status over conventional asynchronous telecommunications circuits. These formats provide event count status information suitable for most computer, dumb terminal, line printer, and remote visual displays.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. **Agency Use Only (Leave blank).**

Block 2. **Report Date.** Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. **Type of Report and Dates Covered.** State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. **Title and Subtitle.** A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. **Funding Numbers.** To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract
G - Grant
PE - Program
PR - Project
TA - Task
WU - Work Unit
Element

Block 6. **Author(s).** Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. **Performing Organization Name(s) and Address(es).** Self-explanatory.

Block 8. **Performing Organization Report Number.** Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. **Sponsoring/Monitoring Agency Name(s) and Address(es).** Self-explanatory.

Block 10. **Sponsoring/Monitoring Agency Report Number. (If known)**

Block 11. **Supplementary Notes.** Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. **Distribution/Availability Statement.** Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORM, REL, ITAR).

- **DOD** - See DoDD 5230.24, "Distribution Statements on Technical Documents."
- **DOE** - See authorities.
- **NTIS** - Leave blank.

Block 12b. **Distribution Code.**

- **DOD** - Leave blank.
- **DOE** - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
- **NASA** - Leave blank.
- **NTIS** - Leave blank.

Block 13. **Abstract.** Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. **Subject Terms.** Keywords or phrases identifying major subjects in the report.

Block 15. **Number of Pages.** Enter the total number of pages.

Block 16. **Price Code.** Enter appropriate price code (NTIS only).

Blocks 17. - 19. **Security Classifications.** Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. **Limitation of Abstract.** This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
ASYNCHRONOUS ASCII EVENT COUNT STATUS CODES

WHITE SANDS MISSILE RANGE
KWAJALEIN MISSILE RANGE
YUMA PROVING GROUND
DUGWAY PROVING GROUND
ABERDEEN TEST CENTER

ATLANTIC FLEET WEAPONS TRAINING FACILITY
NAVAL AIR WARFARE CENTER WEAPONS DIVISION
NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION
NAVAL UNDERSEA WARFARE CENTER DIVISION, NEWPORT
PACIFIC MISSILE RANGE FACILITY

30TH SPACE WING
45TH SPACE WING
AIR FORCE FLIGHT TEST CENTER
AIR FORCE DEVELOPMENT TEST CENTER
AIR WARFARE CENTER
ARNOLD ENGINEERING DEVELOPMENT CENTER

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

19960924 008
IRIG STANDARD 215-96

ASYNCHRONOUS ASCII
EVENT COUNT STATUS CODES

SEPTEMBER 1996

Prepared by

TELECOMMUNICATIONS AND TIMING GROUP
RANGE COMMANDERS COUNCIL

Published by

Secretariat
Range Commanders Council
U.S. Army White Sands Missile Range
New Mexico 88002-5110
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 General Description of Standard</td>
<td>1</td>
</tr>
<tr>
<td>2.0 General Description of Formats</td>
<td>1</td>
</tr>
<tr>
<td>2.1 IRIG CS-511z</td>
<td>2</td>
</tr>
<tr>
<td>2.2 IRIG CS-522z</td>
<td>4</td>
</tr>
<tr>
<td>2.3 IRIG CS-513z</td>
<td>6</td>
</tr>
<tr>
<td>2.4 IRIG CS-524z</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Word Description</td>
<td>10</td>
</tr>
<tr>
<td>2.6 Parity</td>
<td>10</td>
</tr>
<tr>
<td>2.7 Baud Rates</td>
<td>10</td>
</tr>
<tr>
<td>2.8 IRIG CS Format Designation Description</td>
<td>11</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>ASCII event count status format CS-511z</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>ASCII event count status format CS-522z</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3</td>
<td>ASCII event count status format CS-513z</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>ASCII event count status format CS-524z</td>
<td>9</td>
</tr>
</tbody>
</table>
1.0 General Description of Standard

This standard describes four ASCII (American Standard Code for Information Interchange) event count status formats to be used to transfer event count status over conventional asynchronous telecommunications circuits. These formats provide event count status information suitable for most computer, dumb terminal, line printer, and remote visual displays. Precise event count status transfer is not an objective of this standard; therefore, there is no attempt to provide greater than 100-millisecond or 1-second resolution for these formats. This standard provides systems engineers and equipment vendors with an IRIG standard for ASCII-formatted event count status transfer which can be used in specifications for the procurement of equipment used on all United States test ranges and other military or civilian facilities.

2.0 General Description of Formats

An overview of the formats is described in the following paragraphs. See figures 1 through 4.
2.1 IRIG CS-511z

The IRIG CS-511z is for use at baud rates \geq 300 (see figure 1). It is a Time-of-Year format with 1-second resolution and frame length. The accuracy of this format at the receiver end is primarily dependent on the characteristics (fixed and variable transmission delays) of the communications circuits between the transmitting and receiving equipment. The ASCII expression for this format is

\[<SOH>I<SP>\pm DDD<SP>HH:MM:SS<SP>\#<CR><LF> \]

where

- \(<SOH> = \) start of header (01\text{16})
- I = identification character -- space (20\text{16}) is default, any alpha or numeric ASCII character
- \(<SP> = \) space (20\text{16})
- \(\pm = \) the event count sign
- DDD = the event count day
- HH = the event count hour of the day
- \(<> = \) colon (3A\text{16})
- MM = the event count minute of the hour
- SS = the event count second of the minute
- \(# = \) the event count status -- space (20\text{16}) is default, H (48\text{16}) if holding
- \(<CR> = \) carriage return (0D\text{16})
- \(<LF> = \) line feed (0A\text{16})

The IRIG CS-511z uses the first 200 bits of the 1-second frame. The remaining bits are idle (logic level = 1) for the remainder of the frame. The frame length is 1 second, regardless of the baud rate.

The identification character is an ASCII 'space' character by default, although any alpha numeric ASCII character may be used. The definition or function of the identification character is left to the user. Suggested uses might be identification of a net or network, an event, a test number, or a user number.
BAUD RATE (BR) ≥ 300

Example: Default ID, Event Count Status is -000 Days, 12 Hrs, 22 Mins, 18 Secs and Counting.

Time Frame = 1 Second

Wp | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
bp| 0 | 10| 20| 30| 40| 50| 60| 70| 80| 90| 100| 110| 120| 130| 140| 150| 160| 170| 180| 190| 200| 0

IDLE SOH <SP> <SP> - 0 0 0 <SP> 1 2 : 2 2 : 1 8 <SP> <SP> <CR> <LF> IDLE SOH

IDENTIFICATION CHARACTER (Wp = 1)
Space <SP> is the default.
Any alpha or numeric ASCII character.

COUNT STATUS (Wp = 17)
Space <SP> is the default.
'H' if the count is Holding.

ZERO COUNT
-000:00:00:00 is Undefined
+000:00:00:00 is Zero Count

Figure 1. ASCII event count status format CS-511z.
2.2 IRIG CS-522z

The IRIG CS-522z is for use at baud rates ≥ 2400 (see figure 2). It is a Time-of-Year format with 100-millisecond resolution and frame length. The accuracy of this format at the receiver end is primarily dependent on the characteristics (fixed and variable transmission delays) of the communications circuits between the transmitting and receiving equipment. The ASCII expression for this format is

\[
\text{SOH} I \text{SP} \pm \text{DDD} \text{SP} \text{HH:MM:SS.S} \text{SP} \# \text{CR} \text{LF}
\]

where

\[
\text{SOH} = \text{start of header (01)}
\]

\[
I = \text{identification character -- space (20) is default, any alpha or numeric ASCII character}
\]

\[
\text{SP} = \text{space (20)}
\]

\[
\pm = \text{the event count sign}
\]

\[
\text{DDD} = \text{the event count day}
\]

\[
\text{HH} = \text{the event count hour of the day}
\]

\[
< > = \text{colon (3A)}
\]

\[
\text{MM} = \text{the event count minute of the hour}
\]

\[
\text{SS.S} = \text{the event count second and tenth of second of the minute}
\]

\[
\text{period ‘.’ = (2E)}
\]

\[
\# = \text{the event count status -- space (20) is default, H (48) if holding}
\]

\[
\text{CR} = \text{carriage return (0D)}
\]

\[
\text{LF} = \text{line feed (0A)}
\]

The IRIG CS-522z uses the first 220 bits of the 100-millisecond frame. The remaining bits are idle (logic level = 1) for the remainder of the frame. The frame length is 100 milliseconds, regardless of the baud rate.

The identification character is an ASCII ‘space’ character by default, although any alpha numeric ASCII character may be used. The definition or function of the identification character is left to the user. Suggested uses might be identification of a net or network, an event, a test number, or a user number.
BAUD RATE (BR) ≥ 2400
Example: ID is 3, Event Count Status is -000 Days, 12 Hrs, 22 Mins, 18.5 Secs and Holding.

Time Frame = 100 milliseconds

IDENTIFICATION CHARACTER (Wp = 1)
Space <SP> is the default.
Any alpha or numeric ASCII character.

COUNT STATUS (Wp = 19)
Space <SP> is the default.
'H' if the count is Holding.

ZERO COUNT
-000:00:00:00:00 is Undefined
+000:00:00:00:00 is Zero Count

Figure 2. ASCII event count status format CS-522z.
2.3 IRIG CS-513z

The IRIG CS-513z is for use at baud rates ≥ 600 (see figure 3). It is a Time-of-Year format with 1-second resolution and frame length. In addition to the event count status, this format has information regarding the predicted time of launch or the actual time of launch if launch has occurred. The accuracy of this format at the receiver end is primarily dependent on the characteristics (fixed and variable transmission delays) of the communications circuits between the transmitting and receiving equipment. The ASCII expression for this format is

<SOH>I<SP>±DDD<SP>HH:MM:SS<SP>#=<SP>ddd<SP>hh:mm:ss.sss<SP>&<CR><LF>

where

<SOH> = start of header (01h)
I = identification character -- space (20h) is default, any alpha or numeric ASCII character
<SP> = space (20h)
± = the event count sign
DDD = the event count day
HH = the event count hour of the day
<: = colon (3Ah)
MM = the event count minute of the hour
SS = the event count second of the minute
= the event count status -- space (20h) is default, H (48h) if holding
ddd = predicted/actual launch day
hh = predicted/actual launch hour of the day
mm = predicted/actual launch minute of the hour
ss.sss = predicted/actual launch second and milliseconds of the minute
{period "." = (2Eh)}
& = launch time information -- P(50h) predicted, A(41h) actual
<CR> = carriage return (0Dh)
<LF> = line feed (0Ah)

The IRIG CS-513z uses the first 390 bits of the 1-second frame. The remaining bits are idle (logic level = 1) for the remainder of the frame. The frame length is 1 second, regardless of the baud rate.

The identification character is an ASCII ‘space’ character by default, although any alpha numeric ASCII character may be used. The definition or function of the identification character is left to the user. Suggested uses might be identification of a net or network, an event, a test number, or a user number.
BAUD RATE (BR) ≥ 600
Example: Default ID, Event Count Status is -000 Days, 12 Hrs, 22 Mins, 18 Secs and Holding. Predicted Launch Time is 123 Days, 12 Hrs, 45 Mins, 00.000 Secs (TOY).

IDENTIFICATION CHARACTER (Wp = 1)
Space <SP> is the default.
Any alpha or numeric ASCII character.

COUNT STATUS (Wp = 17)
Space <SP> is the default.
'H' if the count is Holding.

ZERO COUNT
-000:00:00:00 is Undefined
+000:00:00:00 is Zero Count

Figure 3. ASCII event count status format CS-513z.
2.4 IRIG CS-524z

The IRIG CS-524z is for use at baud rates ≥ 4800 (see figure 4). It is a Time-of-Year format with 100-millisecond resolution and frame length. In addition to the event count status, this format has information regarding the predicted time of launch or the actual time of launch if launch has occurred. The accuracy of this format at the receiver end is primarily dependent on the characteristics (fixed and variable transmission delays) of the communications circuits between the transmitting and receiving equipment. The ASCII expression for this format is

\[
<\text{SOH}>I<\text{SP}>\pm\text{DDD}<\text{SP}>\text{HH}:\text{MM}:\text{SS}.\text{S}<\text{SP}>\#<\text{SP}>\text{ddd}<\text{SP}>\text{hh}:\text{mm}:\text{ss}.\text{sss}<\text{SP}>
\&<\text{CR}><\text{LF}>
\]

where

- $<\text{SOH}> =$ start of header \((01_{16})\)
- \(I\) = identification character -- space \((20_{16})\) is default, any alpha or numeric ASCII character
- $<\text{SP}> =$ space \((20_{16})\)
- $\pm =$ the event count sign
- \(\text{DDD} =$ the event count day
- \(\text{HH} =$ the event count hour of the day
- $<:\text{> =$ colon \((3A_{16})\)
- \(\text{SS}.\text{S} =$ the event count second and tenth of second of the minute

 \(\text{period \"\"} = (2E_{16})\)
- $\# =$ the event count status -- space \((20_{16})\) is default, \(H (48_{16})\) if holding
- \(\text{ddd} =$ predicted/actual launch day
- \(\text{hh} =$ predicted/actual launch hour of the day
- \(\text{mm} =$ predicted/actual launch minute of the hour
- \(\text{ss}.\text{sss} =$ predicted/actual launch second and milliseconds of the minute
- $\& =$ launch time information -- P\((50_{16})\) predicted, A\((41_{16})\) actual
- $<\text{CR}> =$ carriage return \((0D_{16})\)
- $<\text{LF}> =$ line feed \((0A_{16})\)

The IRIG CS-524z uses the first 410 bits of the 100-millisecond frame. The remaining bits are idle (logic level = 1) for the remainder of the frame. The frame length is 100 milliseconds, regardless of the baud rate.

The identification character is an ASCII 'space' character by default, although any alpha numeric ASCII character may be used. The definition or function of the identification character is left to the user. Suggested uses might be identification of a net or network, an event, a test number, or a user number.
2.5 Word Description

Each ASCII word (character position) contains exactly 10 bits \((b_0 - b_9)\).

\[
\begin{align*}
 b_0 & = \text{start bit} \\
 b_1 - b_7 & = 7 \text{ bit sequence for ASCII character (lsb first)} \\
 b_8 & = \text{odd parity bit} \\
 b_9 & = \text{stop bit}
\end{align*}
\]

2.6 Parity

This standard employs ODD parity only.

2.7 Baud Rates

The baud rates for the four ASCII event count status formats are

\[
\begin{align*}
 \text{CS-511z} & \geq 300 \text{ baud} \\
 \text{CS-522z} & \geq 2400 \text{ baud} \\
 \text{CS-513z} & \geq 600 \text{ baud} \\
 \text{CS-524z} & \geq 4800 \text{ baud}
\end{align*}
\]
2.8 IRIG CS Format Designation Description

The IRIG CS format and baud rates can be uniquely described by specifying \(x \), \(y \), and \(z \) in IRIG CS-5\(xyz\),

where

\[
\begin{align*}
 x &= 1 \text{ for 1-second resolution} \\
 &= 2 \text{ for 0.1-second resolution} \\
 y &= 1 \text{ for format described in paragraph 2.1} \\
 &= 2 \text{ for format described in paragraph 2.2} \\
 &= 3 \text{ for format described in paragraph 2.3} \\
 &= 4 \text{ for format described in paragraph 2.4} \\
 z &= 2 \text{ for 300 baud rate} \\
 &= 3 \text{ for 600 baud rate} \\
 &= 4 \text{ for 1200 baud rate} \\
 &= 5 \text{ for 2400 baud rate} \\
 &= 6 \text{ for 4800 baud rate} \\
 &= 7 \text{ for 9600 baud rate} \\
 &= 8 \text{ for 19,200 baud rate}
\end{align*}
\]

Example: The IRIG CS-5226 describes the ASCII format containing event count status with 100-millisecond resolution and frame length which is transmitted at 4800 baud.

Standard formats are IRIG CS-5112, IRIG CS-5113, IRIG CS-5114, IRIG CS-5225, IRIG CS-5226, IRIG CS-5227, IRIG CS-5228, IRIG CS-5133, IRIG CS-5134, IRIG CS-5135, IRIG CS-5246, IRIG CS-5247, and IRIG CS-5248.