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PREFACE 

The command and control of modern military forces is becoming increasingly de- 
pendent on space assets for a wide variety of functions. Prominent among these are 
communication satellites, the value of which has been amply demonstrated in recent 
military operations, notably Operations Desert Shield/Storm. Unfortunately, mod- 
ern communication satellite systems are very expensive. Given the shrinking military 
budget and the volatile geopolitical world in which they must be used, it becomes es- 
sential to obtain those systems that best serve these uncertain needs and to do so at 
the least cost. 

As part of its research for the Army and the Air Force, RAND is constructing a 
concept-level modeling tool that is intended to permit evaluating conceptual military 
communication satellite systems at a systems level. That is, it considers only basic 
design parameters. This report is the third in a series devoted to presenting the ana- 
lytical procedures required in such a computer model and does not discuss the 
model's implementation. The first in the series is MR-639-AF/A, Concept-Level Ana- 
lytical Procedures for Loading Nonprocessing Communication Satellites with 
Nonantijam Signals, by Edward Bedrosian and Gaylord K. Huth, 1996. The second is 
MR-640-AF/A, Concept-Level Analytical Procedures for Loading Nonprocessing 
Communication Satellites with Direct-Sequence, Spread-Spectrum Signals, by Edward 
Bedrosian and Gaylord K. Huth, 1996. A detailed description of the concept-level 
modeling tool and examples of its use will be presented in a forthcoming report. 

This analysis has been conducted jointly under two of RAND's federally funded 
research and development centers (FFRDCs)—Project AIR FORCE and the Arroyo 
Center. 

Project AIR FORCE is the FFRDC operated by RAND for the U.S. Air Force. It is the 
only Air Force FFRDC charged with policy analysis. Its chief mission is to conduct 
objective and independent research and analysis on enduring issues of policy, man- 
agement, technology, and resource allocation that will be of concern to the senior 
leaders and decisionmakers of the Air Force. Project AIR FORCE work is performed 
under contract F49620-91-C-0003. The research reported in this document was con- 
ducted under the C4I/Space Project within the Force Modernization and Employ- 
ment Program of Project AIR FORCE. 

The Arroyo Center is a studies and analysis FFRDC operated by RAND for the U.S. 
Army. It provides the Army with objective, independent analytic research on major 



iv     Preface 

policy and organizational concerns, emphasizing mid- and long-term problems. 
Arroyo Center work is performed under contract MDA903-91-C-0006. The research 
reported in this document was conducted under the C3I/Space for Contingency 
Operations Project within the Force Development and Technology Program of the 
Arroyo Center. 
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SUMMARY 

This report presents the results of a theoretical analysis of a frequency-hopping, 
multiple-frequency-shift-keyed, spread-spectrum communication system using a 
nonprocessing communication satellite transponder. A large number of users are 
assumed to be hopping pseudo-randomly about the transponder passband in time 
synchronization and approximate frequency synchronization. The users are as- 
sumed to be free to hop independently with the result that they occasionally interfere 
with one another. Formulations are presented that permit assessment of the level of 
mutual interference, thereby facilitating the selection of system parameters that will 
maximize the communication throughput of the system. 

The results presented here are purely theoretical. Numerical calculations will be pre- 
sented in graphical form in a future report. These will then be used to develop a 
satellite loading procedure. They will also be extended to apply to hard-limiting 
satellite transponders and to consider the effects of jamming. 
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 Chapter One 

INTRODUCTION 

Frequency hopping and direct sequence are the two most common types of spread- 
spectrum modulation used to combat jamming, i.e., deliberate interference. They do 
this by spreading the signal energy over a much wider bandwidth than that required 
to convey the basic information stream. When this is done in a fashion that the 
jammer cannot duplicate (usually by using pseudo-random sequences appropri- 
ately), it is possible to retrieve the desired signal while causing the jamming signal 
energy to be diluted by the bandwidth spreading factor. 

It is apparent that spread-spectrum signaling can equally well be used to accommo- 
date a large number of users simultaneously in a large bandwidth by letting each user 
regard the set of all other users as the interference with which it must cope. Although 
systems using frequency-division multiplex can make more efficient use of the chan- 
nel, they are difficult to adapt to a random-multiple-access mode of operation in 
which a much larger number of users than the channel can accommodate at a given 
instant wish to have access to the channel for relatively short periods of time at mo- 
ments of their own choosing. 

Frequency-hopping and direct-sequence systems both form the signal data stream 
into a sequence of symbols that occur at a rate not much different from the informa- 
tion bit rate. Each symbol denotes one or more information bits that have been pro- 
cessed to include coding, encrypting, etc. The bandwidth required to transmit the 
symbol stream is characteristic of a given system and constitutes the relatively small 
bandwidth that is to be spread over the much wider transmission channel. 

In frequency-hopping systems, the individual symbols are transmitted, either in their 
entirety or in segments, as "chips," whose center frequencies are changed chip by 
chip in a pseudo-random fashion so as to cause the average signal energy to be 
spread pseudo-randomly over the entire channel. In direct-sequence systems, each 
symbol has its energy spread pseudo-randomly over the entire channel; hence, the 
channel appears fully occupied at all times. 

The interest here is in the cooperative, multiple-access use of frequency-hopping for 
military communications via a frequency-translating communication satellite. The 
analysis presented in this report, which treats the unjammed use of a simple linear 
transponder (of the type found in commercial communication satellites), is the first 
step in this process. Its length and complexity led to the decision to publish it sepa- 
rately, with supporting numerical computations to be presented in graphical form in 
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a future report. Subsequent research will include a treatment of hard-limiting 
transponders and the jamming of both types of transponders. 

The theory of a frequency-hopped (FH), multiple-frequency-shift-keyed (MFSK) 
spread-spectrum comunication system is described in simple terms in Chapter Two 
to provide a framework for the analysis to follow. Block diagams are used to show 
how such signals are generated and detected and time-frequency diagrams are used 
to illustrate how the signal energy is distributed by such a modulation scheme. In 
Chapter Three the statistics describing how the signals of a large number of MFSK 
users are distributed about the spread band by the hopping process are developed. 
These furnish the basis for quantifying the mutual interference they experience from 
one another. 

The structure of a typical MFSK demodulator is presented in block diagram form in 
Chapter Four, leading to a mathematical description of how its output is related to its 
input. The technique of diversity transmission and reception, which is integral to 
operating in the face of interference, intentional or not, is introduced at this point. In 
Chapter Five, the general expression for the symbol error probability is derived and 
presented in both the form of an integral representation and an expansion in terms 
of increasing complexity. The latter is used to illustrate the various approximations 
and bounds that are of value in some cases. 

An analytical model for the interference caused to one another by the various users 
as they hop about the spread band is developed in Chapter Six. Experimental evi- 
dence is presented suggesting that received user powers can be approximated by a 
log-normal distribution. It is then shown that if the individual received user powers 
are expressed as two-dimensional Gaussian variates, the sum of a number of such re- 
ceived signals will have a Rayleigh distribution of amplitudes and that the power of 
such a composite signal approximates a log-normal distribution. Lacking more ex- 
perimental evidence, the accuracy of this analytical model cannot be assessed but 
the approximation appears sufficiently promising to warrant using it as the basis for 
an analysis of a frequency-hopped MFSK system to arrive at a performance evalua- 
tion that can be compared with the performance of actual systems. The alternative 
would be to use the log-normal distribution directly—an approach that would lead to 
considerable analytical difficulties. 

The non-diversity case (N = 1) is analyzed in Chapter Seven, culminating in the de- 
velopment of the density functions characterizing the demodulator outputs in the 
signal-bearing and non-signal-bearing detection channels. These can then be used 
in the symbol error probability formulations developed in Chapter Five. The dual- 
diversity case is analyzed in Chapter Eight, where it is shown that an exact formula- 
tion, analogous to the one developed in Chapter Seven for the non-diversity case, 
does not appear possible. However, a bounded solution for the linear detector, 
which may prove useful in some circumstances, is presented as an example of an 
analytical alternative. Analytical solutions suitable for orders of diversity greater 
than two may not be practical, indicating the need for Monte Carlo simulations to 
obtain performance results. 
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An asymptotic model for the detection-channel outputs when operating at high or- 
ders of diversity (N » 1) is developed in Chapter Nine for both the linear and the 
square-law detector. The corresponding formulations for the symbol error probabil- 
ity are presented in Chapter Ten. 



Chapter Two 

FREQUENCY-HOPPED, MULTIPLE-FREQUENCY-SHIFT-KEYED, 
  SPREAD-SPECTRUM SYSTEMS 

A basic MFSK system is shown in block diagram form in Figure 2.1. In the transmit- 
ter, the binary information data stream is first processed (e.g., coded for error cor- 
rection) and then buffered m bits at a time in a binary m-tuple, which then forms an 
M-ary symbol stream. That is, each M-ary symbol conveys m bits of processed data, 
where 

M = 2r 
(2.1) 

The size of the symbol alphabet is M and the symbol rate is 1/mth the processed data 
rate. 

The MFSK modulator shifts a basic carrier at frequency fc to one of M frequencies, 
each corresponding to one of the M possible symbols. Each such RF tone constitutes 
a "chip" of duration Tc, which is related to the chip rate Rc by 

= VRc (2.2) 

RANDMR672-2.1 
Binary 
data 

stream 
Processor Binary 

m-tuple Time and 

M- 
syi 
str 

ary 
nbol 
earm r Channel 

frequency 
sync M-ary 

symbol 
Binary 
data 

Carrier      . MFSK 
modulator 

nterference 

MFSK 
demodulator 

stream 
Processor 

stream 
frequency 

Transmi tter deceive r 

Figure 2.1—Basic MFSK System Block Diagram 
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The M carrier frequencies used to define the symbol alphabet can be resolved un- 
ambiguously by the MFSK receiver if they are separated by an integer multiple of Rc 

in frequency. This is illustrated in Figure 2.2 for M = 8 using minimum chip spacing.1 

To form the frequency-hopped, spread-spectrum version of MFSK, the system block 
diagram takes the form shown in Figure 2.3. The difference is the addition of an FH 
modulator in the transmitter and an FH demodulator in the receiver, each controlled 
by a binary K-tuple buffer driven by identical pseudo-random sequences. During 
each chip interval, K of the binary digits generated by the pseudo-random-sequences 
generator are stored in the binary K-tuple buffer and used in the multiplier to select, 
apparently at random, one of 2K carrier frequencies to which the basic MFSK carrier 
frequency fc is hopped. The 2K carrier frequencies are spaced M/ Rc apart, with the 
result that the basic MFSK set of tones, which originally spanned a band of width 
M/ Rc, will, over time, be observed to hop over a band of width 2K Ml Rc. In the re- 
ceiver, an identical pseudo-random sequence having a time delay equal to the prop- 
agation time "dehops" the various chips back to the basic MFSK carrier frequency, 
thereby permitting conventional MFSK demodulation. 

The frequency-hopped, spread-spectrum version of the MFSK chip sequence pre- 
sented in Figure 2.2 is depicted in Figure 2.4. The dashed line shown in each chip 
interval represents the hopped center frequency, which is displaced from the center 
frequency according to the pattern displayed in Figure 2.2. In terms of frequency 
slots that the chips can occupy, it is seen that there are a total of 2KM over the spread 
band. 

nm0MR5672-2.2 

Binary data stream 

8-ary symbol stream 

Carrier    f3 

freq.    fc 

M(=8) 
frequency     ^ 

slots 

i 1/Rc 

T 

Time 

-Tc- 

Chip duration 

Figure 2.2—Frequency-Time Diagram of a Typical MFSK Chip Sequence 
for M = 8 with Minimum Chip Spacing in Frequency 

^he shaded areas for the chips in Figure 2.2 suggest a time-bandwidth product of unity. The energy for 
each chip is indeed confined to its duration in time, but the distribution in frequency varies as (sin x/x) 
rather than being confined to 1 / Rc, as drawn. 
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Figure 2.3—Basic FH MFSK System Block Diagram 
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Figure 2.4—Frequency-Time Diagram of the FH MFSK Chip Sequence 
Shown in Figure 2.2 for M = 8 
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A final point has to do with the relationship between the symbol, chip, and hop rates. 
To simplify the demodulator design, both m, the number of bits per symbol (and, 
hence, the symbol alphabet size M), and the chip rate Rc are often fixed. When the 
symbol rate equals the chip rate the result is as shown in Figure 2.2, in which infor- 
mation is transmitted, at the rate of one symbol per chip. It is further customary to 
fix the hop rate equal to the chip rate with the result, as shown in Figure 2.4, of the 
transmission of one symbol per hopped chip. 

In such systems the information rate in symbols per second is varied by changing the 
number of symbols per chip. Thus, the information rate can be doubled by sending 
two symbols per chip or halved by using two chips to send one symbol. Clearly, there 
must be a commensurable (preferably an integer) relationship between the symbol 
and chip rates; in practice, they are usually related by powers of 2. 

For example, consider a system having a chip rate of 1600 per sec using M = 8 and 
rate 1/2 coding. In that case, an information rate of 2400 bps will result in a symbol 
rate of 1600 per sec, which matches the chip rate. Data rates of 1200, 600, 300,150, 
and 75 bps will yield symbol rates of 800, 400, 200, 100, and 50 per sec and result in 
the transmission of 2, 4, 8, 16, and 32 chips for each symbol, respectively. When 
frequency-hopped, as shown in Figure 2.5, such systems are known as fast- 
frequency-hopped (FFH) because there may have to be a number of hops (up to 32 in 
this example), each consisting of one chip, to convey a given symbol. That is, the hop 
rate must equal or exceed the chip rate. The number of chips per symbol is also 
known as the order of diversity N. The dual diversity case, i.e., N = 2, illustrated in 
Figure 2.5 shows how pairs of hopped chips have identical displacements from the 
nominal hopped carrier frequencies. 

RANDMB672-2.5 

Binary data stream 0 1 0 1 1 0 0 1 1 

8-ary symbol stream 2 6 3 
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^            ^ 
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Figure 2.5—Frequency-Time Diagram of the FFH MFSK Chip Sequence 
Shown in Figure 2.2 for M = 8 and N = 2 
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The counterpart approach of slow-frequency-hopped (SFH) will not be described in 
detail here because the focus of the analysis to follow is on fast-frequency-hopping. 
More complete descriptions of both types can be found in Ziemer and Peterson 
(1985), Sklar (1988), and Simon et al. (1985). 



Chapter Three 

THE HOPPED-SIGNAL ENVIRONMENT IN THE SPREAD BAND 

Let n denote the number of frequency slots available in the spread band, where 

n = 2KM (3.1) 

as depicted in Figures 2.4 and 2.5, and assume that there are k users hopping about 
these n frequency slots. The hopped tones are assumed to be in time synchroniza- 
tion and approximate frequency-synchronization so that all users change hop fre- 
quencies at the same time and are approximately at the center frequencies of their 
associated frequency slots (but with random phases). Finally, it is assumed that the 
hops of the k users are uniformly distributed at random over the n frequency slots. 
Thus, the probability p that a given user will hop onto (or "hit") a given frequency slot 
is given by 

P = - (3.2) 
n 

Consider a given chip interval during which a total of k users are distributed at ran- 
dom among the n frequency slots. The probability p(rj, r2, • • •, rn) that there will be rj 
users in the ith frequency slot i = 1,2, •• •, n is given by the multinomial distribution 

p(r1,r2,-,rn) = —-^ -p?p£ -p% (3.3) 
rl!r2-    'V 

where p; is the probability of a given user hopping into the ith frequency slot and 

n n 
]TPi=l J/i=k (3.4) 
i=l i=l 

When pi = 1/n for all i as in Eq. (3.2), Eq. (3.3) reduces to 

k! k p(ri,r2,-,rn) = —— -pK (3.5) 
ii!r2!-rn! 

11 
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here because the demodulator at a given user needs only consider M of the fre- 
quency slots at a time, where, typically, M « n. It will be assumed, in that event, that 
the occurrences of users hopping into the M frequency slots are independent events 
so that Eq. (3.5) can be written. 

p(ii, r2, • • •, rn) = p(rj )p(r2) • • ■ p(rn) (3.6) 

The individual probabilities that r of the k users are to be found in a given frequency 
slot are then given by the binomial distribution 

PW = ^7T^Pr(1-P)k"r       r=U,-,k (3-7) r!(k-r)! 

where p is the probability of a user hopping into the frequency slot of interest and 
1 - p is the probability of the user hopping elsewhere. The average X of r in Eq. (3.7) 
is given by 

X = kp = k/n (3.8) 

where Eq. (3.2) has been used. 

A further simplification is possible by noting that in the limit as k->°° (many users) 
and p = 1/n -» 0 (many frequency slots) in such a way that X, the average number of 
users hopping into a given frequency slot, as given by Eq. (3.8), remains constant, it 
can be shown (e.g., Cramer, 1946) that Eq. (3.7) approaches a Poisson distribution 

p(r) = ^— r = 0,1,2,- (3.9) 
r! 

It will be assumed that this approximation is valid for this analysis. 

From the communication point of view, it is preferable to consider one of the k users 
as the desired one and the other k-1 users as potential interferers. Hence, when one 
considers the M frequency slots of interest to an MFSK receiver, it can be assumed 
that each of them will contain r interfering tones, where r has the distribution given 
byEq. (3.9), but with 

Jt = — (3.10) 
n 

and that one of them will contain the desired tone as well. An alternative formula- 
tion for X is obtained by noting that the total number of frequency slots n is equal to 
the hopping bandwidth W divided by the bandwidth Rc per frequency slot. Hence, 

(k-l)Rc = k-l_ 
W WTC 

where Eq. (2.2) has been used to introduce the chip duration Tc in preference to Rc. 



Chapter Four 

THE MFSK DEMODULATOR 

There are a variety of MFSK demodulators used in pratical MFSK receivers. The 
block diagram of the MFSK demodulator chosen for analysis is shown in Figure 4.1. 
Though optimum for use in the presence of wideband noise, it was not chosen for 
this reason. The interference to be considered here includes the possibility of mul- 
tiple interfering tones from other users, as well as tone jamming, a condition for 
which the optimum demodulator structure is not known. Future analysis may re- 
quire consideration of other structures. 

It is assumed that the hopped signal shown in Figures 2.4 or 2.5 has been dehopped 
and converted to a convenient intermediate frequency (IF). The detection is done in 
a bank of M non-coherent, quadrature detectors, each tuned to one of the M symbol 
frequencies. An operator f at the output of each detector defines its basic character- 
istic. For an amplitude detector, sometimes called a linear detector, f(X) = V£; for a 
square-law detector f(X) = X. In principle, any monotone function f can be used. 
The M detection channels each contain such a detector whose output f(X) is sam- 
pled at the end of each chip interval, Tc. These samples are then summed over the N 
chip intervals constituting a symbol and presented to the symbol detector, which se- 
lects the largest sum as the best estimate of the transmitted symbol. 

In a simple communication link, the input would consist, at any given time, of a de- 
sired tone to which is added background noise. Thus, one of the M detectors will ex- 
perience that tone plus noise as its input and the remaining M - 1 will have noise 
alone. The analysis of such a system is well known and can be found in any standard 
text. The interest here is in a system in which, in addition to the background noise, 
M - 1 of the detectors experience a number of extraneous tones and one detector ex- 
periences noise, the extraneous tones, and the tone from the desired user. The calcu- 
lation of the symbol error probability in such a case is much more difficult and no 
general solution is available. The analysis offered here treats the tractable special 
case in which the extraneous tones can be treated as two-dimensional gaussian vari- 
ates. 

It should be noted that the quadrature detectors shown in Figure 4.1 are not slab- 
sided, bandpass filters having a bandwidth equal to that of the frequency slot to 
which they are tuned. In fact, their frequency responses are of the sin x/x form, 
which means that they will respond significantly to tones well outside the frequency 
slot to which they are tuned. This property is accommodated in practice by making 

13 
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Figure 4.1—Typical Fast-Frequency-Hopping MFSK Demodulator 

the integration time equal to the chip length, with the result that, if the quadrature 
detectors are all tuned to the centers of the frequency slots they are intended to 
cover, then the zeros of their individual sin x/x frequency responses will all fall at the 
centers of the other frequency slots. Hence, the only quadrature detector that will re- 
spond to a tone centered on a given frequency slot is the one tuned to that frequency 
slot. The quadrature detectors are then said to be orthogonal. Actually, orthogonal- 
ity is realized for any set of M frequency slots to which the quadrature detectors are 
tuned, not just the adjacent sets illustrated in Figures 2.2, 2.4, and 2.5. Non-adjacent 
sets are sometimes used to diminish the effect of non-centered tones in nearby fre- 
quency slots by taking advantage of the sin x/x frequency-response falloff. The term 
"modulation index" is sometimes used to describe this practice, with a modulation 
index of unity denoting the use of adjacent frequency slots, a modulation index of 
two denoting the use of every other frequency slot, etc.1 

1The term "modulation index" is also widely used to express the ratio of frequency deviation of a 
frequency modulated carrier to the frequency of a sinusoidal modulating signal. 
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present, the same would be true of a randomly hopped, FH MFSK system, the only 
difference being that coordinated dehopping is required to present the contents of 
the M frequency slots then of interest to the quadrature detector bank during each 
chip interval. If the interfering tones in the M frequency slots were also at the centers 
of their frequency slots, they would, like the desired tone, be accepted only by their 
corresponding quadrature detectors. It will be assumed in the following that despite 
oscillator instabilities, Doppler shifts, etc., all of the tones are sufficiently close to the 
center frequencies of their associated frequency slots that mutual effects on other 
quadrature detectors can be neglected.2 In other words, each quadrature detector 
will be assumed to have at its input only those tones present in the frequency slot to 
which it is tuned. Furthermore, it will be assumed that the receiver has attained fre- 
quency synchronization with the desired tone. That is, the quadrature oscillator in 
each quadrature detector is at exactly the same frequency that the desired tone 
would have were it input to that quadrature detector. 

Hence, as indicated on Figure 4.1, the total input to the MFSK demodulator can be 
written as 

2KM 

f(t)=£fj(t) (4.1) 
i=l 

where f;(t) represents only the sum of the tones present in the ith frequency slot. 
Only M of these 2KM frequency slots are of interest to the MFSK demodulator. The 
input to the kth of these M detection channels can then be written 

Pk 

fk(t) = ^aicos(coit-i-0i)     k = l,2,---,M (4.2) 
i=i 

where the summation indicates that there are pk terms present. If the kth detection 
channel is the one containing the desired tone, pk will equal r + 1, where r is a Pois- 
son random variable drawn from Eq. (3.9) with a mean given by Eq. (3.10). If the kth 
detection channel does not contain the desired tone, pk will simply equal r. 

Even if the users have approximately equal radiated powers (as a result, perhaps, of 
system power control), the received tones will have amplitudes a, which, though 
relatively constant as a function of time, may differ considerably from one another 
for practical reasons, and may resemble random variables. The radian frequencies, 
i.e., the co, will correspond approximately to the M permissible tone frequencies to 
which the detectors are tuned. As noted above, the frequency of the desired tone will 
match exactly, but the k - 1 others will differ slightly from the corresponding 
quadrature-detector frequencies because of oscillator instabilities and Doppler 
shifts.  Lacking phase synchronization, the 9 will be random variables uniformly 

^This is a practical assumption in an FH system using a satellite as a communications relay. It could be 
implemented by using a beacon aboard the satellite as a reference, for example. 
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distributed in (0,2 n). It will be assumed in the following that a, co, and 0 remain es- 
sentially constant during a chip interval. 

Consider the kth detection channel (k = 1,2, • • •, M) at the end of the jth diversity chip 
(j = 1,2, ---.N). It is shown in Appendix A that the output of the first sampler in Figure 
4.1 is given by 

gk.j 

Pk 

I 
i=l 

afTc 

2 

' sm X; ^ 
xi   j 

Pk   Pk       I   2T 

♦*zx r-f 
i=i j=i 

'sinxj^ 

I   xi   J 
a?Tc 

f •      \ sin Xj 

xi ^       )    J i   2 
COS (Xj -Xj) + (9i -0j) (4.3) 

where 

xj = (CDi-o)k)Tc/2 Xj = (cOj-cok)Tc/2 (4.4) 

and f is defined in Figure 4.1 for the particular type of detector being considered. 

If, for a square-law quadrature detector, for which f(E) = E, only a single properly 
tuned tone of amplitude a is present, Eq. (4.3) reduces to 

_a2Tc 
8k,j-   2 

If the tone has power P, its amplitude is given by 

(4.5) 

(4.6) 

and its energy by 

EC=PTC=^ (4.7) 

which shows, from comparison with Eq. (4.5), that the square-law, quadrature detec- 
tor is a true energy detector when only a single tone is present. However, if there are 
two or more tones arriving with different amplitudes, frequencies, and phases, the 
cross terms and sin x/x factors in Eq. (4.3) arise and the output of a square-law, 
quadrature detector is seen to be other than the sum of the energies of the compo- 
nent tones. Quadrature detectors of other types, e.g., linear, are not energy detectors 
even when the input is a single properly tuned tone. 

Fortunately, the form of gk j can be made more tractable in the multi-tone case by 
taking advantage of the assumption of approximate frequency-synchronization of 
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the extraneous tones in each quadrature detector. In that case, the composite signal 
that is input to each of the quadrature detectors, being the sum of r (or r + 1) tones of 
independent random phase and amplitude at approximately the same frequency, 
will not appear to change significantly in total amplitude or phase during the inte- 
gration time Tc. Then, each quadrature detector output will be given approximately 
by 

gk,j=f 
a2Tc 

(4.8) 

as if there were only a single tone of composite amplitude a at its input. 

Determining the amplitude distribution of this composite tone requires finding the 
magnitude of the sum of its two-dimensional component tones. In general, this is a 
difficult computation, particularly when more than only a few tones are involved. It 
will be seen in Chapter Six, however, that an especially simple solution results when 
the component tones are assumed to be two-dimensional Gaussian variates. In that 
event, the individual tones, as well as their sums, have Rayleigh amplitude 
distributions. 

Finally, the output of the second sampler in the kth detection channel in Figure 4.1 is 
given by 

hk,N=Xgk,i k = l,2,--,M (4.9) 
)=i 

Let kN identify the detection channel that has the largest value of hkN, i.e., 

kN = maxhkN (4.10) 

This, then, identifies the detection channel most likely to contain the transmitted 
symbol. 



 Chapter Five 

THE SYMBOL ERROR PROBABILITY 

In a conventional communications application, analysis of the performance of an 
MFSK demodulator is considerably simplified because the interference consists 
solely of a relatively weak Gaussian background noise that appears equally in all the 
M detection channels. In the application of interest here, in which the interference 
consists of random noise plus a number of extraneous tones from other users, the 
presence and distribution of these extraneous tones must be considered carefully, 
because they can be expected to be comparable in amplitude to the desired tone. 

With reference to Figure 4.1, consider the set of MN interfering tones that will be in- 
cident upon the MFSK demodulator in the course of the N chips that constitute the 
single symbol to be transmitted by Nth-order diversity. Let rk ; denote the number 
of interfering tones present in the kth detection channel during the jth chip, where 
k = l,2,---,M and j = l,2,--,N, and where rk j is a random variable chosen from the 
Poisson distribution given by Eq. (3.9). It may be assumed, without loss of generality, 
that the desired tone is contained in the Mth detection channel. Thus, in the first 
M - 1 detection channel, there will be only interfering tones, whereas in the Mth de- 
tection channel, there will be interfering tones plus the desired tone. To determine 
the probability of correctly identifying the Mth channel as the one containing the 
desired tone, it is necessary to consider the probability density functions of these en- 
sembles of tones. 

Consider first the M - 1 detection channels not containing the desired tone. Let 
rc(gk|j) denote the probability density function of the output of the first sampler in 
the kth detection channel at the end of the jth diversity chip where gk; is given by 
Eq. (4.8) for k = 1,2,- ■ -,M -1. Clearly, Tc(gkj-) has the same functional form in all M -1 
detection channels for each of the N diversity chips, the only difference in a particu- 
lar chip being the parameter of the distribution as determined by the number of in- 
terfering tones that are present. Then, let p(hk N) denote the probability density 
function of the output of the second sampler in the kth detection channel at the end 
of the Nth diversity chip, where hk N is given by Eq. (4.9). It is apparent from Eq. 
(4.9) that p(hk N), k = 1,2,- • -,M -1 is simply the N-fold convolution of the 7r(gkj). 

Consider next the Mth detection channel, which contains in each chip both the de- 
sired tone and interfering tones. Let <KgM,j) denote the probability density function 
of the output of the first sampler at the end of the jth diversity chip, where gk ,• is 
given by Eq. (4.8) for k = M. Clearly, <KgM,j) nas tne same functional form in each of 
the N diversity chips, the only difference in a particular chip being the parameter of 
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the distribution as determined by the number of interfering tones that are present. 
Then, let f(hM N) denote the probability density function of the output of the second 
sampler at the end of the Nth diversity, where hMN is given by Eq. (4.9) for k = M. As 
was the case for the M - 1 non-signal-bearing channels, f(hMN) is the N-fold 
convolution of the <HgM,j)- 

The probability £>|(M,N) of symbol error in a MFSK system using Nth-order diversity 
for a particular set [rk,-] of interfering tones is found by calculating the probability 
that an incorrect decision is made as to which detection channel contains the desired 
tone. This decision is made on the basis of which detection channel has the largest 
output at the end of the diversity transmission. Given that the desired tone is in the 
Mth detection channel, a correct decision will be made if hM N, the output of Mth 
detection channel, is the greatest of the outputs hkN, k = 1,2, • •■;M - 1 of the other 
M - 1 detection channels. For convenience, let xk denote hk N. Then, the prob- 
ability of a correct decision is given by 

M-l   XM 

Pc(xM) = P(allxk<xM)    k = l,2,-,M-l = Y[   Jp(xk)dxk (5.1) 
k=l    o 

The probability of symbol error p|(M,N) for this particular set [rkj] of interfering 
tones is found by averaging [l-Pc(xM)] over the probability density function f(xM). 
Hence, 

M-l   XM 
1_n    |P(xk)dxk 

k=l     o 

p|(M,N)= Jf(xM) 
0 

=i-jf(xM)'n 

dx M 

Jp(xk)d xk 

XM 

dx M 
(5.2) 

Expanding the product yields 

M-l 

p|(M,N) = l-Jf(xM)l-]£   Jp(xkl)dxkl 
0 L     kx=l XM 

M-l   M-l    °° ~ 
+ X   X   JpKJdx^ jp(xk2)dxk2-- 

ki=l k2=l xM XM 

M-l   M-l        M-l      ~ 

+(-uM-1E I- S JPKKJPKK 
ki=l k2=l   kM_!=l xM XM 

Kl*K2*  -*KM_I 

J^kM-i^kM-i xxM 

XM 



The Symbol Error Probability    21 

which leads to 

Pi(M,N)=^ Jf(xM) Jp(xkl)dXl 

kl=l   0 |_xM 

M-l   M-l   °° r   °° 

~X X jf(xM)    Jp(xki)dxki Jp(xk2)
dxk2 

k1=l   k2=l   0 - xM 

ki#k2 

M-l   M-l M-l   °° 

k1=l   k2=l     kM-l=lo 

kpk2jt-^kM-l 

XM 

dxM + 

j P(xkl )dxkl J p(xk2 )dxk2- • ■ J p[xkM_j jdx^j 
XM XM XM 

(5.3) 
dx M 

For binary FSK (i.e., M 
symbol error becomes 

2), only the leading term exists. Hence, the probability of 

p|(2,N) = Jf(x2) J 
*2 

p(x1)dx1 dx? (5.4) 

When it is inconvenient to use the complete expansion given by Eq. (5.3) or the inte- 
grals in Eq. (5.2) are intractable, a union bound (Stiffler, 1971) can often be used. 
This is done by noting that for M > 3 the probability of error pe(M,N) given by Eq. 
(5.2) considers the probability that the output of any of the non-signal-bearing chan- 
nels will exceed that of the signal-bearing channel. Hence, it is bounded below by 
the probability that the exceedance will occur only in the non-signal-bearing channel 
in which an exceedance is most likely to occur. Similarly, it is bounded above by the 
probability that exceedances will occur in all of the non-signal-bearing channels. A 
weaker upper bound is given by M - 1 times the probability of an exceedance in the 
non-signal-bearing channel in which an exceedance is most likely to occur. 

To formulate these bounds, let Pr(xk >xM) k = 1,2,-,M - 1 denote the probability 
of an exceedance in the kth (non-signal-bearing) detection channel. Then, 
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M-l 

maxPr(xk > xM)<pe(M,N)< Y Pr(xk > xM) k £1 
<(M-1) maxPr(xk > xM) 

k 

(5.5) 

(It should be noted that the right-most term can exceed unity so it is not a true prob- 
ability.) Applying Eq. (5.5) to Eq. (5.2) and considering only the left-hand upper 
bound yields. 

M-l 

PI(M,N) < £ 
k=l 

oo oo M-l   °° oo 

L-Jf(xM) 1- Jp(xk)dxk dxM ■=X Jf(XM) Jp(xk)dxk 

0 xM k=l   o .XM 

dxM (5.6) 

which is seen to be the leading term in Eq. (5.3). If, as is the case in conventional 
MFSK systems, the non-signal-bearing detection channels contain only equal 
amounts of noise, the upper bounds in Eq. (5.5) become equal and it is possible to 
write 

p|(M,N)<(M-l)Jf(xM) I 
*M 

p(xk)dxk dx M (5.7) 

which is valid for p|(M,N) « 1. 

In the FH MFSK system being considered here, the non-signal-bearing detection 
channels may contain either no interference at all or interference in the form of one 
or more tones. At low orders of diversity, when only a few interfering tones are pres- 
ent, the probability of an exceedance can differ greatly from one non-signal-bearing 
detection channel to another. Hence, the right-hand upper bound in Eq. (5.5) can 
easily become meaningless. 

The left-hand upper bound might suffice, but it, too, might become meaningless. 
This comes about because the presence of even one interfering tone in a non-signal- 
bearing channel will lead to an error probability on the order of 1/2 if it is compara- 
ble in amplitude to the desired tone. Hence, the presence of one tone in each of only 
two of the non-signal-bearing channels can lead to an upper probability bound ex- 
ceeding unity. 

Finally, it should be recalled that pe(M,N) is the probability of error for a particular 
set [rkj] of interfering tones. The overall probability of symbol error pe(M,N) is 
then found by averaging pe(M,N) over all possible sets of interfering tones that can 
occur. Thus, 

Pe
s(M,N)=  £     X   '"   X P(rl,lWrl.2)-P(rM,N)P|(M.N) (5.8) 

»1,1=0   rli2=0      rMiN=0 
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where, from Eq. (3.9), it is seen that 

l(rU+rl,2+-+rM,N) -XMN A. e 
rl,l!rl,2!"-rM,N! 

P(ri,i)p(ri>2)--P(i-M,N) = : : —t  (5.9) 
*■   i  r-i o ■    -       ' 

in which X is given by Eq. (3.10) or Eq. (3.11). It is customary to present final results 
in terms of bit, rather than symbol, error probability. Viterbi (1966) shows that 

Pc=—^— pe (5.10) e     2(M-1)  e 

which may be used to convert Eq. (5.8). 



Chapter Six 

AN ANALYTICAL MODEL FOR USER INTERFERENCE 

The essence of the theory leading to Eq. (5.2) for the symbol error probability is that 
the interfering tones from other system users can be regarded as having independent 
random amplitudes. Accordingly, an analytical solution can be found only if: first, 
the probability density function of the amplitude of the sum of such tones is a rela- 
tively simple function of the probability density functions of the individual tones 
(this leads to the probability density function of the gk> j in Eq. (4.8)); second, that the 
probability density function of the sum of the sums is relatively simple (this leads to 
the probability density function of the hk N in Eq. (4.9)); and third, that this latter 
probability density function, termed p(x) in Eq. (5.3), leads to tractable integrals. 
However, to be of practical value, the probability density function of the amplitudes 
of the individual interfering tones must also be reasonably realistic. Unfortunately, 
one can only speculate on what constitutes realism because few, if any, quantitative 
measurements exist. 

One probability density function, which is particularly suitable for the non-diversity 
case (in which there is only one term in Eq. (4.9)), has been identified. It stems from 
the assumption that the individual interfering tones can be approximated as two- 
dimensional Gaussian variates. That is, that they can be written 

f(t) = Xcoscot + Ysincot (6.1) 

where X and Y are Gaussian with mean, zero, and variance a2 and where co denotes 
an arbitrary carrier frequency. In this case, the variance a2 also equals the power P 
off(t). 

A more convenient form for f(t) is given by 

f(t) = Acos(cot + 0) (6.2) 

where A is a Rayleigh variable with a probability density function 

PA(A) = -exp 
A^ 
2P 

v        j 

A > 0 (6.3) 

and 6 is an independent random variable uniformly distributed in (0,2 it). The sec- 
ond moment of A is 

25 
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A2=2P (6.4) 

which accords with the fact that 

f2(t) = P = IA2 (6.5) 

A normalized form of Eq. (6.3) obtained by setting 

CC = A/VP 

to obtain 

Pa(a) = ocexp(-a2/2) 

(6.6) 

(6.7) 

which is plotted in Figure 6.1 for convenience. 

Inasmuch as the individual interfering tones are Gaussian (0, a2) in accordance with 
Eq. (6.1), the sum of r such tones is Gaussian (0, r a2). As a result, the probability 
density function of the amplitude a of the sum of r tones becomes, from Eq. (6.3), 

Pa (a) 

5(a) 

a — exp 
rP    * 

a- 

2rP 
J 

a >0 (6.8) 
r = 1,2,- 

where 8(x) is the Dirac delta function. 

When, in addition to the r interfering tones, which are Gaussian and whose sum has 
an amplitude having the probability density function given by Eq. (6.8), there is also 
additive Gaussian noise of power spectral density N0, the total amplitude is again 
Gaussian but with a probability density function given by 

Pa (a) (rP + N0/Tc) 
exp 

-a 
2(rP + N0/Tc) 

r = 0,1,2, • a >0 (6.9) 

where N0 / Tc is the average noise power during a chip of duration Tc. 

To show that Eq. (6.3) is a reasonable approximation to the probability density func- 
tion of the individual amplitudes of the ensemble of system users in a realistic situa- 
tion, consider the experimental data published by Viterbi (1994) and shown in Figure 
6.2. The received Eb /I0, where Eb is the energy per bit and I0 is the total interfer- 
ence, for a terrestrial CDMA cellular system employing power control is seen to 
closely resemble a normal distribution. (Inasmuch as the total interference in such a 
system is virtually constant, Eb /10 is effectively a measure of signal power.) Viterbi 
notes that the distribution has a standard deviation of less than 2.5 dB. 
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Figure 6.2—Probability Density Function of Eb/I0 dB for a Terrestrial CDMA Cellular System 
Employing Power Control 

The corresponding comparison for the Rayleigh variable a as given by Eq. (6.7), can 
be made by considering its value in dB 

adB=101og10a (6.10) 

It is shown in Appendix B that the probability density function of adB is given by 

PadB («dß) = ^exp(hadB /I0)exp 
20 

--exp(hadB/10) -°°<adB<°°      (6.11) 
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where 

h = loge 10 = 2.30258 •• 

The mean and standard deviation of adB are equal to 

0^ = 0.50348   dB 

(6.12) 

and 

aadB =5.57004 dB (6.13) 

This density function is plotted in Figure 6.3 together with a normal distribution hav- 
ing the same mean and variance. 

A comparison of Figures 6.2 and 6.3 reveals a resemblance between Viterbi's 
measurements and the Rayleigh distribution. The principal difference between them 
appears to be that Viterbi's standard deviation is about 2.5 dB, whereas the standard 
deviation of the Rayleigh distribution is 5.57 dB. This difference of about 3 dB may 
be said to indicate that the power control in a system characterized by a Rayleigh 
distribution is less stringent than that in Viterbi's system. It would be desirable to be 
able to specify the standard deviation separately but this is not possible for the 
Rayleigh distribution because it has a fixed relationship between its mean and its 
standard deviation. 

The comparison of Figures 6.2 and 6.3 also reveals a resemblance of both 
distributions to the log-normal distribution, which does have the properly that the 
mean and the standard deviation can be specified separately. Unfortunately, Viter- 
bi's measurements are the only ones at hand that pertain directly to the variability of 
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received signal levels in a power-controlled system. Nonetheless, there are 
precedents for considering the log-normal distribution because it is used in 
specifying some aspects of signal losses in communication systems. For example, 
Fenton (1960) notes that the transmission loss in scatter propagation systems has 
been found to have a log-normal distribution. In another vein, Loo (1990) reports 
that the received signal from a satellite repeater when shadowed by foliage and 
modeled by a log-normal distribution shows a good comparison to measurements. A 
similar observation relating to the received signal in mobile radio systems is 
contained in French (1979). 

Unfortunately, there is no obvious relationship between the variability displayed by a 
shadowed or scattered signal and that displayed by a signal resulting from imperfect 
power control. It would appear that more directly related measurements will be re- 
quired before the use of a log-normal distribution can be justified. Consequently, the 
Rayleigh distribution will be used in the analysis to follow largely because of its simi- 
larity to Viterbi's measurements and the simplicity of analysis that it affords. 



Chapter Seven 

ANALYSIS OF THE NON-DIVERSITY CASE (N = 1) 

The analytical model developed in the previous chapter is used here to analyze the 
non-diversity case. Thus, each chip will convey a given M-ary symbol by occurring at 
the appropriate one of the M signaling-alphabet tones. As mentioned in Chapter 
Five, the desired chip will be assumed to be in the Mth detection channel and all M 
channels will be equally subject to "hits" by interfering tones, where, in accordance 
with the development presented in Chapter Three, the probability of r interfering 
tones appearing in a given detection channel is given by Eq. (3.9). 

The following analysis is done specifically for the linear, or amplitude, detector. 
However, it is clear that it is valid for any detector whose output is a monotone func- 
tion of the quadrature-detector output. Hence, it applies to the square-law detector 
as well. 

For the linear detector, the characteristic to be used is given in Figure 4.1 as 
f( Z)=Vz. Under the assumptions of time and frequency synchronization presented 
in Chapter Four, this causes the sum of the interfering tones and noise at the input to 
each detection channel to behave like a Rayleigh variable having a probability den- 
sity function given by Eq. (6.9), where r is the number of interfering tones present. It 
is seen from Eq. (4.3) that the linear detector output is simply proportional to its in- 
put because only a single term equal to the square root of Eq. (4.5) remains. Hence, 
the probability density function of the linear-detector output gkj can be found by 
making the change of variables given by the square root of Eq. (4.5) in Eq. (4.8). 
However, it is more convenient to consider a normalized output variable xk given by 

Xk 
^/gig    = a^Tc/2 =   a 

,/TcP/2     ^TCP/2     VP 
(7.1) 

Then, the probability density function of the output of the kth non-signal-bearing, 
linear detector is found from Eq. (6.9) to be 

p(xk) = VPPa(xkVP) = —^ 
fk + PTr 

exp x2k 

2 Tk +—~ PT 

rk = 0,1,2,- 

k = 1,2,-,M-1V 
(7.2) 
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where the notation of Eq. (5.3) has been used. Note that the energy per chip Ec of 
the average interfering user is equal to PTC, so the quantity N0/PTC is seen to be 
simply the reciprocal of the average chip signal-to-noise ratio Ec /N0. 

In the Mth, or signal-bearing, channel, the total input amplitude a will have the 
probability density function of sine wave plus noise given by Rice (1945) as 

Pa(a) = ^7exP 
a 

a2+b2 

'   2a2 

ab 

WJ 
a,b>0 (7.3) 

J 

where b is the amplitude of the sine wave, a2 is the variance, or power, of the noise, 
and I0 is a modified Bessel function of the first kind of order zero. In this case, the 
"noise" consists of the sum of the rM interfering tones appearing in the Mth detec- 
tion channel and the additive Gaussian noise of power N0 /Tc. Thus, 

02=rMP+No/Tc (7.4) 

where P is the average user power. Let the power of the tone from the desired user, 
which is equal to b2 / 2, be a fraction f of the average power P. Then, 

:fP 
(7.5) 

Substituting Eqs. (7.4) and (7.5) into Eq. (7.3) and normalizing the amplitude a to the 
average power P according to Eq. (7.1) then leads to 

f(xM) 
XM 

*M + PTC 

-exp 
xg4+2f 

*M + 
Nc 
PT, c J 

2fxM 

% + 
Nr 

PT, c ) 

rM — 0,1,2, ■•■ 

xM>0 
(7.6) 

where the notation of Eq. (5.3) has again been used. 

For convenience, the results of Eqs. (7.2) and (7.6) may be written, respectively, as 

P(Xk) = ^7exP 
°k 

Xk 

2a 
xk>0 (7.7) 

k; 

where 

2 =        N0 
k      k    pT 

rk =0,1,2,- 
k = l,2,-,M-l 

(7.8) 

and 
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x^+2f 

2aM 

V2fx M 

0"M 

f >0 
xu >0 

(7.9) 

where 

2 N0 aM - rM + 7^7- 
rM ~ 0) 1,2, • (7.10) 

The probability of bit or symbol error, pe(M,l), for a particular set [rk]] of interfer- 
ing tones for the non-diversity case, i.e., N = 1, is found by substituting Eqs. (7.7) and 
(7.9) into Eq. (5.3) to obtain an analytical solution. The result is presented in Ap- 
pendix C. 



Chapter Eight 

ANALYSIS OF THE DUAL-DIVERSITY CASE (N = 2) 

It was shown in Chapter Six that the amplitude of the sum of r interfering tones, each 
of power P, and background noise of variance N0/Tc could be approximated by a 
random variable drawn from the Rayleigh distribution Eq. (6.8). This was used in 
Chapter Seven to analyze the non-diversity case (N = 1) when using linear detectors 
by letting the outputs of the non-signal-bearing detectors be drawn from the 
Rayleigh distribution Eq. (7.7) and the output of the signal-bearing detector from the 
Rician distribution Eq. (7.9). It was noted that inasmuch as no diversity summations 
were to be performed, these also constituted the distributions of the channel outputs 
presented to the "largest of selector (see Figure 4.1). Finally, it was noted that the 
channel selection would be the same regardless of the detector characteristic actu- 
ally used, as long as it was monotone. 

A closed-form solution for the symbol error probability in the non-diversity case is 
derived in Appendix C using the expansion given by Eq. (5.3). However, a closed- 
form solution does not appear to be possible for higher orders of diversity. It is 
shown in this chapter that a bounded solution for the symbol error probability can 
be obtained for the dual-diversity case (N = 2) by deriving the appropriate distribu- 
tions and performing a numerical integration using the basic representation of Eq. 
(5.2). 

For orders of diversity higher than unity, it becomes necessary, in each detection 
channel, to determine the distribution of the new random variable formed by sum- 
ming the detector outputs over the various diversity chips. Unfortunately, the ques- 
tion as to which detection channel has the largest sum then depends on the type of 
detector that is used. To illustrate this, consider dual diversity (N = 2) in a binary FSK 
system (M = 2) with no noise present. Let the pair (1,7) represent the tone ampli- 
tudes present in one channel during the two diversity chips and (4,5) the tone ampli- 
tudes in the other. With a linear detector, the output of the first channel will be 1 + 7 
= 8 whereas that of the second channel will be 4 + 5 = 9 leading to the selection of the 
second channel as the one containing the desired tone. With a square-law detector, 
however, the outputs will be 1 + 49 = 50 and 16 + 25 = 41 leading to the opposite con- 
clusion. The following analysis is performed for a system using square-law detec- 
tors—the analysis when using linear detectors is analogous. 
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Consider first the non-signal-bearing channels in Figure 4.1. For a linear detector the 
output gkj of the kth detector k = 1,2,3,-M - 1 at the end of the jth diversity chip is a 
random variable having a Rayleigh distribution of amplitudes given by Eq. (7.7) as 

P(gk,j) = ^J-exp 
ak,j 

(       2     ^ 
gk,j 

2°k,i 

> n    Linear 
&k,j-u    detector (8.1) 

where ak; is given by Eq. (7.8) as 

^2   _ r    + 
No ^k,j-rk,j + ^r rkj =0,1,2,- (8.2) 

and where rk)j is the number of interfering tones present in the kth detection chan- 
nel during the jth diversity chip. 

It is easily shown (Papoulis, 1965) that for a square-law detector the corresponding 
output gkj of the kth demodulator at the end of the jth diversity chip has an expo- 
nential distribution given by 

P(gk,j) 
2ak,j 

-exp 

r \ 
gk,j 

2ak,j 

> n    Square law 
gk,j - u    detector (8.3) 

where akj]- is again given by Eq. (8.2). 

Thus, for the non-signal-bearing channels in the N = 2 case it becomes necessary to 
determine the distribution p(hk>2) of 

hk,2 = gk,i+gk,2^0 (8.4) 

which is the quantity delivered to the "largest of" selector. This is done by forming 
the convolution 

hk,: 

P(hk,2) =    J P(hk,2 - gk,l)P(gk,2)dhk,2 
(8.5) 

which, using Eq. (8.3), is readily integrated to yield 

P(hk,2) = 
4a4

k 

lk,2 exp 
Hk,2 

V   2öky 

2 2 2 
0"k,l = °k,2 = CTk 

2(ök,l - °k,2 
exp 

nk,2 

2o"k,2 

-exp 
ftk,l 

2CTk,l 

(8.6) 

0"k,l * ak,2 
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Finally, the inner integration in Eq. (5.2) can be performed yielding 

Jp(hkj2)dhk>2 

1- 1 + 2ESL 
2ot V     ^°kj 

\      (        \ xm 

V   °ky 
exp 

1_.        k'! 
2 2 

ök,l_ök,2 

„2 
<*k,2 

2 2 ök,2-°k,l 
exp 

f \ 
vn 

xm AP 
I   °k,l / 

f               \~ 
xm 

V 
2°k,2, 

2 2 2 
°k,l = <*k,2 = °k 

Xm>0 

°k,l * 4,2 

(8.7) 

(Similar results can be derived for larger values of N, but it can be seen that the num- 
ber of terms involved increases rapidly.) 

Consider next the Mth or signal-bearing channel in Figure 4.1. For a linear detector, 
the output gM j of the Mth detector at the end of the jth diversity chip is a random 
variable having a Rician distribution of amplitudes given by Eq. (7.9) as 

f(gM,j) = -2-
Lexp 

aM,j 

gM,j+2f 

2a M,j 

2fgM,j 

aM,j 

Linear gMJ>0   f>0   £--or      (8.8) 

where o|f j is given by Eq. (7.10) as 

Nr CTM,j-rM,j + ^- (8.9) 

and where rM -is the number of interfering tones in the Mth detection channel dur- 
ing the jth diversity chip. 

It is again easily shown that for a square-law detector, the corresponding output gM • 
of the Mth demodulator at the end of the jth diversity chip has a distribution of am- 
plitudes given by 

f(gM,j) = —^—exp 
f   gM,j+2fA 

2a M,j 2tf M,j 

2fgM,j 

°M,j 
gM,j 

> n    Square law        ,„ , m 
^U       ,Wrtnr (ö.lU) detector 

where CT^J is again given by Eq. (8.9). 

Thus, for the signal-bearing channel in the N = 2 case, it becomes necessary to 
determine the distribution f (hM 2) of 

hM,2=gM,l+gM,2^0 (8.11) 
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which is the quantity delivered to the "largest of" selector. Unfortunately, the convo- 
lution approach used in Eq. (8.5) leads to an intractable integral when using Eq. 
(8.10). However, the alternative characteristic function approach is useful because it, 
at least, leads to a solution for the case when gM>1 and gMj2 

are identically dis- 
tributed (i.e., when the two diversity chips contain the same numbers of interfering 
tones). This is exemplified be Marcum and Swerling (1960) who note that the density 
function of the sum of independent random variables can be found by taking the in- 
verse Fourier transform of the product of their individual characteristic functions 
(which are themselves Fourier transforms). In the case of Eq. (8.10), they note that 
matters are simplified by the fact that f(gM,j)is defined only for non-negative values 
of its argument. Hence, the Laplace transform, for which extensive tabulations exist, 
can be used in place of the Fourier transform by simply regarding the Laplace vari- 
able p as being equivalent to the Fourier variable i co. 

It is shown in Appendix D that the density function f(hM)2), when gM>1 and gM>2 are 
identically distributed, is given by 

f(hM,2) = 
2o"M 

"M,2 

4f 
exp 

f   hM,2 + 4fA 

2OM 

2,fh M,2 

OM 

hM,2^0 

2 2     _   2 aM,l=aM,2=0"M 
(8.12) 

It is also shown why the result does not appear to be available in a simple form when 
gM ± and gM2 are not identically distributed. Nonetheless, it is possible to bound 
the symbol error probability in that case by using Eq. (8.12) appropriately. This can 
be seen by noting that if the two diversity chips contain differing numbers (rM1, 
rM 2) of interfering tones, the symbol error probability calculated from Eq. (8.12) by 
assuming that both diversity chips contain the lesser of (rM1, rM 2) will be less than 
the true symbol error probability. Similarly, the symbol error probability calculated 
by assuming that they both contain the greater of (rM>1, rM2) will exceed the true 
symbol error probability. 

Thus, a bound for the symbol error probability for dual-diversity operation (N = 2) 
can be calculated by a numerical integration of Eq. (5.2) for each set [ rkj] of 2M in- 
terfering tones by using the appropriate members of Eq. (8.7) for the bracketed terms 
used in the (M - l)fold product and the appropriate form for f(hM>2) from Eq. (8.12). 



 Chapter Nine 

AN ASYMPTOTIC MODEL FOR THE HIGH-ORDER-DIVERSITY 
 CASEJN » 1) 

A considerable simplification is possible for high orders of diversity, i.e., N » 1, 
where the sums of the quadrature detector outputs, when taken over the N diversity 
chips, become asymptotically normal. Furthermore, the sums become identically 
distributed, thereby eliminating the need to consider the specific distributions of the 
interfering tones among the various symbol frequencies. 

THE LINEAR DETECTOR 

In this case, the outputs of the non-signal-bearing detectors are Rayleigh random 
variables and the output of the signal-bearing detector is a Rician random variable. 
To derive the asymptotically normal forms of the sums of these random variables, it 
suffices to consider only the Rician because the Rayleigh density function derives 
from it by setting f = 0 in Eq. (7.9). Thus, let ^ denote the output of the first sampler 
in the signal-bearing (i.e., the Mth) detection channel at the end of the ith diversity 
chip. Then, its probability density function is given, from Eq. (7.9), by 

f(^) = |^exp 
Si+2f 

2R; Ri 
^,f>0 (9.1) 

where 

N 
Ri=rj + —2-    rj =0,1,2,- 

FT, 
(9.2) 

The number of interfering users r; has a Poisson distribution given by 

p(r) 
e-^2 

(3.9) 

where X, the average number of interfering users per chip, is given by Eq. (3.10). We 
seek the probability density function of the output x of the second sampler at the end 
of the Nth chip. Then, 
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x(R1,R2,-,RN) = ^^i(Ri) (9.3) 

i=l 

The quantities £, andx correspond, respectively, to gml and hMN in Figure 4.1 for a 
linear detector. 

For N large, x will be asymptotically normal (Emx,EOj), where mx and o\ are the 
mean and variance, respectively, of x, and the expectation is necessary because x is a 
function of the random variables r. The first two moments of the Rician distribution 
are given by Rice (1945). A more convenient formulation is given by Helstrom (1968) 

who shows that if 

q(a, z) = z exp V+a2) 
2 

I0(az) (9.4) 

then 

Ez = ^|-exp 
f   2\ 1 or > 

v     ) 

(    „i\ 
1 + 

a ' a   ' 

v4/ 
+ 1, 

2    l 

(    2\ ' or A 

v     J 
(9.5) 

and 

Ez2=2 + a2 (9.6) 

Letting z = %l VR and a2 = 2f / R in Eq. (9.5) brings it into agreement with Eq. (9.1) 
with the result that 

TCR 
m^E^J— exp(- — 

f »Mk)M 2R 
= F(R,f) (9.7) 

and 

so that 

E^2=2(R + f) 

;2     c2 a|=E^-E^ = 2(R + f)-Fz(R,f) (9.8) 

where the function F(R,f) has been introduced for simplicity in subsequent expres- 
sions. 

Applying Eqs. (9.7) and (9.8) then yields 
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N N N 

i=l i=l i=l 
N 

£    ^p(ri)F(Ri>f) = N^p(r)F(R,f) 
i=l     r; =0 r=0 

(9.9) 

Similarly, 

Ec^E^Ta2. = £EG| = ^[2(1^ + f)-F2(Ri,f)] 
i= i= 

N 

= X   SP(ri} 
i=l    ri=0 

= N 2 
l      PTC 

i=l 

N, 
2ri+^L + f -F2(Ri,f) 

PT, 

i=0 

(9.10) 

where p(r) is given by Eq. (3.9) and \^ rp(r) = X. The probability density function of x 
can then be written r=o 

f(x) = 
•^27iEOx 

•exp 
(x-Emx) 

2Ea2 (9.11) 

where Emx and Ea2 are given by Eqs. (9.9) and (9.10), respectively, p(r) is given by 
Eq. (3.9), R is given by Eq. (9.2), and F(R,f) is given by Eq. (9.7). 

The result for the non-signal-bearing channels, in which the sampler outputs are 
Rayleigh, is found by setting f = 0 in the above results. Thus, from Eq. (9.7), 

F(R,0) = VrcR/2 (9.12) 

so Eqs. (9.9) and (9.10) become 

Emy=V^72N^p(r)r + -^ 
r=0 

.1/2 

(9.13) 

and 

ECJy     =N -£H-K 
.( XT        A 

r=0 

Nc 
PTr 

r + - 
v     "c; 

= |2~|N 1 + 
PT, V     "cy 

(9.14) 

where the variable denoting the second sampler output is written as y rather than x. 
Then, as in Eq. (9.11), 
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p(y)= 
2TcEay 

-exp 
(z-Emyf 

2Eot 
(9.15) 

It should be noted that p(y) applies to all of the non-signal-bearing channels, which 
have been made identically distributed, as well as independent, by the expectation 
process on r. 

THE SQUARE-LAW DETECTOR 

In this case, the detector characteristic to be used in Figure 4.1 is f(Z) = E, rather 
than -x/2 as was done for the linear detector in Chapter Seven. Hence, the desired 
probability density function can be easily obtained by considering the square of the 
Rician random variable given by Eq. (9.1). Thus, the probability density function of 
the output of the signal-bearing channel for the square-law detector at the end of the 
ith chip is found to be 

ffti)=— exP 

($i+2f\ (M; 
-— lo-^r- 2R i   J 

(9.16) 

where Rj is given by Eq. (9.2). We seek the probability density function of the output 
x of the second sampler at the end of the Nth chip. Then, 

x(R1,R2,...,RN) = ^^i(Ri) (9.17) 

The quantities % and x correspond, respectively, to gmj and hM N in Figure 4.1 for a 
square-law detector. 

The first two moments of £ are readily obtained by adapting Helstrom's procedure 
for the Rician distribution Eq. (9.4) to the distribution for its square. Thus, if we let 

p(a,z) = -exp --(z + a2) 
2 

I0(aVz) 
(9.18) 

and derive the moment-generating function, the first two moments of z are found to 
be 

Ez = 2 + or (9.19) 

and 

Ez2=8 + 8a2+a4 (9.20) 
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which parallel Eqs. (9.5) and (9.6). These are seen to be equal to the results for the 
second and fourth moments given by Helstrom for the Rician distribution, which is 
to be expected. 

To bring Eq. (9.18) into conformity with Eq. (9.16), let z= £/Rand oc2=2f/R in Eq. 
(9.18). Then, 

m^=E^ = 2(R + f) (9.21) 

s2    c2 o^ = E£z-E^ = 4R(R+2f) (9.22) 

Applying Eqs. (9.21) and (9.22) to Eq. (9.17) then yields 

N N N 

Emx=E^m^. = £Em§. =XE2(Rj+f) 

i=l i=l i=l 

■XIH'*?* 
i=l    r; =0 

PT, 

( 
f  =2N N0 

V      PTc      j 

(9.23) 

Similarly, 

Ea2 =E£G^.
2
 =£E^.

2
 =]TE4Ri(Ri +2f) 

i=l i=l 

2 2*»tn+?£ 
i=l    r,=0 

N, 
r;+—ü- + 2f 

:4N X(k + l) + 2X 

PX c J 

VPTc       j PX 

Nf 
■ + 2f 

vPTc      y 

(9.24) 

where 

Jr2p(r)^(Ul) 
r=0 

The probability density function of x can then be written 

f(x) = 
^2;tEa2 

exp 
(x-Emx) 

2Ea2 (9.25) 

where Emx and ECT
2
 are given by Eqs. (9.23) and (9.24), respectively. 

The result for the non-signal-bearing channels is found by setting f = 0 in the above 
results. Thus, from Eq. (9.23), 
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and from Eq. (9.24), 

Then, as in Eq. (9.25), 

Emy =2N 
f XT       "\ 

A,-3 
PT, cy 

(9.26) 

E02 =4N 
y 

X + Nc 
PTr 

+ A, 
cy 

(9.27) 

p(y) = 

4 
^exp 

2nEüt 

(y-Emy)z 

2EOv 
(9.28) 

where Emy and Eay are given by Eqs. (9.26) and (9.27), respectively. Again, it 
should be noted that p(y) applies to all of the non-signal-bearing channels, which 
have been made identically distributed, as well as independent, by the expectation 

process on r. 



 Chapter Ten 

ANALYSIS OF THE HIGH-ORDER-DIVERSITY CASE (N » 1) 

The development in Chapter Nine led to asymptotically normal distributions for the 
outputs of the non-signal-bearing detection channels. This permits the formulation 
of the symbol error probability developed in Chapter Five using the union bound Eq. 
(5.7), which is applicable to conventional MFSK (with, of course, the limits of the 
outer integral taken over the infinite interval). Then, 

Pe
s(M,N)<(M-l) ff(x) fp(y)dy dx (10.1) 

where f(x) and p(y) are given, respectively, by Eqs. (9.11) and (9.15) for the linear de- 
tector and by Eqs. (9.25) and (9.28) for the square-law detector. Note that Eq. (10.1) 
gives the actual error probability Pe

s(M,N). This is because the conditioning on p(r) 
done in Chapter Nine is equivalent to that done in Eq. (5.8). 

Though not apparent at first glance, Eq. (10.1) can be evaluated directly by suitable 
changes of variables, as shown in Appendix D. An ingenious alternative solution due 
to Gaylord Huth of RAND is presented below. It is apparent that the formulation in 
Eq. (10.1) calculates the probability of error as the probability that the random vari- 
able y exceeds the random variable x, where y is the amplitude of the interference in 
one of the non-signal-bearing detection channels and x is the amplitude of the sum 
of the desired tone and its accompanying interference in the signal-bearing detection 
channel. 

Put another way, the probability of error can be taken as the probability that the ran- 
dom variable 

z = y_x (10.2) 

exceeds zero. The random variable z is, of course, Gaussian with a mean 

mz=Eo-y-Eo-x (10.3) 

where Emx and Emy are given, respectively, by Eqs. (9.9) and (9.13) for the linear 
detector and by Eqs. (9.23) and (9.26) for the square-law detector and a variance 
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o\ =ECy+Ec5x (10.4) 

where Eo^ and Eay are given, respectively, by Eqs. (9.11) and (9.15) for the linear 
detector and by Eqs. (9.24) and (9.27) for the square-law detector. 

Then the probability of error becomes 

Pe
s (M, N) < (M - l)P(z > 0) = (M -1) fir oV: 

-exp 
271(7, 

(z-mzr 
2o2

7 

dz (10.5) 

A simple change of variables then yields 

P*(M,N)<(M- exp 
( tr\ 

v   2, 
dt = (M-l)Q 

Emx -Erriy 

^Ea^+EGy 
(10.6) 

which is the desired result. Here, 

Q( 
V2TI J 

exp(-t  /2)dt (10.7) 

It should be noted from Eqs. (10.3) and (10.4) that the numerator and denominator of 
the Q function in Eq. (10.6) go as N and VN , respectively. Hence, the argument of 
the Q function goes as VN . 

If, rather than using the union bound Eq. (5.7), the exact form Eq. (5.2) is used, the 
result is only slightly more complex than Eq. (10.6). From Eq. (5.2), considering that 
the non-signal-bearing detection channels are identically distributed in the asymp- 
totic assumption, the conditional error probability becomes 

Pe
s(M,N) = l- Jf(x) 1-Jp(y)dy 

M-l 

dx (10.8) 

where f(x) and p(x) are again given, respectively, by Eqs. (9.11) and (9.15) for the lin- 
ear detector and by Eqs. (9.25) and (9.28) for the square-law-detector. Then, the in- 
tegral on y becomes 

Jp(y)dy = J 
U 2TTECC 

^exp 
(y-Emy)2 

2Ea^ 
dy 

Letting 
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leads to 

y-Emv 

Jiä 

Jp(z)dz=     J 1 «rt2/2dt=Q 
x-Em, 

x-Ertiv 
2% Eat 

Finally, 

Pe
s(M 'N)=1-|T^ exp (x-Emx) 

^■yjlnEa: 

which may be used instead of Eq. (10.6) 

2E at 
1-Q 

(x-Emy) 

JEOJ 

M-l 

dx       (10.9) 



Appendix A 

QUADRATURE DETECTOR OUTPUT 

Consider fk(t) from Eq. (4.2) as the input to the kth quadrature detector (so called 
because of its use of sine and cosine branches) in Figure 4.1 operating at frequency 
cok. In the cosine branch, the output of the multiplier is given by 

J^rfk(t)coso)kt = J—^aicos((oit+0i)coscokt 
V   c V   c i=1 

1     Pk 

= -r=^ai{cos[(coi+a)k)t+ei]+cos[(coi-(ok)t+ei]}     (A.1) 
,/2T i*lc i=i 

The low-pass filter eliminates the term in (COJ + cok), so the output of the integrator is 
given by 

l   Ä   Tr PFPk      ■ 
iCk =7^r£ai   cos[(COi_COk)t + 0i]dt = ArfSai!1£acos(xi+ei)     (A-2) 

i=l       0 i=l 

where 

xi=((öi-cok)Tc/2 (A.3) 

Similarly, the integrator output in the sine channel is given by 

Pk 

\ =-^f2/i^"sin(Xi   i} (-4) 
i=l ' 

The sum of the squares of the integrator outputs becomes 
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y=i2 +i2 

-Je 

Ck        sk 

Pk 
cos (Xj + Gj) 

+ 2Y Y a{ ^ÜSiaj !^icos(Xi + ei)cos(Xj +6j) 
i=l   j=l 

Pk 

i=l 

2 smxj sin2(Xi + 0;) 
li   7 

Pk   Pk 
+2^£ai^^-aj^^sin(xi + ei)sin(xj + ej) 

Xj '      Xj 
i=l j=i 

^-"2-'sinx^2 

i=l 

+ 2 

afTc 

V    xi    J 

£t ük  L2T ^O;«^^ la2T '''"'"■"- ^ 

i=i j=i 

afTc 

2 

sinx 

V   xi   v 

']*C sinx 

w) ; 

(A.5) 

cosCxi-XjO + Oi-Gj)] 

which leads to Eq. (4.3). 



____^ Appendix B 

THE PROBABILITY DENSITY OF A NORMALIZED RAYLEIGH 
  VARIABLE IN DB 

We seek the probability density of the normalized interfering tone of power adB 

given by 

adB=101og10a
2 (6.10) 

where the probability distribution function of a is given by 

pa(a) = aexp(-a2/2)      a^° (6.7) 

Equation (6.10) can also be written 

a==10«dB/20=ehadB/20 (B1) 

where 

h = loge 10 = 2.30258 5093 (B.2) 

The probability that ccdB will exceed some level y is equal to the probability, from Eq. 
(B.l),that a will exceed exp(hy/20). Thus, 

P(adB > y) = P[a > exp(hy/20)] =       fpa(a)da (B.3) 

exp(hy/20) 

The probability density function of y (which serves as surrogate for ocdB) then 
becomes 
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py(y) = ~ P(adB > y) = P«[exp(hy /20)]-£-exp(hy /20) 
3y 

= exp(hy/20)exp 

h 

_d_ 
'dy 

exp(hy/10) 
20 

exp(hy/20) 

20 
exp(hy/10)exp 

1 exp(hy /10) - oo < y < oo 

which leads to Eq. (6.11). 

To show that py(y) is a proper probability density function, let 

x = exp(hy/10),   y = —-logex 
h 

inEq. (B.4). Then, 

f    , ^      f°° h    -x/2l0dx        _x/2f   , 

(B.4) 

(B.5) 

(B.6) 

as required. 

To find the mean of y, use Eq. (B.4) to form 

oo oo 

y= J ypy(y)dy = jy —exp(hy/10)exp 
1 

exp(hy/10) dy (B.7) 

Letting 

then yields 

x = hy/10,     y = —x 
h 

h f   1   xVO — expxexp —e    —< 
20    y      \   2    J h Kir* 

-oo 

j;Jxe*expf-ie*)dx 

(B.8) 

(B.9) 

From Gradshteyn and Ryzhik (1980), their Eq. 3.4811, p. 343, we have 
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[xexexp(-|j.ex)dx = —(C+logen)    Re|a>0 (B.10) 
—OO 

where C is Euler's constant 

C = 0.57721 56649- (B.ll) 

Letting |j, = 1/2 in Eq. (B.9) then yields 

y=_Ylc+loge2J=0-50348 41755 dB (ß-12) 

where h is given by Eq. (B.2) and C by Eq. (B.ll). 

The following derivation of the second moment of y is due to William Sollfrey of 
RAND. FromEq. (B.4), 

oo oo 

y2 = jVpy(y)dy= Jy2f^jexp(hy/10)exp -^exp(hy/10) dy (B.13) 

Let 

x = -exp(hy/10),     y = ^loge(2x) (B.14) 
I h 

Then, 

y2 

0 

2°° 

= (j] Jlog2(2x)e-xdx = 
0 

2 °° 
= {h)   JNe2 + l0gex]V 

0 

"xdx 

2°° 

= [Y) J(log22 + 21oge 

0 

21ogex + logg x)e_xdx 

Now, consider 

(B.15) 

r(a) = Jxa_1e-xdx (B.16) 

Then 



54    Appendix B 

T'(a)= fxa_1logexe xdx (B.17) 

and 

r"(a)= fxa_1log^xe"xdx (B.18) 

Setting a = 1 in Eqs. (B.16) to (B.18) and substituting in Eq. (B.15) shows that 

y2 = (12. ] [dog2 2)r(i)+2(ioge 2)r-(i)+r"(i) (B.19) 

To evaluate these gamma functions, consider the psi function (Abramowitz and 
Stegun,1964) 

, .     d .      r, ,    r'(a) 
¥(a) = -loger(a) = 1^ 

which yields, noting that r(l)=l, 

r'(l) = \|/(l) = -C 

Also 

which yields 

>, \     d    i      ™    r(a)r"(a)-[r(q)]2 

v|/'(a) = —j- loge r(a) = ——2  
dor [r(a)r 

Y(i) = r"(i)-[T'(i)f 

or, using Eq. (B.21) 

r"(l) = v(/'(l)+C2 

Then, using Eqs. (B.21) and (B.24) in Eq. (B.19) yields 

'1(0" 
vhy 

(loge2-C)2 + \|/'(l) 

Finally, using Eqs. (B.25) and (B.12) leads to 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 
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— ^n\2 

2        2-2 
<4=y -y - 

10 

vhy 
V'ffi 

or, noting Eq. (B.2) and V|/'(l) = 1.64493 40668, to 

av= 5.57004 3140 dB (B.26) 



Appendix C 

DERIVATION OF THE SYMBOL ERROR PROBABILITY FOR THE 
  NON-DIVERSITY CASE 

It is desired to evaluate Eq. (5.3) for pe (M, 1) using Eq. (7.7) for p(x;) and Eq. (7.9) for 
f(xm). These can be written 

P(xj) = -i-exp 
Ri v 2R.y 

(C.l) 

and 

f(xM)=o    exP 
(   XM+2f\ fV2f> 

2R M 
M 

V    RM    J 
(C.2) 

where 

R = r + 2k 
PT„ 

(8.2) 

To evaluate the general j-fold product of integrals contained in the brackets of Eq. 
(5.3), note that each integral has the form 

oo oo 

j P(xk)dxk = J |^exp *k 

XM *M 

Then, the product of j such integrals becomes 

2Rk 
dxk = exp 

(       2   ^ XM 
2Rk 

(C.3) 

3Rkl ,Rk2 ,.,Rk   =exp 
XM 

2gRkl,Rk2,-,Rk 

(C.4) 

where 
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1 1 1 
■ + +••• + ■ 

gRkllRk2.-Rkj       
Rki      Rk2 

Rkj 

(C.5) 

The complete integrals to be summed in Eq. (5.3) can be evaluated by proper ma- 
nipulation of the integrands. Thus, 

lRkl -Rk2 .-.Rkj -RM 
= J f(xM)3Rkl ,Rk2 ,-,Rkj dxM 

J R 
SlexJ-xM+2F 

■M I        2RM 

V2fxM 

RM V       m    / 

exp 
XM 

2gRkl>Rk2,-,Rkj 

dx M 

exp 
. R

MJJ 
f irxM 

rM 
exp 

XM 

2h Rki-Rkz-'^'-Rkj-RkM 

f rz     \ 
M ^x 

v  RM
  J 

dxM(c-6) <-M 

where 

hRk1.Rk2.-.Rkj.RkM      Rki     Rk2 

11 11 — + -— +... + —— + — 
Rk;      RM 

(C.7) 
VJ 

To evaluate IR   ,Rk2 ,...>Rk. ,RM , first introduce hRki 3^ ...^   >RkM into the integrand 
of Eq. (C.6) in such a way that it appears in the denominator of each term. Thus, 

Rkj .Rk2.-.
Rkj'RM 

hRkl,Rk2,..,Rk    Rk j '"KM 

Ri 
exp 

M V  RMy 

k xM 

Rki-Rk2--.Rkj.RkM 

(C.8) 

exp 
Y2 XM 

2h Rki-Rk2.--Rkj.RkMy 

1Rk1.Rk2.-.Rkj.RkM   ^ 

RM  
M 

hRkl,Rk2,...,Rk   Rk j '"KM 

dx M 

Then, introduce a + term into the argument of the exponential in such a way that it 
can be separated into two exponentials, of which one is not a function of xM and the 
other contains a constant that is equal to half the square of the coefficient of xM in 
the numerator of the Bessel function. This leads to 
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exp 
XM 

2h Rki -Rk2 ''"'Rkj-RkM 

= exp 
XM 

nRkl,Rk2,-,Rkj,RkM 

R M 

2hRkl -Rk2 .-.Rkj -RkM        hRk! -Rk2 .-.Rk, -RkM 

exp 
fh Rki >Rk2 »■■■»RkjiRkiV[ 

RM 

exp 

xM + 
1Rk1.Rk2.-.

Rkj.RkM 

R M 
2f 

2h Rki >Rk2 ''"'Rkj.RkM 

(C.9) 

Then, Eq. (C.8) becomes 

Rkj >Rk2 >'">Rkj>RkM 
Rk!'Rk2 .-'

Rkj'RM R 

k 

M 

XM 

exp 
v RM; 

exp 
'fhRk!.Rk2. -.Rkj.RkM 

Rki >Rk2 •"•>Rkj>RkiV[ 

^k^Rkz .-.Rkj.RkM 

-exp 

xM + 

RM 

1Rkl,Rk2,-,Rkj,RkM 

RM 
2f 

2h Rki .Rk2 .'".Rkj-RkM 

R M 
V2fxM 

h 
Rk!.Rk2.-.Rkj.RkM 

dx M 
(CIO) 

A comparison of the integrand in Eq. (CIO) with the probability density function of 
f(xm) in Eq. (7.9) shows that it, too, is a probability density function. Hence, its inte- 
gral equals unity and Eq. (CIO) can be written 

Rki>Rk2.-.
Rkj.RM 

*Rkl,Rk2,-,Rkj,RkM 

RM 
exp f 

RM 
1- 

1Rkl,Rk2,-,Rkj.RkM 

R M 

(C.11) 
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where hRk ;R]c >...iR]c. iRk    is given by Eq. (C.7). Finally, substituting Eq. (C.ll) in Eq. 
(5.3)yields1'   2' '   J' 

M-l M-l    M-l 

p|(M, 1) = £ IRki ,RM - X    Z lRk! -Rk2 ,RM + - 
ki=l ki=l  k2=l 

kl*k2 

M-l M-l M-l 

_(_1}M-1^ ^    _    XlRki-Rk2--.
RkM_1.RM (C.12) 

k1=l        k2=l        kM=l 
k1^k2*-*kM_i 

which is the desired result. 
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DERIVATION OF THE DENSITY FUNCTION OF THE SUM OF 
THE SQUARES OF TWO IDENTICALLY DISTRIBUTED 
 INDEPENDENT RICIAN RANDOM VARIABLES 

Consider the squares of two identically distributed independent Rician random vari- 
ables. Their density functions, from Eq. (8.10), are given by 

f!(x) = f2(x)=—-exp 
2a2 

(  x+2f\ fV2fxA 

2o^ v    as    j 
x>0 

V   «     ) 

To simplify the analysis let t = x/2 a . Then, 

/ N 

fl(t) = f2(t) = 2& f(2o2t) = exp 
v       ° j 

t>0 
V  iO" , 

From Erdelyi et al.(1954), using the notation 

(D.l) 

(D.2) 

g(p) = JVpt f(t) dt 
o 

i = Ie
a/P 

P 

it is seen that their Eq. 4.16(14) gives the Laplace pair 

f (t)= I0(Wat]      g(p) = -ea 

and their Eq. 4.1(5) gives the Laplace pair 

e~btf(t)      g(p+b) 

Hence, the desired Laplace pair, obtained by multiplying both by c, is 

ce-btI0(2^)      -£-eXpf-?-N 

\       /      p + b      l^P + b, 

(D.3) 

(D.4) 

(D.5) 

(D.6) 
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which agrees with Eq. (D.2) when 

a = i-       b = l       c = e-a=e-f/c2 

o2 
(D.7) 

For the sum of the two random variables given by Eq. (D.2), the Laplace transform to 
be inverted is the square of the right-hand member of Eq. (D.6) or 

g(p) = - 
(P+br 

rexp 
^2a ^ 

vP+by 
(D.8) 

To find the inverse transform of Eq. (D.8) consider the Laplace pair given by Erdelyi 
et al. (1954), Eq. 5.5(36), 

,v+l 
exp f2a] 

IPJ 
ft] 
[2a J 

W2 

IJV2at (D.9) 

Then, by using Eq. (D.4), letting v=1, and multiplying both terms by c, these become 

(p+b)2 
-exp 

vP+by 
cVbt f * A 

v2ay 

1/2 

h.S\ (D.10) 

The left-hand member of Eq. (D.10) now agrees with Eq. (D.8) so the desired inverse 
transform is given by the right-hand member. Substituting for a, b, and c from Eq. 

(D.7) then yields 

f(t) = e -2f/0z
Q-t 

a/2 

2f/cr 

f   2 ^/2 

ozt 
2f 

V      J 

exp 
2t 

(D.ll) 

Making the change of variables x = 2 o t then leads to 

\l/2 

f(x) = - 
I2cz 

-f 
( x^ 

2a \^a   j 

2a' 

r.. \ 

v4f, 

1/2 

J_ 
2a2 

o2x/2o2 

exp 

of 

x + 4f 

2a    , 

exp 

) 

\ a    J 

f    x     2f 
"o   2 2 Za       a  J 

X>0 

2fx/2a2 

(D.12) 

which is the desired result appearing as Eq. (8.12). It is equivalent to the Marcum 
and Swerling (1960) result, Eq. (37), for N = 2. 
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It may be noted that if o2±o2, then fx (x) and f2 (x) in Eq. (D.l) will have different pa- 
rameters of and CT|. Hence, it is not possible to make the initial change of variables 
that led to the simpler forms f2 (t) and f2(t) in Eq. (D.2). Instead, it becomes neces- 
sary to deal directly with fj (x) and f2 (x) whose Laplace transforms yield the product, 
analogous to Eq. (D.8), given by 

g(p) = gl(p)g2(p) = (P+b'Kp+b2)eXp 
a2 

p+bj    p+b2J 
(D.13) 

where 

a = J_      b = -L      c = ^-e-f/ü2 (D.14) 
2o4 2a2 2a2 

with suitable subscripts. The author was unable to find the inverse Laplace trans- 
form of Eq. (D.13). 



Appendix E 

DERIVATION OF THE SYMBOL ERROR PROBABILITY FOR THE 
  HIGH-ORDER-DIVERSITY CASE 

When Eqs. (9.11) and (9.15) are substituted in Eq. (10.1), the symbol error probability 
takes the form 

Pe
s(M,N)<(M-l) JT= ^27iE a: 

oo 

-exp 

x ^2nE ax 

exp 

(x - E mx)2 

2Eax 

(z -Emz)
2 

dz 
2Eat 

(E.l) 

dx 

Let (x-Emx)/yEax - u in the outer integral. Then, 

(   2 ^ 

IvfcexprT     I P|(M,N)<(M-1)   -7=exp 
/ u2l 
V 

2J exp 

Eo. B+Em, 
^2KE CT: 

Next, let (z - E mz) / yE <s\ = v in the inner integral. Then, 

(z-Emzr 
2EG? 

dz du (E.2) 

Pe
s(M,N)<(M- 1) f-^exp ~\   f  --Lexp 

au+b 

v 

'T dv du (E.3) 

where 

VEO^ b_Emx-Emz 

VEaf ^Eof 
(E.4) 

The region of integration of Eq. (E.3) in the u - v plane is shown in Figure E.la as the 
shaded region, the boundary of which is a distance 
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RANDM?672-Er 

v = au + b 

► u 

Figure E. 1—Regions of Integration for Symbol Error Probability 
in the High-Order-Diversity Case 

r = 
4 l + az 

Em, -Emz (E.5) 

from the origin. Inasmuch as p(u) and p(v) in Eq. (E.3) are independent, zero mean, 
unit variance, Gaussian distributions, it follows from symmetry that the region of in- 
tegration can be rotated about the origin as indicated in Figure E.lb. It immediately 
follows that Eq. (E.3) can be written 

PeS(M,N)<(M-l)J-^exp^jdsJ-/^exp 
(    ?\ 

dt 
v      j 

= (M-l)Q(r) = (M-l)Q 
Emx -Emz (10.6) 

where 

Q( 

00     (    2\ x)süexp~Vdt (E.6) 
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