LOAN DOCUMENT

LEVEL

Rip-81-U109%

PHOTOGRAPH THIS SHEET

DTIC ACCESSION NUMBER

P v e e

,M!

Approved for
Pubu releqse
Distributi on Unlimiteq

DISTRIBUTION STATEMENT

DATE ACCESSIONED

HREF O E-E—=S ECCDZP T

DATE RETURNED

19960004 100

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

REGISTERED OR CERTIFIED NUMBER

.
Dmmom DOCUMENT PROCESSING SHEET

LOAN DOCUMENT




QL rwe—

TECHNICAT

RIA-81-U1098 1 L LIBRARY

Aeny |
O s
..lll“”““ SYSIEMS
nnl!lHlHl -
Hll\

HI Acrvirty

PROCEEDINGS
THIRD MEETING OF THE COORDINATING GROUP
ON
MODERN CONTROL THEORY
PART I

20-21 OCTOBER 1981
US ARMY MISSILE COMMAND
REDSTONE ARSENAL, AL 35989

DTIC QUALITY INIPREGTED 3

U S ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND 21008



DISPOSITION

Destroy this report when no longer needed. Do not return it to
the originator.

DISCLAIMER

The findings in this report are not to be construed as an

official Department of the Army position unless so specified
by other official documentation.

WARNING

Information and data contained in this document are based on
the input available at the time of preparation. The results may be
subject to change and should not be construed as representing the
DARCOM position unless so specified.

TRADE NAMES

The use of trade names in this report does not constitute an
official endorsement or approval of the use of such commercial
hardware or software. The report may not be cited for purposes
of advertisement. -




THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF%%;DCI@,‘&;‘EE%&@’;SORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Proceedings of the Third Meeting of the
Coordinating Group on Modern Control Theory Conference
(20 21 OCt ]98] ) 6. PERFORMING ORG. REPORT NUMBER
nd, Redstone Arsenal, AL 3598
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(®)
. H. Cohen (Chairman)
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJ ECT TASK
\ 3 Director ADRAEAP& ‘VORK;NINT NUMBER
US Army Materiel Systems Analysis Activity 1R662332§5410.
Aberdeen Proving Ground, MD 21005
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Director November 1981
US Army Materiel Systems Analysis Activity 13. NUMBER OF PAGES

ATTIN: DRXSY-MP, Aberdeen Proving Ground,MD 21005 285

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 16. SECURITY CLASS. (of thia report)
Cdr, US Army Materiel Development & Readiness

Cmd, 5001 Eisenhower Avenue, Alexandria, VA UNCLASSIFIED
22333 T8a DECL ASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Control Theory, Kalman Filtering, Man-Model, Maneuvering Target, Fire Control,
Missile Guidance and Control

20. ABSTRACT (Tontinue om reverse side if neceasary and identify by block number)

Report documents paper presented at third meeting of the coordinating group
on modern control theory with emphasis on military weapon systems.

DD ., on: 1473  Eprmion oF 1 nOV 65 15 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




~ TABLE OF CONTENTS

Title Page
RGENDA + v v v v v e e e e e e e e e e e e e e e . i
DISCUSSION AND SUMMARY . . . . . . . . . e e e e e e e e e e v
DOCUMENTATION/ACKNOWLEDGEMENT. . . . . . A 4

ANALYSIS OF TANK FIRE CONTROL SYSTEMS BY OPTIMAL CONTROL THEORY
Jonathan Korn, Sol W. Gully, David L. Kleinman, Hal Burke. . . 2

GENERAL STRUCTURE DISCRETE-TIME OBSERVERS
R. R. Beck, K. C. Cheok, N. K. Loh . . . . ¢« . ¢ ¢ ¢ . « e 21

ON THE DESIGN OF PREDICTORS FOR FIRE CONTROL SYSTEMS .
Jo E.Leathrum . . . ¢ v ¢ v v 0 d 00 e e 0 e e . « ot e e e 43

MICROPROCESSOR IMPLEMENTATION OF AN ADAPTIVE SECOND ORDER
TRACKING/PREDICTION ALGORITHM FOR TANK FIRE CONTROL
P.T.Yp ... ... C e e et e a e e e Cf e e e e 61

ON THE CREDIBILITY OF MODELS
Naim A, Kheir . . ¢ ¢« ¢ ¢ ¢ ¢ 4 ¢ ¢« ¢ o o« @ e e e e e e e 68

A LINEAR NONLINEAR CONTROL PROBLEM
Leon Kotin « « « ¢ ¢« « ¢ « ¢« « o« O, 73

APPLICATION OF MODERN ESTIMATION AND CONTROL TECHNIQUES TO THE
GLAADS TEST VEHICLE

D. P. Glasson, B. L. Shulman . . . . . . « ¢ v v ¢ v v v « o & 79
ON DESIGNING ROBUST PREDICTORS USING FINITE STATE MARKOV CHAINS

W. Dziwak, S. A. Goodman, E. B. Pate, M. Mintz . . . . . . . . 95
ROBUST KALMAN FILTERING

G. A. HeWer & v v v v e ot e et e e e e e e e e e e e e 107
A CASE STUDY OF MODERN DIRECT DIGITAL AUTOPILOT DESIGN

G. B. Doane III, S. M. Seltzer, H. E. Worley . . . . . . . . . 129
ROBUST MISSILE GUIDANCE

D. 0. MoTnar |, . . i i ¢t i ittt et et e e e e e e 139

A NEW CLASS OF GUIDANCE LAWS FOR AIR-TO-AIR MISSILES
Joseph N. Craig, Roger L. Barron, Francis J. Cook . . . .. . 157

ESTIMATING TIME-TO-GO FOR USE IN ADVANCED GUIDANCE LAWS
Tom L. Riggs, Jr., Capt, USAF . . . . . . . ¢ .. .. « o177




Title Page

MICROPROCESSOR-BASED OPTIMAL CONTROLLERS FOR A HELICOPTER TURRET

CONTROL SYSTEM _
N. Coleman, E. Carroll, R. Johnson, N. K. Loh . . . . . . .. 201

DISCRETE-TIME DISTURBANCE-ACCOMMODATING CONTROL THEORY: THE
DISTURBANCE-UTILIZATION MODE
C. D. JORNSON © « & ¢ ¢« ¢ ¢ ¢ ¢« ¢ o o o o o« s a o« » « e a e 225

DISCRETE CONTROLLER DESIGN FOR GAUSSIAN AND WAVEFORM TYPE

DISTURBANCES
Jerry Bosley, Dr. William C. Kelly . . . . « ¢ v ¢ v v o v 241

STABILITY CONTROL OF LARGE INERTIA, DYNAMICAL, NONLINEAR SYSTEMS
IN THE PRESENCE OF UNSTABILIZING DISTURBANCES
John E. Bennett, Haren Almaula . . . . « . ¢« « ¢« .. . . e 264



THIRD MEETING
COORDINATING GROUP ON MODERN CONTROL THEORY
20-21 OCTOBER 1981 |

US ARMY MISSILE COMMAND
Redstone Arsenal, AL 35989

AGENDA
TUESDAY, 20 OCTOBER 1981

SESSION I: Control Theory & Applications (Chairman - Dr. William C. Kelly)
I/Simulation :

WELCOMING STATEMENT -

0900 - Analysis of Tank Fire Control Systems by Optimal Control Theory
by Jonathan Korn, Sol W. Gully, David L. Kleinman
ALPHATECH, Inc.
3 New England Executive Park
Burlington, Massachusetts 01803
Hal Burke
US Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, MD 21005

0930 - General Structured Discrete-Time Observers
by R. R. Beck

US Army Tank-Automotive Command Research & Development Center
Tank-Automotive Concepts Laboratory
Warren, Michigan 48090

K. C. Cheok and N. K. Loh
Center for Robotics and Advanced Automation School of

Engineering

Oakland University
‘Rochester, Michigan 48063

1000 - On The Design of Predictors for Fire Control Systems
by James E. Leathrum
US Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, MD 21005




1030 -

1100 -

1130 -

Microprocessor Implementation of an Adaptive Second Order
Tracking/Prediction Algorithm for Tank Fire Control
by P. T. Yip
US Army Armaments Research & Development Command
Fire Control & Small Caliber Weapons Systems Laboratory
Dover, NJ 07801

On The Credibility of Models

by Naim A. Kheir
School of Science and Engineering
The University of Alabama in Huntsville
Huntsville, AL 35899

Armored Combat Vehicle Technology Evaluaticn Using the HITPRO/
DELACC Simulation Methodology (Confidential)
by J. Groff, Rosemary Mirabelle, Steven A. Carchedi
US Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, MD 21005

SESSION II: Control Theory & Applications  (Chairman - Herbert E. Cohen)

1300

1330

1400

1430

II/Simulation

A Linear Nonlinear Control Problem

by Leon Kotin
Center for Tactical Computer Systems
US Army Communications-Electronics Command
Fort Monmouth, NJ 07703

Application of Modern Estimation and Control Techniques to the
GLAADS Test Vehicle
by D. P. Glasson
The Analytic Sciences Corporation
Reading, Massachusetts 01867
B. L. Shulman
US Army ARRADCOM
Dover, New Jersey 07801

On Designing Robust Predictors Using Finite State MARKOV Chains
by W. Dziwak & S. A. Goodman

US Army Armament Research & Development Command

Dover, NJ 07801

E. B. Pate & M. Mintz

Department of Systems Engineering

University of Pennsylvania

Philadelphia, PA 19104

Robust Kalman Filtering
by Dr. G. A. Hewer
RF Anti-Air Branch
Weapons Synthesis Division
Naval Weapons Center
China Lake, California 93555

ii




1500 - A Case Study of Modern Direct Digital Autopilot Design
by George B. Doane III, Sherman M. Seltzer, & H. Eugene Worley
Control Dynamics Company
Huntsville, AL 35801

1530 - Robust Missile Guidance
by D. 0. Molnar
The Boeing Aerospace Company
Guidance and Navigation Technology Group
P. 0. Box 3999
Seattle, Washington 98124

WEDNESDAY, 21 OCTOBER 1981

SESSION III: Control Theory & Applications (Chairman - Dr. Harold Pastritk)
. ITI/Simulation

0900 - A New Class of Guidance Laws for Air-to-Air Missiles
by Joseph N. Craig, Roger L. Barron, and Francis J. Cook
Adaptronics, Inc. ,
McLean, Virginia 22102

0930 - Estimating Time-To-Go For Use in Advanced Guidance Laws
by CPT Tom L. Riggs, USAF
Department of Astronautics and Computer Science
United States Air Force Academy, Colorado 80840

1000 - Microprocessor-Based Optimal Controllers for a Helicopter Turret
Control System
by N. Coleman, E. Carroll, and R. Johnson
US Army Armament Research and Development Command
Dover, New Jersey 07801
N. K. Loh
Center for Robotics and Advanced Automation
School of Engineering
Oakland University
Rochester, Michigan 48063

1030 - Discrete-Time Disturbance-Accommodating Control Theory: The
Disturbance-Utilization Mode
by C. D. Johnson
Professor of Electrical Engineering
Electrical Engineering Department
The University of Alabama in Huntsville
Huntsville, AL 35899

iii



1100 -

1130 -

Discrete Controller Design for Gaussian and Waveform Type
Disturbances
by Jerry Bosely
Computer Sciences Corporation
Dr. William C. Kelly
US Army Missile Laboratory
US Army Missile Command
Redstone Arsenal, AL 35989

Stability Control of Large Inertia, Dynamical, Nonlinear Systems
in the Presence of Unstabilizing Disturbances
by John E. Bennett and Haren Almaula
Electrical and Computer Engineering Department
Clemson University
Clemson, South Carolina 29631

iv




DISCUSSION AND SUMMARY

The third meeting of the Coordinating Group on Modern Control Theory was
characterized by the broad range of subject matter, including tank-helicopter
fire control and their microprocessor implementation, tactical missile guidance
and control, disturbance accommodation control, prediction-estimation design
and theory, Martin robustification of Kalman filters for heavy tailed non-
gaussian disturbances in monopulse radar tracking systems, credibility of
computer models, time-to-go algorithms for advanced guidance laws and stability
analysis for power systems.

Considerable interest was shown in the experience to date on the micro-
processor implementation of the fire control algorithms carried out by members
of the US Army Armament Research and Development Command. The work of Professor
C. D. Johnson on disturbance accommodation control and applied by Dr. William
Kelly of the US Army Missile Command and Norman Coleman of US Army Armament
Research and Development Command clearly have broad applications to current
fire control activities in the Army. A very high degree of interest was
demonstrated by the concerns of Professor Naim Kheir of the University of
Alabama in Huntsville in his paper on credibility of computer models. The
Technical Committee on Model Credibility of the Society of Computer Simulation
have proposed adapting several measures to quantify how well a model matches
the performance of reality being modeled. The Theil inequality coefficient
(TIC) was recommended for missile systems validation. Different measures of
credibility were proposed for a wide range of problems.

The work of Professor James Leathrum of Clemson University in developing
a design methodology for predictors in fire control systems and the work of
Professor Nan Loh on generalized observers should prove to be significant
contributions to Army activities in improving weapon system effectiveness.
The results of ALPHATECH on disturbed recticle sight clearly demonstrate that
first order lead angle prediction is ineffective against manuevering targets
and that the disturbed rectile exhibited a s1gn1f1cant1y worse pointing
performance than the stabilized sight.

Joe Craig of Adaptronics, Inc., provided promising results on trainable
adaptive learning network (ALN) guidance lines which are computationally
simple, uses only passive observables and can be realized using current
microprocessor capabilities. The paper by Captain Tom Riggs of the Air Force
Academy demonstrated that the time-to-go algorithm which uses range over range
rate for estimating time-to-go severely limited missile performance and that
the best performing algorithm is the simple closed form algorithm that forces
the command missile axial acceleration to be equal to the actual missile axial
acceleration.

The work done by TASC and University of Pennsylvania on air defense fire
control (GLAADS) concluded that Markov chains predictors offer noise immunity
over AR or ARIMA models and that modern control techniques in design of AAA fire
control provided improvements in the performance and stabilization of the
weapon system.




Work currently being pursued by the Naval Weapon Center at China Lake
on the application of robust statistics to monopulse radar trackers is
exciting and has the potential of significant improved performance in the
presence of heavy tailed non-gaussian noise.

Overall, the Chairman was pleased by the free exchange of information
and the strong interaction of participants. The Chairman at the close of
the meeting announced that the fourth meeting of the Coordinating Group on
Modern Control Theory will be held during the week of 25 October 1982 at
Oakland University. Rochester, Michigan.

HERBERT E. COHEN
Chairman
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Presented at the Third Meeting of the Coordinating Group on Modern
Control Theory, Huntsville, Alabama, October 1981

ANALYSIS OF TANK FIRE CONTROL SYSTEMS
BY OPTIMAL CONTROL THEORY*

By
Jonathan Korn
Sol W. Gully
David L. Kleinman
ALPHATECH, Inc.,
3 New England Executive Park
Burlington, Massachusetts 01803
and
Hal Burke
U.S. Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, Maryland 21005

INTRODUCTION

The primary purpose of a fire control system (FCS) is to track and
control the firing at a moving (and possibly maneuvering) target.
Often, it is desired to include a gun leading mechanism in the FCS
in order to compensate for the fired projectile's time-of-flight
toward the moving target. Recently, a research effort in which
several fire control system designs were analyzed, was reported

in (1). The control designs, all of which include (first order)
lead-angle prediction capability, consisted of both disturbed
reticle (DR), and stabilized sight-director systems (8S). Two
major attributes distinguish a DR from a director-type SS system:
1. The lead predictor is included in the DR's visual loop, and

2. A gun-to-recticle crossfeed path exists in the DR system; thus,
coupling the gun dynamics into the visual loop. The director type
system, on the other hand, is disengaged from both predictor and

gun dynamics.

Since the human operator is an integral part of the FCS, it is
necessary that any performance analysis (tracking and gun-pointing
in particular) be approached with appropriate gunner modeling. In
this paper, the performance of two representative generic fire
control systems, a disturbed reticle and a stabilized sight-
director, is analyzed. The tool through which these systems are
analyzed is the well known Optimal Control Model (ocM), (2)-(3).
The OCM is a nomative performance-oriented model of the human
operator engaged in a control task. In the case at hand, it is a

gunner performing a tracking task.

¥ This work was supported by Army Materiel Systems Analysis
Activity under Contract Number DAAK30-80-C-0075



First, the dynamical properties of the two FC systems are dis-
cussed. A brief overview of the gunner's (optimal control) model
follows, and the performance measures employed in the analysis
are introduced. The frequency-and time-domain modeling approach,
and the ensuing modeling results are then discussed.

DESCRIPTION OF THE FIRE CONTROL SYSTEMS

The modellng effort is initiated by selecting representative
generic FC systems for the disturbed reticle and the stabilized
sight-director designs. In the following, the basic characteris-
tics of these systems are described. We begin with the disturbed
reticle design.

DISBURBED RETICLE (DR) SYSTEM

The purpose of a tank fire control system is to accomplish the
functions of tracking, target-coordinate estimation and predic-
tion, and gun pointing. In a disturbed reticle design, these
functions are intermixed in a complex dynamic interaction of the
gunner, sight, and gun turret. The idea of a disturbed reticle .
fire control system is to automate the computation of the correct
lead for a constant velocity target.

The physical behavior the the DR system is the following. The
gunner, seated in the turret, rotates with the gun. He observes
the target and reticle through his sight, and commands the rota-
tion of the gun with a hand control to keep the reticle on the
target. In constant velocity tracking, the rate of rotation of
the gun is proportional to the displacement of the hand controls.
Thus the hand control dlsplacement should ideally be proportional
to the target angular rate, if the gunner is successfully
keeping the reticle on the ta%ge

The mechanical hand control position is transferred to an elec-
trical output, u, which in turn acts as an input to the reticle
and turret subsystem The turret servo should ideally cause the
gun to lead the target by an angle Ac—Te , where T is the pro-
jectile time-of-flight. This will insuré that it is possible to
hit a target moving with a constant angular rate. In the ideal
case of steady-state tracking of a constant angular velocity
target, the gunner does not perceive the lead but simply keeps the
reticle on the target.

The disturbed reticle design considered is mechanized with a turret
servo, a hand control filter, a reticle (sight) servo and a cross-
feed. The hardware required to implement the disturbed reticle
concept is shown in Fig. 1. The reticle is projected in the
gunner's line of sight by a movable beam splitter and mirror. In
addition, light from a light-emitting diode (LED) is reflected



off this mirror into an optical sensor to provide a position
reference signal for the mirror servo. Since the lead screw
positions the photosensor array, the (uncompensated) input to the
mirror servo is proportional to the lead screw angle, 6,.,. How-
ever, this input is modified by combining it with a signal from
an electronic crossfeed. The resulting signal is used to command
the mirror servo which will null on the LED and position the
reticle in the gunner's line of sight. The lead screw tachometer
output and the command serve as inputs to simultaneously position
the gun at angle bg-

The functional block diagram representing this design (DR) is shown
in Fig. 2. The command u is applied to both the lead screw and

gun turret servomechanisms. The lead screw servo is a position
servo which deflects the optical sensor an amount Tu with respect
to the gun. The deflection is proportional to the rotation &

of the lead screw and is measured by a potentiometer. A tachOmeter
is used for stabilization and to develop a lead command to the gun
rate servo.

enee venved, g

vawn AX1h

Fig. 1. Physical Fig. 2. Functional Diagram,
Configuration, Disturbed Reticle
Disturbed Reticle Design (DR).

Design (DR).

The optical sensor picks up the deflected light angle and drives
the mirror servo until the LED light is maximum. The mirror and
gun servos also respond to the crossfeed compensation. The gun
servo is rate compensated by gyro feedback. It is commanded by u
and the crossfeed network.



The crossfeed network is central to the three individual servos in
two ways. First, it is an integral part of the gun servo compen-
sation network, and second, it provides crossfeeds to the mirror
servo loop to slow the mirror when the gun servo cannot keep up
with its command. This is seen by the following argument: when
the gun servo error is large, indicating gun lag, the crossfeed
signal is maximum and slows the mirror due to the negative sign.
This tends to diminish the nominal lead Tu. A simplified state
variable model (closed-loop) of the DR design is shown in Fig. 3.

v 1+1_ 6
HO b —5
1*115

GUNNER HC LEAD sERVO/
FILTER PREDICTOR

TARGET
DRIVING
S1GNAL B

= S+K, [

3
nis
1
L

TURRET SERVO

Fig. 3. Disturbed Reticle Design, State Variable Model.

In this representation we include the gunner in the control loop.
Note that the (fast) optical sensor/mirror motor drive dynamics,
as well as the system's inherent nonlinearities (1), are neglegted
in the state space model and in the subsequent analysis. The
pertinent state variables are defined as follows: 6., = target
commanded angle; bp = gunner's reticle (sight) angle; 9E=6T—6R =

. R : . -
tracking error; u = gunner's control signal; 6o = gun anigle.
Some of the characteristics of this configuratIon are summarized
below.

1. The dynamics of the lead servomachanism are parameterized by
%t; time constant, Ty = .01 sec. The prediction time assumed is
=2 sec.

2. We explicitly include a lead servo tachometer gain K, for a
sensitivity analysis option as illustrated in the sequel.

Nominally, K, = 1.

3. The crosSfeed gain is taken as K_ = 1.1, following (1).

4. We assume a second-order dynamicg for the gun turret as shown
in Fig. 3. The turret servo gain is K.=10, resulting in a natural
frequency of wT=K =10 rad/sec and a damping ratio of z=0.5.

5. The hand-control (lag-lead) filter is designed to resolve the
disparity between the fast sight dynamics and the slow gun turret
dynamics, and its function is to lower the lead-servo bandwidth.




In the analysis that follows, the lag time-constant TI=1 sec,
and the lead time-constant TS=O.1 sec.¥*

The gunner responding to the tracking error stimulus, generates
the control command u which drives the gun turret and the reticle.

Since the reticle angle 6_ is subtracted from the target signal
8., the human, in effect,™controls the system defined by the trans-

fer function TDR(s), viz.,

Y 3 2
(o) - eR(s)= a535+a43 +ags3tays?ta;stags (1)
DR u(s) s(s3+KTsz+K

T23+K pKT2 )(tIs+1)(TLs+l)

where the a; coefficients are function of the system

parameters ~(5). Substitution of the appropriate parameter values
yields the pole locations at 0, -100, -1, -1.23, -4.4 + j8.4 and
zero locations at -.94, -1.39, -42.72, -3.6+ j7.1. A Bode plot of
T R(s) is given in Fig. 4 (the transfer function pertaining to the
Sg system, TSS(S), is also shown, and will be discussed in the
subsequent séction).
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Fig. 4. Controlled Element DynamicskeR(s)/u(s).

It may be noted that the DR system has characteristics that close-
ly approximate a rate-system, throughout the entire frequency
range. This is not surprising, since the system's poles and zeros
(other than the pole at the origin) which lie within the gunner's
response range, essentially cancel each other. We see, therefore,
that the direct effect of introducing the hand-control filter 1is
to reduce the bandwidth of the gunner-controlled element such that
it approximates a K/s-like system. Such a rate-system is a very
desirable (easy) system for manual control. One must realize,

“This is an actual XM-1 Chrysler design (4).
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however, that this system represents only the visual-loop dynamics.
It will be shown in the sequel that the gun-pointing dynamics
result in a totally unsatisfactory pointing performance.

STABILIZED-SIGHT DIRECTOR

The director type system structure is not as complex as the DR's
as the turret dynamics do not affect the gunner's visual loop.
The physical components of a generic stabilized sight-director
fire control system are illustrated in Fig. 5. Instead of the
three servos that comprise the disturbed reticle system the
stabilized sight employs two. The system uses a rate integrating
gyroscope on the sight to provide an inertial reference in the
azimuth axis. The azimuth sight gyro enables the effect of the
gun turret rotation to be removed from the dynamics of the sight.
This inertially stabilizes the sight so that it is independent of
turret motion. As a consequence, the performance of the sight
loop will be limited only by the ability of the human operator to
track a target since the sight servo is several orders of magni-
tude faster than the operator response. In the subsequent analysis,
the fast sight servo dynamics are neglected.

As indicated, the SS system consists of a two servo loops, one
driving the sight and the other driving the turret. These two
loops are each independently stabilized, both by rate integrating
gyros. The command from the sight servo loop to the gun servo
subsystem is used to pass target position information which is

used in computing the correct angle to point the gun. The coupling
from the gun servo to the sight servo loops locally references the
sight servo to the gun and is due to the fact that the sight motor
moves relative to the turret.

6
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Fig.5. Physical Configuration, Fig. 6. Block Diagram,
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A (linear) block diagram of the 5SS system is given in Fig. 6. As
shown in the figure the dynamic coupling of the turret motion to
the sight director is immediately removed by the gyro. The gunner
applies a signal to the gun sight servo. This signal is combined
with sight position and rate feedback and used to drive the sight
servo motor. In this figure 6, represents the inertial angle of
the reticle measured by a rate integrating gyro and 6, represents
the inertial angle in which the gun is poiting. Note that there
is no need to lead the reticle since the sight is independent of
the gun angle; thus the sight angle and the reticle angle, 6p,

are the same.

The lead angle computed by the system corresponds to Té, which
when added to 6, is the correct angle the gun should aim to hit

a constant velocity target. This signal is used to command the
gun servo lead. Angular position information from the rate
integrating gyros on the sight and gun are commanded as the
difference between the sign and gun angles. The lead command will

null itself when eR - eG = TeR.

Since we analyze in this paper the stabilized sight-director
concept, and not an existing system, we may choose arbitrary
dynamics for the visual loop. The appropriate choice is a rate
system, l/s, so that any comparison between the S35 and the DR
systems will be meaningful. A simplified block diagram of such
a system is shown in Fig. 7. '

vl ;4:;> Xy K '

-~ MAN  — s 1478 T
® = S*¥e J"%
CONTROLLED -
ELEMENT PRED,

TANK TURRET SERVO

TARGET
DRIVING
SIGNAL

Fig. 7. Stabilized Sight-Director System.

(KT=1O) wT=10 r/s, = 0.5

Here, the gunner's controlled element dynamics are simply

T (s) = § (2)

(see Fig. 4), and the gun turret servo is represented by a second-
order underdamped system with characteristics similar to the DR's.

Thusfar, we have established the dynamics of the two generic

FC systems, the performance of which we wish to analyze. In the
following section we give a brief overview of the OCM, the main
analytical tool which is employed in the analysis.
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OVERVIEW OF THE OCM

The Optimal Control Model (OCM) is well documented in the litera-

ture (2)-(3). A brief overview follows Fig. 8 shows the structure
of the OCM. The sight dynamics,

(s) or T (s), as well as any
other pertinent system states are representeﬁ in state space form

x(t) = Ax (t)+bu(t)+Ew(t)+Fz(t)

(3)
y(t) = Cx(t)+du(t)

where w(t) is a white-Gaussian disturbance with intensity W and
z(t) is a deterministic target trajectory. The displayed informa-
tion y(t) consists of tracking error 6

(t) and error-rate 6_(t),
and may include other auxiliary VarlabEes and their rate of change.

DISTURBANCES
wit), e(t)

ult) SYSTEM DYNAMICS x{t) DISPLAY
X = Ax+bu+tEw+FPz

y(t)

y = Cx+du

INFORMATION PROCESSOR i |

e —— i e

A
- A wALMAN] " [ Tive /
I (mSH) 4!—(1)4—— —L {~=—{PREDICTOR |~ FILTER OELAY,T ——(-:‘-><—4 l
| i
MOTOR OBSERVATION
NOISE, v (1) NOISE.VY(H

e

HUMAN QPERATOR MODEL l

Fig. 8. Optimal Control Model of Gunner Response.

The visual éssumption in the OCM is that the human perceives a
delayed and noisy replica of y(t), viz

A 4

yp(t) = y(t-1) + vy (t-1) (4)

where the white-Gaussian observation noise Vv i(t) of the i-th
indicator has covariance intensity y

Vyi (6) = moys E{vie)} 5)




In these equations tis the pilot's lumped time-delay, and p is

the observation noise/signal ratio of yi(t). yi
Given y_(t), the operator estimates the system state X(t-t) and
predictg the current state xX(t). He then develops an optimal
control strategy by minimizing the quadratic cost functional

I = B{y' (0)Q,y(£)+a,82(e)f (6)
where Q_ = diag (q i) are the relative weightings on the observa-
tions and q. is thélcontrol-rate weighting*. Usually, the track-

ing error weighting coefficient, qp, is non-zero, since the
objective is to minimize the observed error. This strategy results
in the optimal control gains, L, arising from the pertinent steady-
state Riccati equation. With the inclusion of a motor noise,

v. (t), in the pilot's control, the optimal control, u(t), obeys

the equation

Gtu=Lx+ =
Uty Lx vu(t) uc(t)+vu(t) (7)
The parameter T, can be interpreted as a "neuro-motor" time con-

stant. Usually, t, is specified and q_ is adjusted accordingly,
as there is a one—go—one correspondencé between the two.

The motor noise v._(t) is assumed to be white and Gaussian with
intensity that scales with the covariance of u(t),

Vu(t) = mp, cov [u(t)] . (8)

The coefficient Py represents the motor-noise/signal ratio.

Modeling efforts utilizing the OCM can be approached in either of
two ways:

1. steady-state mode, or

2. time-varying (nonstationary) mode.

In the steady-state mode z(t)=0, and the target input is modeled
by a stationary colored noise. The usual practice is to let the
disturbance w(t) be a white-Gaussian noise, and to augment the
system with the dynamics of a noise shaping filter that character-
izes the driving noise. The stationary approach is most suitable
for frequency domain analysis of human response. The model equa-
tions are represented in the frequency domain, so that various
performance measures can be extracted. The model outputs include
any of several possible transfer functions associated with the
human, with the vehicle, or with the overall closed-loop system.
In addition, the performance scores (tracking error RMS values)
may be predicted.

*
It is assumed that the human seeks a control strategy that would
minimize control-rate rather than control.
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In the time-varying case, the target's profile is deterministic,
i.e., z(t)#0 and w(t)=0. This modeling technique usually involves
a comparison of experimental data time-histories (first-and second-
order statistics) with the model-predicted ones. It is required,
therefore, to develop the process mean and covariance propagation
equations which arise from the non-random component z(t) that
drives the system. These equations, as well as the frequency
domain equations, have been thoroughly documented in the litera-
ture, e.g. (2)-(3). Next, we analyze the control performance of
the two gunner/FC systems. The analysis is performed in both
frequency- and time-domain by employing the appropriate OCM
techniques.

FREQUENCY-DOMAIN PERFORMANCE ANALYSIS

In this section we develop the frequency domain model for target
tracking. First the statistical properties of the maneuvering
target are determined. Next we obtain the overall system state
space representation, which includes the target, the sight, and
the gun dynamics. Finally we define frequency domain measures
(metrics) for the fire control system performance evaluation and
comparison.

TARGET EXCITATION SIGNAL

It is assumed that the target is an enemy tank that maneuvers
towards the gunner in an avoidance path. It is also assumed that
the target range is large enough to be taken as constant. There-
fore, the only target-related variable of interest is the target's
lateral displacement, or equivalently, the target's sight angle,
eT(t). We assume that the target angle, eT(t), is a second-order
Markov process driven by white Gaussian noise, w(t), with an
intensity of W. This assumption is practical and sufficient for
our modeling effort. The noise-coloring process is assumed to be
a butterworth filter with bandwidth w_=0.5 rad/sec. We obtain,
therefore, the differential equation Bor target motion,

BT(t) + 2g0 6o (t) + w2 6n(t) = w2 w(t) (9)

where ¢ = 1«[2_, and the resulting target signal power spectral
density 1is
w*W

_ ’n
QT(m) B wi+wé

(10)

The appropriate target signal power value is selected as

E{e%(t)} = 0p2yns = 16 mrad? (11)
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i.e., 07 rms. 4 mrad. This selection dictates the power of

07 rms’ 25%3%it can be shown that for a butterworth filter,
eT,rms - mneT,rms ) (12)

Therefore, since w_ = 0.5 rad/sec, we obtain éT =2 mrad/sec.

If we further assume that the (~constant) range;rEEZOOO meters,
we obtain an equivalent target RMS lateral displacement and
velocity (ReT and RO respectively) of 8 meters and

4 meters/secona?srespect1v£T§. These displacement, velocity, ,
range, and bandwith values compare well with the Hardison tracking
test simulations reported in (4). (Actually, any one of these
four parameters is determined by the other three.)

MODEL DEVELOPMENT

The OCM structure requires a state-space form of the controlled
element/target dynamics. Table 1 defines the state variables

for the DR and SS systems.
TABLE 1. STATE VARIABLES FOR THE DR and SS SYSTEMS

X X Xq X, X  Xg X5 Xg
DR O 6 Lead HC G éG Input Signal to o
Servo Filter Turret Servo LPF
Angle Signal
SS GT GT BR SG GG -- -- --

One may notice that x,=6, and X.=6. in the SS system are unobser-
vable states. They are lncludea s8 that predictions can be made

of the gun motion.

The displayed information in all systems is, of course, the tracking
error, 6.(t), but the gunner extracts rate information, 6.(t), as
well. THe observation set is, therefore, y'=[eE GE]. The state
equations for the two systems can now be easily derived, and are
given elsewhere (5). The system parameter values are listed in

a previous section. For the gunner we select the OCM nominal

parameter values: o =-25db; p__= 2=—20db; TN=.15 sec; T=.2 sec.
The cost functional used is yL vy
I(u) = E{e%(t) + qr{lZ(t)} (13)

where q, is uniquely determined by the neuromotor time constant,

TN.
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FREQUENCY DOMAIN MEASURES

The following frequency domain metrics are used in the performance
analysis.

1. Gunner Describing Function, H(s) (magnitude and phase) — This
transfer function conceivably can be calculated from field (or
simulation) data. It is defined, relative to the given input
disturbance, w(s)*, as the ratio of the transfer function between
input u and noise w to the transfer function between output ¢

and noise w. Thus, assuming negative feedback S
—_ u(s)/w(s)
H(S) == g () /w(sy (14
or conceptually,
HORES wOR (15)

2. Circulatory Transfer Function, O(s) (from 6. back to ©

signal) — This is a rather complex, but quite important transfer
function. For single indicator/display system it is equal to the
single-axis Y_Y _ (human-vehicle open-loop) found in the early man-
machine literBtfre (6). For multiloop systems it is equivalent to
an "outer-loop'" describing function. It is defined as follows.

In the closed-loop system we open the loop at a given indicator
containing position information and rate information (eE,e in the
case at hand). The loop transfer function, starting at thg
indicator 6y, going through the human, the vehicle (slight/gun) and
ending at 65 is O0(s). Quantities such as gain and phase margins,
as well as Eoop bandwidth are obtained.

In the context of this stability metric, we investigate the
robustness of the disturbed reticle system to sight tachometer,
Kg» failures(in the stabilized sight-director the predictor sub-
system is out of the visual loop, and, therefore, failures of the
tachometer have no effect on the loop stability). The underlying
assumption in this analysis is that the gunner cannot adapt
instantaneously to sudden failures in the sight tachometer, and
his describing function, H(s), remains tuned to the old system,
for which K,=1. We then compute O(s) which is comprised now of
the "old" gunner model and the 'mew' (degraded) system.

3. RMS values (scores) of the tracking error, 6.(t) — This metric
is a measure of the gunner's tracking performance. We do not
analyze the pointing performance of the FC systems in the frequency

ot
We recognize that w(t) does not strictly have Laplace transform.
This is not a problem since it ''falls out" in the compution of

H(s).
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domain, since it involves signals at different times (the pointing
error is defined as © (t+T)—eG(t), where T is the projectile's
time-of-flight; also See subsequent section), and the OCM steady-
state analysis can treat events at time t only. The pointing per-
formance is addressed in the subsequent time-domain analysis.

FREQUENCY DOMAIN MODELING RESULTS

The modeling results are summarized in Figures 9 through 11.
These results are discussed below.

1. Gunner Transfer Function — Figure 9 shows the magnitude and
phase of H(s) for the two FC systems. The difference between the
DR and the SS are relatively minor, as the visual loop dynamics
in the two systems are almost identical (see Fig. 4). What is
displayed in Fig. 9 is a typical human operator transfer function
controlling a rate-like system.

q PEG
-100-

-200-

DR

55

IRl rooa aaeasd 2 oor o nrinl L oa o

00 - 5 sawaamd s wusond o soaaasd o s ol memed datay
0.1 1 10 rad,/cec 0.2 1 10 1:8/sec

(A) MAGNITUDE (B) PHASE

Fig. 9. Gunner Transfer Function, H(s).

2. Open-Loop Transfer Function — First we examine the loop
(circulatory) transfer function, 0(s), for the two FCs under
nominal conditions. It was found that both DR and SS systems
resulted in similar O(s) transfer functions in the nominal case.
For that reason, only the DR's circulatory transfer function is
shown in Fig. 10. The 0(s) function for the SS can be assumed to
be the same. The gain and phase margins are comparable ( 6-7 dB
and 40°, respectively). Next we assume that the sight tachometer
gain in the DR system is abruptly halved, i.e., Kp=.5. The re-
sulting open-loop transfer function changes drama%ically as
evidenced by Fig. 11. It is clear that if the gunner fails to
adapt to the new conditions (which is assumed to be the case
under normal circumstances) the closed-loop DR system becomes
unstable. In the stabilized sight-director, on the other hand,
such danger is nonexistent, since the lead prediction loop is
disengaged from the sight dynamics. The only effect of a
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tachometer failure in the SS system is a degraded pointing per-
formance, while all stability margins are maintained at their
original levels.

143
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INSTABILITY Y
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i
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0.1 1.0 10.0 rad/yecr 0.1 1.0 10.0 rad/sec

Fig. 10. DR Gunner-Vehicle Open- Fig. 11. DR Gunner-Vehicle
Loop Transfer Function, Open-Loop Transfer
KR=1 Function, KR=O.5

3. RMS of Tracking Error (Scores) — The OCM predicted scores for
the DR and the SS systems, given the hypotesized target dynamics,
are 0.50 and 0.53 mrads, respectively. These scores are of the
same order as those reported in (4). Thus, the difference in the
tracking performance between the two systems is insignificant.
This result could be expected since both systems have almost
‘identical visual loop dynamics.

Next we analyze the FC system's performance in the time-domain,
where more significant differences are uncovered.

TIME-DOMAIN PERFORMANCE ANALYSIS

TARGET MANEUVER

In contrast to the frequencey domain analysis, the target tra-
jectory now is assumed to be 'deterministic'. In order to expose
the differences between the two FCs and to evaluate their lead
prediction capabilities, it was required to design a target maneu-
ver with appreciable acceleration levels. We assume a target
which maneuvers toward the gunner at an approximate range of R=750
meters. The maneuver begins at t=1 sec and ends at t=13 sec, at
which point the target continues its movement with a constant
velocity. The assumed trajectory is shown in Fig. 12.
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Following (1), we assume a generalized Poisson-like tangential and
radial target accelerations. Since the range assumed is effectively
"constant', the gunner tracks only the target's lateral motion.
Therefore, the only relevant quantity for the modeling effort is
the target (resultant) lateral acceleration, z(t). This accelera-
tion is expressed in mrad/sec? and its profile is shown in Fig. 13.
A more detailed description of this target intentional maneuver is
given in (5).

s A0 30 20 10 -10 -0

whAD/S?

REPRESENTATIVE TARGET th -5
PAHEUVER
too

=
n
-
Fig. 12. Representative Fig. 13. Resultant Lateral
Target Trajectory. ‘ Acceleration.

MODEL DEVELOPMENT

The DR and the SS systems are of course unchanged, and we use the
states variables which were defined previously. The state equa-
tions are unchanged except for the target dynamics (first and
second state variables), which are now

il = Xy, iz = z(t) (16)

The z(t) component is modeled in the OCM's Kalman Filter (Fig. 8)
as a 'pseudo" white-noise with the intensity

Wd(t) = ZIsz(t) , (17)

where t. = 1 sec, and is interpreted as the correlation time of
the z(tf process. All OCM parameters as well as the cost func-
tional J(u) (13) remain unchanged.

TIME-DOMAIN MEASURES

Applying the target driving acceleration, z(t), the ensemble mean
and covariance equations of the closed-loop system are propagated.
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It is possible, then, to obtain time-histories (first and second
order ensemble statistics) of the various signals in the control
loop. In the present analysis we compare the following time-
histories, obtained for the two FC systems.

1. Tracking Error, 6,(t) — Based upon the similarity of the
tracking loop dynamics, and the frequency domain results, no
significant differences are expected 1n tracklng performance

2. '"First-order" gun pointing error, Orc 1(t) — This quantity is
defined as

eTGi(t) = op(t) + TéT(t) - 8g(t) . (18)

Usually, one is interested in the tracking error, 6 (t) statis-
tics, as this is a fundamental measure in any tracklng performance
modeling effort. 1In the case at hand, we are also concerned with
the evaluation of the dynamic properties of the two FC systems.

The quantity 6.,.1(t) is an excellent metric for such evaluation for
the following Fason: If we replaced the turret-servo second-order
dynamics with a unity gain (i.e. +w) and if we assumed that the
gunner tracks perfectly (i.e. /ty then, for constant velo-
city targets, (t) = o (t)+Te (E) 31mply because of the fact

that a first-orger lead predlcgor is employed in each of the FC
systems Therefore by evaluating the '"first-order' pointing-
error, L(t), we ellmlnate the pointing errors which are intro-
duced by ghe 1nab111ty of the first-order predictor to account for
maneuvering (accelerating) targets. The signal 6n 1(t) merely
reflects the effect of the tracking error on the gun output, and,
more importantly it is a measure of the dynamic response of the

FC systems at hand.

3. Total gun-pointing error, eTG(t) — This angle is defined as

8 (t) = 8p(t+T) - o (t) " (19)

and it reflects the total pointing error between the target at
T(=2 sec) ahead and the present gun pointing angle. This quantity
is a measure of the predictor's performance rather than the FC
system's. In this sense, the statistical analysis of 0p (t) is a
prelude to any future research effort on improving lead-angle pre-
diction mechanisms.

MODELING RESULTS

_ The modeling results are summarized in Figs. 14 through 16.

1. Figure 14 shows the tracking error statistics for the two sys-
tems. Shown are (a) ensemble mean, 6.(t), and (b) ensemble standard
deviation, o (t) As expected, large transients are evident in
the vicinity of t~2 sec and t~8 sec, as the largest acceleration
peaks occur at these times. The error mean and variance values
are comparable to the results reported in (4). No significant
differences in tracking performance are detected between the SS
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and the DR systems, because of the similarity of the visual-loop
dynamics. Any conclusions from these results, however, may be
misleading as now shown.

2. Figure 15 shows the "first order'" pointing error results. It
is clear that the DR system (which represents the actual Chrysler
design) exhibits the largest pointing error mean, while its stan-
dard deviation o Gl(t), is actually the smallest. The physical
interpretation o% this result is that the DR's gun response 1is
sluggish and exhibits a remarably small variability by filtering
out high frequency variations. Since the tracking error (6.) for
_the DR is actually the smallest, it is clear that the DR's Unsatis-
factory pointing performance is due to its sluggish dynamics,
induced by the hand control filter. It is unfortunate that good
tracking performance has been achieved at the expense of poor
pointing performance.
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|
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(b) s7aLuARD DEVIATION, 7% (t) (b) STANDARD DEVIATION, "TG'(:) = ’TG(C)

Fig. 14 Tracking Error Ensemble Fig. 15 "First-Order Gun Point-
Statistics ing Error Statistics

3. Figure 16 shows the ensemble statistics of the actual point-
ing angle eTg(t)' The standard deviation, cTG(t), is not shown

since it is fhe same as in Fig. 15.
MRAD

SEC

-10]
-15{

-20

Fig. 16 Total Pointing Error Ensemble Mean
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Two observations are quite obvious:

1. The pointing error and covariance levels are extremely large
(over 20 mrad at one point) and reflect the failure of the first-
order lead predictor to handle accelerating targets.

2. The DR exhibits a significantly worse pointing performance
than the SS. The larger and longer persisting errors in the DR
system are accorded to the sluggish gun response, which results
from the introduction of the hand-control filter.

CONCLUSIONS

This paper documents partial results of a research effort to
develop analytical techniques for evaluating tank fire control
systems, and to apply the techniques to evaluate existing (dis-
turbed reticle) and proposed (stabilized sight-director) fire
control system mechanizations. The technique through which the
two FC systems are analyzed is the Optimal Control Model (OCM)

of human response. This modeling approach includes the gunner in
the closed-loop, i.e., it considers the gunner-operator as an
integral part of the FCS. The modeling results uncover some of
the weaknesses of the disturbed reticle system. In particular,
it is shown that under certain conditions the DR becomes dynamic-
ally unstable and, in general, its gun-pointing performance is
unsatisfactory. In addition, it is shown that first-order lead-
angle prediction is inappropriate in engagements involving
maneuvering targets. Thus, a higher order predictor is necessary.
This, however, is d subject of future research efforts.
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ABSTRACT

A class of general structured discrete-time deterministic observers is
developed. The one-step predicting or Luenberger observers and a class of
current-update observers may be obtained from this class of general structured
observers. Interesting relationships and important properties among various
full-order observers are established. Optimal discrete-time observers are
then developed, and it is shown that these optimal observers are structually
and numerically equivalent to various forms of Kalman-Bucy filters.

1. INTRODUCTION

As is well known, the development and applications of filters and
observers for stochastic and deterministic systems have dominated the
literature for almost two decades, [1-20]. Awong the most well-known
techniques for estimating the state of a system are the stochastic Kalman-Bucy
filters [1-4] and the deterministic Luenberger observers [5-8]. It is also
well known [10,13,14] that an equivalence between the one-step predicting
Kalman-Bucy filter and the full-order Luenberger observer can be established
for a certain choice of observer gain. However, relationship between the
various forms of Kalman-Bucy filters and other possible forms of deterministic
observers which may provide additional insight into observer theory are
obscure. :

The main purpose of this paper is two fold. The first objective is to
present a class of general structured discrete-time deterministic observers.

. The one-step predicting or Luenberger observers [5-8] and a class of

current-update observers may be obtained from this class of general structured
observers. Interesting properties among various forms of observers are
established and it 1is shown that the one-step predicting or Luenberger
observers and the current-update observers may be related via a set of
time-update and measurement-update equations. The second objective 1s to
develop a set of optimal gains for the class of general structured observers.

. The optimal gains are then used to establish a useful relationship between the

optimal deterministic observers and the various forms of Kalman-Bucy filters.
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The organization of the paper is as follows. Section 2 of the paper
presents the development of the class of general structured discrete-time
deterministic observers. Section 3 describes the relationship among various
forms of full-order discrete-time deterministic observers. Optimal
deterministic observers are derived in Section 4 using the notion of gradient
matrices [21-24]. In Section 5, a useful equivalence between optimal
full-order observers and the steady-state or time-invariant Kalman-Bucy
filters is established. Throughout the paper, the notationm, z(i]j), will be
used to denote the value of z of a dynamical equation at the discrete instant
of time i updated by utilizing the measurements up to the instant of time j.

2. DISCRETE-TIME DETERMINISTIC OBSERVERS

Consider a deterministic dynamical system described by

x(k+1) = Ax(k) + Bu(k) , x(0) = xq, (1a)

y(k) = cx(k), (1b)

where x(k)eRD, ulk) eRY, y(k)eRM, =x,eRT is arbitrary, and 4, B, C are
constant matrices of compatible dimensioms. With no loss of generality, it is
assumed that rank[C] = m. In general, m<n so that the complete state x(k)
cannot be uniquely determined from the output relation (1b) alone. Hhowever,
subject to the observability or detectability of (1), an estimate of x(k) can
be generated using an observer.

In this section, the development of a general class of discrete~time
deterministic observers is investigated. Hence consider a gemeral class of
systems having the following structure:

z(k+1|k+1) = Fz(k|k) + Gy(k+1) + éy(k) + Hu(k), (2a)
z(0]0) = z,, (2b)
x(k|x) =

Pz(k|k) + Vy(k), (2¢c)

where z(klk) eR9 with q being.the dimension to be determined, zo is an
arbitrary initial conditiom, F, G, G, H, P, and V are dimensionally compatible

constant matrices to be determined, rank(P] = q, and x(k |k)eRD is the output
of (2).

Definition l: System (2) is said to be a general structureg observer for (1)
if

lim [x(k‘k) - x(k)] = 0. (3)

Ve

Define estimation error vectors as
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2(klk) - Tx(x), (4a)

He>

e, (k| k)

e

ex(k]k) = x(k]k) - x(Kk), | (4b)

where T €RAXMN is to be determined; and whereby

lim e,lk]k) = 0, (5a)
k=
lim e_(k|k) = 0, (5b)
koo

imply that z(k|k) estimates Tx(k) and x(k|k) estimates x(k).

From (1), (2) and (4), it is straightforward to show that

e, (k*1[k+1) = Fe,y(k|k) + (FT+GCA+GC-TA)x(k)+(H-TB+GCB)u(k), (6a)
ez(o|0) = z(0) - Tx(0), (éb)
e_(k|k) = Pe_(k|k) + (PT+VC-I )x(k). (6c)

X 2 n

The following theorem governs the existence of a2 general structured observer
given by (2).

Theorem 1: Suppose (1) is completely observable and completely reachable.
Then (2) is a general structured observer for (1) if and only if the following

conditions are satisfied:

(a)  [%(Fll<1, i=1,.0., n, (7)
(b)  FT + GC + GCA = TA, (8)
(¢) H = TB - GCB, ‘. ()
. (d) PT + VC = I, (10)

where Aj[*] denotes the i-th eigenvalue of [-].
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Proof: See Appendix A.

Remark 1: If (1) is completely observable and stabilizable but not completely

reschable, then (7)-(10) in Theorem 1 are only a set of sufficient conditions
for the existence of observer (2). This conclusion follows from the proof of

Theorem 1 where condition (b) may not be always necessary when (1) is only

stabilizable. N

» In the sequel, two subclasses of the general structurea observers given by
(2) are described, namely, the current-update observer and the one~step
gredictingl or Luenberger observer [5-8]. A current-update observer takes
the form

2(k+1 |k*1) = Fz(k|k) + Gy(k+1) + Hu(k), (11a)

2(0]0) = zq, (11b)

x(k|k) = Pz(k|k) + Vy(k), (1lc)

where (11) stems from (2) with G = 0. The term "current update" is usea to

stress the fact that the most current measurement y(k+1) is wutilized for
updating the state z(k k) of the dynamical equation (1la). The following

corollary follows from Theorem 1.

Corollary 1: Suppose (1) is completely observable and reachable. Then (11)
is a current-update observer for (1) if and only if

(a) [N (F]l<1, i =1,..0, n, (12)
(v FT + GCA = TA, : (13)
(e) H = TB - GCB, (14)
(d) PT + VC = I,. (15)
A
On the other hand, setting G = 0 in (2) yields the ome-step predictingor

Luenberger observers, having the form [5-8],

2 (k+1 k) = Fz(k|k-1) + Gy(k) + Hu(k), (16a)
2(01]-1) = Zo, (16b)
x(k [k=1) = Pz(k|k=1) + Vy(k), (16c)

1 See Remark 3.

24



where the notations z(k+*1]k) and x(k+l|k)are used to emphasis the fact that
(16) is updated by a one-step previous measurement or that (16a) is a one-step
prediction algorithm, and 2z, 1s an arbitrary initial condition. Similarly,
Theorem 1 reduces to the following well known result [5-8] when G = C.

Corollary 2: Suppose (1) is completely observable and reachable. lhen (16)
is a one-step predicting or Luenberger observer for (1) if and only if

(a) [A;[FIl<1, i = 1,..., n, (17)

(b) FT + GC = TA, - ae

(c) H = TB, (19)

(d) PT + VC = Ij. (io)
A

Remark 2: The matrices F and G in (16a) may be shown to be given by

F=TAP + U] - (UT +UO) [ T ¥
, (21)
¢ 1)
G=TAV + Uy = (T + U0 [ T T#
) (22)

where U; €RIXD  and Uy e RAXM  are arbitrary constant matrices and { -]#
denotes the psendo-inverse [25,26] of [ - ].

3. RELATIONSHIPS AMONG FULL-ORDER DISCRETE~TIME
DETERMINISTIC OBSERVERS

In Section 2, the general structured observer described by (2), the
current-update observer described by (11) and the one-step predicting or
Luenberger observer described by (16) are all of order q where q<n. -In this
section, full-order general structured, current-update and one~step predicting
or Luenberger observers with g=n will be considered. The objective 1is to
study the various interesting relationships and important properties of these

" full=order observers. Furthermecre, the relationship between the full-order

observers developed in this section and the Kalman-Bucy filter will be
investigated in section 5, where it will be shown that s deterministic
full-order observer can become a Kalman—Bucy filter wunder suitable
conditions. The general structured observer described by (2) is theretore of
fundamental and practical importance.

To proceed, let T = I;, P = I, and V = 0, then Theorem 1 yields a
full-order general structured observer of the form
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<(k+1 k1) = (A = GC - 6CAIx(k k) + Gy(k+1) + Gy(k)
+ (B - GCBIu(k)
= ax(k|k) + Bu(k) + Gly(k+1) - Cax(k|k) - CBu(k)]
+ Gly(k) = x|, (23a)
x(0]0) = z,. (23b)

Setting G = 0 in (23) establishes a full-order current-update observer (see
also [18-20])

x(k+1]k+1) = (A - GCA)x(k |k) + Gy(k+l) + (B = GCB)u(k)
= Ax(k|k) + Bu(k) + Gly(k+1) - CAx(k|k) = CBu(k)], (24a)
x(0]0) =z, ; (24b)
while setting G = 0 1in (23) results in a full-order omne-step predicting or
Luenbergerrobserver [5-7]
x(k+1] k) = (A - 60)x(k|k=1) + Gy(k) + Bu(k)
= Ax(k|k=1) + Bu(k) + Gly(k) - Cx(k|k-1)], (25a)
x(0]-1) = zg, (25b)

where the notation x(k+l|k) is used to emphasize that (25) is a one-step
prediction algorithm.

Remark 3: Equation (24) has the form of a Kalman-Bucy true filter while (25)
has the form of a Kalman-Bucy one-step predicting filter, [1-4]; hence, the
Luenberger observer described by (25) has also been referred to as a gne=step
predicting observer in this paper. Also, it is observed that (24) and (25)
can respectively be obtained from Corollaries 1 and 2 with 1=I,, P=l; and
V=0. Furthermore, (25) can be derived from Remark 1 with Uy=-Ujl.

Now the estimation errors associated with (23), (24) and (25) may be shown
to be given by, respectively,

(A - GC - GCAYey(k |K)
A-{G16] [c]re (kK , (26a)
C

A

ey (k+1 [k+1)
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e (0]0) = x5z (26b)

s

ex(k*+1]k+1) = (A = GCA)ey(k|k), (27a)
e (0l0) = x -z,; (275)
ex(k*+1]k) = (A - GO)ey (k|k-1), (28a)
ex(Ol'l) = xo"Eo- / (28b)

Since it is desired that the estimation errors given by (26), (27) and (28) be
made to approach the origin asymptotically, the gain matrices G and G must be
chosen such that (A - GC - GCA), (A - GCA), and (A - GC) are asymptotically
stable. It follows that the stabilities of the three matrices are closely
related. The concept of observability and detectability [27-29] is useful and
the following lemma is of importance.

Lemma 1:

(a=1) The pair [A, C] is completely observable if and only if the pair
[A, (C'iA'C')'] is completely observable. Furthermore, if the
observability index of [A, C] is ng, then the observability
index of (4, (C'}A'C')'] is ngy-1.

(a=2) The pair [A, C] 1is completely detectable if and only if
[A, (C'!A'C')"'] is completely detectable.

(b-1) If A is nomsingular, then [4, C] is completely observable it and
only if [A, CA] is completely observable.

(b-2) If A is singular and the pair [A, C] is completely observable,
then the pair [A, CA] is completely detectable.

(b-3) If the pair [A,C] is completely detectable, then the pair [A,CA]
is completely detectable. A

Hence it is clear from Lemma 1 that depending _on the observability or
detectability of the pair [A,C], constant matrices G and G can be found such
that [3;(a-Gc-cca) | <1, [Aj(a-ceadl<1 and |A;(a-0) < 1, for  ail
11,2, 000,00 .

A further useful relationship between the full-order current-update
observer (24) and the one-step predicting or Luenberger observer (25) may be
established via a pair cof well known time-update and measurement-update
equations [3]. Using the dynamics of system (1), a time-update or prediction
algorithm may be defined as

2110 2 Ax(k k) + Bulk), (29a)
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x(0l0) = z4, (29b)

where x(k+1]|k) is a one-step predicted estimate. With this definition, the
current-update observer (24) can be written as

<G+ [1+1) = x(k+1 k) + Gly(k+1) = cx(k+1]w)], (30a)

(30b)

z ’

x(0]-1) o

where (30) is a measurement-update equation [3]. Substituting (30) into (29)
yields

Ak Jk-1) + Bu(k) + AG[y(k) - Cx(k|k-1)1, (3la)

x(k+1]K)

x(0]-1) EO , (31b)

where (31) has the structure of the one-step predicting or Luenberger observer
(25). It is clear that if the gain G of (25) is chosen as

-

G = AG, (32)
then (25) and (31) describe the same estimate, i.e.,
2k Jk-1) = x(k [k=1). | (33)
Maintaining é = AG, it can be shown that?
A [A - GeAl = A (A - GC], i=1,++., n. (34)

It then follows that the stabilities and the convergence properties of the
estimation errors of the full-order current-update and one~step predicting or

Luenberger observers are equivalent. It 1is further remarked that the
relationship G = AG also turns out to be a natural consequence of a set or

optimal gains for G and G as will be pointed out in Section 5.

2Observe that Ki[MN] = Ki[NM], where M and N are square matrices.
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4. OPTIMAL DETERMINISTIC DISCRETE—TIME OBSERVERS

Constructions of optimal observer gains for the various full-order
observers is given in this section. These optimal gains will be used in the
next section to obtain a set of optimal deterministic observers which is
structurally and numerically equivalent to a corresponding set of Kalman-Bucy
filters. To achieve these objectives, an appropiate performance measure will
be chosen. ' Co

Consider the estimation error equation given by (26) for the general
structured observer, and consider the performance measure

()
]

3 e;(klk)Wex(klk)
k=0

o] ~ 1 ~
L e'(olo)(a - 6o - cea) Mw(a - Gc - cea)¥e (oo
k=0 X X

e;(o!o)Xex(olo), (35)

where W is an nxn symmetric positive-definite weighting matrix, and X is an
nXn symmetric matrix given by

1]
™8

X (A - GC - GCA) 'kw(A - GC - GCA). (26)

k=0

It follows from Lemma 1 that if [A, C] is completely observable or completely
detectable, then [A,(C'iA'C')'] 1is completely_ observable or completely
detectable, respectively, so that there exist G and G matrices such that
(A - GC - GCA) is asymptotically stable. The asymptotic stability ot
(A - GC - GCA) ensures that X given by (36) exists and therefore Jj is
finite for finite ex(OIO). Furthermore, since W is positive-definite, it
follows that X is positive-definite as may be seen from

~)
'

(A - GC - GcA) 'kw(A - GC - GCA)K. - (
1

(@8]

X=W+

## ™8

k
Also it can easily be shown that X satisfies
X =(A - GC - GCA)'X(A - GC - GCA) + W, (38)

Now since J; given by (35) is explicitly dependent on the generally
unknown 1initial estimation error ex(OTO), minimization of J; will give
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rise to optimal gains which are dependent on the unknown initial condition
ex(OIC). This difficulty may be alleviated by assuming that ex(O’O) is a

random vector with arbitrary comstant covariance given by
E[ex(Oio)e;(OIO)] =¥, (39)

where Y is an nxn positive-semidefinite matrix. An alternate performance
measure is then given by

Jp = trlXY], (40)

where tr[*] denotes the trace of [°]. To accomplish the development of
general structured observers which are structurally and numerically equivalent
to the Kalman-Bucy filters, let the arbitrary covariance matrix Y be taken as

Y = q + GRyG' + GRyC'-GN] =NjG'=GN3-DyC", (41)

where Q is an nxn positive-semidefinite matrix, K and K, are mxm
positive—definite matrices and N; and Np are nxm matrices, to te assigned
such that QoQéé.Q'NlRle'l-NzRilhb is positive-semidefinite.

The constrained optimization problem posed by (38) &nd .(QO? may be
reformulated as an unconstrained optimization problem by minimizing, with

respect to G, G, X and I, the Lagrangian
7 = ee{XY+H(A - GC - GCA)'X(A - GC - GCA) + W - X] I} (42)
where I is an nxn Lagrange multiplier matrix.

Using the notion of gradient matrices [21-24], the necessary conditiomns
for an extremum are given by

3aJ 3J 3J . 9J _ -
gg =0 s G =90 s 3% =0 and 37 < 0 . (43)

The following lemma will be used to evaluate the gradient with respect tc
a symmetric matrix and the associated extremum conditions in (43).

Lemma 2: Consider

£=erlaz] . (64)
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where A is an nxn arbitrary matrix and Z is an nxn symmetric matrix. Then [24]
of ! .
32 - A+ A - diag [A] s (45)

where diag [A] = diag { aj1, 222, +++s appt, with ajj being the diagonal
. . 3 .
elements of A, Furthermore, if A is also symmetric, then g% = 0 if

and only if A=0. \

Assuming that X and Z are symmetric, evaluation of the gradient matrices
in (43) yields

0 = 2X[G(CIC'+R;) - AZC' + GCAZIC'-Nj] e
0 = 2X[G(CAZA'C+Ry) - AZA'C' + ECZA'C'—Nz] (47)
0 =Y + (A-GC-GCA)Z(A-GC~GCA)' -Z, (48)
0= (A-GC-GCA) ' X(A-GC-GCA) + W-X, | (49)

where Lemma 2 has been applied to obtain (48) and (49).

Remark 4: It is noted that in the literature, such as [16, 17, 21}, little
attempt has been made to explain the evaluation of gradients with respect to
symmetric matrices, although, in general, correct results are given. A

The above results may be summarized in the form of a theorem (see also
Lemma 1) as follows:

Theorem 2: Suppose (1) is completely observable or completely detectable.
Let Q, Rj, Ry, Ny .and Ny be the weighting matrices satisfying the
conditions specified for (41). Then the optimal full-order gemeral structured
observer for (1) in the sense of minimizing the performance measure

= ~~v v_~|_ ~_ | '
J = tr[X(Q + GRyG' + GR,G' - GN; - N,G - GNj - N,G")] (50)

subject to the algebraic constraint
X = (A - GC - GCA)' X (A - GC - GCA) + W, (51)

is given by

[

(A-G*C-G*CA) x(klk) + G¥y(k+1) + G¥y(k) + (B-G¥CB)ul(k),  (52a)

z , (52b)
)

2 (k+1]k+1)
x(0]0)

where W is asymmetric positive-definite weighting matrix, and
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~

[G% § G*] = (AIC'+N, | ATA'C'+N)| [cTz(c ach) + R 0 -1
cA 0 &, (53)

with I being the symmetric positive-definite solution of the algebraic
Riccati equation

I=AIA' +Q - (AZC'+N, { ATA'C'+N,) [c z(c'ja'ch) + [R; O] flazcr+ny)’
CA, 0 R,|[ |(AzA'C'+N)"

(54)

Furthermore, the asymptotic stability of A - E;*(, - G*CA] is guaranteea by the
complete observability or detectability of the pair [A, (C' 1 A'C')'] and the
complete reachability of the pair [A, Q] A

The optimal gains for the current-update observer (24) and the one-step
predicting or Luenberger observer (25) can be obtained in a similar procedure
by setting either G=0 or G=0. The results are summarized below.

Corollary 3: Suppose system (1) 1is completely observable or completely
detectable. Let Q = Qg, Ng,  and Ry be as specified for (41) and let G=0
in (41). Then the optimal full-order current-update observer for (1), in the
sense of minimizing the performance measure

J = tr[X(Qq+ GRyG' = GNY = NyGJ, (55)
subject to the algebraic comstraint
X = (A-GCA)' X (A-GCA) + W, (56)

is given by

(A=G*CA)x (k| k) + (B-G*CB)u(k) + Gry(k+l),

x(k+1lk+1)

Ax(klk) + Bu(k) + G*[y(k+l) - CAx(k|k) - CBu(k)] , (57a)

2y s (57)

x(0]0)
where W 1is a symmetric positive-definite weighting matrix, and

G* = (AZA'c'+N2)(CAzA'c'+R2)'1, ;\ (58)
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with I being the symmetric positive~definite solution of the algebraic
Riccati equation

I = ATA' - (ATA'C'+N,) (CAIA'C'+Rp)"1(AZA'C' + Ny)'+ Qq. ‘ (59)

Furthermore, the asymptotic stability of (A-G*CA) is guaranteed by the complete
observability or detectability of the pair [A,CA] and the complete
reachability of the pair [A,Qyl. A

Corollary 4: Suppose (1) is completely observable or completely detectable.
Let Q = Qp, Nj and R; be as specified for (41) and 1let G=¢ in (41).
Then the optimal full-order one—step predicting or Luenberger OUbserver for
(1), in the sense of minimizing the performance measure,

J = tr[X(Qp*+ GR1G' - 6N} = NiG")]. (60)
subject to the algebraic constraint
X = (A-GC)' X (4-GC) + W, (61)

is given by

x(k+1 [k) = (A=G*CQ)x(k|k-1) + Bu(k) + G*y(k),
= A x(k|k-1) + Bulk) + &*[y(k) - Cx(klk-1)] | (622)
2(O0]-1) =z, (62b)

where W is a symmetric positive-definite weighting matrix, and

~

Gx = (AIC'+Np)(CIC' + k)7L, (63)

with I being the symmetric positive-definite solution of the algebraic Ricecati
equation

[Se B

= AIA' - (aZc'+Np)(cZc'+Rp)TI(AIC +N) " + Q (64)

1

Furthermore, the asymptotic stability of [A-:*L] is guaranteed by the complete
observability or detectability of the pair [A,C] and the complete reachabilicy

of the pair [4,Q4]. A
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The optimal observer gains basically depends on the solutions of the
Riccati equations (54), (59) and (64). Numerous techniques for solving such

equations are well known [30-33].
5. RELATIONSHIPS AMONG THE OPTIMAL FULL-ORDER OBSERVERS AND THE KALMAN-BUCY
FILTERS

The objective of this section is to establish useful relationships among
the optimal full-order observers developed in Sectiom 4 and the various

Kalman=Bucy filters.
Consider the system

x(k+1) = Ax(k) + Bu(k) + w(k) , x(0) = X s (65a)

with noisy measurements given by
y(k) = Cx(k) + v(k) , (65b)

where x(k), u(k), y(k), A, B and C are as given in (1), and w(k) and v(k) are
independent zero-mean Gaussian white-noise vectors with covariances (y and

R,, respectively.
A set of steady-state or time~invariant Kalman—Bucy filters are given by
[3] : .

True filter:

21 ler1) = avklw) + Bu() + L{y(k+1) - Cax(klk) = Cbulk)| ,  (66a)

200/ 0)=2, . (66b)
One-~Step predicting filter:
ie*r1lk) = AR (klk-1) + Buk) + K[y(k) - ci(klk-1)] , (67a)
x(0]-1) = 20 , (67b)
where
(68)

L = TC'(CTe'+ Ry)™L,
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ATc' (cTe'+r,)7L, (69)

~
(1]

= ]
]

ATa' - ATC'(CTC'+R )~lcra'+ Q, (70)

-~

where [ is the steady-state error covariance associated with the one~step
predicting filter (67). Furthermore, the above filters (66) and (€7) are
related by the following equations [3]:

Measurement update:

x| k1) = (k1)1 + L [y(e+1) = cx(k+1k)], x(0[-1)=% , (71)
I =T- fc'(c}c'+Rv)-1cf . (72)

Time-update:

x(k+1]k) = Ax(k|k) + Bulk), x(0]0)=z_, (73)

b K
(]

ATA' + Q » (74)

where ' is the steady-state error covariance associated with the true filter
(66) .

It remains to be verified that the above set of Kalman-Bucy filters can be
derived from the results of Section 4. More specifically, the aim is to show
that Corollaries 3 and 4 for the optimal deterministic observers can be
equivalent to the steady-state true filter and one-step predicting filter.
The measurement-update and time-update relationships for the filters and
observers will also be established. It is easy to see that Corollary &4 gives
rise to the one-step predicting filter if the weighting matrices N1=0,
Q =Q,; and R;=R, are chosen for the performance measure (60), tor then
(63) and (64) reduce to, respectively,

G*

AIC' (CIC'+R,) "1 (75)

[
]

AZA' - Ac'(cic'+Ry)"lcia' + q, (76)

which are strugturally and numerically equivalent to (69) and (70), respectively,

that is, G"= K and I = T. On the other hand, if the weighting matrices
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Q2 = Q1 = Qs N2 = QuC' and Ry = CQ,C' + Ry are chosen for

L

the performance measure (55) in Corollary 3, then (58) and (59) yield
= (AZA' + Q) C'[C(AZA' + Q,)C' + By]7L, (77)

L= (AIA' + Q) = (AZA', +0)C'[C(AZA' + Q)¢' + Ry I7le(azar + g (78)

\

Denoting, with Q1 = Qu»

£ = ATA' + Qg (79)
equations (77) and (78) become, respectively,

ee = Z¢'(cle' + k)7L, (80)

£ =1 -Zc(cic +ry)TlcE, (81)
Substituting (81) into (79) results in

£ = afa' - afc'(cfcr + RyITICIAY + Q, (82)
where it is seen from (70), (76) and (82) that §f =% = T. It follows from

(68) and (80) that G* = L. Furthermore, since (79) and (81) are identical to

(74) and (72), respectively, it canm be concluded that I=T. With G¥ = L, the
measurement-update equation (71) and the time-update equation (73) for the

Kalman=Bucy filters are equivalent to the corresponding optimal
measurement—update equation (30) with G = G*, and the time-update equation
(29). A complete equivalence between the optimal deterministic observers and
the time-invariant Kalman-Bucy filters is thus established. Finally , it

is interesting to note that the use of Corollary & and the relationship G = AG
in (32) can also be used to obtain the true filter (66) from the

current-update observer (24).

36



CONCLUSIONS

The development of a class of deterministic general structured observers has
been considered. From this class of general structured observers, the current-
update observers and the ome-step predicting or Luenberger observers can be
derived. Interesting properties relating the full-order observers are pointed
out. Optimal gains for these full-order observers are derived using an
appropiate performance measure. It is shown that these optimal deterministic
observers can be equivalent to, and hence may be as effective as, the steady-
state or time-invariant Kalman-Bucy filters. The results of this paper have
been extended to include reduced-order observers and time-optimal properties
of the observers. The details will be given elsewhere.
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APPENDIX A: Proof of Theorem 1: [see also [34]]

For sufficiency, it is clear that if (7)-(10) hold, then (6) reduces to

e (k+1]k+1) = Fe,(k|k), e,(0) = ey,

ey (klk) = Pe,(k|K),

so that e,(k|k) approaches the origin asymptotically; since P is of full
rank, ex(kf also approaches the origin asymptotically.

Conversely, suppose ez(klk) = z2(k|k) - Tx(k) + 0 and ex(k|k) »~ 0 as
k » for all z(0), x(0) and u(k), ¥k = 0, 1,... . Then setting x(0) = 0 and
u(k) = 0 establishes the necessity for condition (a) in (6a). On the other
hand, condition (c) must hold, for otherwise a u(k) would always exist to
drive e, (k |k) away from the origin. Likewise, unless condition (b) 1is
satisfied, the reachability of (1) ensures that there would always exist a
x(k), driven by u(k), which makes e,(k|k) # 0 in (6a). Lastly, e,(k |k)~
0 and e (k|k) + 0 as k> yield eg(k|[k) = [PT + VC - I Jx(k) + 0
for arbitrary x(k), thus establishing the necessity for condition (d). A
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duce a lead for engaging maneuvering targets.

ON THE DESIGN OF PREDICTORS FOR"FIRE CONTROL SYSTEMS

James E. Leathrum
US Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, Maryland 21005

BACKGROUND

The design of fire control systems has been characterized by a
continuing controversy regarding the extent of estimation and
prediction which should be mechanized. One extreme argues that
the critical process 1is the tracking process which with current
technology produces such large errors that a fire control system
should not attempt’ to lead a maneuvering target. The other ex-
treme argues that the methodology is at hand to deal with large
observation errors and model identification. Thus, arbitrarily
high order estimators and predictors should be implemented to pro-

i

Without taking an a priori position on the above issue, this re-
port attempts to formalize some of the processes which may resolve
the design problem. The problem is viewed as a trade-off between
the errors incurred in propagating incorrect estimates through a
predictor versus the errors incurred in failure to utilize an
available estimate of a target state variable. The problem is
similar to one which arises in numerical analysis wherein some
situations "cancellation errors" may be larger than a computed
result.

The design of predictors will be considered in the situation where
the predictor exists in tandem with a Kalman estimator. This
introduces no loss of generality, and yet, it is an acknowledge-
rnent of the current state -of-the-art. This structure does

permit a presumption that state estimates and their variances

are available for this analysis. The Kalman estimator would
employ models of the form.

Target Model

Xk+1 = ¢ Xk+ByUyk

Observation Model

Y = Hka+Vk

The Kalman estimator would produce a sequence of estimates, ﬁk,
and variances of the estimation errors, Pyx. If, at some time,

it 1is necessary to predict ahead N steps without observations,

the best, linear, unbiased estimator is
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2 N-1 A
e = :t:-x+1) Xk
i=0

which would be approximated by
~ A

= N
Lo = (407 X

The variance of the estimation error at k+N 1is obtained from the
recussion

- 1
Prar = 4Pt BiBy

]
E(U Uy ). Extrapolating this to k+N gives

where Qk

-

N-1
- e N N j ' A
Pean = ¢k Pk (o) +jzo¢kJ LS LETLY

which will be viewed as composed of

Propagated variance Error variance
Pren = 1 } + induced by
of the estimates subsequent tar-

get motion

So far, this discussion geems to indicate that the design and analy-
sis of the predictor of Xy 4y is a closed issue and that the vari-
ances are left as a take-it-or-leave-it result. However, there

is a choice to be made if one recognizes that the model is only

one of a number of possible models. Furthermore, even 1f the

models are correct, there may be a better, blased predictor. To
formalize this notion, a predictor is defined as

kN - KMk
where ¢* is not necessarily ¢ kN. The loss function of interest
is the norm of the prediction error

A
ﬂEpH ="XK+N—XK+N“
and the risk (which is to be minimized) will be

R(¥) = E[uEpu]

that 'is, we will seek that predictor algorithm, ¢*, which mini-

mizes the expected norm of predictor error.
Although the problem just formulated 1is of interest in itself,

there 1is an equally interesting dual. That 1ls, given a maximum
allowable risk, what predictor algorithm will lead to the best
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overall estimator-predictor performance? Here, performance 1s
viewed in terms of constraints placed upon sight technology and
target agility. The least constraining design will be viewed as
the best design.

FIRE CONTROL SYSTEMS AS A SPECIAL CASE

The problem definition stated in the previous section leaves a
large number of parameters to be considered in the general case.
To illustrate the utility of the approach, the subsequent discus-
sion will be limited to situations which arise in the design of
fire control systems. The following limitations will be presumed:

Only the positional component of the predictor error will be in-
cluded in the loss function.

The model to be employed in the estimator is of the form

m 1 At At2/2. e e [+
1 At e o 3 Bk = :
¢, = 0 1. .
k . Atg/6
¢ At /2
At
HI{ = [1 0 0 . . . 0]

‘The prediction algorithm will be of the form
¥ = 2
[o%] position = [1 Yybp Mpte™/p « v o o)

where tf = NAt, and the yv,YA, etc., are the optimization
parameters.

The case of greatest interest in current applications is the one
with a 3-dimensional state vector

1 At At2/2

: At3/6
b = 0 1 At . B = at2/5
At
0o 0 1
H = [1 0 0]

Here, the state vector is the position, velocity, and acceleration
along a single axis of the target
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The prediction problem along each axis of the target can be treat-
ed independently for design purposes. In real-time, however,

one would expect inherent coupling of the state equations along
the respective axes. In other words, we will be generating up

to three designs to be coupled together in a real-time implementa-

tion.

Concentrating upon a single coordinate axis, the loss function
may be defined as

2 = (% - 2
Ep (% x) k+N

Here Hell is used as a loss function for conciseness. In
turn, the risk is

R(¢¥) = E(ey?)
Using the definitions of % and x as well as the notation
T = [1¢t,t.2/,1=1[¢ ]
T*= [1 yote Ypt02/51 = [67]
Yyl Ypte /2 ¢ lposition

position

the risk condenses to
2y = m¥p n¥! . m¥ ¥_my!
E(Ep ) T PKD +T Zk(T T)
+ (rr-mz'
+ (T*-T)E(kak')(T*—T)'

E (e’pp)

+

A
where Z, = E[(Xk—Xk)x'k]
and E(e2TI) = Variance of the target induced error

Thus, the risk is composed of terms which are interpreted as

E(ep2) = Variance propagated from the estimation errors
+ {Correlations between estimation errors and states
(2 terms)
+

{Mean squared magnitudes of the target states after
propagation
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+ Error variances induced by subsequent target motion

Since the last term is not a function of the optimization parame-
ters, it will be treated as a constant. The optimization involves

~a trade-off between the other terms. Thus, a new risk is formu-

lated as the residual risk, E(eRZ), due to the choice Qf
the prediction algorithm.

2) = 2) - 2

E(eR ) E(ep ) E(e TI)

In the first three terms of the risk equation, the filter parame-
ters, Pk, Zy, may be determined as ratios Pk/q and Zg/q at steady
state. These ratios, as well as r/q, are functions of a single
bandwidth parameter, w_, for the target velocity.1 (Note

that q= E(U2); rz E(V2Y). After dividing the risk equation
by q, and gathering terms, the dual optimization problem becomes

.one of maximizing.

K(mV)°N(S’tf:YV’YA)

r/E(e )
D(“’V,tf)YV,.YA)

S E(XX')/E(eR2)

N(S,bp,v,s¥,) = 1=0555(82,/,)2 y245,,(£,)2.x2
+ 25531 (tp3/5) oxy]
D(uy,tpsYys¥y) = T (B/Q)T'= [(Pya/ ). (£:2/,5)%2
+ (Pop/ ) (£0)2.x2+2(P o3/ ) (853/5) xy]
where x = l-yy and y=l-yvj
K(wy) = r/q

At the steady state design condition, the cross corfelations, Z/q,
are precisely the negative of the variance ratios, i.e.,

2/q = =P/q

Given the target characteristics, specified in rough terms by S
and wy, and the maximum allowable risk, the designer must choose
yv and YA to maximize r. Maximizing r, in turn, maximizes

q since q/r is a constant. Thus, the estimator-predictor combilna-
tion 1s least constraining in respect to the sight technology

and target agility.

The final form of the performance criterion is a rational function
in x and y. PFurther direct analysis of the extrema of this
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function is possible, but some preliminary insights may be possi-
ble by taking cross-sections of the contours with respect to
coordinate planes. This corresponds to examining single variable
perturbations about the standard first and second order predictors.

SOME SPECIAL PREDICTOR DESIGNS

Two interesting special cases offer some insight into the dual
optimization of the predictor design. 1In each, one of the design
parameters will be set to 1ts natural value (L.e., i=1).

| K(wv)[l—S22(tf)2x2]

r/E(eg?)l = ;
® =0 T (B/Q)T = (Pyp, ) (£0)%°

)| K(w,)[1-855(£:2/5)2y%]
r/E(e g )l- = T P 22
x=0 T (B/)T =(P33,) (£p°/2)%Y

Both of those functions are of the same general form, and both
are symmetrical about the origin of the free variable (i.e.,
symmetrical about y=1). The general form 1is

[1-a(tp,S)x?]

P/E(eg®) = Clu,).

[1-b(tp,w,)x°]
where
r/q
C(wv) = — [}
T (P/q)T
a(tp S) = Syy- [ept=1/(11y,0°

bltp,u,) = [(Py3/)/(TR/QT )08 171y 1y, 07

This function is a ratio of parabolas whose shape is determined
by the relative values of a(tp S) and b(te,wy). Three shapes

can occur as shown in Figure 1. The numerical values are taken
from the next section. Thus, the offset, x, represents a typical
velocity correction and y represents a typical acceleration

collection.
ANALYSIS OF A NOMINAL CASE

As an example of the design process developed in the previous
section, consider the case of a target described by

wy = 0.15 hz (velocity bandwidth)
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te = 1.5 sec (time of flight)

Referring to the estimator design procedure in Reference 1, the
variance ratios are

(P/a)3,3 = .106103
" 2,3 = .056289
" 1,2 = 015796
" o1,3 = .014217
"o2,2 = .044333
" 1,1 = .008765
(r/q) = .028993
which, in turn, specifies
r/q
C(wv) = ———— = 0.0563
T(P/q)T

The optimization is done with respect to a maximum allowable risk
which will be taken to be

E(eRz) = (1.15)2m?

The levels of the target state variables will be nominally assessed
at '

\[EZV2) = 2 m/sec
\/E(A?) = 0.4 m/sec?

Utilizing the definitions in the previous sections
2) =
822(’;f ) 6.80
5, \2 a(tr,S)
333(tf- /2) = .153
(Pyp/q) (tp2)/T(R/Q)T' = .199
S , g b(tr,uy)
The dimensionless optimal designs are characterized in each case
by
a(te,wy) < b(t,wy) For x=0

Thus, the best value of yy is 1.0 while the worse value of YA
is 1.0. One possible predictor is

™ = [1 te] (i.e., first order)
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That is, let vy=1.0 and vp=0. The performance 1is character-
ized by ,

P/E(&R2) = .0646
versus

r/E(e 2) = C(v,) = .0563
for the natural case of

™ = [1 tp tp2/5]

It must be noted that this is only one of a myriad of such results.
This one is not surprising in light of the low level of accelera-

tion involved (i.e., ‘V E(A2) = 0.4 m/sec2). Illustrating the
rest of the design, note that

Vr =4/0.06l6 . E(ep?) = .292 meters
\[€_=‘V(r/q)'1.r = 1.71 m/sec3

These are the maximum tolerable levels of observation error and
target agility for the desired miss variance, E(e 2). Thus,

not only is the optimal predictor algorithm found, but technolog-
ical constraints are also available from the design.

UNREALIZARLE DESIGNS

It is evident from the general analysis of the optimal predictor
designs, that some of the parameter values lead to negative values
of r/E(e.2). One could argue that these are never cases of in-
terest s?nce they do not occur in the neighborhood of the natural
parameters when a<b, and when a>b, the natural value 1s clearly
optimal, Nonetheless, an interpretation of the results of when
r/E(e ,2) is negative 1s called for since the parameter values

are realizable.

Since the desired pisk, E(e 2), is asserted a priori, the case

of negative r/E(er“) corresponds to situations where that risk

is not achievable by any r,q combination. This may arise because
either the magnitudes of the states are too large, the risk 1is
too small, the time of flight is too large, or the variance of
the estimation errors is too large. Of all of these conditions,
the time of flight is the most pervaslve since it effects both
the pole and zero placement. Thus, the whole structure of the
optimal design as determined by the relative magnitude of a(tg,S)
and b(ts,wy) may be significantly altered by the time of flight
(i.e., the distance to the target).
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PREDICTING COORDINATED TURNS

As an alternate approach to the analysls of propagated errors,
the design of a predictor may be predicated upon some particular
maneuver type. The maneuver type would then supplant the polyno-
mial form which emerges from the Cartesian estimator. One very
natural model for the subsequent motion of the target is the
"steady turn" wherein the acceleration vector remains fixed

with respect to the target, but it may, of course, rotate 1n an
inertial frame. The predictor model 1is formulated as

x| o 0o cose 0o o o | [ x]
- y 0 0 sin® 0 0 0 oy
v 0 0 0 1 0 o0 v
A 0 0 0 0 0 0 A
1
0 0o 0 0 o 0 __ 6
v
AL 0o 0 0 0 0 | AL

where x and y are the target coordinates in an inertial frawme, V
is the total speed of the target, Ap and Ap, are the longitudinal

and lateral acceleration respectively, and 6 is the orientation
of the target motion (i.e., Vx = Vcos®).

Given fixed Ap and Ap, the V and 6 components may be integrated
over the time of flight. '

V(t+te) = V(E) + Aptpe
AL

8(t+tp) = 8 (t) + — log (V(t+tf)/V(t))
A

The positional integrals are approximated by "stepping" o and V.

N-1 1 N-1
x(t+tp) = x(t) + ] (cos6,Vy) At At2.z [cose, (21+1) ]Ag
. 1=0 1=0
N-1 1 N-1
. y(trte) = y(£) + ] (coseiVi)At+§ At2.2 [sing, (21+1)JAq
i=0 i=0
where | Vi = V(t) + Apat
A1,
6, = 8(t) + — log (V4/V(t))
AT
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N = te/At

This formula for x(t+tr) and y(t+tg) is a closed form predictor
as it stands. Given the time, and computer resources, this
could be the basis for a "steady turn" predictor.

A more efficient version of the predictor may be discerned by
forcing the model to be circular in form (i.e., Ap = 0). This
is the "coordinated turn." From this aproximation we get

V(t+te) = V(L) =V
At
a(t+tf) = 6(t) + — te = a(t) + wte
Vv
1 N-1
x(t+t = t) + — 8.Vt
(t+tp) = x(t) + & iZocos ;Vtp
1 N-1
(t+tn) = y(t) + = sind,Vt
J f J N 120 17

01 = 6(t)+iwat

Not only is this a simpler and more readily implemented predictor,
but it is also beginning to show some of the same form as the
"optimal" polynomial predictors.

In order to illustrate the similarity between the circular predic-
tor and the polynomial predictors, the trigonometric terms will
be expanded about the starting angle, 8,=6(t).

cos®; = cosBycos(lwAt)-sinBysin (1wAt)

sindycos({wAt)+cos8ysin(iwat)

sinei
(iwat)?2 '
then cos(iwt) =1- ; + o[ (1wAat)l]

i i At - i At L + i At

If the first two terms of the expansions are used, the prediction
error due to truncation will be bounded by

lel < [(uty)H/241VE,
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Assuming that this bound 1is acceptable, the predicted position
is further approximated by.

= - 2
x(t+tf) x(t) + vaxtf vAsineoAL.tf /2

y(t+tf) = y(t) + vaytf + yAcoseoALtf2/2
[ S wltp?  (2N-1)(N-1) ]
where Yo =] 1 -
v 12 N2
N-1 wlt 2 N-1
Yp 5 — 1l -
N 12 N

which for large enough N 1s

wlt .2
f
YV ~[1——"‘g"‘_ ]

w2t 2
f
Ya ~[1- ——IE——]

Thus, in the final analysis, the coordinated turn provides another
rationale for the choice of vy, and yp. Together with the pre-
vious sections, it 1s now possible to compute the propagated
errors for the circular predictor and compare them with the
"optimal" forms.

OPTIMIZING SEVERAL PREDICTOR PARAMETERS.

The analysis of the previous section ralises the immediate question
of what performance can be achieved when several parameters are
varied simultaneously. To illustrate that some interesting

shifts in the points of optimability may occur, conslder the
situation where the velocitles and accelerations are uncorrelated.

S23

e =0

V533 + S22
This 1s perhaps an extreme condition, but it is not too far from
the condition observed in moving vehicles. Using the typical

case discussed in Section 4, the covariance of the estimation
errors 1s

Ba3/q = 0.0563
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which substantiates the analysis of a two dimensional, joint opti-
mization. The performance contours, in this case, show a slight
degree of assymetry. The performance function is

r/q > 1.-6.8x2-.153y2

Y /E(fﬂz) = )

(P/q)T' ] 1-.199x2-2(0.184)xy-.261y2
In the vicinity of x=0, y=1 (the best single parameter variants)
the multi-parameter optimization involves a balancing of the

6.8x2 in the numerator
and 2(0.184)x in the denominator

The value of x must be on the order of 10-3 in order to show an
improvement in performance, and even then the improvement 1is
infinitesimal.

Although the example being pursued here 1is only one of a number

of cases of interest, this type of effect of Pp3 has been found

to be quite characteristic. The numerator terms usually dominate
the performance contour in the vicinity of the optimum. The
extreme sensitivity of the performance in this region should be
noted. The effect is even more accentuated at higher velocities
and accelerations, and at longer times-of-flight. The phenomenon
tends to suggest the need for over-design of the sighting mechanism
to overcome these sensitivities.

For purposes of illustration, the coordinated turn, if used with
the nominal conditions of Section 4, would lead to

VERD)

w = = .2 radian
‘/E(VE‘)

wte = 0.3 radlan

When used as a rationale for the selection of offset parameters,
the vy and yp, become

Yy = 0. 985
0.9925

YA

which leads to performances that are barely distinguishable from
the nominal second order case

r/E(eR2),= 0.0563
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USING THE COORDINATED TURN MODEL TO REDUCE DESIGN SENSITIVITIES.
Given the results of the analysis for the nominal case in the pre-
vious section, the question of a strategy for reducing sensitivi-
ties arises. In order to illustrate an alternate approach to
“design, consider the nominal case
wy = 0.05hz (a lower frequency target)
tr = 3 sec

and suppose that the velocity and acceleration are orthogonal
(i.e., circular motion) with magnitudes

\Y

120 m/sec

A 40 m/sec?

the required accuracy will be taken to be
E(ep?) = 25 m2,

Suppose prediction is to be done along the velocity vector. The
first order predictor performance would be characterized by

1-5184x2
P/E(€R2) = (J401)
1-.2U46x2
The undesirable senslitivity is evident in this case, and, thus,

X must be kept very precisely at zero. The required sighting
accuracy would be

r = 3.7 meters.

If, however, the circular motion is taken to be the nominal behav-
ior, then

where w = A/V

The predictor would be designed by selecting deviations from the
nominal case, i.e.,

w2t 2
™ =[1  (1- Z———-) oYy ]

55




Where yy is the offset parameter with respect to the coordinated
turn

In this case, the performance is characterized by

1-3600x2
r/E(e R2) = (0.447). ____
1-.156%2

Not only is the sensitivity reduced, but the nominal performance
is improved since

2t2
A N N w
T(P/q)T' = Py /at 2(P12/q)(1- : Dt
~ w 2t2 0 5
+ (P22/q)(1— ‘”g""‘) te

The sighting accuracy can now be relaxed to
r =V62438 ;VE(ERE) = 3,31 meters

The corresponding result for prediction along the acceleration
vector are

1-1296x2
r/E(eR2) = (0.401) . -
1-.145%2

for the nominally parabolic model, and

1-1089x2
r/E(sR2) = (0.414) ___
1-0.125x%2

for the coordinated turn model.

In the context of this work, the gross difference between the co-
ordinated turn and the parabolic motion would be considered to
be target induced error, epr. It should be noted in passing,

however, that such errors may be significant, i.e.

ETT 60 meters along the velocity vector;

15 meters along the acceleration vector, due
to the inappropriate choice of predictor model
for the current nominal case.

eTI
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CONCLUSIONSFAND RECOMMENDATIONS.

The results of the previous sections should be viewed as 1indica-
tive of the potential screening power of a design methodology
based upon propagated errors. Critical cholces in predlctor
parameters are possible and performance characteristics are
discernible.

Given the pervasive influence of the time of flight, te, on the
results obtained herein, one must conjecture at this point

about the real time features of the methodology. One could feed
forward smoothed estimates V and A and compute the optimal vy
and yp during an engagement. The potential gain from such

a scheme is so great that it deserves some testing using a fire
control simulator.

It is apparent that the major predictor design issues may vary
greatly with the intensity of the target motion. For larger
leads, the importance of the correct modeled nominal motion
cannot be overemphasized. From one model to the next there may
be significant differences 1in sensitivity and propagated error

as well. In any case, for large leads, there is seldom an oppor-
tunity to use other than the natural values of vy and vyp.

On the other hand, for less intense motion, situations may arise
where propagated error completely dominates a correction. Whole
terms may drop out ol the predictor as a result. Here, however,
the differences between nominal models 1s not so significant.
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MICROPROCESSOR IMPLEMENTATION OF AN ADAPTIVE SECOND ORDER
TRACKING/PREDICTION ALGORITHM FOR TANK FIRE CONTROL

P. T. Yip
US ARMY ARMAMENTS RESEARCH & DEVELOPMENT COMMAND ‘
FIRE CONTROL & SMALL CALIBER WEAPONS SYSTEMS LABORATORY
Dover, NJ 07801

ABSTRACT

This study is to investigate the feasibility and performance of

an adaptive fire control filter-predictor system in the micro-
processor environment. The filter model used is our previous
design which includes a Kalman estimator for tank target state
estimation and an UD-factorization scheme to propagate the state
error covariance matrix. This method provides excellent computation
stability and accuracy. In addition, the parallel structure of
filters in this model is particularly suitable for microprocessor -
implementation. Three Intel 86/12A single board computers are used
to process the parallel filters simultaneously. The computatlon
accuracy of the target state estlmates and the processing time are
examined. _ :

INTRODUCTION

This study is to investigate the feasibility of implementing and
the performance of an advanced adaptive fire control filter-pre-
dictor system in real time and in the microprocessor environment.
The filter model used is our previous design, which includes a
Kalman estimator for tank target state estimation and an UD-fac-
torization scheme, to propagate the state error covariance matrix.
This method pr0v1%es excellent computation stability and accuracy.
In addition, the parallel structure of filters in this model is
inherently suitable for microprocessor imnlementation.

We start our exercise with the UD-factorization of the state error
covariance matrix. The system configuration is considered next.
Then the interface of microprocessors is described. The require-
ments of implementation are stated. Lastly, the results and con-
clusions are addressed.

UD-FACTORIZATION OF THE STATE ERROR COVARIANCE MATRIX
In the conventional Kalman filter algorithm, the error information

propagates through updating the state error covariance matrix.
They are
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where P is the a posteriori state error covariance matrix, P,

the a priori state error covariance matrix, 9, the state transition
matrix, H, the measurement matrix, G, the distribution matrix,

K, the Kalman gain matrix, Q, the plant noise covariance matrix,
and r, the measurement noise variance.

The P matrix is required to be positive semi-definite in order

that the system is stable. As we may see in Equation (3) that the
difference of two semi-definite matrices can produce a negative
definite P especially when the accumulated round-off error becomes
significant. Hence, the UD-factorization method is adopted for its
inherent stability and enhanced accuracy.

The recursive formula of the UD-algorithm for updating the state
error covariance matrix in each measurement cycle are
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Then, the elements of d, U, and K are
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The Kalman gain K of this measurement

K= Kn+1/°‘n

of the column vector Ui

computed recursively as

9 through 13)

12 through 13)

cycle is given by

(9
(10)

(11)

(12)

(13)

Since Y is always positive, the positive definite condition of

D is assured by Equation (10).

may happen in Equation (3) are avoided in Equation (10), the

accuracy of computation is enhanced.
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SYSTEM CONFIGURATION

In our previous estimator-predictor design, three types of target
models have been incorporated. Type 1 is a constant velocity model.
Type 2 is a first order Markov acceleration model and type 3 is

a second order acceleration model with one zero and two poles.

The parameters of these models have been identified with real

test data to account for various target maneuvering levels. Noised
corrupted data of range and azimuth angle of target are measurement
inputs to the three parallel extended Kalman filters modified with
the UD-factorization scheme. The adantive prediction comes in
when one of the filters with the largest likelihood function is
selected to provide estimates for gun lead prediction.

Three microprocessors are used and each processes one filter. The
one with the constant velocity model is the master board which also
processes the filter selection and gun lead predictions by virtue
of its smaller load of computational burden. The communication
control and data transfer between the master board and the other
two microprocessor boards will be described in the next section.

MICROPROCESSORS AND THEIR INTERFACE

Three Intel 86/12A single board computers (SBC) are used to process
the parallel filters simultaneously. Each has 32K bytes of random
access memory (RAM) and 8K bytes of electronic programmable read
only memory (EPROM) which can be extended to 32K bytes. If more
memory is needed, extra RAM and EPROM boards can be attached. The
memory in own board is accessed by the central processing unit
(CPU) of the board through the local bus. Additional memory up

to one megabyte can be planned and accessed through the system bus.

The communication between the keyboard or the microprocessor develop-
ment system and the master board is established through a serial
interface cable. Two out of the three programmable peripheral
interface input/output ports are used to take care of the communi-
cation traffic control between the master board and the other two

boards.

The data transfer uses the multibus interface which requires only
one bus clock of 9.22 MHz for synchronized communication among the
SBC. The local CPU must reside in that part of its own memory which
has not been assigned as dual port RAM inside the megabyte addres-
sing plan when another CPU actually accesses the dual port RAM

area.

The 86/12A single board computer which has twelve 16-bit registers
performs floating point computations with the help of a floating
point mathematics library simulating 32-bit operation. The test
chip of 8087 coprocessor was made available for development on
August 1981. This coprocessor which can be attached to the 86/12A
computer board easily has eight 80-bit registers capable of per-

64



forming 32- and 64-bit floating point multiplication with very
high speed such as tens of microseconds.

IMPLEMENTATION

After the proper 1nterfac1ng of the microprocessors, some real
target paths of various noise statistics are selected The function
of the entire set-up, the predlctlon estimates and the processing
time of the second order algorithm in this system are investigated.

a. A rather linear portion of a target path is used to verify the
proper functlonlng of the entire microprocessor set-up. A similar
program is run on an IBM 360 computer to obtain results for com-
parison.

b. A segment of real target path data with an average maneuvering
noise level 1.176 meters per second and an average speed 13 miles
per hour is corrupted with random Gaussian noise of 3 meters in
range measurement and 0.3 milliradians in angle measurement. These
corrupted data is sampled at 10 s/s as input to the system and the
predlctlon estimates are compared with the results from previous
study using a conventional extended Xalman fllter without modifi-
cation.

c. With the same data the system performance is evaluated for pro-
cessing the data at 5 s/s instead of 10 s/s.

d. The processing times for the floating point multlnllcatlon
division and square root operation with the 86/12A CPU are compared
to that with the 8087 numerical coprocessor.

e. The actual processing time of the second order algorithm with
a 8087 coprocessor test unit is examined. The number of measure-
ments processed in 10 seconds is noted.

RESULTS AND CONCLUSTIONS

Under the implementation conditions in the previous section, results
are summarized as follows:

a. Results from IBM 360 and Intel 86/12A SBC show a 1.2 percent

or less difference in lead angle estimates and much less in impact
range estimates. The proper functioning of the multi-microprocessor
‘set-up is verified.

b. From previous study for the given target path in implementation
b and averaging over seventeen points, the estimated prediction
errors in milliradians are 1.29, 1.72 and 0.91 for constant velocitv,
first order acceleration and second order acceleration filter types
respectively. From the multi-microprocessors under the same con-
ditions, the estimated prediction errors in milliradians are 1.2,
1.49 and 0.88 for constant velocity, first order acceleration and
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second order acceleration filter types respectively.

The accuracy of the estimates from this algorithm are highly com-
petitive or better than that from the conventional extended Kalman

filter algorithm.

c. With a sampling rate of 5 s/s the estimated prediction errors
in milliradians are 1.16, 1.54 and 0.9 for constant velocity, first
order acceleration and second order acceleration filter types, res-
pectively. The change in performance is about 3 percent.

d. Averaging over ten thousand iterations, the floating point
operation of the command group LOAD, MUL, STORE and WAIT takes &
milliseconds with the 86/12A CPU while the same takes 63.6 micro-
seconds with the 8087 coprocessor. It is a 63 times faster in
multiplication with the latter.

For the command group LOAD, DIV, STORE and WAIT, the floating point
operation takes 5.5 milliseconds with the 86/12A CPU and 85.6
microseconds with the 8087 coprocessor. It is 64.times faster

in division with the latter. :

For the command group LOAD, SORT, STORE and WAIT, the 86/12A CPU
takes 40 milliseconds to process a square root procedure while the
8087 coprocessor with its micro program for SORT takes 77.6 micro-
seconds. It is 515 times faster with the latter.

e. With a test unit of 8087 coprocessor planted in the 86/12A
board, the second order algorithm is processed for 10 seconds.
Only 88 sets of measurements are processed. This indicates that a
12 percent improvement in speed is needed to do 10 samples per
second real time processing. Fine tuning the program code or
changing the programming language to assembler type may help elim-
inate this time lag.

In all, the impressive numerical characteristics of the UD-factor-
ization deserves our attention. It has been encouraging to know
that microprocessor technology has caught up in speed and flexi-
bility to process advanced parallel algorithms with heavy load

of computation. We see that great many apolications of micropro-
cessor to multiple input, multiple output and parallel processing
are forthcoming.
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ON THE CREDIBILITY OF MODELS

Naim A. Kheir
School of Science and Engineering
The University of Alabama in Huntsville, Huntsville, AL 35899

Model Credibility is becoming increasingly important in today's
world of complex systems. One reason is due to the awarenmess and
discretion being exercised on spending on simulations; a second
reason might be the fact that more and more models and simulation
results are being used in decision-making. Models, whether repre-
senting the broad spectrum of engineering applications (energy,
power, aerospace, military systems, etc.) or, say, biological
systems such as that of blood circulation would require the same
attention in terms of model credibility. More recently, reliance
on valid models has become a necessity in areas such as energy
forecasting,(7) (energy models and their integrity have been the
subject of many congressional hearings since 1975). Thus, the
ultimate use of a model is for decision-making and its final eval-
uation is in terms of the decisions being made.

Three major areas appear to be the focus of progress, or lack of
it, in arriving at a higher level of agreement among simulationists
on model credibility and what it is all about. These areas are

related to:

(1) Terminology
(ii) Issues
(1ii) Qualifying Measures

The question of Terminology has been the subject of many previous
efforts by the Technical Committee on Model Credibility (TCMC) of
the Society of Computer Simulation. Ref. (1) summarizes a complete
set of definitions beginning with the understanding and distinction
between Reality, Conceptual Model, and Computerized Model, and
proceeding to introduce the important concepts of Model Verification
and Model Validation. The document also introduced statements on
model qualification, domain of applicability, certification and
documentation. The definitions adopted by the TCMC on verification
and validation are; "Model Verification: The substantiation that

a Computerized Model represents a .Conceptual Model within specified
limits of accuracy. Model Validation: The substantiation that a
Computerized Model within its domain of applicability possesses a
satisfactory range of accuracy consistent with the intended appli-
cation of the model." However, all too frequently in process
modeling the concepts of verification and validation are reduced,
respectively, to simply the tasks of debugging and input-output
comparison of model and system data. One should note that this
terminology was arrived at with the intent that it could be
employed in all types of simulation applications. Thus, adherence
to the terminology is highly recommended to facilitate communica-
tion between simulation developers, users and decision-makers.
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For example, it is simple to recognize the difficulty in communi-
cation between a mathematically-oriented modeler and a linguisti-
cally-oriented public policy-maker.

A work of caution is in order, even if one adheres to the above
terminology and arrives at a validated model, one may be tempted
to make an obvious and simple change in the model. Since it is
easy to err, revalidation of the model, for the same reasons that
validation was required in the first place, is necessary whenever
any modification, even an apparently minor one, is made. Thus,
once having demonstrated the model validity, it should be con-
sidered INVIOLABLE. *#*

In order to be able to judge the adequacy of a model for its in-
tended purposes, the TCMC is engaged in a discussion of an under-
standing of important Issues including these:

(a) The real purpose of a credibility measure -~ is it to make
a decision to use a "more-credible model" at perhaps greater cost
versus a "less-credible model” at a lower cost? Is it to estab-
lish a confidence or reliability factor for the model, i.e., X%
reliable for YZ confidence?

(b) In modeling reality in terms of ultimate simplicity (a
more detailed model is not necessarily a better model), an issue
is that of "simple" versus "complex" models and cost considerations.
Simple models have the added merit of closing communication gaps
between "non-technical" decision-makers and modelers.

(¢) Should a credibility measure be "absolute'" defining the
agreement of dynamic computer simulation model (Computerized Model)
with actual system (Reality), or "relative" (model versus model)?

(d) How to keep simulations under configuration control so
that credible ones remain credible.

(e) The absence of an effective grasp of how to achieve par-
simony in modeling makes it virtually impossible to develop an
efficient, understandable, credible model of a large-scale system.

Next we focus on the real question of which Qualifying Measure(s)
one may adapt to express the credibility of a model. Basically,
the objective from using a2 measure is to quantify how well a model
matches the performance of reality being modeled. Comparison of
time trajectories from the model and the instrumented system is
often used (data collected from an actual system may be rare and/
or expensive to get while simulation. results may be abundant).

A summary of measures used in previous studies follows:

(a) Theil Inequality Coefficient (TIC% was recommended in
regards with missile systems validation

*% Personal discussion with Dr. Lester H. Fink, of Systems Engi-
neering for Power, Oakton, Virginia.
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(b) A modified TIC was applied to validation study with sparse
random data (6),

(¢) In addition to TIC; correlation coefficient and a simi-
larity coefficient were recommended in Ref. (3),

(d) In a recent study(5), cross-correlation coefficient and
Bayesian updating were suggested in a credibility investigation
of an RF environmental model,

(e) Use of FFT (Fast Fourrier Transform) to obtain frequency
domain error measure of a trajectory was introduced in a boiler-
turbine-generator system study

(f) Also in Ref. (4), digital filtering technique was employed
to extract frequency bands of an error signal; the band-limited
measures of signals could be further analyzed.

(g) Error trajectory could be qualified in terms of measures
such as the integral of its square and/or the largest absolute
value.
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" A LINEAR NONLINEAR CONTROL PROBLEM

Leon Kotin
Center for Tactical Computer Systems
US Army Communications-Electronics Command, Fort Monmouth, NJ 07703

INTRODUCTION

Many, perhaps most, of the ordinary differential equations of
applied mathematics are second-order linear equations
dzxfdfzﬂfa(t)dx/dt + b(t)x = 0 or their nonhomogeneous variants.
Their importance is indicated by the famous names given to such
equations: Bessel, Legendre, Hill, Hermite, Airy and Laguerre, to
name just a few. By an elementary transformation, such equations
can be put into the form of the following system

x' = dx/dt = p(t)y, y' = dy/dt = q(t)x. (1)

We shall consider this system where the control vector (p,q) belongs
to the class of piecewise continuous vector functions of t with
bounded norm, say

1. (2)

We shall determine that control for which a nontrivial integral
curve or trajectory initially on the x-axis reaches the y-axis in
least possible time. We shall also determine this shortest time
and the corresponding geodesic (x(t), y(t)).

We remark that by changing the time scale, we can see that no
generality was lost by setting the bound of the norm of (p,q)
equal to unity. '

This paper is a detailed exposition of results which were obtained
in collaboration with G. Birkhoff in the broader context of
elliptic autonomous families of differentiél systems; these
appear in concise form in [2].
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The title of this paper derives from the fact that although (1) is
a system of linear differential equations in x and y and is linear
in the control variables p and q, it is not linear jointly in

(X9Y) and (psq)o

THE MINIMUM TIME

From (1) and (2), we see that for any trajectory,

p2 + q2 = x'2/Y2 + Y'2/x2 2 (3)

or
1792 4 @y/ax)?/x? S dt/dx)?, | (4)

Consequently, the time t required for a trajectory initially at the
point (xo,yo) to go to (x,y) satisfies

£ 2 X a/y” + (dy/dx)2/x%) %dx. (5)
(o] )

To evaluate this integral, we introduce the modified polar
coordinates ¢ and A defined by

2¢ _ 2 2

e x“ +y°, » =y/x (6)

whence
X = e¢/(1+12)%, y = xe¢/(l+k2)%. (7)

We note that ¢ and A are related to the standard polar coodinates
r and o by the equations ¢ = log r and A = arctan 6.

In order to compute the integral in (5) we first obtain, by the
chain rule,

dx = e? (122372 [(a+2?)de-adnra,

2)-3/2 (8)

= et (12 [x (142 2)de+dn].

o,
VT
|
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V(142 2)s" 41,

dy/dx = ¢' = do/da, (9)

(1+24)¢"' -2

Furthermore, from (6) and (7)

da

(x dy -y dx)/x2

2)3/2 -2

= e ? (142 [(1432)e' -2172 ax. (10)

After replacing these in (5), the integral in terms of ¢ and )
becomes fF(A,¢')dA, where

1

FOLe0) = ;?IZII;[(A2+1)2(A4+1)¢'2 + 2A(A4-1)¢' +2A2]%- (11)

The bracketed quadratic expression in ¢' is a minimum when
o' = -2 2-1)/ 0241 M1y (12)

Substituting this into the integrand F()A,¢') and integrating
from » = 0 to », we obtain the minimum time T in going from

the x-axis to the y-axis. This is found to be, through the use
of the beta function,

T =f% dr/0® +1)% = r2(%)/4n% = 1.85407... (13)

({131, p- 258; [41, pp. 254,524). We shall show later that this
value is actually attained. We state this as Theorem 1:

The smallest t-interval between a zero of y and zero of x for a
nontrivial solution (x,y) of (1) - (2) is given by T in (13).

THE GEODESICS AND CONTROLS

By definition, the geodesics are the solution of (1) - (2) which
) yield the minimum time T in (13). This time T is realized by the

(12). Although this equation is separable, solVing it in its

present form involves some complicated computation. It is easier

trajectories of (1)-(2) which satisfy the differential equation
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to rewrite (12) in terms of x and y alone. Using (6), (9) and
(12), after some simple algebra we obtain dy/dx = —x3/y3 from
(12); this integrates to the implicit form of the solution

x4 + yh = const. (14)
By linearity, we may take const. = 1, getting

To obtain the explicit form of the solution (15), we first invoke
the bang-bang property; i.e., the minimizing solution will corre-
spond to a control (p,q) which is on the boundary of the control
region in the (p,q ) -plane. Then the inequality (2) becomes the
equation
p- +q° =1. (16)
3

Differentiating (14) with respect to t, we get x'x' + y'y' =0
or, using (1), px2 + qy2 = (0. But from (14) and (16), this yields

p2 = yl' (17)

f(l—x4)3/4.

whence x' = py

We shall consider the trajectory (15) which is moving clockwise
and which is initially on the line y = x and, with no loss in

-1 ’
generality, in the first quadrant, so that x_ = x(0) = 2 *. Then

x' = -(1-xhH3/4 (18)
whence
b= (X (1-x%)"3%4x, (19)
X0

To evaluate this integral in closed form, we introduce a series

of substitutions which telescope to

= 5 - (1w, (20)
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Then (19) becomes

27372, =" (w(l-w?)) Zdw. (21)
In terms of Legendre's canonical form [3, p. 59]

]/ .

) = fg (1 - %sinzv)~2dv (22)

=1
¢

F(¢) = F(9,2
by [3, pp. 78, 163] (20) becomes

2 on o (1 - nsin?yy
_2"3/2t - 212(F(¢) -F(T\'/Z)) = 2;5 fﬂ_/z(l Lsin“v) ‘dv (23)

where

w= (1 - cosz¢)/(1 + cosz¢)

(1 - en®F(4))/(1 + cn’F(s)) (24)

[3, pp. 59, 163] in terms of the Jacebian elliptic function cn F =
cn (F,2”%. From (23), F(s¢) = -2t + F(n/2). Letting K = F(r/2),
by the addition formula [4, p. 497] for cn(u-v) in terms of the
other Jacobian elliptic functions sn and dn, and by the values sn K

=1, cn K=0 and dn K = 9% [4, p. 499], we can show from (24)
that

w o= cn2(2t). (25)

Applying this to (20) gives us

x = 4[1-(1-en®(26))7. (26)
Theﬁ y4 by (14) becomes
b o_ 4 3
y = 5[1+(l-en"(28)) 7). (27)

The trajectory given by these two equations is initially on the
line y = x in the positive quadrant and reaches the y-axis when t
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!
3

is the smallest positive zero of cn(2t,2 *) this is 4T = 1‘2(14,)/8171/2
[4, p. 524]) (cf. eq. (13) above). To determine the entire tra-
jectory in the first quadrant, we simply reflect this trajectory
through the line y = x. Therefore, because cn(2t) is an even
function, for -T < t < O, x4 and y4 are given by the right-hand
side in (27) and (26) respectiVely.

The corresponding control variables p and q can now be obtained
1
immediately. From (17), p = fyé, but the negative sign is chosen

by (18); similarly, q = x;5 when y > x > 0.

v

This is all summarized in the following result, which incorporates

Theorem 1.

Theorem 2. The smallest t-interval between a zero of x and a
1

zero of y for a nontrivial solution of (1)-(2) is 1‘2(!,:)/41r'5 =

.1.85407 ... . The corresponding geodesic, normalized by (15),

and control functions are given by

2

x? = q =[5 - [l-en®(2t)1%)17%

2 51 + [l-cn®2t)1%)1%

~
il
1

i)
Il

> >
when y - x = 0.
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APPLICATION OF MODERN ESTIMATION AND
CONTROL TECHNIQUES TO THE GLAADS TEST VEHICLE

D.P. Glasson
The Analytic Sciences Corporation
Reading, Massachusetts 01867

B.L. Shulman
U.S. Army ARRADCOM
Dover, New Jersey 07801

ABSTRACT

" Application of modern estimation and control techniques to the
tracking, stabilization, and pointing functions of a mobile air
defense system is addressed in this paper. A multiple-model
estimator structure is applied to. tracking tactical missile
targets. Modeling, design, and performance evaluation of an
instrument platform stabilization system to reject terrain-
induced errors dre outlined. An optimal predictor for ballis-
tic lead angle compensation is formulated; its prediction error
characteristics and propagation of these errors through the gun
pointing controller are derived. Future areas of development
and field test validation for the concepts investigated are
described.

INTRODUCTION
BACKGROUND

Performance requirements of modern mobile air defense systems
have placed stringent specifications on the tracking, stabili-
zation and pointing performance of these systems. The tracking
subsystem must accurately estimate the position and velocity

of a highly-maneuvering target without explicit knowledge of
the target's maneuvering capabilities or intended trajectory.
The stabilization system must reject vibration disturbances to
the tracking sensor assembly and gun pointing system due to gun
recoil and vehicle travel over a wide range of terrain. The
gun pointing system is limited by the extrapolation accuracy

of a target trajectory predictor and by the dynamic capabili-

. ties of the gun gimbal actuation system. These demanding sys-
tem requirements call for correspondingly powerful design and
analysis tools.

Modern control methodologies offer a systematic framework of
synthesis and analysis techniques for air defense fire-control
system design. Modern estimation/control techniques were de-
veloped specifically for multiple input-output systems which
potentially are stochastic, nonlinear, and uncertain (i.e.,
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the dynamics of the system and disturbances are not known pre-
cisely); all of these considerations are present in an air
defense fire-control system.

The goal of the study described here was to assess the poten-
tial benefit of using modern control techniques in designing a
fire-control system for a representative air defense system.
Using mathematical models of the Gun Low Altitude Air Defense
System (GLAADS), a number of modern estimation and control con-
cepts were developed and analyzed. The concepts investigated
and a summary of results are described in the following section.

SYSTEM OVERVIEW

Figure 1 is a block diagram of the air defense fire-control
system concept developed in the present study. For purposes

of demonstrating new estimation and control concepts the system
is restricted to planar engagements, i.e., only range and ele-
vation pointing and tracking are considered.

The integrated system is comprised of tracking, pointing, and
stabilization subsystems. The tracking subsystem generates

estimates of the target range (R), elevation (et) and elevation
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rate (ét) from noisy range and elevation measurements. The

estimates generated by the tracking subsystem are routed to
the pointing system where these quantities are extrapolated
through the estimated projectile time-of-flight (Tf) by a pre-
diction algorithm (i.e., the ballistic lead angle Is computed).
The extrapolated elevation and elevation rate are then used by
a feedforward controller to command the gun pointing angle and
slew rate; the dynamic response of the gun itself is regulated
by a feedback controller. The instrument platform stabiliza-
tion system serves the dual function of slaving the instrument
platform attitude to the current target elevation (via feed-
forward control) and rejecting terrain induced disturbances
(via a feedforward-feedback controller).

Modern control concepts applied to the three subsystems and
evaluated in the present study include:

° A tracking filter based on multiple
model estimator structure

o Statistical linearization of the non-
. linear target tracking dynamics

° An optimal one-step prediction algo-
rithm for extrapolating target motion
estimates over the projectile time-

of-flight

° Command-generator-tracker (CGT)/optimal
regulator control of the gun pointing
dynamics

® A robust (i.e., insensitive to varia-

tions of terrain type) instrument plat-
form stabilization system designed by
optimal estimation/control techniques.

Applications of these concepts to the GLAADS vehicle and per-
formance benefits derived from them are discussed in the fol-
lowing sections.

TRACKING FILTER SUBSYSTEM

Through application of multiple-model structuring and statisti-
cal linearization, an accurate and robust tracking filter is
designed. This filter produces unbiased estimates of the tar-
get motion with range and elevation errors substantially lower
than the noise levels of the range and elevation sensors. It
is shown that the multiple model filter obviates the need for
precise knowledge of the target maneuver model; i.e., the fil-
ter performs well given only knowledge of the expected range of
target maneuver dynamics. The formulation and performance of
the tracking filter is described in the following subsections.
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TRAJECTORY AND SENSOR MODELS

The variables used to describe the target trajectory and meas-
urements are shown in Fig. 2. The target position is defined
by the target altitude (y) and horizontal distance from the
gun (x). The instantaneous target velocity vector (v) is char-
acterized by the target airspeed (V) and flight path angle

(y). The maneuver characteristics of the target are described
by the flight path angle rate (6 = w). Measurements of two
polar components of target position, range (r) and elevation
(8), are available to the fire control system.
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The dynamic equations of the target trajectory and the equa-
tions relating the target state to the tracking instrument
measurements are listed in Table 1. The notation, N(m,Vv),
denotes white noise of mean, m, and variance, V.

The maneuver characteristics of the target vehicle are embodied
in the flight-path-angle-rate (w) equation; as discussed in

Ref. 1, the flight path angle rate is directly related to the
normal acceleration of the vehicle which is the usual command
variable for maneuvering manned aircraft and tactical missiles.
The parameters that govern the dynamics of flight path angle
rate, t and q, are never precisely known in any real engagement;
hence, the dynamics shown in Table 1 are both stochastic and
uncertain.
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TABLE 1
SUMMARY OF TRAJECTORY AND MEASUREMENT EQUATIONS

TRAJECTORY DYNAMICS

X = V cos Y = kl

& =V sin y = iz

vV = -g sin y - fDV2 = i3

&:w :).{4

.— l _O

W~N(O,Q)

RANGE MEASUREMENT

r, = fz + y2 t v, v~ N(0,4 mz)
ELEVATION MEASUREMENT

6, = tan"! (y/x) + Vg 5 Vg ~ N(0,0.25 mradz)

The thrust/drag balance of the vehicle is quantified by the
parameter fD; for example, in an unpowered segment of a tac-

tical missile trajectory fD relates the drag of the vehicle to
the vehicle airspeed. The drag parameter, fD’ is usually un-

known in a real engagement, but its range of values can be
estimated; hence fD is an uncertain but bounded parameter.

The range and elevation measurements are related to the tra-
jectory states by nonlinear equations. The rms levels of sen-
sor noise listed were taken from Ref. 2 and represent the per-
formance of state-of-the-art instrumentation.

FILTER FORMULATION

The target trajectory dynamics and measurement models listed
.in Table 1 are stochastic, nonlinear, and uncertain (i.e., the
model parameters are not precisely known). Due to the non-
linear and uncertain properties of the trajectory and measure-
ment models the standard linear optimal estimator (Kalman fil-
ter) cannot be directly applied; in the present study, two
modifications of the standard Kalman filter structure were
employed to accommodate nonlinearity and uncertainty:

® A statistically-linearized formulation
of the Kalman filter to accommodate
nonlinearities
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° A multiple model estimator structure
to accommodate the uncertainty of the
model parameters.

The structure of a statistically-linearized filter is shown in
Fig. 3. The structure is substantially similar to the linear
Kalman filter; it consists of a state estimator that generates
estimates of the trajectory state, gk, using a model of the

dynamics (x=f(x)), the measurement model (z=h(x)) and the
tracker measurements, Zys and a error covariance (P) propagator.

The major differences between the statistically-linearized
filter and an extended Kalman filter are that expected values

of the state derivative (f(x)) and measurement (h(x)) are used
rather than direct functions of the estimates (i.e., f(X) and
h(%)) and statistical describing functions (Ref. 3) for the
linearized dynamics (N) and measurements (M) are used rather
than Taylor series approximations (the mathematical derivations
of the expected values and describing functions are detailed
in Ref. 1). At the expense of some additional calculations,
the statistically-linearized filter will yield unbiased esti-
mates of the nonlinear dynamics and avoid filter divergence
problems typically encountered in applications of extended
Kalman filters.
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Uncertainty of the dynamic model parameters is accommodated
through a multiple-model estimator structure. Figure 4 is a
functional diagram of a two-model estimator structure, as it
would be applied to an air defense tracking system. Here the
range and elevation measurements (z) are processed by two fil-
ters. The choice of the parameters Ty and Qi (correlation

time and process noise level of the flight path angle rate
dynamics) are chosen to represent likely target maneuver char-
acteristics in the individual filters. For example, a choice
of large 1 and small Q1 (long correlation time, low normal

acceleration rms) would represent a level-flight trajectory in
filter 1; small 1) and moderate Q2 in filter 2 would represent

a vertical plane "jinking" maneuver. The dynamic models used
in the two filters would "bracket" the expected range of target
maneuvers while the averaging algorithm would combine the esti-
mates of the two filters to tune the estimator structure to

the current target maneuver level. An alternative application
to the dual filter structure for tracking an anti-radar missile
having uncertain but bounded drag is described in the following
section. Mathematical details of the dual-filter structure in
air defense system applications are covered in Ref. 1.
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FILTER PERFORMANCE

The performance of the dual statistically-linearized filter in
tracking the unpowered midcourse trajectory of anti-radar mis-
sile is described here. A segment of the example trajectory
is shown in Fig. 5; the segment shows a planar, unpowered,
non-maneuvering gravity-turn through the atmosphere.

The parameters used in the dual filter structure were chosen

to provide an adaptation of the estimator to the unknown drag
characteristics of the target vehicle. The maneuver parameters,
T and o, are identical for the two filters with values appro-

priate to a low maneuver level gravity turn. The drag param-

eter, fD’ is set to zero in one filter and to a value ZED in
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the other filter, where fD is an estimate of the vehicle drag

parameter derived from intelligence data (Ref. 4). The two
values of fD "bracket" the range of variation of fD; the dual-

filter averaging algorithm then combines the estimates of the
two filters to "tune" to the current value of fD'

The performance of the dual-filter in tracking the example
trajectory is shown in Fig. 6. Unbiased errors in range and
elevation estimates are obtained. Substantial improvement of
rms range and elevation error over the measurement accuracies
is achieved; range error is reduced to 1 meter rms as opposed
to 2 meters rms measurement error and elevation is reduced to
0.25 mrad rms as opposed to 0.5 mrad rms measurement error.
There is good agreement between the true estimation error vari-
ance and the error variance computed by the dual filter, thereby
validating the use of statistical linearization, the choice of
parameters in the present application, and the viability of a
dual filter structure in adapting to unknown drag characteris-
tics of the target.

STABILIZATION SYSTEM
An instrument platform stabilization system design based on a

Kalman filter/optimal feedforward-feedback control structure
is described in this section. Using this optimal structure,
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point designs for various levels of terrain-induced vibration
were performed and analyzed. Suboptimal systems were then
designed and their performance compared with that of the opti-
mal designs; by this means, major simplifications of the system
structure were shown to be possible with little degradation of
stabilization performance. The most significant of these sim-
plifications is that the stabilization system can be decentral-
ized from the tracking systenm.

SYSTEM DESIGN

The structure of the stabilization system is shown in Fig. 7.

Using the platform rate integrating gyro and hull mounted rate
gyro measurements, a full-order Kalman filter (i.e., a filter

designed using the coupled dynamics of the platform, rate in-

tegrating gyro, and terrain-induced disturbance) generates

estimates of the gyro output angle (eg), the platform eleva-
tion angle and elevation rate (ee and ée), and the disturbance
state (gh). The estimates are then multiplied by a control

gain matrix, KC, to compute the platform torquer and gyro com-

mands (ue and ug).

The optimal control gain matrix, Kc’ is partitioned into gains
that multiply the gyro and platform states and gains that mul-
tiply the disturbance states, i.e.,:

K = [K K

c P d]
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With this partitioning, the control system can be described in
terms of feedback and feedforward control functions. Desirable
platform dynamic response is achieved by proper values of the K
gains; optimum disturbance rejection is accomplished by the Kd
gains.

The terrain disturbance model used in the present study was
derived from data presented in Ref. 5 and is described in
Ref. 1. This model represents travel over road and country
terrain at speeds from 5 to 25 km/hr.

Th noise characteristics of the rate integrating gyro and the
hull rate gyro are given in Table 2. These noise characteris-
tics are typical of tactical aircraft quality instruments.

PERFORMANCE AND SENSITIVITY ANALYSIS

The method used to analyze the stabilization system performance
was steady-state covariance analysis. The covariance matrix

of the stabilization system is derived from the steady-state
covariance equation:
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TABLE 2
MEASUREMENT NOISE LEVELS

INSTRUMENT RMS NOISE BANDWIDTH

=

RIG 0.31 prad 600 Hz

Hull Rate Gyro | 2.9 mrad/sec 600 Hz

~

B + XFT + Q= 0 | (1)

Here X is the covariance matrix of the system which consists
of subsets related to the covariances of the platform states,
the disturbance_states and the state estimator errors. The

matrices F and Q are the dynamics and process noise matrices,
respectively, for the coupled platform, disturbance, controller
and state estimator error dynamics.

The performance metric chosen in the present case is the steady-

state variance of the platform elevation angle; performance -
sensitivity analyses yielded the following significant results:

® Stabilization of the instrument plat-
form to 3.3 prad rms over the entire
range of terrain and vehicle speed
using fixed gains (computed for worst
case design point)

) Elimination of the feedforward branch
of the controller providing a major
simplification of control structure
with negligible degradation of

performance

o Stabilization error rms increases by
a factor of 4 with hull rate gyro
removed

) Platform residual stabilization error

is sufficiently low (i.e., two orders
of magnitude lower than the tracking
elevation sensor) that the stabiliza-
tion and tracking functions can be
decentralized.

GUN POINTING

The pointing system design is based on a recently-developed
type of feedforward controller, the command generator tracker
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(CGT). This controller causes the plant output (gun pointing
angle) to track exactly the output of a specified deterministic
linear system; in tracking stochastic processes (such as a
maneuvering target) the CGT has shown performance superior to
that of optimal feedforward controllers. '

SYSTEM DESIGN

The structure of the predictor/gun pointing system developed
in this chapter is shown in Fig. 8. The model of the gun ele-
vation dynamics is comprised of a gain, K& to represent the

hydraulic motor command response and inertia; the dynamics of
the hydraulic motor valve are very high frequency and were
therefore neglected in the present design. The rotation rate
of the hydraulic motor is geared-down by a factor of 1/n in
the gear box; the gun elevation, eGUN’ is the integral of the
gun rotation rate.
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Elevation and elevation-rate estimates from the tracking filter
are extrapolated forward in time through a computed projectile

time-of-flight. The extrapolated elevation rate (ée(t+tf)) is
multiplied by a feedforward control gain (n/KH) to drive the
gun elevation rate to match the target elevation rate. The
error between the extrapolated target elevation (Be(t+tf)) and
the gun elevation is driven to zero by a regulator gain, Kr;
the magnitude of this gain determines the control bandwidth of
the closed-loop gun dynamics.

PREDICTOR/POINTING SYSTEM ERROR ANALYSIS

The mathematical relationship between gun pointing error and
the trajectory state prediction errors is summarized in this
section. First, the predictor elevation and elevation rate
errors are derived in terms of the errors in the extrapolated
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trajectory state. The gun pointing error is then derived from
the predictor errors and the dynamics of the gun/controcller
system. Figure 9 shows the geometrical relationships used to
derive the elevation and elevation rate errors.
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After analyzing the differential geometry of Fig. 9 (Ref. 1)
one obtains the following expressions for the predictor errors:

ey = ii (-5 e, + % ey) (2)
eg = 8 [eV/G - eR/ﬁ + cot(é-?)(ey—ea)] (3)

where the notation e, denotes the prediction error for variable

a, and B denotes the predicted value of variable B. Equations
2 and 3 relate the elevation and elevation rate errors (e6 and

eé), which corrupt the control commands to the gun, to the

predicted trajectory states (X, ¥, V, ¥) and predictor errors
_(ex, ey, e ey, €g s and eR).

By expressing the true target elevation and elevation rate
(which, if commanded to the gun pointing system would yield
exact target tracking) in terms of their predicted values and
prediction errors; i.e.,

V’

bp = 07 + e ' ' (4)
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(3)
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the following equation is derived (Ref. 1) for the gun pointing
errors:

M = - .l ._l_. 3
gun T €gun tT% "% (6)
where e is the gun pointing error and t(=n/(KmKr)) is the

gun

time-constant of the closed-loop gun regulator dynamics. Equa-
tion 6 defines the dynamics of the gun pointing error in re-
sponse to errors of the extrapolated elevation and elevation
rate. As indicated by Eq. 6, the gun pointing errors are fre-
quency limited by the bandwidth (1/t) of the gun regulator.

The static gain of elevation error to gun error is unity; the
static gain of elevation rate error to gun error is 1.

Equations 2, 3 and 6 could be used in a Monte-Carlo simulation
to determine the time-history and statistics of the gun point-
ing error in a particular air-defense scenario. The predictor
_errors would be computed as the difference between the predicted
elevation and elevation rate and the elevation and elevation
rate of the truth model trajectory. A linear combination of

the computed predictor errors (i.e., (1/t) eg * eé) would be

the input to a first-order linear filter with time constant, T;
the output of the filter would be the gun pointing error.

.

CONCLUSIONS

In this paper, modern estimation and control design techniques
were applied to the GLAADS air defense system. Specific con-
cepts considered in this study include: application of statis-
tical linearization to the nonlinear trajectory dynamics and
tracking sensor measurements, multiple-model estimator struc-
turing of the tracking filter to accommodate modeling uncer-
tainty, stabilization system design by optimal estimation and
control techniques, optimal prediction algorithm design, and
command-generator-tracker/optimal regulator control of gun
pointing. The performance benefits obtained through applica-
tions of these concepts were demonstrated through subsystem
examples.

Further developments of these concepts should include:

° Extension and evaluation of the design
formulations for non-planar engagement
scenarios
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° Development of practical implementa-
tion structures for eventual field
testing

° Global performance evaluation of a
mobile air defense system (i.e., error
budget structure) to identify high-
payoff areas for subsystem improvement
and development. .
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ABSTRACT

Traditionally, control systems oriented studies of uncertain
dynamic processes with continuous state descriptions have
relied primarily on the identification and estimation of
models based on ordinary differential equations, partial
differential equations, or related difference equations.
Recently, the authors have explored the use of finite markov
chains to approximate processes with continuous state
descriptions. Our applications of these techniques have
focused on the determination of robust models of evasive
targets in the context of AAA fire control.

We have developed a practical technique for estimating
robust finite state markov chain models. This technique is
based on game theory and provides a minimax method for
determining robust approximations of markov chain state
transition matrices, which are used to construct target
motion predictors. The importance of this new approach lies
in its ability to provide easily implemented predictors
which can outperform traditional autoregressive models in a
noisy environment.

This paper outlines this new methodology and provides
examples of fire control applications based on flight test
data.

INTRODUCTION

The present study is an outgrowth of an earlier study (1)
which characterized, identified, and validated robust
mathematical models for the motion of an attack aircraft
during its weapon delivery pass against a defended target.
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These new maneuver models provided the basis for enhanced
filtering and prediction algorithms for AAA fire control
systems. The development of these models and algorithms was
based on a synthesis of univariate time series methods and
game theoretic analysis. This synthesis lead to (i) the
development and validation of a practical design procedure
for high performance target state estimators in the presence
of moderate to large parameter uncertainty, and (ii) a
technique for designing a class of "worst case" maneuver
processes to blunt the effectiveness of AAA systems.

A central aspect of the research reported in (1) was the use
of authentic flight test data, which consisted of eleven
sample flight profiles an aircraft might perform while
attacking a defended ground target. The actual data was
gathered during flight tests with an A7-E aircraft at the
NWTC, China Lake, California. These attack profiles, which
also constitute the flight test data base for this present
study, are described in detail in Chapter II of reference
(1) . This kinematic data base describes the aircraft motion
in a cartesian coordinate system, where the origin of this
coordinate system is the aircraft”’s intended target, as well
as the assumed location of the AAA weapon system. The
kinematic data describing the eleven flight profiles in the
XYZ coordinate system includes consistent position,
velocity, acceleration, and acceleration-dot data in each
coordinate with a time increment of 0.1 sec. The primary
models developed in (1) characterize the aircraft motion in
terms of "decoupled" autoregressive (AR) models for the
individual acceleration-dot time series in X, ¥, and Z. We
summarize the salient results of this earlier study with the
following remarks:

(i) Although the eleven flight paths appear significantly
different to the "naked eye," the thirty-three
acceleration-dot time series in the data base -- eleven
flight paths times three directions -- are shown to be
accurately modeled by a single robust fifth-order
autoregressive model. The eleven flight paths in this data
base include three dive toss maneuvers, five dive maneuvers,
and three pop-up maneuvers. The acceleration—-dot processes
were incorporated in the model development since the
acceleration, velocity, and position time series are all
significantly nonstationary.

(ii) Substantial improvements in overall prediction
capability are achievable by using robust, high-order
filter-predictor algorithms based on a fifth-order AR model
of acceleration-dot instead of the "usual" (benchmark)
third-order algorithms based on a first-order AR model of
acceleration.

(iii) Typical improvements in average hit probability
achieved by the new models developed in (1) versus the
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standard benchmark model based on a first-order AR model of
acceleration, ranged from 25 to 35 per cent. The specific
enhancement in average hit probability associated with these
new filter-predictor algorithms depended on the specific
flight path, and the noise levels in the unfiltered
observations. The unfiltered observations were modeled by
target range, azimuth, elevation, and the respective rates.

ALTERNATIVE MODELS
Motivation

The consideration of dynamic stochastic models for target
motion based on alternatives to the AR models described in
this Introduction and detailed in (1) is motivated by the
observation that predictors, designed on the basis of
‘nominal fifth-order AR models for acceleration-dot, showed
extreme sensitivity to observation noise. Here, a nominal
AR model refers to a model obtained by a standard least
squares identification procedure in conjunction with the
usual goodness of fit tests. This extreme sensitivity to
observation noise was eliminated in (1) by the following

ad hoc approach:  the nominal fifth-order AR model used in
the predictor was replaced by a modified fifth-order model
with greater damping and reduced bandwidth. The overall
filter/predictor system was characterized by three decoupled
channels for the X, Y, and 2 coordinates. The individual
Kalman filters were implemented based on the nominal values
of the X triple-dot AR coefficients for Pass 10. The
performance of this simplified filter structure with these
specific coefficients was studied extensively through
simulation experiments. The results of this study indicated
that this simplifed filter provided good performance against
all of the observed flight profiles. A worst case analysis
based on game theoretic techniques revealed that this
simplified nominal filter should be replaced by a
structurally identical filter with different AR parameter
values to counter plausable worst case maneuver processes
which were not part of the flight test data base. We refer
the reader to (1) for a complete description of this worst
case analysis and filter design technique. The coefficients
for the individual X, Y, and Z coordinate predictors were
obtained by adjusting the overall bandwidth and damping to
achieve good prediction performance based on the filtered
observations. A common choice of modified AR coefficients
was implemented for each of the three predictors. This
adjustment of predictor bandwidth and damping necessitated
some empirical analysis via simulation studies. It is worth
emphasizing that these "decoupled" eighth-order

nominal filter/modified predictors provided 25 - 35 per cent
improvement in average hit probability compared with the
usual "decoupled" third-order benchmark algorithm. We note
that although the nominal predictors based on fifth-order AR
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models of acceleration-dot showed extreme sensitivity to
observation noise, which necessitated modifying the
predictor”s frequency response, a nominal predictor based on
the Pass 10 X triple-dot AR coefficients provided excellent
prediction capability against each of the eleven flight
paths in a noiseless environment. This substantial
sensitivity to observation noise is of more than academic
interest. It suggests that the underlying process (truth
model) which actually characterizes the aircraft motion may
exhibit structural details which are not embraced by AR or
more generally by autoregressive integrated moving average
(ARIMA) approximations. This last statement is not intended
to imply that ARIMA models are unsuited for maneuver process
modeling, but rather that, in the set of all possible
maneuver process models, there may be alternative classes of
models which provide better explainations of the underlying
process. One recognizes, in applications oriented model
building, that there is a delicate balance which must be
sought between process explaination (complexity) and
implementation approximations (simplicity). The choice of
pivot point for this balance is strongly influenced by the
model”s intended application.

Models Based on Aerodynamic Variables and Aircraft Aspect

We began our consideration of alternative models for evasive
attack aircraft motion by examining an overall model
structure which was delineated in terms of aerodynamic
variables and aircraft aspect. This new model was based on
an integration of finite markov chain models for aircraft
normal acceleration with ARIMA models for aircraft
tangential acceleration and bank angle. The consideration
of dynamic stochastic models for target motion based on
target aspect (bank angle) as well as aerodynamic variables
(normal and tangential acceleration) was motivated by an
earlier investigation reported in (2). These earlier
results indicated that enhanced prediction capability might
be achievable based on prediction algorithms defined in
terms of target aspect, airspeed, and normal acceleration,
particularly over extended prediction intervals (e.g. 3 -5
sec.). We remark that other investigators working in the
air-to-air fire control environment have recently considered
state estimation algorithms based on target aspect and
normal acceleration. However, these collateral works, which
are reported in (3 - 5), do not make use of any flight test
data.

The factors which suggest modeling target motion in terms of
bank angle, normal acceleration, and tangential acceleration
are: ,

(i) A desire to describe target motion in terms of decision
variables under the control of the pilot.
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(ii) The recognition, based on theoretical considerations as
well as empirical studies, that the stochastic dynamic
behavior of the individual X, Y, & Z acceleration-dot time
series for a given flight profile are strongly coupled in a
noncausal fashion.

(iii) The recognition that alternative models for target
motion based on aspect and aerodynamic variables could allow
the exploitation of partially redundant dynamic data in the
context of seeking enhanced prediction capability through
multisensor integration.

Preliminary Results

(i) The first phase of the present study focused on the
identification and estimation of univariate time series
models for target bank angle (BA), normal acceleration (NA),
and tangential acceleration (TA). These results indicate
that the eleven BA, NA, & TA time series can be adequately
modeled by three separate ARIMA models. By the phrase
"adequately modeled," we mean that based on noiseless data
there is inadequate evidence to support the rejection of the
null hypothesis. The phrase "adequately modeled" is not
intended to imply that these models necessarily have good
sensitivity properties. The prediction capabilities of
these models in a noisy environment will be described
subsequently.

(ii) A single input single output (SISO) transfer function
analysis indicates that while there are weak causal
relations between BA and NA, and between NA and TA, it is
adequate to treat the individual BA, NA, & TA time series
for a given flight path as independent series.

(iii) The NA time series for each flight path exhibits
significant piecewise linear behavior. This suggests that
the rate of change of normal acceleration can be modeled
approximately as a finite state markov chain. Detailed
analysis indicates that this finite state markov chain model
is quite competitive with the previously described ARIMA
model for NA as judged by the relative prediction capability
of each model in a noiseless environment.

(iv) A comparative analysis of predictor performance for the

. case of noiseless data indicates that:

chain model for NA-dot, and nominal ARIMA models for TA &
BA) performs comparably to the predictor comprised of
nominal ARIMA models for NA, TA, & BA.

(b) The performance of both of these new predictors is
comparable to that of the robust predictor based on
acceleration-dot obtained in (1).

(c) The nominal fifth-order AR models based on
acceleration-dot obtained in (1) performs noticeably better
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than each of the other predictors cited in (iv-a) and
(iv-b). The high performance capability of these nominal
fifth-order AR models in a noiseless environment is not
practically useful because of the severe noise sensitivity

of these models as noted previously.

(v) A comparative analysis of predictor performance for the
case of noisy data indicates that:

(a) The nominal ARIMA models of NA, TA, & BA exhibit
the same extreme sensitivity to observation noise as was
found for the nominal fifth-order AR models of

acceleration-dot obtained in (1).
(b) The nominal finite state markov chain model for

NA-dot showed substantial noise immunity.

Preliminary Conclusions

We draw the following conclusions from these preliminary
results:

(i) The nominal finite state markov chain model has
substantially better noise immunity than its nominal ARIMA

counterpart.

(ii) Logical directions for further research include:
(a) A study of the behavior of finite state markov
chain approximations to the TA & BA processes.
(b) A study of the behavior of finite state markov
chain approximations to the X, ¥, & 7 acceleration-dot
processes resolved in a cartesian coordinate system.

We decided to direct our phase-two efforts towards a
detailed study of finite state markov chain approximations
of the acceleration-dot processes resolved in a cartesian
coordinate system. We chose this direction over the finite
state markov chain study of NA, TA, & BA, since current
sensor capabilities do not suggest the immediate
availability of direct or indirect aircraft bank angle data
with a suitable S/N ratio.

MARKOV CHAIN MODELS of A-DOT

In this section we describe the determination and validation
of nominal finite state markov chain approximations to the
individual X, Y, & Z acceleration-dot processes for the
flight paths in our data base. The following approach is
justified if we assume that the underlying A-dot data is
generated by a (possibly) infinite state wide-sense
stationary markov process with sample paths that exhibit
piecewise constant behavior over intervals of random
duration. We refer the reader to reference (6) for a more
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rigorous probabilistic description of the class of
underlying processes for which our approximation algorithm
is theoretically valid. In the following discussion we
focus our attention on a generic sample path, for example,
the X triple-dot realization for Pass 1.

An Approximation Algorithm

Our approximation aléorithm has the following steps:

Step 1 - Dynamic Range: Determine the dynamic range (maximum
& minimum values) of the time series data.

Step 2 - State Assignment: Determine a finite set of
"states" for the time series data.

Step 3 - Transition Matrix Estimation: Estimate the
probabilities in the one-step state transition matrix --
based on the state assignments made in Step 2.

Step 4 - Repeat Steps 1 - 3 for the remaining time series
data sets. -

Step 5 - Hypothesis Testing: Perform the appropriate
statistical tests to evaluate the validity of the hypothesis
that the derived finite state markov chains have a common
underlying distribution. (We refer the reader to reference
(7) for an excellent treatment of hypothesis tests for
finite state markov chains. )

Some Comments on the Algorithm

Step 2: There is no canonical method to resolve the state
assignment question. We have explored two methods in this
preliminary analysis. These methods are: (a) the method of
uniform dynamic range, and (b) the method of uniform
duration. The method of uniform dynamic range breaks the
dynamic range of the time series into M equal intervals.
(In this analysis we chose M = 5. ) The center point of
each interval was defined to be the value of the associated
state. The method of uniform duration selects the M "state
intervals" such that the number of "occupancies" in each
interval are identical (or approximately identical). Here
again, the value of M was chosen to equal 5, and the center
point of each interval was used to designate the state
value. The selection of M = 5, as well as the state
assignment procedure represents judgmental calls on the part
of the investigators. Further research on these issues is
currently being pursued.

Step 3: The underlying one-step state transition matrices
were estimated using the method of maximum likelihood (7).
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Structural and Statistical Results

Although the flight paths all look very different to the
"naked eye," the estimated one~step state transition
matrices showed remarkable similarity between the X, ¥, & 2
directions for a given flight path, and between all of the
flight paths. This result corresponds to the related
behavior of the acceleration-dot spectra reported in (1).
Use of the uniform dynamic range rule for state assignment
led to one-step transition matrices which exhibit a
pronounced birth-death behavior.

Prediction Using Markov Chains

Prediction based on a MMSE criterion is easily carried out
for a finite state markov chain model. The propagation of
the conditional expectation of the state n steps into the
future is obtained by raising the one-step state transition
matrix to the nth power and then multiplying the resulting
matrix by a column vector of state values. The desired
value of the conditional expectation is merely a weighted
sum of n-step state transition matrix entries.

Numerical Results

In this section we present the results of a series of
simulation experiments which were carried out to test the
validity of this finite state markov chain approximation
concept. These results represent two separate classes of
finite state markov chain approximations. The first model
denotes a finite state markov chain approximation to X, Y, &
Z triple-dot. The predictions are based on a "multiple
integration" of the predicted values of acceleration-dot,
acceleration, and velocity in each coordinate. A standard
Taylor series model defines the overall predictor structure.
The second model, which we introduce very briefly, denotes a
finite state markov chain approximation to the individual
components of the derivative of the aircraft’s angular
velocity vector (Omega-dot). Detailed motivation for this
choice of state variable description of the aircraft motion
appears in (6). Our purpose in presenting these additional
results here is to illustrate that the choice of state
variable description or model coordinatization is not
uniquely or canonically determined. Both classes of models
have been exercised against the benchmark predictor. Since
sensitivity to observation noise is a critical issue,
predictor performance with and without noise has been
investigated. The signal to noise ratios used in these
experiments correspond roughly to the low level noise figure
experiments performed in (1). In the current experiments,
uncorrelated observation noise was added to the data prior
to the prediction calculations. No filtering was carried
out on these data prior to the prediction calculations.
Since Kalman filters were employed in the experiments
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XYZ TRIPLE-DOT OMECA-DOT BENCHMARK

Miss Distance Miss Distarcc - Migs Distance
Histogram Histogram Histcgram
PASS NO. AVG HIT AVG HIT AVG HIT
PROB  SEC TOF 0-5 5-10 Mcters PROB SEC TOF 0-5 5-10 Meters PROB SEC TOF  0-5 5-10 Meters
# of Rounds # of Rounds # of Rounds
1 397192 ¢ -1 46 0 .376014 0 -1 46 0 .322085 0 -1 46 0
1-2 28 13 1 -2 23 1 1 -2 15 11
No Noise 2-3 0 7 2-3 2 3 2-3 0 5
3-4 0o 0 3-4 0 0 3-4 6 0
4 -5 00 4 -5 1 2 4 -5 0 o
1 348228 0 -1 4% 0 353139 0 -1 45 1 317263 0 - 1 45 1
1-2 19 14 1-2 2 14 1-2 12 13
Noise 2-3 0 3 2-3 1 3 2-3 3 3
3-4 0 2 3-4 o 0 3 -4 0 o
4 -5 0o 1 4-~5 0o 1 4-5 1 0
2. .331401 0 -1 27 0 .321864 0 -1 27 0 .225967 0 -1 26 1
1~2 23 &4 1-2 22 5 1-2 15 9
No Noise 2-3 2 8 2-3 6 & 2-3 0 1
3-4 0o 1 3 -4 0 0 I-4 0 o
4 -5 0 1 4~5 0 0 4 -5 o o
2 287723 0 - 1 27 0 .305919 0 -1 27 0 213553 0 -1 2% 3
1-2 15 11 1-2 18 9 1-2 14 9
Noise 2-3 2 s 2 -3 6 2 2-3 0 o
3-4 0o 2 3-4 o o 3 -4 0 o0
4 -5 0 o0 4 -5 0 1 4-5 0 0
3 411553 0 - 1 29 0 .353486 0 - 1 29 0 309004 0 -1 26 3
1-2 4 7 1-2 33 12 1-2 28 14
i
No Noise 2-3 1 1 2-3 0 4 2-3 0 o0
3-4 0 2 3-4 6 o 3~4 0 0
4 -5 0 o0 4-5 0 4 4 -5 0 0
3 344399 0 ~ 1 28 0 .329188 0 - 1 28 0 282348 0 - 1 2% 2
Noise 1-2 3% 16 1-2 28 18 1-2 26 15
2-3 0o 2 2-3 0 & 2 -3 0 1
3-4 0 o0 3-4 0o 0 I~-4 0 o
4 -5 0 o0 4 -5 6 0 4 -5 o 1
7 .402733 (1) -1 47 0 362481 0 -1 47 0 .352018 0 - 1 43 4
No Noise 2 - g 21 2 1 -2 15 7 1 -2 15 5
o 7 2 -3 0 5 2-3 3 2
: 3-4 0 o0 2 -4 0 o 3-4 o 1
4 -5 1 0 4 ~ 5 0 0
4 -5 0 0
7 .351804 (1) ; 11.; g .319388 0 -1 47 o .323917 0 -1 42 5
Noise - 1-2 6 17 l-2 13 7
2-3 0 2 2 -3 0 o0 2-3 103
3-4 0 o0 3-4 0 o 3 -4 0 o
4 -5 0 o0 4 -5 0 o0 -
4 -5 0 o0
10 .408987 (1) - ; 42»57; ;)1 348071 0 -1 49 0 .364829 0 - 1 9 0
No Noise 1=-2 18 13 1-2 16 17
2 -3 2 4 2~-3 1 2 2-3 0 4
3-4 0 o0 3-4 0 0 3 -4 0
4 -5 0. o0 4 0
-5 0 0 4~5 0 0
10 .362005 c1> - ; 42 0 324366 0 -~ 1 49 0 327280 0 - 1 45 4
Noise 16 16 1 -2 13 15 1-2 16 15
2 -3 3 3 2 -3 0 2 2 -3
0 s
3I-4 0 o0 3-4 0o o0 3-4 0 o0
4 -5 0 0
‘ 4 -5 0 o 4 -5 0 o
14 .395702 (1) :; gg 0 .345427 0 -1 4 0 .298755 0 =1 4 0
No Noise 15 1 -2 22 15 1 -2 9 29
2-3 0o 2 2 -3 0 o0 2-3 11
3-4 0 0 3 -4 0 o 3 -4
4 -5 0 o . 0 o0
) -5 0 o0 4 -5 0 o0
14 .351072 0 -1 4 0 287483 0 -1 0 .288187 0 - 1 4 0
Noise 1 -2 22 15 1 -2 13 14 1-2 9 22
2 -3 2 2 2-3 0 o0 2 -3 0 2
3-4 0 o 3-4 0 o 3 -4
4 - 5 0 0 0 0
5 4 ~5 ) 4 -5 0 0
TABLE 1.
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reported in (1), a complete correspondence between these
preliminary experiments and the results reported in (1),
cannot be made. The results of the present experiments
should be viewed as preliminary, since the markov chain
predictors which were implemented in each case were based
solely on the Pass 1 time series data. This choice
represents a first cut, and illustrates the excellent
performance of the markov chain approximations, which did
not require any tuning. The results of the prediction
experiments are contained in Table 1. We remark that both
classes of markov chain models performed well against the
benchmark model, and both exhibited significant noise
immunity. The performance of the nominal (non robust)
fifth-order AR models for acceleration-dot yield
corresponding average hit probabilities significantly less
than 0.1 at this noise figure. Further results relating to
the robustization of these preliminary markov chain
approximations are reported in (6, & 8). Reference (6)
includes a worst case analysis of the markov chain
approximation process, as well as the saddle~point theory
which justifies the worst case analysis.

CONCLUSIONS

This study has presented substantial evidence to support the
assertion that finite state markov chain approximations can
be used in place of AR (and ARIMA) models as the basis for
predictors in a realistic AAA fire control application. The
value of the markov chain approximations lie in their
substantial immunity to observation noise. It has been
shown previously in (1) that high order AR models can
provide a substantial enhancement in prediction performance
in comparison with the usual decoupled third-order benchmark
model. However, the application of these high order AR
models requires that the nominal parameter values be
adjusted to reduce the bandwidth and increase the damping of
the given predictor. This adjustment procedure redquires a
degree of numerical experimentation to obtain a suitable
design. Whereas, the markov chain approximations need
essentially no tuning to obtain a design with excellent
observation noise immunity, and therefore these models can
be used "directly off the shelf".
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ROBUST KALMAN FILTERING

Dr. G. A. Hewer
RF Anti-Air Branch
Weapons Synthesis Division
Naval Weapons Center
China Lake, California 93555

ABSTRACT

This is a preliminary report on the current research on the appli-
cability of robust Kalman filtering in monopulse radar tracking
systems. (An estimation procedure is robust if small perturbations
in the noise model from the assumed (Gaussian) noise model result
in only small changes in the mean-squared-error of estimate.)

INTRODUCTION

Optimal guidance laws for accelerating targets depend on adequate
estimates of key states such as line-of-sight rate and target
normal accelerations. When optimum state estimates of these para-
meters are available, superior missile performance can be demon-
strated. These estimates are usually provided by some Kalman
filter algorithm. 1In the classical Kalman filter, noise sources
are characterized by uncorrelated Gaussian statistics. Unfortu-
nately, as the research of Masreliez and Martin [1] demonstrates,
the behavior of Kalman filter algorithms can be severely degraded
when the actual noise disturbances are non-Gaussian, particularly
when the non-Gaussian behavior is heavy tailed. The latter behav-
ior is characterized by outliers. In monopulse radars this heavy
tailed non-Gaussian behavior is present in the angle tracking sig-
nals because of target glint. A monopulse tracker will turn until
the central axis of the receiver antenna is aligned with the
normal of the incoming (scattered) wavefront. For a point target
the scattered wavefront is spherical, and thus the gradient is
always along a radial vector directed from the receiver aerial to
the target. A complex target is composed of a number of spatially
separated scatterers and thus the spherical wavelets from the
individual "point" scatterers will interfere. As a result of this
interference the phase of the received signal will not, in general,
be independent of the target aspect. The component of the phase
gradient vector orthogonal to the radial direction is directly re-
lated to tracking error. It is this type of error that constitutes
glint. Since the phase of a complex target varies as a function
of target aspect and motion, the statistics for the Kalman filter
are non-stationary. Thus the Kalman filter must adapt to the non-
stationary glint statistics. Moreover, the pulse repetition rate
of the radar is generally much higher than the requisite tracking
rate. For this reason the Kalman filter generally processes a set
of statistics based on a fixed number of sampled radar measure-
ments. If these statistics are the mean and variance of the
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angular glint based on a sequence of radar pulses, then they will
be sensitive to intrinsic signal outliers (i.e., large glint
spikes). For this reason robust statistical alternatives to the
mean and variance are considered. 1Informally, a robust estimate
is one whose performance remains quite good when the true distri-
bution of the data deviates from the assumed distribution. The
mean and variance are sensitive to large changes in a small frac-
tion of data points. Robust estimates are more resistant to
outliers. The purpose of this research is to clarify the role of
robust estimates in angle tracking.

In this paper the basic angle tracking loop simulation is outlined
and some preliminary results are presented. 1In addition, the role
of robust estimates in the tracking loop are identified and some
comparisons of the mean and variance with robust estimates are
presented using some simulated glint data.

TRACKING LOOP MODEL

The basic angle tracking loop is defined in Figure 1. The track-
ing loop and Kalman filter equations are derived and discussed in
the paper by Pearson and Stear [2]. In this section the Kalman
filter equations, the controller and the antenna stabilization
loop denoted by G(S) are defined.
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FIGURE 1. Pointing Error Control System.

For this simulation a planar engagement is assumed and for the ini-
tial studies the radar is fixed and the target is executing a con-
stant g turn. Also, it is assumed that line of sight and antenna
gimbal coordinate frames are almost coincident. Let € denote point-
ing error, which is the integrated difference between the line-of-

sight rate Wy o and antenna rate Wp o Let A and ag denote the
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target and interceptor accelerations. The Kalman filter state
equations are

€=wLS"‘(.UA

- _ _ 2R 1

g =~ RUg t R (Bp -2
- _ 1

ap = - T ap *td

with observation equation
y = ke + r,

where k is the angle error receiver slope and r and q denote addi-
tive noises. This formulation of the Kalman filter in line-of-
sight coordinates is appealing because the filter is linear and the
second state equation reduces to the formula for the transverse .
acceleration of a particle moving in a plane. The constants R, R
and T are respectively range, range rate and target acceleration
time constant. The estimates of R and R are provided by the radar.

~

The estimates € and W g produced by the Kalman filter are combined

linearly to produce an antenna rate command of the form

N N

Wac = Gppg * Gpf

where Gl is usually unity and G2 is proportional to the tracking

loop rate.

The antenna stabilization loop is modeled as a third order system
whose states are antenna postion, rate and acceleration, which are
denoted by X0 X, and X3. Let ¢ denote the damping ratio and w

the undamped natural frequency. Finally, let u(t) denote a contin-
uous real valued input function. The state equations can be writ-
ten as

X2 T %3

C _ 2 2

x3 = 2wa3 w x2 + wu(t)
31 = X,-
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EXACT SOLUTIONS OF THE STATE TRANSITION MATRICES

In this section the state transition matrices for the Kalman
filter and the antenna stabilization loop are derived. First,
the transition matrix for the Kalman filter is derived. Next,
the transition matrix that is used to represent the antenna sta-
bilization loop and integrator in the pointing error control
system using Kalman estimates is derived. Finally, the transition
matrix is used to obtain the sampled-data time domain representa-
tion of the stabilization loop integrator with a hold circuit.
Both of these transition matrices are derived using spectral
operator theory. These techniques for finite dimensional opera-
tors are discussed in Lancaster [3] and Zadeh and Desoer [4].

Before deriving the exact solutions of these systems, the concepts
and formulas that are essential in the development of spectral
operator theory for functions of matrices are presented. Assume
the following state variable formulation

x = Ax + Bu : (1)
y = Cx (2)

where A, B anc C are respectively n x n, n x 1 and 1 x n constant

matrices and x, y and u are real valued state vectors of compati-

ble dimensions. To simplify thé discussion it is assumed through-
out this section that the eigenvalues of A are distinct. Let

Al . o o g An denote the eigenvalues of A. The basic strategy of

this section is to solve the linear system (1) by first deriving
an exact expression for exp(At) and then solving the forced sys-
tem by integrating the general solution. The spectral operator
theory develops an exact expression for elementary functions with
matrix arguments. For example, the theory justifies the substi-
tution of a matrix A for the real variable % in the power series
expansion of the elementary functions such as exp(%) and sin(%).
However, computing the matrix exp (A%) by the infinite power ser-
ies can be difficult except in very special cases or for small
values of t. A finite power series expansion can be obtained by
using the following fundamental formula for the function of a
matrix. Given any real valued function f, which is analytic at
the eigenvalues of A

n
£f(a) = ¥ £(),.)2 (3)
k=1 k" %k
where kl e o o g An are the distinct eigenvalues of the n x n

matrix A and the matrices Zk have constant elements and depend
exclusively on A. The n x n matrices Zk are called the components

of A. The component matrices are linearly independent nonzero
matrices that commute with A and satisfy the following identities
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k=1 K
(b) Zka = Zk for each k
(c) Zkzj = 0 for k # j

Where I and 0 are respectively the n x n identity and null matrix.
Property (a) follows from the fundamental formula (3) by letting
f(A) = 1. Matrices that satisfy properties (b) and (c) are called
respectively idempotent and orthogonal. Since the eigenvalues of
A are assumed to be distinct, the Zk can be computed by the
formula

n n
Z, = I (A - X.I)/ T (A, = A.)
£ 5mL L
37k 3#k

where 1 is the product symbol. An alternative method for com-
puting the component matrices is given in Lancaster and Zadeh.
When f(A) = eX or £(\) = XA there results

n
L exp(A, t)2Z
k=1 k k

exp (At)

A =
k

AkZ

s

1 k

The spectral theory of an operator can be very useful in computing
some fundamental properties of exp(At). By property (a) for t = 0

n
exp (At) = I Zk =TI,
k=1

which is one of the basic properties of the state transition
matrix. To show that exp(At) when computed by the fundamental
formula (3) is a solution of (1) with zero-input (i.e., the input
vector u is zero for all time) first form the product

n n
A exp(At) = L A Z z

exp(A t)2Z
k=1 K koK

1

and then apply the idempotent and orthogonality properties of the
component matrices to the product to obtain

n
L exp(A, t)2Z
k=1 kT k

Iz
lQa

xk exp(kkt)zk = I

k=1

m



which proves that exp(At) is a solution of (1) with zero-input
response.

These techniques are now used to solve for the state transition
matrix in the Kalman filter. The 3 x 3 A matrix is

o w0

0, = -

\O’ ol -l} r
T .

where R, R and T are respectively range, range rate and the tar-
get acceleration time constant. Since A is an upper triangular
matrix the eigenvalues of A are the diagonal entries. These are

2R

- - - 2R N ; -
denoted by Al = 0, Az = R and X3 - Using the product for

mula, the formal expressions for the correstponding component
matrices become

o~

= (a2 -
Z, = (A (A, #A3)A + x2A3I>/x2x3

[N
I

2
2 (A -A3A) /AZ(AZ-X3)

2

where A2 denotes the product of a matrix. After some tedious
computations these expressions become

/ 1, R, - 17\
2R

2R
7, = 0, 0, 0
\ 0, 0, 0 )
R
[o, _ R, _._._._\
2R 2R (R-2RT)
7, = 0, 1, L
2R1-R

oo
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0, 0, "
2RT1-R

z, = 0, 0,

Y

Using the fundamental formula the exact finite series expansion
for exp(At) can be written as

exp (At) = exp(O)Zl + exp(ll%z- t) 22 + eXP(:%)ZT

This solution clearly exhibits the dependence of exp(At) on the
eigenvalues of A; thus, the transient response of the zero-input
response system can be readily analyzed.

If t<<l so that exp(At) can be approximated by the first two terms
in its series expansion, then the transition matrix becomes the
sum of two matrices, which are

RN N

OI ]-I 0 + 0, -g}%, -

Y AU

This expression is equivalent to integrating the linear system
with zero-input response by Euler's method.

bl f
d-

Consider the 3 x 3 A matrix

(o, )

-wz, -2zw, 0 R

)

which is the A matrix in the state space representation of the
antenna stabilization loop and of the integrator in the pointing
error block diagram. In this matrix w is the undamped natural
frequency and r is the damping ratio. The eigenvalues of A are
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e e g

- - : _ -2 -
Al = 0, Az = -zw + jww/l [ and_)\3 =

notes complex conjugate and j =7 -1. Let Wy = w V1 - gz denote

the damped frequency and o = fw denote the reciprocal of the time
constant of the antenna stabilization loop. For a matrix with
one real eigenvalue and two complex conjugate eigenvalues the
transition matrix exp(At) can be decomposed into the following
useful expression that is given in Zadeh and Desoer (page 611).

A2’ where lambda bar de-

exp (At) = exp(lt)zl + exp(-ot)( R cos(wdt) + X sin(thJ

where 27 = R - jX.

Again the spectral decomposition of the matrix A clearly exhibits
the dependency of the transition matrix on ¢ and the damping fre-
quency w.. By utilizing the product formula for the component
matrices and some tedious algebra the following expressions for
the component matrices can be obtained

0, o, 0
Zl = 0, 0, 0
2¢C 1
Ty 5 L
w
1, 0, 0
R = 0, 1, 0
-ZC _1__
L 7 0
cw, 1, 0
X = %— —w2, -Tw, 0
d
2
l-ZC ’ "_E)'r 0

In the digital simulation of the error tracking loop the antenna
response and the integrator are computed as a state variable
sampled data system. The general solution of the linear system
(1) with initial conditions given at t = 0 and x(0) is
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C TS

t
x(t) = exp(At)x(0) + S exp(A(t-T))Bu(T)d .
O .

Suppose the input is sampled with period T and between sampling
times the input is a hold circuit

Bu(t) = Bu(NT) for. NT < t < (N+1)T.

Therefore at sample time t = NT
x((N+l)T) = exp (AT)x (NT) + h(T)u(NT)

where

T
h(T) = [ exp(Af)BdL.
o

The only task left in computing this expression is the evaluation
of h(T), since for our applications exp(AT) is solved exactly.
If A is nonsingular, then formally

T T
[ exp(A2)Bd2 = [ (A 1)A exp(Al)Bdl = A‘l<eAT - I)B.
o] O

This expression for h(T) is a direct generalization of the calcu-
lus for one dimensional real variables.

In our application one of the eigenvalues of A is zero and so the
integral must be evaluated directly. Since the constant matrices
commute with the real valued exponential and trigonometric func-
tions in the expansion of exp(AT), the integral h(T) is evaluated
by integrating the following real valued functions

T
/ exp(-ol) cos (wdz)dz and
o

T
/ exp(-0%) sin (wdﬂ)dk.
o

‘Now the solution of the first integral is

-oT
=& i -
fl(o,wd) = -3 [(wd sin (w4T) g cos (wdT)) + o]
o] +wd

and the solution of the second integral is

"'O'T
- & _ :
fz(g,wd) = 02+w2 [( o sin (wdT) - Wwq cOS (wdT)) + wd]
d
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Thus, the exact solution of h(T) is

h(T) = 2,7 + fl(c,wc)R + fz(c,wd)x.

1

For our application the 3 x 1 input matrix is

where K is a constant gain matrix. The exact value of K depends
on the requirements of the sampled data system in the error
tracking loop.

EXPONENTIALLY CORRELATED TARGET NOISE

In this section a brief discussion of first order exponentially
correlated noise or colored noise is presented. A more complete
discussion is found in Jazwinski [5]. A formal mathematical des-
cription of such a process is

da 0

ac = —-ga + O'CU-J.J t (4)

A

where a and o > 0 are fixed constants and w is zero mean, white
Gaussian noise with correlation function

E[w(t)w(r)] = 6‘(t - T).

As usual § (t) is the Dirac delta function and E is the expecta-
tion operator. Formally, the solution of this equation is

-0 (t-8)

t
a(t) = e %%a(0) + a0 S e w(S)ds.

(o]

The constant o is the variance of the target acceleration and o

is the reciprocal of the maneuver (acceleration) time constant.
Singer [6] proposed the exponentially correlated noise process as
a model for maneuvering targets. By using this process with the
appropriate Kalman filter, he proposed a tracking algorithm for
piloted threats. In his paper, Singer proposes the following
density model for the target acceleration variance. For complete-
ness, a derivation of his model is included.

Let Amax denote the maximum target acceleration rate. Let X be

the random variable that denotes the target acceleration state.
According to Singer,X is a random variable with the following
assigned probabilities
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P(X =+ A ) = P

P(X=0) =P

0
and otherwise the target accelerates between the limits -Amax and
A according to the appropriate uniform distribution. In order

max _
to insure that X is a bona fide random variable (i.e., P(-» < X < =)
= 1), the probability of the mutually exclusive events

(-A.max <X <0), (0 <XK< Amax) must be 1 - (2Pmax + Po). This

implies that the uniform density function for these events is

1 _ (2Ppay +*PO)

2Amax

£(X) . The variance ¢ of target acceleration

is calculated by finding the variance of the random variable X.
The expectation of X is zero and so the variance of X is given by

3

o2 = B(x?) = 1 - 2Py * POI 2R hax + 222 p
- - 2A 3 max max
max
2
max
3 (1 + 4Pmax - Po).

This completes the derivation of the Singer target acceleration
model.

When the exponentially correlated noise model is used with a
sensor having a constant data rate with sampling period T, then
(4) can be converted to discrete form. By sampling the solution
of (4), starting with t = 0, the recursive form becomes at the
sampling instances JT

aj+l = Maj + wj
where
. = j T
ay a(jT)
M = exp(-aT)
(3+1)T
ws = ou J exp (-0 (3+1)T - 1) w(X)dA.
jT

The statistics of mj are formally

E(wj) =0
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o

E(iji)

E(w?) = .5a(1 - M%)o2.

The latter equation shows how the sampled noise variance is related
to its continuous time noise variance. Since mj is a Gaussian

process, these statistics specify its density.

POINTING ERROR CONTROL SYSTEM SIMULATION EXAMPLE

In this section the pointing error control system simulation is
briefly discussed. After listing the initial ‘conditions and para-
meter values, some preliminary plots of the simulation output are
presented. The primary purpose of these plots is to verify the
simulation and to illustrate the effect of outliers. The requisite
initial conditions and parameters to implement the sampled data
Kalman filter algorithm, sampled data antenna stabilization loop
and controller gains are now defined.

Tracking Period At = .03 sec
Observation Variance R = .0001 (radz)
Target Acceleration Variance Q =1. (metersz/sec4)
Antenna Damping Factor z = .4

Antenna Undamped Natural Frequency w = 100 (rad/sec)
Controller Gains Gl =1, G2 = 1./At
Target Acceleration Time Constant T = 2.

The Kalman filter 3 x 3 initial covariance matrix was initialized
by setting all diagonal elements equal to unity and the off
diagonal elements equal to zero. For this example, the point
target executed a full 360 degree constant 6 g turn with target
velocity of 250 meters/sec. The outlier noise was added to
angular position of the target with respect to the radar antenna.
The outlier noise model was generated as contaminated distribution
as discussed in Tukey [7]. The contaminated model was generated
as the mixture of two normal distributions, each with zero

mean and one with variance equal to observation variance and one
with ten times the first variance. Let us denote these distribu-
tions as N(0,R) and N(0, 10R), respectively. The mixture of the
two distributions defined as

F(x) = pN(0O,R) + (1 - p)N(0, 1O0R) 0<p<1l1
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generates the contaminated normal distribution. The random vari-
able X with this distribution can be generated by first taking a
uniform deviate U; if U < p, X is generated by independent samples
from N(0, R) and otherwise choose N(0, 1l0R).

As noted by Maybeck [8] and Bierman [9], the usual Kalman filter
algorithm is subject to numerical difficulties. To overcome these
difficulties the UDUT estimate-covariance updating algorithm and
the modified Gram-Schmidt algorithm for the time update algorithm
of Bierman were employed in this simulation. These algorithms
solve the Kalman gain

K = PHT[HPHT + R]’l

the error covariance matrix

A ~ TI\
P=p- KHPp

and the covariance time update
P = P61 + GQGT

where the subscripts have been omitted for notational simplicity.
In these equations ¢ is the Kalman filter state transition matrix,
which is derived in the previous section, H is the observation

row matrix (H = (1,0,0)) and Q is the process noise column matrix
(G = (0,0,1)T)[ P is the covariance matrix, K is Kalman gain matrix
and Q and R are defined in the parameter list.

A few selected plots from the simulation are illustrated in
Figures 2, 3, 4 and 5. Figure 2 is a comparison of the estimated
target position with actual position. Figure 3 is a comparison

of the estimated line of sight rate with the actual line of sight
rate. Figure 4 is a plot of the contaminated normal noise added
to the target position. The outliers are clearly evident in the
plot. Figure 5 is a plot of the tracking loop innovations, which
is the difference between the true measurement and the best pre-
diction of it before sampling. Note that even with the nonoptimum
initial estimates and sampling period, the loop maintains track.
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ROBUSTIFYING THE KALMAN FILTER

A statistical procedure is resistant [10] if the value of esti-
mate is insensitive to a small change in all of the data values

or to large changes in a few of the data values. According to
Huber [11] this is a working definition that can be used to define
robustness. Figure 6 is a plot of linear glint, which clearly
exhibits the presence of outliers (glint spikes) that are intrin-
sic in the glint signature. Figure 6 is a sample of glint gener-
ated for a complex target using a radar target model developed by
Mumford [12]. Mumford's model computes the backscatter from a .
complex target by decomposing the complex target into simple
component shapes for which scattering solutions have been derived.
This modeling technique is known informally as "N-shape" modeling. -
Angular glint is defined as the linear displacement of the center
of radar reflection from the defined physical center of the target
measured along a line in the plane passing through the target
center, at right angles to the sightline, to the physical center.
Its magnitude is equal to the tangent of the angle between the
true and apparent directions of the target times the range.

Linear glint is simple range independent angular glint. Thus,

the strategy of robustifying the Kalman filter is based on maklng
it resistant to glint spikes. There are at least two ways to im-
plement this strategy. The first way is to preprocess the mono-
pulse radar pulses in a robust manner using summary statistics as
inputs to the pointing error control system flowcharted in Figure
1. This is a natural approach in tracking radars, since the radar
pulse rate is much higher than the requisite tracking rate. The
second way is based on the robustified Kalman filter developed by
Martin [13]. Both of these techniques are outlined in this

section.

Generally, for a complex target, the resulting glint signature

is non-stationary time series. Thus, both robust techniques

rely on adaptive noise estimates of the input noise statistics.
For the moment we ignore the interaction of target maneuver and
the glint signature. The two summary statistics of the input
noise that are required are an estimate of location and scale.

For a symmetric distribution estimate of location is the center
of the distribution, while an estimate of scale is the spread of
the distribution. For a Gaussian distribution the optimum esti-
mate of location is the mean and optimum estimate of scale is the
variance (standard deviation). For the moment in this discussion,
the correlation structure in the glint signature is also ignored.
As amply demonstrated by Tukey [7] for non-Gaussian heavy tailed
symmetric distributions these classical estimates are unsafe. -

Following Martin [14] the following definitions are introduced

for completeness. Let Yl, e o . 7 Yn denote a univariate data
sample. A statistic is simple a function of the data
T(Y) = T(Y . e o 4 Y ). An estimator is a statistic whose value

is supposed to prov1de an indication of a parameter in a para-
metric statistical model for the data. A real scalar-valued esti-
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mate is translation invariant if for any real number C and the
constant n-dimensional unit vector 1
>

T(Y + Cl) = T(Y);

translation equivariant if
->

T(Y + Cl) = T(Y) + C;

scale invariant if for any real constant C > 0

T(CY) = T(Y);

and scale equivariant if

T(CY) = CT(Y).

The sample mean

Y,
1

[ =4

1

T (}[) = -
N

IL=1

is translation and scale equivariant. The sample standard
deviation
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2

5(¥) =\/N—-1_—1 oy - T(¥))?
1=

is translation invariant and scale equivariant. The robust esti-
mate of scale CMADM = Median Absolute Deviation from the Median
= median [Yi - median (Y)|/.6745 is translation invariant and

scale equivariant. The divisor .6745 makes CMADM a consistent
estimate of the standard deviation if the sample is drawn from a
normal population. A robust estimate of location can be achieved
by Winsorizing (see Huber, p. 18) the data. To metrically Winsor-
ize the data, the observations Yl’ e e o 4 Yn are replaced by

pseudo-observations. In this study the pseudo-observations were
obtained by setting all observations beyond 3S(Y) equal to S(Y)
and then recomputing the sample mean. This procedure is transla-
tion invariant and scale equivariant. Another robust-estimate is
Tukey's biweight [7, p. 353], which is defined as -

LI W.Y.
i

T(Y) = < vji
i

where 2 2

( * *
Y. - Y Y. - Y
[ O S when (1 ___ ) <1
CS CSs

‘ 0 otherwise

and S = CMADM. The constant C is callled the cutoff parameter,

in this study C = 6. Biweight is translation and scale equivari-
ant. Associated with each of these estimates is an influence
function, which in exploratory data analysis governs the effect

of the value of one data point on the estimate. Some influence
functions are graphed in Figure 7. The linear influence curve in
Figure 7(i) is the influence curve for the sample mean and shows
that the sample mean is directly affected by a change in one data
point. The influence curve labeled (ii) is Huber's monotone func-
tion and the influence curve (iii) is Hampel's two-part redescend-
ing function. The role of these influence functions in robust
statistics is discussed in Huber [11]. Both of the latter influ-
ence functions ignore changes in measurement outside of a band

and respond within the band; thus, outliers outside the acceptance
band are rejected. .

Martin's robustified Kalman filter modifies the state correction
equation and the conditional error covariance matrix equation
with a suitable scaled influence function. Two excellent candi-
dates for an influence function in the Martin filter are the Huber
and Hampel functions in Figure 7. The details of his filter are
beyond the scope of this paper and the interested reader should
consult Martin [13].
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Figures 6 and 8 illustrate the different estimates of location
and scale as provided by the different statistics. The data in
Figure 6 represents the glint signature of a complex target
sampled every .001 degree of target aspect in a 10 degree sector.
Each of the statistics in Figures 6 and 8 are derived from suc-
cessive non-overlapping .02 degree intervals containing 20 sam-
ples. 1In Figure 6 the points labeled by octagons are sample
means, the triangular labels are the Winsorized estimates, the X
labels are sample medians and the pluses are center or Tukey's
biweight.

The resistence of median and biweight are clearly indicated in the
44 to 45 degree interval. 1In Figure 8, square labels represent
standard deviation, the octagons represent the Winsorized esti-
mates, and the triangles represent CMADM. Again, the resistance
of CMADM versus the standard deviation is clearly illustrated.

CONCLUSION

Preliminary results indicate that the classical Kalman filter will
be a suboptimal design in the presence of heavy tailed non-
Gaussian distributions. The theory of robust statistics and
robust Kalman filters offers an important set of tools that can be
used to optimize the design. Future research will be directed
towards this goal.
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A CASE STUDY OF MODERN DIRECT DIGITAL AUTOPILOT DESIGN

George B. Doane III, Sherman M. Seltzer, and H. Eugene Worley
Control Dynamics Company, Huntsville, Alabama 35801

ABSTRACT

This paper describes, by means of a missile autopilot design case
study, a technique currently in use for determining the stability
and dynamic characteristics of a digital control system in terms
of several selected system parameters. The method requires that
the system characteristic equation be available in the complex z-
domain. It is the ability to handle more than one free system
parameter, which need not be (but often is) a controller gain
which makes this method more powerful than most design techniques.
The paper also demonstrates the generation of the system equations
by the Systematic Analysis Method. This method, an alternative
to, for instance signal graph methods, is applicable to both sim-
ple and complex systems. The final design was evaluated by the
method of Digital Control System Response by Cross-Multiplication.

INTRODUCTION

This paper is expository in nature concerning the design of digi-
tal control systems. The case study presented in this paper is
that of the design of a missile digital autopilot. The methods
used in the design are those currently in use to produce such de-
signs which are coming about with ever greater frequency since the
advent of the ubiquitous microprocessor. The paper traces through
the formulation of the equations of motion, the rationale for
autopilot transfer function selection, the application of the
Parameter Plane Method of autopilot parameter selection and ends
with a simulation to evaluate the missile response, at the sampl-
ing instants, to a test input. References are included so that
readers may pursue in greater depth if they desire the details of
the various procedures used.

PROBLEM FORMULATION AND AUTOPILOT DESIGN

The case study selected for this paper is that of an autopilot
design of a tactical US Army missile. To formulate the study

- mathematically, the equations of motion of a missile were derived
assuming planar motion. Thus two differential equations are re-
quired, one describing translation of the missile's center of mass
in the plane, the other describing rotation of the missile air-
frame about the center of mass. With reference to Figure 1 the
following quantities are defined: :

F A engine thrust force
A A aerodynamic axial force
N A aerodynamic normal force (note: N defined a

positive quantity in the negative 3b direction)
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In,

'g

el

>

fie>

>l

aerodynamic pitching moment about the center of mass
distance from vehicle center of mass to moment
reference point

polar moment of inertia of missile about an axis
normal to the plane and directed through the

center of mass

the mass of the missile

the acceleration due to gravity

2n, 3n A designate unit vectors in the n-coord-

>

>l

fie>

inate frame according to the usual

right hand rule i.e., 1i x 2fi =

3f
the vector relating the origin of the r-coord-
inate system to the origin of the b-coordinate
system (thus relating the missile's center of
mass in the b-coordinates to the assumed iner-
tial space coordinates i.e. the r-coordinate
system)
the angle between the missile's longitudinal
(roll) axis and the local horizontal (thus an
inertial coordinate under the non-rotating
earth assumption)
the missile's velocity vector
the angle between V and the missiles longitu-
dinal axis
aerodynamic fin deflection

N Center of
Mass

Figure 1
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The equations of motion are found by applying D'Alembert's Princi-
ple to obtain the translational and rotational differential equa-
tions

m Rm = (F-A) 1b - N 30 + mg 37 (D)

I 6 =M- 20N . (2)

The vector notation has been omitted from equation (2) because of
the assumed one degree of rotational freedom.

Typically there is only weak interaction or coupling between the
translational equation (1) and the rotational equation (2). Thus
this interaction will be, for the purposes of this paper, ignored.
It is further assumed that the missile is in nominally level flight.
Therefore the variable 6, usually denoted by

6 = 60 + 6(t) ' (3)
becomes merely 6(t). Linearizing the aerodynamics leads then to

a transfer function between vehicle pitch rate and fin deflection
of the form ! :

é(s) E_(s + d)
§°(s) = s + 2twps + wp? (4)

For a particular missile in level flight this transfer function
becomes

6(s) _ (-216.6) (s + 0.693)
8” (s + 1.963 + 60.196) (5)

With negligible loss in modeling fidelity this may be apprdxi—
mated to ,

8(s) _ (-216.6) (s)
5- (s’ + 60.196) (6)

This then is the pitch plane rotational transfer function with
which the autopilot is to work such that the actual missile angu-
lar rate, 6, controlled by §“(the fin angle) corresponds to a com-
manded angular rate 6c, furnished by the missile guidance system.
For the sake of simplicity in early analyses it is assumed that
the vehicle's angular rate, 0, is sensed perfectly and that the
fin deflection, §°, follows perfectly its input command. If itis
postulated that the missile rate, 8, should follow a step command
of rate, 6c, with negligible error then the use of some form of
integration process between the system error, 8c-8, and the fin
deflection, 6°, is suggested. Recognizing that the damping of
rotational motion of the missile is virtually non-existent and,
indeed, is modeled as zero, suggests the use of some form of mis-
sile airframe rate feedback to fin deflection, 6°, to stabilize
the airframe rotation. The most efficacious autopilot algorithms
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for final, eventual flight use are the subject of further study.
However, the methodology expostulated above allows one to arrive
quickly at workable first designs which could be evaluated in
three or six degree of freedom simulations and "tuned up'" as the
results of such simulations, as well as more information, v.g.
rate sensor and actuator models, becomes available. Based on
these considerations one possible block diagram for the autopilot

loop is given in Figure 2. .
g * 1 + s g
e c, -3 Ds ;?: > Gho[— Ge e

Csnea\\——ID& L= |
T T

Figure 2

Starring denotes a sampled quantity and

D; denotes a digital compensator transfer function

Gho denotes the transfer function of a zero order or
"box car'" hold

Gp denotes the transfer function between missile
angular rate, 6(s), and the fin deflection, §7(s).

T denotes sampling period of the synchronous
samplers

A number of methods? are available with which to develop the trans-
fer function between 6 and 6c, which is necessary to study stabil-
ity and performance. The method used here, called the Systematic
Analysis Method or SAM, is a general, easily applied technique
applicable to both simple and complex systems. First one selects
the variables at the inputs to the samplers as the unknowns. Then
the original equations are written and tabulated in Table 1. If
any of these equations contain the product of an unsampled system
variable and an unsampled transfer function they are modified by
substitution to eliminate unstarred (or unsampled) variables and
tabulated in Table 1. Finally, a column in the table is con-
structed in which the equations from the first or second steps,as
appropriate, are transformed into the sampled domain according to
the relationships

( RG) % = -R—G*
(RG*) = R¥* G*
( R ) % = R*

Application to the problem at hand yields for the first column
Original Equations |
£(s) = bc(s) - 6(s)
§7(s) = D§(s)Cz £(s) - D&(s)Cas {Dd(s)b*(s)}*
8(s) = Gp(s)Gho(s)é'*(s)
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and for the second column
Pulsed Equations

ex(s) = 8%(s) - B*(s)
§°%(s) = D¥(s)C28%(s) - DF(s)CaD(s)b*(s)
§%(s) = Gp(s)Gp (8)* 87*(s)

' Table 1

Lastly the desired input output relationship is found by substi-.
tution to be
(7

8% (s) _ C28pGho™ (s) D5 (s)
6% (s) (l+CzD6*Zs5 Ghoﬁp*isi +C; D(S"ZsiD'd”isif:‘hoﬁp*fsi5

.or, expressed in the z-domain,

5 (2) _ C, Gplhg(2) Ds(2) ®)
bc(2) (1+C,Ds(2) LhoGp(z)_+ C3Ds(2z) Dd(z)TBhobp(2))

Based upon the design goals and approaches expressed above Dg
should perform an integration operation whereas Dg should be se-
lected such that missile rate propagates to fin deflection. These
considerations suggest lettinge

Ds§(z)Dg(z) =1 (9)
and Ds(z) =_Tz_ @0)
(z-1)

where it is recognized that equation ten corresponds to the inte-
gration operation by means of a rectangular rule. The plant
transfer function, Gp(s), has already been tabulated as equation
(6). The first order hold transfer function, Gho(s), is known

to be

Gho(s) = e (11
Thus

Gp(8)Cho(s) = ?é24zn‘) (1-i;TS) B %§¥;$;T§) + 42
This becomes, in the z-domain,

Cholp(2z) = __ b(sim wnD(z-1 ", (13)

wn(z2-2(cos wnl)z+ 1)

Substituting equations (9), (10), and (13) into (8) yields the de-
sired overall transfer function , _
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?(z) _ (?Czb sin wnT)z (14)
6(2) L(z)

where L(z) is the polynominal wn z2 + (TbC,sin wnT - 2wn cos wnl +
C,b sin wnT)z + (wn - bCs sin wnT) .and where C» and Cs: are con-
stants yet to be selected. The equation will be examined first to
see how the missile responds to a unit step input. Applying a
unit step of command and using the final value theorem (assuming a
final value exists) produces

lim 6(nT) = 1i -1)  8(z
e - lim e, (D G, as

which when evaluated yields

troy = T Cob sin wn T .
8(=) = T C,b sin wnT + 2 wn(l-cos wnT) (16)

To continue, T was selected to be 0.10 second on reasonableness
grounds, and b and wn are missile parameter previously stated
viz. -216.6 and 7.76 sec™’. Substituting yields an expression for
the limit in terms of the free parameter C, as follows

fle) = G2
0(») = §;-0.276 (17)

Defining the error as the amount by which the output fails to
attain a value of unity allows the construction of Table 2 .

7_error Cz

21.7 -1

5.24 -5

2.7 -10

0.5 -50
Table 2

Thus to keep the error indicated by this particular measure of
performance below a few percent a value of C: less than -10 is
indicated (note that, as will be shown below, C» must be negative
to insure a stable system).

What remains to be done in this quick look design procedure is to
select the free parameters, C, and C3. This is done in such a
way as to bound the static error as indicated in Table 2 and to
meet stability requirements. Noting that there are two free para-
meters to select it is necessary to decide upon a particular tech-
nique. By freezing C;, one might, for example, apply root locus
or frequency response techniques in the 2z and w domains respec-
tively. However, there is no need to specify either parameter in-
dependently of the other if one utilizes the Parameter Space
Method?® of design.
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The method is based upon analysis and synthesis methods described
in Siljak's monograph * as extended. Briefly put, the method
allows one to map the location of the roots of the system's char-
acteristic equation into a plane whose coordinates are the system's
free parameters and which is readily divided into regions identi-
fied with system stability and instability. It is noted that the
free parameters need not be gains but could just as well be some
other system parameter. In addition to the characteristic root
locations, such ‘things as contours of constant relative damping
factors and specified exponential time constants may be transform-
ed as contours into the parameter plane. Thus in a manner somewhat
reminiscent of the classical root locus a portrait may be presented
of all pertinant aspects of the system's transient response with,
however, the cogent difference that they may be presented as func-
tions of several parameters rather than the simple parameter open
loop gain. The method will be exemplified by application to the
problem at hand viz. that described by equation (14).

As detailed in reference three, this design technique deals direct-
ly with the system's characteristic equation. As shown in the
reference, the coefficients of the characteristic equation are

cast if possible into the linear form

2 .
(Eo (&Ko + £5 Kot gp)a] (18)

for systematic generation of the computer program input data. If
this linear combination is not possible, the method can still be
used but becomes more tedious. In this form the K,, K, variables
are the parameters to be selected i.e. they are the coordinates of
the parameter plane. It is convenient to fill out a table where
columns are dj, fj, gs:. The transpose of these columns provide
the input to %he computer program used. Noting that the denomin-
ator of (14) corresponds to this problem's characteristic equation,
allows the construction of Table 3 below.

—j— dj 1 £y | g3
0 -b sin wnT= +2.1632 ) _9 1.0 »
1 b sin wnT =-2.1632 {Tb sinwnT=-2.1632x10 -2 coswnT=-1.99
2 0 Wp 0 1.0

Table 3

In the particular computer program used the transpose of the dj

" column becomes the A matrix, the transpose of the f3 columm the B
matrix and the transpose of the g3; column the F matrix. The pro-~

gram was run with the result exhibited as Figure 3.

By applying the appropriate '"shading rules" (or factoring the CE
for a number of test points) it can be established that the inte-
rior of the triangle in the C,, C; plane corresponds to system sta-
bility i.e. a condition wherein all roots of the CE lie within the
unit circle in the z-plane. Also plotted are contours of constant
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relative damping factor, zeta, for two values i.e. 0.5 and 0.707.
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Figure 3

Although no system parameter sensitivity studies were performed on
this example it seems prudent to stay some distance from the sta-
bility boundaries at this point in the design. Thus a set of val-
ues for C, and C; of C,= -50 and C3= -0.4 was chosen. One notes
this point lies between the 0.5 and 0.707 zeta contours in the C»-
C; plane and at some distance from the various stability boundar-
jes. 1In addition, the choice of C,= 50 will insure a small error
in response to a unit step, as previously discussed.

SIMULATION RESULTS

An evaluation of the response of the system at the sampling in-
stants is presented as Figure 4. It was evaluated by means of a
computer program implementing the "Determination of Digital Control
System Response by Cross-Multiplication" as presented by Seltzer in
reference five. The input to this program consists merely of the
coefficients of the numerator and denominator polynomials of the
overall transfer function (equation 14) and for plotting purposes
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the sampling interval, T.

UNIT STEP RESPONSE
s
r
(o]

Lo el - ,03 04

TIME (SEC)

Figure 4

From the Figure and the associated printout it is seen that the
maximum percent overshoot occuring at the sampling instants is

. _ 1.126-1.000 _
% o.s. 2T x 100 = 12.6%

i

which occurs at the third (nT = 0.02 sec) sampling instant. . This
compares favorably with Franklin and Powell's ® approximation re-

lating percent overshoot to relative damping factor for a second

order system with no finite zeros

which is
¢ < (0.6)(1 - 25
here then
t < (0.6)(1 - 8 - 0.52

The degree of correlation can be judged when it is recalled that
the C,, C; values were chosen such that their set of values lay
between the ¢z = 0.5 and ¢z = 0.707 loci.
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CONCLUSION

Presented in this paper, by means of the case study of a digital
autopilot design, is a modern method of designing digital control
systems without regard to continuous system considerations. The
Parameter Space Method of generating free system parameter values
is employed to ensure stability in both the absolute and relative
sense. Sufficient detail has been included such that, given the
availability of Parameter Space and Response Cross-Multiplication
computer programs, one may rapidly and methodically design digital
control systems and keep them updated as plant characteristics
change. This capability is especially useful during the initial
design phases of a system. The methods presented are currently
being used in the design of US Army missile autopilots, space vehicles
control systems and have been used to design aircraft control sys-
tems. It is of course understood that when final configurations
become available the total system design would be validated by
appropriate simulation. Such simulation would include time vary-
ing, non-linear and certainly more detailed descriptions of the
system and its components v.g. the missile fin actuation sub-
system. In fact such additional simulations have been performed
in various instances and confirmed the efficacy of the design
method. Additional work needs to be done in such areas as map-
ping points on the real axis of the z-plane into the parameter
plane in order to control further the system response time.
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ROBUST MISSILE GUIDANCE
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GENERAL INTRODUCTION

INTRODUCTION

A new guidance law is derived for tactical missiles that undergo significant acceleration and drag. Past
guidance laws based on constant velocity missile dynamic engagement models result in sub-optimal
trajectories when applied to missiles used most often in tactical engagements. Recall that in most
tactical engagements the missile accelerates (booster burn, or "boost to mach") and coasts to
intercept. The new guidance law is based on a more complete dynamic engagement model that
contains the missile expected axial accelerations and the control direction constraint normal to the
missile velocity vector. The non-linear two point boundary value problem [1] is solved by separating the
missile axial velocity dynamics from the control dynamics to obtain a time varying linear dynamic
constraint model. The results are verified by simulation, and indicated significant performance
improvement in a crossing target surface to air engagement.

The history of short range missile guidance is very rich, for an excellent summary the reader is referred
to an article by Pastrick et. al. [2]. We assume, as before, that a well designed missile autopilot is
implemented; so that for guidance law derivation we can assume a simple relationship between
commanded accelerations and missile response [1-6,8,9]. We also assume that the intercept time is
know or approximately known by estimation, [2,3,9]. Under benign conditions any monotonic function of
predicted miss can serve as the yuidance law. However the more optimal use of hardwara resources is
made possible by implementation of more nearly optimal guidance laws which will translate into more
robust guidance, or wider engagement envelope. The optimal guidance law derived here can be
reformulated as a biased PNG guidance law. Hence the bias values can be computed at a reduced
rate for computer implementation economy. The traditional approximations are: Two-dimensional
motion, Point-mass, Instantaneous Control response, linear dynamic model, and constant speed [3]. Non
linearities are traditionally ignored to facilitate the use of linear optimization methods to obtain the
desired feedback control law. In this note we retain the Point-mass approximation, and use a slightly
more accurate dynamic model, and incidentally provide a new explanation of three dimensional PNG.

PAST RESULTS

The Proportional Navigation Guidance (PNG) was shown to be optimal by Bryson [1] if neither missile or
target are accelerating. Three dimensional guidance including the effects of accelerating target and
new methods of estimating the time of intercept have been presented [4,3]. Recall that 'optimal' has
only meaning relative to the cost function minimized and the dynamic constraint model used. The
relative completeness of the dynamic constraint model is the issue of this note. Expected missile
acceleration have in the past been included in the time-to-go to intercept calculation, but not included
in the dynamic constraint model used in the optimal guidance law calculation. Because of past use of
inconsistent dynamic constraint models [1,3-5], the resulting guidance laws generated unusable control
commands along the missile velocity axis.

in this paper we also show that the same constant missile and target dynamic models are used in
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deriving both PNG [1] and the 'optimal’ three dimensional control law of Riggs [3]. And hence the
improved guidance performance reported in [3] is the result of using better time-to-intercept

calculations than is implicit in PNG.

The problem of target tracking in the presence of noise is not considered here. However the improved
guidance law presented here leaves more control authority for countering unexpected target
maneuvers. Also the target is assumed to be non accelerating, control modifications to account for
random target accelerations might be included as in [4]. We next summarize the result of Reference
[3], for use as the starting point for the developments of this note.

A LINEAR OPTIMAL GUIDANCE PROBLEM SOLUTION

Consider the dynamic model, Equation (1), of the missile engagement relative to the target, with no
target acceleration, as used in References [3-5]. The optimal guidance problem (or the two point
boundary value problem) is to minimize the cost function (2) subject to dynamic constraints (1), with

time of intercept given.

dR/dt = V A
dv/dt =-u T (1)
where :
R = relative position vector of missile from target in inertial
coordinates
V = Vy~-V = relative velocity vector of missile from target
u = missile control acceleration vector (not constrained in

direction or magnitude)

The cost function 'J' is given by (2):

t
J = R(tp) R(tp)/2 +jB u(t) - u(t)/2 dt )
t

(i.e. terminal miss plus integrated cost of control weighted by B)).
Recall from references [1&3] that the solution to the optimal guidance problem is:
_ 3 *
u-= Atg[R+Vtg]/(3B+tg) (3)

where: tg = (t- t) = estimated time-to-go to intercept is given
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OPTIMAL VERSUS PROPORTIONAL GUIDANCE

It is well to note that the dynamic _model Equation (1) contains no provision for the expected missile
boost acceleration and drag. Also note that the acceleration control vector 'u’ is in the plane spanned
by (R,V) vectors. Since the missile velocity vector 'V,," is not necessarily in the (R,V)-plane, the control

vector 'u’ may have a component along 'V’ In other words axial acceleration is commanded which is
typically not usable.

In appendix A it is show that Equation (3) reduces to the familiar Proportional Navigation Guidance
(PNG) law Egq. (4), if (a) ’tg’ is estimated by range/range rate, and (b) use of control effort is not

penalized, (B =0).

where 4

& = angular rotation rate of the line-of-sight
vector in inertial space (**)

R = missile closing rate on target

A = guidance gain factor equal to 3;
used as a design parameter with value 3 to 6

p = unit normal to line of sight vector in the (R,V) plane

* See Bryson [1, pp287; Eq. 9.4.27] The equivalence is apparent if the energy coefficients are
equated as follows: Cp= 1,and C, =0, with A =3.

(**) This concept of coordinate free vector rotation in three-space is the key to generalized

Proportional Navigation concept. To appreciate the simplification achieved by this concept
compare the results developed here with [7].
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in other words, the improved guidance performance of Eq. (3) is the result of including the effect of
expected missile axial acceleration in the time-to-go estimation; since both guidance laws (3) and (4)
are based on dynamic constraint models that do not include anticipated missile accelerations. Next we
develop the more accurate dynamic constraint model that includes the expected missile acceleration.
which together with the cost function results in the improved guidance law, irtredueed-aisorre:

NEW OPTIMAL CONTROL LAW FOR ACCELERATING MISSILES

The new optimal control law is based on the two point boundary value mathematics [1] as above, but
using a more complete dynamic constraint model as derived next. Consider the inertial acceleration
equation (1), with the missile inertial acceleration expressed as orthogonal components relative to the
missile velocity vector as follows:

dV/dt = OxVy, + Vi (5)

{ boost/drag acceleration of
missile, not controllable

control acceleration 'u’ normal to Vrn in the
plane spanned by (Rs,vm) where the Rqg

vector is from the missile to predicted
intercept point.

Equation (5) constitutes the modifications to (1) which results in the new more accurate Jynamic
constraint model (6) summarized below.

MISSILE TARGET DYNAMIC MODEL THAT INCLUDES EXPECTED MISSILE ACCELERATIONS

The new dynamic missile-target engagement model is given by Eq.(6).

dR/dt =V
av/dt = -ay -u
a for Kt missile axial >
ay = acceleration (6)
-ap for Ot boost and drag
2] = u/v = inertial turning rate of missile

m
velocity vector /
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a,ap = missile expected boost & drag acceleration
along Vg,
Vi = missile velocity vector in inertial coordinates
u = control acceleration applied in the plane

normal to the missile velocity axis.
(the direction is defined later by the control law)

tb = missile boost burn out time

As noted above, this model is more complete than past dynamic constraint models used for guidance
law derivation. Selected variables are illustrated in Figure 1. below.

TARGET Vt PREDICTED INTERCEPT
Ry~ -y ooy
oY= (Ve tmn " Rs = missile flight path
K to intercept
K (based on zero control
K effort)
' Vi | U = control acceleration
normal to Vp,
.n, U
N/ MISSILE

ittt
v

= Vt - Vh = relative velocity

Figure 1. Illustration of missile-target parameter; where Rs= missile estimated
path Tength to intercept.
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NEW OPTIMAL CONTROL LAW SOLUTION

The non linear dynamic constraints are changed to a linear time varying constraint by use of the
assumed separability of the missile axial dynamics from the control dynamics, see Eq. (6). It is
convenient to formulate the 'zero effort predicted miss function’ normal to the missile velocity vector (*).
The other inertial coordinate system axis is along the missile velocity vector; for which the time history
of the missile is specified by the expected accelerations, (see time-to-go calculation in Appendix B). In
actual implementation of the guidance law the missile target data may be available in arbitrary
coordinate system which we anticipate by our use of coordinate free vector notation.

Consider Eq. (6) with the inertial axis oriented along the missile velocity axis so that © is small. In this
case the component of predicted zero effort final miss orthogonal to the missile velocity axis is:

t

2 =Svtn dg + 2z, + ORgn (7)
t
where:
Vin = (V¢'n)n = component of target velocity
normal to missile velocity axis
n = unit normal to Vm in the (Rs,vm) plane
z, = (R "n)n

=  component of range vector (-R)
normal to missile velocity axis
0 = current attitude of V,,, in the inertial reference frame

@
]

Figure 1 is a summary of the above illustrating the variables of interest for this guidance law derivation.

Differentiating Eq. (7) and substituting from Eq. (6) yields the terminal miss dynamic equation (8) in
terms of the control vector:

* Past guidance law predicted miss formulations are normal to the line of sight vector, [1,2,4,5]; which
is also implicit in [3] because of the equivalence to PNG presented above.
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z = -uRg/V, (8)
~ where
Rs = V(&) -£2a/2 + (a + ap) (§ -TOUg(E Ty )/2 (9)
=  the predicted path length traveled by the missileto intercept in terms of time-to-go #3
Ty =  thetime between target intercept
and missile boost burn out time (= t-t,)
Us = the unit step function
¢ =  variable of integration equal to 't ;'

g

Using the familiar methods of optimal control [1]; we obtain the control in terms of final predicted miss
(zp) : ‘

u = =(z¢B)Rg/Vy,) (10)
Equation (10) is substituted into (8) to obtain the terminal miss differential Equation:

i = -(z/B)Rg/Vy)? (11)

With some effort Equation (11) is solved and is substituted into Eq. (10) to give the desired optimal
guidance law Eq. (12):

U = Rgz/[Vp{B+1,2/3+ D} (12)

g
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Where :
D = {F(ayVeBy V) FlamVeByVin)
+ Flap VpVy Vp) - Flap VeV Vy) Jgltp )
+ { Flapy, VpV§ V) - Flam Vi Ve Vi Ug(ttp)

The function 'D’ is expressed in terms of the unit step function ’Us(.)’ and function 'F’ which is defined
as follows:

FaVgB,V) =

{ V374 + VV2- (V2 + B/2)V - (8,/2)2 /v }/a°

where:

B =Vc-(a+ aD)aTx

v

Vg = estimated final velocity of the missile

Vp = estimated missile velocity at burn out

<
]

Vf + (a + aD)TX

ance law reduces to the familiar Proportional Navigation Guidance

law if the missile axial velocity remains constant and if the missile axis is aligned with the line-of-sight to
the target. The scalar function 'D’ becomes zero for constant missile velocity. The factor (Rs/Vm)

denotes expected missile path length to target divided by missile velocity becomes 'tg', the time-to-go.
And the remaining zero effort miss distance 'z’ becomes equal to the product of Range, angular line of
sight rate, and ’tg’ z=(6R tg).

It is well to note that the above guid
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SIMULATION RESULTS

To illustrate the guidance laws, we simulate a Surface-to-Air (SAM) engagement scenario. For this
guidance law performance evaluation, we represent the "real world” missile by Eq. (1) together with a
first order lag imposed on the control acceleration of 0.3 sec; and a maximum limit on control of 3g.

THE ENGAGEMENT GEOMETRY AND RESULTS

The target travels at a constant velocity of 500 ft/sec, and is crossing initially, at which time the missile
velocity is 50 ft/sec; see Figure 1. The missile accelerates for 2 sec at 20g . Figure 2 indicates the
benefit of the more complete guidance law, Eq. (12), note the reduced miss distance. Figure 3
indicates the control accelerations associated with the trajectories indicated in Figure (2); note that the
new guidance law uses less contro! effort to intercept the target than the other guidance laws (3) and
(4), leaving more control authority to counter unexpected target maneuvers. Recall that the missile
axial velocity is assumed not controllable, hence a component of the commanded acceleration due to
Eq. (4) or (5) along the missile velocity vector is not used.

Recall that the true time of intercept (t;) is unknown, hence var‘ious algorithms have been proposed to
estimate tg = (t;-t), the remaining time to intercept [2,3,6].

Further guidance law refinement are possible if we include the effect of missile auto pilot dynamic delay
into Eq. (6). Another improvement is the inclusion of control normal to the body axis rather than normal
to the velocity vector as assumed above.

Of potentially greater performance benefit would be the combining of the target tracking and missile
guidance problems. .

CONCLUSION

We have derived a new guidance law for missiles experiencing significant axial acceleration. This
guidance law is demonstrated to give superior intercept performance compared to PNG and another
"optimal" guidance law in a surtace-to-air intercept scenario. This guidance law is obtained through the
use of modern control methodology applied to a more complete kinematic missile target engagement
model. The kinematic constraint model used includes the missile axial accelerations and the constraint
on the direction of the missile control effort normal to the velocity vector. The resultant non-linear
dynamic model is solved by first solving the axial dynamic equation, which results in a time varying
linear dynamic constraint model. Recent "optimal" guidance laws have used missile acceleration

estimates in the estimation of the "time-to-go" to intercept, however have not included acceleration in
the missile-target dynamics as in this note.

-The constructive comments of Prof. J. Bossi is appreciated. And the help of Mr. B. Isham in obtaining
the results of Appendix A and the extensive computer simulations is greatfully acknowledged. Finally |
am indebted to Mr. A. J. Witsmeer for providing the support that made this study possible.
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Relative Trajectory of Missile to Target lllustrating Sensitivity to control laws;
Equations (3), (4) and (12), resulting in terminal miss distances of 18.5 ft, 288
ft, and 1.4 ft respectively. With time-to-go estimated by Eq. (13).
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Figure 3,
Control acceleration normal to missile velocity axis; note that less
control authority is used with new guidance law, leaving more for

countering target maneuvers. Maximum control effort is limited to 3
g's. . .
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APPENDIX A "OPTIMAL" VS. PROPORTIONAL GUIDANCE

The optimal guidance law of Riggs et. al. [3] is shown to be equivalent to PNG under less restrictive
conditions. The conditions for the equivalence of equations (3) to equation (4) are: (a) the time to go
'tg’ intercept is range divided by range rate, and (b) the optimal guidance cost function assign zero
penalty to control effort; see the cost function Equation (2).

Consider figure A1, where we indicate the orthogonal coordinate system with one axis along the line of
sight vector 'R’, and the normal 'p’ to 'R’ in the (R,V)-plane.

[ ]
0 = -Vp /R

V=Vt-Vm

&"'\ A‘a’f\\Yv

‘R=(V-R)R/R = Rr
2
Vp=V-(VR)R/ K = V,p

Figure A1 Vector and Scalar quantities for three dimensional PNG

150



Consider the orthogonal unit basis vectors (r,p) along the line of sight vector and normal in the (R,V)-plane
as indicated in Figure A1,

Itis convenient to define the following :

R = Rr = the line of sight vector
V. = Rr+Vyp = relative velocity (Vy - Vy) (A1)
tg = -R/R time-to-go to intercept

Substituting definitions A1 into Eq. (3) with B= 0, gives:

- . s 3 -
u = AR+ Rres Vopitg ]/t , (A2)
u = -AR2[Rr + ﬁ(-R/ﬁ)mvp(-R/é)p]/ R2 (A3)
u = -Avp(ﬁ/R)p = -~AR&D (A4)

Where the concept line of sight vector rotation rate in inertial space is represented by 6. Note that Equation
A4 is the familiar PNG guidance law with the gain factor A = 3; typically A is made to take on values
between 3 and 6.in order to more quickly head the missile to the predicted intercept point. Various time-to-
go ’tg’ elgorithms have been developed [2,3], it is noted that the use of smaller than true 't improves

performance, and is equivalent to varying A. This observation is indicative of the inconsistency of using the
above control laws (3,4) in a situation where the actual missile dynamics does not have axial velocity

control, and moreover experiences uncontrolied boost acceleration to ‘'mach’ and drag.
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APPENDIXB TIME-TO-GO TO INTERCEPT ESTIMATION

The estimation of the time of target intercept is motivated by the subsequent great simplification of the
general (free final time) two point boundary value problem [1].

Consider Equation (6), and note that for zero control effort, the missile velocity and path length is uniquely
specified by (a) the initial velocity, (b) the expected axial acceleration, and (c) the time-to-go to intercept.
Both the missile velocity and the remaining path length are expressed in terms of ’tg‘, hence the indicated

solution (B1) is obtained.
tg = [-C1-Sqrt(C12-2aDCO)]/aD (81)

where during missile boost; or <ty and >t} :

Cg = R- (@-ap)(ty- 172

Cq = dR/dt + (a-ap )ty 1)

and for after burn outwe use; ( Dty > ty)
Co=R ; and Cq = dR/dt

where:

tb = missile boost burn out time.

For convenience we repeat a time-to-go estimation algorithm used in Reference [3]; and provide a
comparitive iflustration in Figure B1.
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OO WO re O =4

DATA R,V,A,DT,TB,TF/3500.0,-1000.0,-600.90,0.04,1.6,2.275/

[
) CONTINUE
v = TF-Y
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TGl o -R/V
TGL » RANGE/(CLOSING VELOTITY)
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Figure B1

Comparison of time-to-go io intercept algorithms in a tail chase scenario; tg,
is implicit in PNG, tg, is from Reference [3], and tg,is a simplified form of

Equation (B1) for the case where drag acceleration is much smaller than the
boost acceleration. 153
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A NEW CLASS OF GUIDANCE LAWS FOR AIR-TO-AIR MISSILES*

Joseph N. Craig, Roger L. Barron, and Francis J. Cook
Adaptronics, Inc.
McLean, Virginia 22102

ABSTRACT

Adaptive Learning Network synthesis has been used to develop a
new class of gquidance laws for short-range air-to-air missiles.
ALN guidance laws are trained to estimate target range, range
rate, time-to-go, and other trajectory parameters not explicitly
observable by passive sensors but required to implement advanced
guidance laws. This development permits economical implementa-
tion of modern optimal guidance laws in passive systems, yielding
considerable performance improvements over other passively real-
izable guidance laws.

INTRODUCTION

Research and development activities directed toward improved
guidance laws for tactical air-to—-air missiles have been vigor-
ously pursued over the last thirty or more years ([l1]. The most
impressive improvements have come from guidance 1laws developed
using optimal control theory 1[2,3,5]. Unfortunately, the best
performing of the modern guidance laws require knowledge of the
relative missile-target position, velocity, and acceleration.
Typically, air-to—air missiles are equipped only with passive
sensor systems (infrared seekers) so straightforward implementa-
tion of modern guidance laws is not possible. Additionally, most
optimal guidance laws also require an estimate of time-to-go.

The traditional solution to the problem of implementing modern
guidance laws when faced with limited information has made use of
Kalman filters to estimate the unknown states [4]. This approach
requires that the missile be equipped with fairly sophisticated
data processors, and does not solve the problem of estimating
time-to-go.

Recently, a new approach to implementing modern guidance laws in
" passive systems has been developed using Adaptive Learning Net-
works (ALNs) to estimate the unknown combinations of data [6].
In this approach, ALNs are "trained" to mimic the modern guidance

*Work supported by the Department of the Air Force, Armament
Division, Eglin Air Force Base, Florida, under Contract F08635-
79-C-0220.
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law, using only passively available information. Because the
ALNs are trained from a library of simulated engagements, it is
now possible to implement a wide variety of guidance laws that
are not amenable to Kalman filter approaches. For instance, non-
deterministic or iterative solutions can be implemented once the
appropriate training data base is obtained.

The use of trainable ALN guidance laws also has a considerable
impact on hardware implementation requirements. The trained ALN
algorithms are a computationally simple set of algebraic expres-
sions. They can be realized using simple microprocessor cir-
cuitry.

ADAPTIVE LEARNING NETWORK SYNTHESIS METHODOLOGY

The classical approach in the design of signal processing func-
tions has been to determine explicitly all of the relevant char-
acteristics, deterministic and/or statistical, of the process
being observed and to use these measurements with simplifying
assumptions in the design synthesis. Often the mathematical
structure of the processor is assumed and its design consists of
calculating the values of the coefficients in this structure. In
many applications, however, little is known about the character-
istics of the structure and the best or even an acceptable struc-
ture for the process cannot be determined a priori. In these
cases, it is desirable to determine the model structure as well
as the model coefficients from a representative data base. The
Adaptive Learning Network (ALN) methodology [7,8,9] provides a
realization of this goal. Many useful references are found in
Reference 10.

To explain the ALN approach, let us assume that we observe a
scalar variable y, called the output, and N other variables, Xy,
Xor eeer Xy which are called inputs (in the present case, tﬁe
desired output is a command to a missile control system; the
independent variables are data available from the sensor sys-—
tem). The inputs are also referred to as the observables or
independent variables and the output as the dependent variable.
Here, "independent" means independently observed; the input
variables need not be statistically independent. We seek a
relationship between the independent and dependent variables
that, in general, is a nonlinear function:

y = f(xl, Xor eser Xygi Cyr Cor eees cL) (1)

Here and elsewhere, the caret is used to denote the calculated
value of the indicated variable. If £ is known, then estimates
of the L coefficients (cy, Cor ey cL), may be obtained by
minimizing M differences between the calculated and observed
dependent variables in the least-squares sense,
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In many applications,. however, the function f is not known and
simplified analytical models fail to reflect the complexity of
the observed data. In these cases, the ALN methodology provides
an empirical solution to the structure of f based on a network
interconnection of basic elements whose individual structures, as
well as the interconnections, are learned from a representative
data base.

Under fairly general conditions, a function of N variables (%7,
Xor eoey xN) may be expressed as a power series,

. N N N
y=a_ + I a.x, + I L a,.x.x. +
°© i=1 Pt g=1 3= 31D
: (3)
N N N
z z I a,. . X.X.X, + ...
i=j j=1 k=1 1K1k

This polynomial expression in many variables is referred to as a
multinomial expression or a Kolmogorov-Gabor polynomial [11]. It
is extremely difficult to evaluate the coefficients of Kolmo-
gorov—-Gabor polynomials when there are more than several vari-
ables. The evaluation is considerably easier when the variables
are introduced successively, which can be done in pairs using
second-order partial polynomials, also called basic elements:

2 2

.+ w 4
x:J X (4)

Yip = W t W) Xy + WX, + W X.X + W 5 X}

jk 27k 3797k 4

~

Here y., 1s used to denote the output of the basic element to in-
puts x% and X,., and the Wi s (i=0,1, ..., 5) are the coefficients
of the” basic element whose values are determined by the least-

squares error criterion.

Training of the ALN (ALN synthesis) consists of building up,
layer by layer, a structure that synthesizes the Kolmogorov-Gabor
polynomial by using basic elements Yike In the first layer of

the network, N(N-1)/2 basic elements “are constructed from the N

inputs. Some of the best performing input variables are also
used to form triplets and third-order partial polynomials. Only
basic elements producing acceptable model errors are allowed to
pass their outputs to the second layer. The outputs of each
surviving basic element as well as the original features are used
as inputs to the second layer of basic elements. This process
can be repeated with succeeding layers until overfitting is
detected.
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physical, and engineering processes [10]. Application of the ALN
methodology has been successful where conventional and/or theo-
retical modeling techniques have produced poor results.

APPLICATION TO GUIDANCE LAW SYNTHESIS

To synthesize an ALN guidance law, the ALN is trained on example
guidance commands for a variety of typical engagements. This is
accomplished by building a training data base: an advanced guid-
ance law (usually a law requiring complete, explicit observabili-
ty of the target's trajectory) is used in conjunction with a
computer program that simulates air-to-air engagements, and the
analyst compiles a library of typical simulated engagements. The
library ideally encompasses the range of launch conditions over
which the resulting guidance law is expected to perform. For ex-
ample, launch range, initial aiming error (off-boresight angle),
and the target aspect angle are important launch parameters. At
each time step of each simulated engagement, outputs available
from the target seeker and other sensors in the missile are tabu-
lated along with the actual acceleration commands generated by
the advanced guidance law. The target seeker and other sensors
in the missile will, in general, deny explicit observability of
some quantities used in computing the advanced guidance law com-
mands, but the latter is computed using all denied information
when generating the training data base. The time histories of
the available sensor observables are used as input variables in
the ALN synthesis process, while the commands are the dependent
variables. In this way, the sensor data are used to estimate the
information not explicitly observed and to generate the appropri-
ate guidance commands as if that information were available. The
resulting ALNs embody an economical realization of the advanced
guidance law.

ILLUSTRATIVE EXAMPLE

As an example of ALN implementation of a guidance law, let us
consider implementation of proportional navigation (PNG). In
this example, as in many tactical missile applications, the pri-
mary (and perhaps only) explicitly observable external quantity
is the line-of-sight angle (A) or its rate of change (i). (Note
that although we are limiting this illustrative example to a two-
dimensional engagement for which there is only one line-of-sight
angle, the extension to three dimensions is straightforward.)
Other variables and/or constants of the engagement kinematics are
usually unknown, although explicit identification of some of them
is sometimes possible through the application of techniques of
modern control theory.

The limited information in this situation largely accounts for
the popularity of PNG, wherein the rate of change of X is mea-
sured and the commanded missile normal acceleration (ap,) is set
proportional to this rate:
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Avoidance of overfitting is a key aspect in the training of ALNs
[12,9]. The network must be taught to generalize properly on its
experience in fitting the training observations so that error
rates for new, but statistically similar data, will also be low.
Overfitting is detected by cross-validation and by employing an
information theoretical criterion [13]. When cross-validation is
used to detect overfitting, the known data base is divided into
two independent but statistically similar subsets called training
and selection subsets. The training subset is used to determine
the coefficients of the elements. The selection subset is used
to reject the poorly performing basic elements and to detect
overfitting. While the error rate on the training subset is
continuously decreased by incorporating additional layers, the
error rate on the selection subset increases when overfitting
occurs.

When the number of observations in the data base is too small to
form the two independent subsets, the growth of the model, i.e.,
the increase in the number of coefficients, is controlled by the
use of Akaike's information criterion (AIC) [14]. The AIC
measures the poorness of the model and consequently needs to be
minimized: '

AIC = -24n(maximum likelihood) (5)
+2(number of coefficients) = minimum

The AIC can be considered as an adaptive F test where the risk
level changes with the number of observations and the number of
model coefficients in the two models to be compared [15]. Also,
the AIC is asymptotically equivalent to the maximum likelihood
model [13]; i.e., the model selected by the independent selection
subset based on the least-squares error criterion approaches the
model selected by the AIC as the number of observations ap-
proaches infinity.

If the size of the data base permits, an independent evaluation
subset is used to estimate the overall performance. Since the
evaluation subset is not used for network synthesis, the perform-
ance of this subset is an accurate estimate of the ability of the
network to generalize to new, previously unseen data.

In summary, the ALN method is an empirical technique to obtain
the structure of a process and requires no a priori knowledge
and/or assumptions about the process itself. The relevant fea-
.tures are selected by the learning algorithm from the candidate
feature list and are introduced into the learning network in the
optimum order. Features discovered by the learning algorithm to
be of little or no use are discarded automatically. The learning
algorithm permits the structure of the network to grow, i.e., to
approximate the general Kolmogorov-Gabor polynomial, but only to
the extent required by the data base. As a general modeling tool,
the ALN methodology is applicable to detection, classification,
prediction, and control of a wide range of complex biological,
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physical, and engineering processes {10]. Application of the ALN
methodology has been successful where conventional and/or theo-
retical modeling techniques have produced poor results.

APPLICATION TO GUIDANCE LAW SYNTHESIS

To synthesize an ALN guidance law, the ALN is trained on example
guidance commands for a variety of typical engagements. This is
accomplished by building a training data base: an advanced guid-
ance law (usually a law requiring complete, explicit observabili-
ty of the target®s trajectory) is used in conjunction with a
computer program that simulates air-to-air engagements, and the
analyst compiles a library of typical simulated engagements. The
library ideally encompasses the range of launch conditions over
which the resulting guidance law is expected to perform. For ex-
ample, launch range, initial aiming error (of f-boresight angle),
and the target aspect angle are important launch parameters. At
each time step of each simulated engagement, outputs available
from the target seeker and other sensors in the missile are tabu-
lated along with the actual acceleration commands generated by
the advanced guidance law. The target seeker and other sensors
in the missile will, in general, deny explicit observability of
some quantities used in computing the advanced guidance law com-
mands, but the latter is computed using all denied information
when generating the training data base. The time histories of
the available sensor observables are used as input variables in
the ALN synthesis process, while the commands are the dependent
variables. In this way, the sensor data are used to estimate the
information not explicitly observed and to generate the appropri-
ate guidance commands as if that information were available. The
resulting ALNs embody an economical realization of the advanced
guidance law.

ILLUSTRATIVE EXAMPLE

As an example of ALN implementation of a guidance law, let us
consider implementation of proportional navigation (PNG) . In
this example, as in many tactical missile applications, the pri-
mary (and perhaps only) explicitly observable external quantity
is the line-of-sight angle (A) or its rate of change (X). (Note
that although we are limiting this illustrative example to a two-
dimensional engagement for which there is only one line-of-sight
angle, the extension to three dimensions is straightforward.)
Other variables and/or constants of the engagement kinematics are
usually unknown, although explicit identification of some of them
is sometimes possible through the application of techniques of
modern control theory.

The limited information in this situation largely accounts for
the popularity of PNG, wherein the rate of change of A is mea-
sured and the commanded missile normal acceleration (ap,) is set
proportional to this rate:
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a__ = V_NA (6)
mn m

where V, is missile velocity and N is the so-called navigation
constant.

In the simplified example at hand, the analyst could postulate a
family of intercept engagements, the family being characterized
by a given value of the navigation constant, N = N”. Each
member of this family would have its unique combination of values
for the initial conditions and constants. Literally, thousands
of engagements could be "run off" on the computer, and the
results could be put into a data base, shown schematically in
Figure 1.

®

Y = ag, X =t Xy = A
Yy } X11 X21
Y2 X12 X22
M M1 M2

M = number of observed points in data base.
FIGURE 1l: EXAMPLE DATA BASE

The ALN training procedure could be used to synthesize a small
network in which the oytput (Y) would be aj , and the inputs (X;
and X,) would be t and A. At the conclusion of this training, one
would undoubtedly find that the ALN is one which generates a
close approximation to the original guidance law, Equation (6).
Examination would show that the output of the ALN and ag, from
Equation (6) agree fairly closely for all values of t an% A in
‘the data base. In this case, the ALN methodology has "discov-
ered" the value of N” used to generate the family of solutions.
More importantly, the methodology has "discovered" a way to infer
the unknown V, (unknown because it was assumed to be explicitly
unobservable within the missile system). Even though V_ varied
with time and was different -- in general -- for each solution in
the data base, and not an explicit input to the ALN, the proce-
dure for ALN synthesis created an approximate relationship for
its identification.
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Perhaps, after creating the above ALN function, it would be found
that the ALN solution is not a sufficiently close approximation
to Equation (6). In this case, a more complete record of the
histories of A and a might be used to provide addditional input
information during ALN training. The results of the engagement
simulations could be put into data base records, each record
being of the form:

yi(t)r Yi(t'At)r ceey Yi(o)r
x2i(t)' X2i(t—At), ceoy XZi(O)' t

where At is a constant sampling interval. In other words,
samples of a n and A would be kept from the time of missile
launch until ghe time of "present" calculation, t.

We do not know, a priori, how far back in time the guidance law
might best go in fetching inputs from such data files as have
just been described. But, no matter. The ALN methodology will
find this for us, using only the most relevant samples in gener-
ating the desired approximation. From a practical standpoint, we
may wish to enforce a limit on the amount of memory available for
the guidance system, in which case, the data records could be
constructed in the form:

yi(t), yi(t—At)' oo o p yi(t—kAt),

where k is an integer (say 5 or 10). At the beginning of the
intercept mission, the observed values of y;(0) and X94 (0) could
be loaded into appropriate memory locations within the missile
guidance unit, and after collecting k consecutive samples, the
ALN solution would be fully "initialized."

ALN SYNTHESIS FOR AN OPTIMAL GUIDANCE LAW

The basic principles of guidance law synthesis using ALN training
outlined for the illustrative example have been applied to a
guidance law (MG) derived using known optimal control theory [2].
The optimal guidance command is:

3= 27 R+t R (7)
go
go
where a is the optimal missile acceleration measured in an
inertial reference frame, is the missile-target line-of-sight
(LOS) vector, R is the time rate of change of the LOS vector,
and t is the remaining time to go until intercept. In terms

o} . . :
of thg relative range, R, range rate, R and the line-of-sight
angles AE and AA depicted in Figure 2, the vectors are:
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R, = R cos XE cos AA (8a)

Ry = R cos AE sin AA (8b)

R, = R sin g (8c)

Ry = R cos AE cos AA - R RE sin XE cos AA , (84d)
- R RA cos XE sin AA

RY = R cos,AE sin AA - R RE sin AE sin %A (8e)
+ R &A cos AE cos AA

R, = R sin AE + R iE cos AE (8f)

If the subject missile is equipped with a gimballed, inertially
stabilized IR seeker, the inertial LOS angles and LOS rates are
readily available. Then acceleration commands given by Equation
(7) and (8a-f) can be calculated in the (inertial) seeker refer-
ence frame. Control of the missile requires that acceleration
commands be specified relative to a coordinate system fixed to
the missile body axes. This is easily accomplished if the orien-
tation of the seeker is known. In practice, the longitudinal
acceleration of the missile is often uncontrollable due to the
type of propulsion system that is used. 1In these instances, a
is unrealized and apy, and ay, are calculated using Equations (g§
and (8a-f). These equations express the acceleration in terms of
the LOS angles and LOS rates typically encountered in PNG appli-
cations.

FIGURE 2: MISSILE-TARGET LINE-OF-SIGHT GEOMETRY
IN INERTIAL COORDINATES
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The missile acceleration commands in the seeker inertial refer-
ence frame can be written [6]:

A = x.cosg cosc_ - k.{(¢ _cosoc_sine_ + o¢_sing _cosoc_) (9a)
SX 1 q r 2y q r q q r
A = x.cosg sinc  + x.(oc_cosg_sino_ - ¢ _sino_coso ) (9b)
sy 1 q r 2 r q r q q r
Asz = K151noq - Kzoqcosoq ) (9¢)
where:
_ 3R 1 R\
K1 =gt <t + R/ (10a)
go go _
Ky = 3R/gt go (10b)

and o. and o_ are the pitch and yaw LOS angles in the seeker
referénce frime.

The orientation of the seeker, relative to the missile body axes,
is specified by two angles, y_ and 6_ . The transformation be-
tween the missile body coordindtes and seeker coordinates may be
written as:

a cosy _cosf -siny cosé sin®6

Mx g g g 9 g
KM = aMy = sinlpg cosq;g 0 KS (11)
~ay, -coswgsineg sinq)gsineg coseg

i where and A are measured in the body and seeker frames,
respectively.

For the gimballed, initially stabilized, IR seeker, the passively
unknown data are completely contained in the optimum gain
terms, k, and k,. Thus, if estimates of these values can be

obtained™ from E%e passively observable data, a passive implemen-
tation of the modern guidance law can be obtained.

Several approaches to estimating t exist. An iterative, non-
deterministic approach to the estl%atlon of tyq is particularly

suited to generating tralnlng acceleration commands in an off-
line mode. The procedure is:

(a) Simulate the engagement using the complete MG equations
with a typical calculation of tgo [21.

(b) Save the duration of the engagement, tg.

(c) Simulate the engagement again as in (a), except use tg
= tg~t, where t is the elapsed time past launch.

(d) Save the corrected duration of the engagement, tf.
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(e) Repeat (c¢) and (d) until t. converges, whence tgo is
known exactly throughout the engagement.

Engagements produced by this procedure are more nearly optimal
than those that make use of estimates of tgo'

The ALN training approach to synthesizing the modern guidance law
for the inertially stabilized gimballed IR seeker consists of the
following:

(a) Acquire time histories of the passive observables.

(b) Use the data from (a) to estimate the optimum gains,
Kk, and k,.

1 2

(c) Use the estimates of k., and «k, together with Equations

(9) and (1ll1l) ¢to calcuiate the required accelerations
relative to the missile body coordinate system.

Note that, although R, R, and tgo are required to implement MG,
only two combinations of these” quantities in the form of the
optimal gains, x, and kx, are required. Thus, the ALNs can be
trained to estiﬂate th% required optimal gain rather than to
estimate the three separate values.

Training Data Base

To demonstrate the application of this method, a training data
base for the modern guidance law was obtained by simulating air-
to-air engagements using a six-degree-of-freedom (6DOF) simula-
tion program provided by the Air Force Armament Laboratory. - The
6DOF program implemented MG for a realistic model of a highly
measurable, short-range, bank-to-turn missile. An evasive target
maneuver is also included in the simulation program.

Simulated engagements were run for a variety of initial engage-
ment conditions. For each set of launch conditions, the simula-
tion was iterated to achieve the best estimate of tg . For the
final iteration, values for each of the passive éﬁservables,
together with the optimal guidance commands and «x, and k., were
saved in a training data file. The training data badse was
limited in this example to the following launch conditions:

- Missile and target were co-speed, flying straight and
level at missile launch (0.9 mach).

- Missile and target were co-altitude at launch (10,000
feet).

- 1Initial aspect angle (angle between target velocity
vector and LOS vector) varied from 0 to 180 in 45
increments. (Zero-degree aspect angle is tail-on.)
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- 1Initial off-boresight angle (angle between missile
velocity vector and LOS vector) was either 25° leading
or lagging or 0 .

- The target flew straight and level until missile range
was less than 6000 feet, at which time the target per-
formed a 9-g, dual-plane maneuver into the attack.

ALN Training

Approximately 1500 time points from a total of 200 training en-
gagements were used to train ALNs to estimate the optimal values
of k. and k., from the passively available data. Candidate ALN

inpu%s inclided:

o Missile-Target LOS angles in Missile Body Coordinates:

ET,AT

o Seeker Gimbal Orientation angles: wg'eg

o Missile Target LOS rates determined by the Seeker: 6q,
. :
r

o Time since launch: t, 1/t (t > 0)

For each of the angle variables, the current -and four previous
samples of each variable were saved for training (At =0.05 sec).

The structure of the trained ALN that estimates the optimal
gains, k, and x,, is shown in Figure 3. Each element of the
ALN calcdlates Up to a cubic polynomial of its inputs. The ALN
estimator is a complicated function of the candidate input
variables, but not all of the candidate inputs are used. Those
inputs that provided redundant or unnecessary data were discarded
by the ALN training routine.

ALN Guidance Performance

The performance of the ALN guidance law was determined by using
it to guide the hypothetical missile in simulated engagements.
The engagement launch conditions were generally different from
those used in training the ALN. Two comparisons of the ALN
guidance law have been carried out:

o comparison of passive ALN guidance with the full modern
guidance law (assuming observability of all states), and

o comparison of ALN guidance with PNG. This comparison
shows the level of performance improvement that can be
obtained over current systems.

Tnitial evaluation of the passive ALN guidance laws was carried
out by comparing ALN guidance with the active modern guidance law
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for the same launch conditions included in the training data
base. Defining a hit as an engagement for which the terminal
miss distance was less than 10 feet, the ALN guidance law scored
hits for 82% of the engagements hit by active modern guidance.
ALN guidance was generally inferior to MG for longer-range
launches that generally terminate in a tail chase. A linear
combination of PNG with ALN guidance diagrammed in Figure 4, was
therefore used to slowly turn off ALN guidance. ALN-PNG guidance
was successful for 91% of the engagements hit using MG . Addi-
tionally, 20% of the engagements not hit using MG were hit by the
combined ALN-PNG guidance law.

A complete comparison of the ALN-PNG guidance law with MG and
with PNG was obtained for 266 engagement conditions, including
off-boresight angles up to 45 . Note that the training data
included only off-boresight angles to 25 . The detailed
comparison is presented in Reference 6; the important trends
noted are summarized here.

First, the ALN-PNG guidance law generally achieved intercept with
smaller terminal-miss distances, slightly shorter flight times,
and less total guidance impulse than did PNG. Most importantly,
the ALN-PNG guidance law produced successful intercepts more
often than PNG. This was especially true for launches with lar-
ger aspect angles ( > 90°) and larger of f-boresight angles (320 ,
especially noticeable for OBA = 45 ). While providing a real-
izable implementation of modern guidance, the ALN-PNG guidance
laws also produced successful intercepts over a considerably
wider range of launch parameters than PNG.

Summary performance matrices are presented in Figures 35 and 6.
The performance evaluation was carried out for the ALN-PNG
guidance law. It can be readily ascertained that the passive
combined ALN-PNG guidance law was greatly superior to PNG. It
had 19% more hits when the initial OBA was 0 and x15 , 35% more
hits when the initial OBA was $25 , and 61% more hits when the
initial OBA was #45 .

On comparing the passive (ALN-PNG) guidance law with the active
modern guidance law, Figure 6, there were a number of engagements
(13) hit by the ALN-PNG law that were missed by MG, while only
one engagement missed by the ALN-PNG law was hit by the MG. This
shows again that the ALN-PNG guidance law was an excellent repre-
sentation of MPN over the envelope of tested launch conditions.
Further, the engagements in which the ALN guidance hit and the
MPN missed were engagements near the outer-launch body of the
missile. This indicated that the phasing in of PNG in the ALN
provided a guidance law that was, in some respects, better than
MG. Additional independent testing of the ALN-PNG guidance law
showed that dramatic increases are obtained in the outer launch
boundaries over those available using either PNG or MG.

Additional testing has compared the ALN-PNG fgfdance law with an
extended Kalman filter implementation of MG[ . In both cases,
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realistic noise models were used to degrade the sensor noise.
These tests showed that ALN-PNG produced better inner-launch
boundaries than PNG. MG produced better inner-launch boundaries
than either ALN-PNG or PNG, but ALN-PNG produces the best outer-
launch boundaries. In the presence of noisy sensor data, the
performance of ALN-PNG was not greatly degraded.

CONCLUDING REMARKS

The ALN guidance law synthesis approach permits the use of ad-
vanced, "active" guidance laws with seeker hardware of the type
normally used to implement classical, passive proportional navi-
gation. In their explicit deterministic forms, the advanced
guidance laws require knowledge of range, range rate, and time-
to-go, in addition to the usual LOS angular rates. By estimating
gain factors involving range, range rate, and time-to-to, the
ALNs permit implementation of the advanced laws using only pas-
sive observables.

The computations required by ALN guidance laws could be implemen-
ted by adding a small microprocessor-based subsystem to the
passively-guided missile. The microprocessor would be supplied
the time histories of the passively-observable data and calcu-
lates the ALN outputs. The capabilities required by the ALN are
well within the capabilities of current microprocessors using
ROM-based software and a small amount of RAM for temporary
storage.

Previously, advanced guidance laws have not been generally uti-
lized in air-to-air missiles because much of the data necessary
for their implementation has been denied by operational missile
sensor systems. Now, through the use of ALN techniques, this
missing information can be largely recovered in an efficient and
noise-insensitive manner from the time histories of the data
available from the sensors. This opens up a new world of possi-
bilities for missile guidance applications.
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ESTIMATING TIME-TO-GO FOR USE IN ADVANCED GUIDANCE LAWS

Tom L. Riggs, Jr., Capt, USAF
Department of Astronautics and Computer Science
United States Air Force Academy, Colorado 80840

INTRODUCTION

The modern air-to-air missile engagement scenario dictates the
need for high performance terminal guidance laws that are capable
of steering missiles towards successful intercepts against highly
maneuverable and intelligent targets. Numerous studies [1,2,3]
over the past few years have shown that linear optimal control
theory can yield extremely effective guidance algorithms that are
capable of meeting and exceeding this demanding mission objec-
tive. However, these guidance laws require more information than
is directly available from existing hardware, such as relative
range, relative velocity, possibly target acceleration, and
time-to-go. To meet the information needs of these advanced gui-
dance laws research into developing estimation algorithms has
been pursued nearly as enthusiastically as in the:guidance area.
Most notably is the work in estimation performed for the U.S. Air
Force Armament Laboratory by the University of Texas.[4] In this
effort, it was shown that by using optimal estimation techniques
important state information including the relative range vector,
relative velocity vector and target acceleration vector can be
accurately estimated from very restricted and noisy passive (in-
frared) seeker measurements and on-board body-fixed missile ac-
celeration and angular-rate measurements. Vergez and Riggs [5]
showed that by combining those state estimation techniques with
even the most simple linear feedback guidance law, drastic mis-
sile performance improvements could be realized over conventional
guidance methods (proportional navigation) if and only if those
laws were mechanized with an accurate estimate of time-to-go. As
in any practical problem, the desire for high performance is
weighted and often limited by the issue of complexity. This is
the basis of the research on time-to-go estimation. That is,
what is the most accurate method for estimating time-to-go given
the restriction that it must be implementable in a microprocessor
based missile guidance computer?

THEORETICAL DEVELOPMENT

~ Background

The need for an accurate measure of time-to-go (the amount of
time remaining to intercept) arises from the theory that is used

in deriving the guidance laws. The parameter time-to-go appears
naturally in the solution of optimal control problems where time
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is the independent variable and final time is assumed to be
fixed. Of all the optimal control formulations that have been
developed over the last twenty years, the one that most often
yields practical solutions is the linear regulator formulation.
The missile intercept problem can be, and has been, mathematical-
ly described such that it lends itself to a special case of the
linear requlator formulation. The advantage of this approach is
that the resulting solution is a set of algebraic equations in
feedback form. Thus the solution is concise, relatively simple,
and to some degree self-correcting. The drawback to this ap-
proach is the need for complete state information and knowledge
of final time. As noted earlier, the state information problem
has been addressed with successful results. Because of this, for
this effort it will be assumed that complete state information is
~available. The final time issue is the subject of this research.

The missile intercept problem is in reality a free final time
problem within certain physical constraints. To wit, there is a
set of final times at which the missile can intercept the target
within the lethal range of the warhead. This set is bounded and
determined by the degree of controllability of the missile and
the chosen trajectory of the target. Obviously if the missile
has complete control of its acceleration vector both in magnitude
and direction, the set of final times becomes the positive real
number set. However, the missile only has partial and finite
control of its acceleration vector through the use of lateral
aerodynamic control. This controllability restriction greatly
limits the size of the final set. PFurther, this set shrinks as
the engagement proceeds, ultimately resulting in one possible
time, the time at which the point of closest approach is reached.
Realizing these physical constraints, one might ask why not
derive the guidance law assuming partial acceleration control and
allowing final time to be free. The answer is simple. If the
problem is formulated in that manner then the solution is not in
closed form nor can it be easily implemented on-board the mis-
sile.

These practical constraints along with the desire to obtain a
practical good performing but not necessarily optimal guidance
algorithm makes it attractive to solve the problem using the op-
timal 1linear regulator formulation. Given this approach the
mechanization of the resultant guidance law requires the estima-
tion of final time (and subsequently time~to-go) in order to
satisfy the original fixed final time assumption.
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Guidance Law

The guidance law that was used for this study is given by equa-
tion (1). '

] |
= 3 3 | r '
= I, I, 3K,I S (1)
AM [ tgoz ; tgo™ | T <] _-}3
VR
Aq

where

K, = (eTt8% + etgo -1)/(ttgo)?

T
I = 3 x 3 Identity Matrix
/
KM = Commanded Missile Acceleration Vector
§R = Relative (Target/Missile) Range Vector
VR = Relative (Target/Missile) Velocity Vector
XT = Target Acceleration Vector

The complete derivation of the guidance law is given in Section
IT of Reference [5]. This law is based on a linear kinematic
engagement model and a linear first-order target dynamic model
and is designed to minimize final range. The term * in the gain
K., is a constant and is a function of the time constant of the
target model. All of the vectors are made up of three orthogonal
components with respect to some arbitrary cartesian coordinate
system. The predominance of time-~to-go, denoted by tgo is clear
.in the equations.

Time-to-go Assuming Constant Closing Velocity

The most commonly used method for estimating time-to-go is given
by equation (2). This method is based on the assumption that the
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acceleration along the line-of-sight is zero for all time.
tgo = -R/R : (2)
Estimating Time-to-go Numerically

The problem of estimating time-to-go involves the prediction of
the line-of-sight acceleration for all future time. This is
indeed a formidable task since this acceleration is the dot pro-
duct of the target/missile relative acceleration vector (a func-
tion of time) with a unit vector that lies along the line-of-
sight (also a function of time). Obviously this cannot be deter-
mined in general because of the uncertainty of future target
maneuvers. However, the acceleration along the line-of-sight can
be approximated by assuming that the target acceleration is zero
and the missile”’s axial acceleration is the dominant contributor
to the line-of-sight acceleration. Once this assumption is made
the problem reduces to the construction of a time dependent func-
tion that represents the missile”s axial acceleration. This was
done with a very simple function (given by-equation 3) in [6]
resulting in a time-to-go algorithm that not only was accurate
under many launch conditions but greatly increased the missile’s
performance over conventional time-to-go mechanizations. Unfor-
tunately those results did have limitations, especially on the
long range launches. This was due to the function used to model
the missile”s axial acceleration.

A ,time < time of engine burnout :
max (3)

Amx =
. . s 4 .
Amln’tlme time of engine burnout
where A and A_. are constants determined from missile

thrust/drag gﬁgiacterigégcs.

An improved approach was suggested by York [7] in that actual
missile axial acceleration data is used to curve-fit an approxi-
mate function of exponential form during thrust off and of linear
form during thrusting. This is the basis of the following numer-
ical.algorithm.

Algorithm Development

Based on an assumed model of the line of sight acceleration, the
algorithm is constructed to determine the time at which the range
will be minimized given the present range and range rate. To do
this, the following assumptions will be made.
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1. Assume non-maneuvering target

2. Assume acceleration along line-of-sight can be modeled as

k 5 O<t<t

bo
Alos = R(t) =
bt
ae t>tbo
note - tp, is time of burnout
R(t) =

R dt |
R(t) =z/§.dt fJGfﬁ at

Since R(t) is a piecewise continuous function with one discon-
tinuity there will be three possible solutions for R(t) and R(t).
Those solutions are

Definitions

t - present time

tf - final time

R_ - present range

R - present range rate

Case !._ - t0<tb0 ’ tf<tb0

i(t)=k(t-to) + ﬁo
-k 2, &
R(t) = z(t—td) + Ro(t—to) + Ro

Case

2- t > tho » tf tho
R(t) = % ebt - % ebto + RO (4)
R(t) = izebtoeb(t~t0)+(§o‘%ebt°)(t-to)+Ro—izé’to (5
b
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Case 3 - t <t

This case is a combination of Case 1 and 2.

Use eqns for Case 1 and solve for é(tbo) and R(tbo) and
substitute those quantities into the equations for Case 2.

Therefore
. bt R
R(t) = g ePt - % e DO R(ty ) (6)
a bto b(t-tys) > a btbo
R(t) ") e e bo/ + (R(t, )-ge ) (E-tp )
bt
+ R(t ) 'f’i e PO (7)
where
R(tbo) = k(tbo—to) + Ry (8)
.k —+ 12 R -
R(tbo) - 2(tbo to) + RO(tbo to) + Ro (2)

Mechanization of the Algorithm

The mechanization of the algorithm requires logic to first deter-
mine in which case (1, 2, or 3) the missile is operating. This
will be a function of present time, range, range-rate, and the
near future acceleration profile. Once the case is determined,
the appropriate equations are solved by the following methods:

1. For Case 1 time-to-go can be calculated in closed form
by

2R0 (10)

'RO‘F \/CRQ)Z + ZkRo

tgo =
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2. TFor Case 2. A Newton iteration technique is used to
determine the time at which R(t) = 0 in equation (5).%*

3. For Case 3. A Newton iteration technique is used to
determine the time at which R(t) = 0 in equation (7)* using th=
values of R(tbo) and R(tbo) determined by equations (8) .and (9).

*NOTE: Prior to solving equation (5) or (7), a check must be
made to determine if R(t) = 0 is a valid solution. This is done
by determining the time at which the range rate will go to zero.
To do this equation (4) or (6), as appropriate, is set to zero
and solved for t. That t is then substituted into equation (5)
or (7), appropriately, and R(t) is calculated. If R(t) is nega-
tive the algorithm proceeds. If not, then the time at which
R(t) = 0 is used as the final time.

This process, although involved, is solvable with a digital com-
puter. The algorithm is intended to be solved every At as the
missile flys toward the target. If sample time causes throughput
bottlenecks the appropriate modifications could be made, such as
solving for new tf's, every two or three guidance computations,
as required.

Closed-Form Method

Recall that the reason for needing time-to-go in the guidance law
stems from the original assumptions made in deriving the law;.
that is, that final time is fixed and the missile has complete
control of its acceleration vector. The following time-to-go
algorithm attempts to rectify these deviate assumptions.

Consider a rewritten form of the guidance law given in equation
(1), and referenced to the missile body coordinate frame.

AMX = 3 (SRX/tgo2 + VRx/tgo + KTATX) (11la)
- 2 '

AMY = 3 (SRY/tgo + VRY/tgo + KTATY) (11b)
_ 2

AMZ = 3 (SRZ/tgo + VRZ/tgo + KTATZ) (11lc)

Given knowledge of the vector quantities S., VR’ and A, (recall
this information will be supplied by the %tate estimator) then
the unknowns in equation (11) are AMX' AMY' AMZ and tgo. The
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quantity A is the missile”s axial acceleration command. This
quantity 1S not controllable and would normally not be of
interest. However, if the commanded axial acceleration were
forced to be the actual measured axial acceleration then there
would be only one unknown in equation 1lla, tgo. This is the
basis for this time-to-go algorithm. That is, pick a tgo that
forces the commanded axial acceleration to equal the present mis-
sile axial acceleration measurement. The value of tgo is then
used to solve equations 11b and 1llc for A and A% With this
logic and the use of the Quadratic Formula the f %ow1ng closed
form solution for time~to-go results.

ZSRX

(12)

2
VRX+\/CVRX) + ASpyApy/3
where

Bpx = Bux — 3KpApy
Kp = Kp

tO~At
Mechanization of the Algorithm

To mechanize the algorithm all the vector components must be
known with respect to the missile body coordinate system. The
terms S v and A are obtained from the state estimator and
A%X is §§e measured aXial acceleration from an onboard accelerom-
eter. The term K., is an approximation of the proper value of K.
Recall that K,, is"a function of time-to-go. This creates a prob-
lem in mechanizing equation (12) directly since we are solving
for time-to-go. Fortunately, K, varies slowly as a function of
time-to-go. Using this fact, equation (12) can be solved using a
value of K,, calculated from the most recent past estimate of
time-to-go, "hence the notation Ké.

Exact Non-realizable Method
In order to evaluate any method for estimating time-to-go an
exact truth model must be established. This is more complicated

than flying the missile and post priori determining final time.
The reason for this is simple. The time-to-go estimate used at
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each guidance command interval will cause a different accelera-
tion command, hence a different trajectory and hence a different
final time. To determine the exact trajectory the missile will
fly with the exact knowledge of time-to-go requires an impracti-
cal iterative method comprised of multiple flyouts. Although
such a method is non-realizable for real world applications, it
is useful as an evaluation tool. Such a method was developed to
determine the missile”’s performance using exact knowledge,K of
time-to-go. The results are surprising as will be seen later.

The algorithm is a straight forward recursive iteration scheme
often used to solve transcendental equations and is depicted in
Figure 1. It has one check in it to insure stability and is
exited when the change in two subsequent flight times is less
than 10 seconds.

MISSILE IS FLOWN WITH
CLOSED-FORM
ALGORITHM

MISSILE IS FLOWN WITH t, = PRESENT TIME
190 = teyoty te = FINAL TIME

tgo=-R/R

DETERMINE
tey

FIGURE 1 FLOW DIAGRAM FOR
RECURSIVE ALGORITHM

- 185



ANALYSIS

Approach

The most economical and effective method to evaluate any time-
to~-go algorithm is to implement it in a detailed simulation of a
missile system and perform simulated missile fly-outs against
realistic target maneuvers. This was accomplished in the ana-
lyses of the techniques presented in this paper.

The simulation consists of a six-degree-of-freedom (6-DOF) mis-
sile model of a conceptual high performance bank-to-turn short
range air-to~air missile. The simulation contains detailed non-
linear math models of the major missile subsystems including the
seeker, autopilot, and propulsion; detailed aerodynamic models of
the missile airframe characteristics supported by wind tunnel
generated aero data; and the models that describe the missile”’s
equations of motion. Additionally, the simulation contains a
three-degree-of-freedom target model which incorporates a nine
"g" out-of-plane evasive maneuver algorithm.

To perform the analysis the guidance law given by equation (1)
was implemented with each time-to-go algorithm into the simula-
tion and provided all required information assuming zero errors.
Although this method of evaluation deviates from the "real"
world, it does provide a common method for at least comparing one
time-to-go technique to another. To be sure, if a particular
technique does not perform well under these ideal conditions, it
certainly won“t perform well under more realistic and restrictive
conditions. Therefore, this analysis provides an intermediate
step in determining the comparative performance of the candidate
algorithms.

Comparison of Algorithm”s Accuracy

For reference purposes the four algorithms presented in this pa-
per will be indexed by the following shorthand names:

TGOL1 - —R/ﬁ (Equation 2)

TG02 - Numerical Method (Equations 4-10)
TGO3 - Closed-form Method (Equation 12)
TG04 - Recursive Methbd (Figure 1)

Figure 2 is a plot of the time-to-go estimates versus time for
the four algorithms. As can be seen, TG02 and TG03 and of course
TG04 (recall it is forced to be accurate) accurately estimate
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time-to-go whereas TGOl has considerable error. However, all
techniques resulted in a small final miss distance (less than 2
ft) in this rather mundane engagement.

Figure 3 shows the time~-to-go estimate versus time from TGOl dur-
ing a difficult forward hemisphere off-boresight shot. Note that
the algorithm over estimates time-to-go early in the flight dur-
ing thrusting and then underestimates time-to-go for the remain-
ing flight (coasting phase begins at 2.6 seconds). This happens
in all cases for TGOl due to the fact that the algorithm assumes
constant closing velocity although the missile sustains high ac~
celeration levels due to thrust and drag. For this case, the
missile attained a final miss distance of 15.6 feet.

Figure 4 plots the time-to-go estimates for TG02, TG03, and TG04
made during the same initial engagement as in Figure 3. Each
time-to-go algorithm caused a different final time, hence the
three different asymtotes. In this case, TG03 performs the worst
in terms of estimation accuracy, however; unexpectedly, the most
accurate time-to-go method, TG04, results in an extremely poor
miss distance. Other similar shots were tried to determine if
this was an isolated case or a general problem. It was found
that the same problem occurs in many other large off-boresight
forward hemisphere launches. To help determine the reason for
this deviation from expected performance consider the differences
in TG03 and TG04. TGO3 underestimated time-to-go during the
thrusting phase and then tracked true time-to-go nearly exactly
from burnout to intercept. The only significant difference in
TG03”s accuracy as compared to TG04 was during the thrusting
phase. Now consider how this affected the missile”s acceleration
commands over the subsequent flights. Figure 5 plots the com-
manded normal accelerztion profiles associated with TGO03 and
TGO4. First consider the profile due to TG03. It is clear that
the missile commanded an extremely hard initial turn and then
from about two to five seconds it commanded a low g level turn.
The peak that occurs at 5.1 seconds is in reaction to a last
ditch target maneuver which is activated at approximately 1
second before intercept. Intercept occurs at 6.1 seconds. Now
consider the profile associated with TG04. For the first five
seconds it is nearly a constant 26 g turn. At 5.7 seconds the
missile reacts to the target maneuver. During the last half
second the steering errors are large and the missile is command-
ing large acceleration. Unfortunately the missile dynamics can”t
process these commands instantaneously resulting in a large miss.
It appears that the major difference in the commanded accelera-
tion profiles is the hard initial turn. This turn occurs during
the same time frame that TG03 is underestimating time-to-go.
Since this occurs early in the launch, the geometry of the en-
gagement is virtually the same indicating that the different ac-
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FIGURE 2 COMPARISON OF TIME—TO—GO ALGORITHMS
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FIGURE 3 TGO1 VERSUS TRUE TIME—TO—GO
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celeration profiles are directly attributable to the time-to-go
algorithm.

To help verify this claim the mechanization of TG04 was modified
such that a value of .75 of the true time-to-go was used for gui-
dance during the thrusting phase. After burnout, the true time-
to-go was used as in the original TG04. The missile was then re-
flown with the modified TG04 resulting in a miss distance of .49
feet. More importantly the acceleration profile for the modified
algorithm was examined to see if it exhibited the same charac-
teristics as TG03. Not surprisingly it did. 1In fact, the pro-
files were nearly the same. Figure 6 shows the commanded ac-
celeration profile due to the modified TGO4. This is a very sig-
nificant result. It suggests that in terms of missile perfor-
mance one does not always want to predict time-to-go accurately
for mechanizing linear feedback laws. However, this raises the
question how and when should the time-to-go estimate be inaccu-
rate? To help answer this question further analyses were per-
formed.

MOD TGO4
*.75 *.50

.61 .81

.31 .52

.69 .87

.51 .63

.32 | .45

e

.73

.51

.49

TABLE 1. Comparison of Miss Distances
for TG03, TG04, & Modified TG04
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Experience with TGOl clearly establishes that time-to-go should
not be overestimated. Doing so makes the missile wait until the
steering errors become excessively large, forcing drastic end-
game maneuver requirements, possibly exceeding the missiles capa-
bility. This means that if there is to be error in the time-to-go
parameter then it should be such that the estimate is less than
the true value. To help determine when and by how much time-to-
go should be underestimated, the modified TG04 was used with
values of .75 and .5 true time-to-go during thrusting to evaluate
the missile”s performance in various engagements. The results of
this study are given in Table 1. The results show that knowledge
of true time-to-go can result in large miss distances. However,
this only happens in initial large off-boresight launches and not
when the missile is launched on a near intercept trajectory.
Further, the results show that underestimating time-to-go by a
factor of .5 during thrusting can cause the missile”s performance
for on-boresight launches to significantly decrease. The combi-
nation of these results indicates that time-to-go should only be
underestimated in large off-boresight launches in order to null
out the large steering errors as soon as possible. Doing this
forces the missile to attain a collision course early in flight
minimizing the chances of late evasion due to drastic target
maneuvers. A further benefit of the resulting trajectory is that
the missile performs its hard turning at lower velocities prior
to realizing the total effects of thrusting, thus minimizing in-
duced drag effects and increasing the missile”s energy. This
will naturally result in extended range capabilities.

Compensating For Large Off-Boresight Errors

To be sure,there are a number of ad hoc approaches to compensat-
ing for large off-boresight errors. For instance, a direct ap-
proach could be to add a bias term to the guidance law that would
be directly proportional to off-boresight angle. This is cer-
tainly a feasible but possibly very involved approach. A more
subtle method involves mechanizing the time-to-go algorithm in
missile body coordinates. Recall that TG03 does this. To under-
stand the rationale behind this approach consider Figure 7. Fig-
ure 7 depicts the relative position geometry for a planar engage-
ment. The line-of-sight vector has a magnitude equal to the re-
lative range and lies along the target/missile sight line. The
vectors R_. and R_ are orthogonal vectors aligned in the missile”’s
axial and  normal directions respectively. The missile guidance
problem is simply to drive and maintain the magnitude of the vec-
.tor R_ to zero prior to the time that the magnitude of the vector
R gobs to zero. Ideally, at final time R, and R_ will both go
t8 zero simultaneously. The optimal guidan%e law Xttempts to do
this. Most approaches to estimating time-to-go are concerned with
determining the time at which the magnitude of the line-of-sight

- 191



vector will be minimized but not necessarily zero. This is an
important yet subtle point. The only scenario in which the
line-of-sight vector goes to zero is in the special case of a
direct hit. However, for any given control logic there will be a
time at which the line-of-sight is minimized hence a valid final
time for use in calculating_ time-to-go. Now consider the
scenarios in which the vector Rx goes to zero. To wit, the vec-
tor R. goes to zero in every case that the missile can overtake
the t§rget. In other words, if the missile has a velocity advan-
tage over the target, the magnitude of R, will go to zero. This
includes all cases in which an intercept®can occur. By calculat-
ing the time at which this vector goes to zero, that time can na-
turally be used by the guidance to command normal accelerations
such that the magnitude of Ry will go to zero before or at that

final time.

The way in which the use of the body referenced range vectors for
time~to-go calculations relates to off-boresight angle is simple.
The ratio of R_ and ﬁx is a direct function of the off-boresight
angle. The la¥ger thé angle, the smaller the magnitude of R_ and
hence for a given thrust profile the smaller the value for time-
to-go. Since the guidance gains are inversely proportional to
the value of time-to-go, larger normal accelerations will be com-
manded to drive the magnitude of ﬁy to zero.

A further benefit of calculating time~to-go using missile body
referenced information is that the acceleration in the missile
axial direction is well defined reducing to sources of error to
essentially the uncertainty in target acceleration. This is in
contrast to the uncertainty in line-of-sight acceleration which
is a function of the missile”s axial acceleration, normal ac-

celeration and target acceleration.

Missile Performance

The ultimate performance criteria for any guidance technique is
its ability to hit the target under all possible initial engage-
ment conditions. One commonly used method for measuring how well
a missile meets the performance criteria is through a determina-
tion of the missile”s inner and outer launch boundaries. This
was done to evaluate the time~to-go algorithms” effect on the
missile”’s performance. Each of the three realizeable time-to-go
algorithms (TGOl, TGO02, and TG03) was interfaced with the gui-
dance law and mechanized in the 6-DOF simulation. Using a binary
search algorithm the inner and outer launch boundaries were com-
puted for each time-to-go/guidance configuration. (This was not
accomplished for TG04 because of the extremely large number of
runs that would be required).
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The inner launch boundary defines the minimum range from which
the missile can be launched and achieve a hit. (A hit is scored
any time the point of closest approach is within ten feet of the
target). The outer launch boundary defines the maximum range
from which the missile can be launched and achieve a hit. Obvi-
ously, there is an infinite number of launch conditions that can
be selected for evaluation. In order to limit the evaluation
process a set of initial launch conditions is selected. The
selection of these conditions should be done such that the
evaluation will provide a good sampling of the weapon”s perfor-
mance over all expected initial conditions. To this end the fol-
lowing conditions were selected.

1. Missile and target are co-speed and flying straight
and level at launch. (.9 Mach).

2. Missile and target are co-altitude at launch
(10,000 ft).

3. The initial aspect angle (angle between the
target”s velocity vector and the line-of-sight) 1is
varied from zero to 180 degrees in 30 degree incre-
ments. 7zero degrees aspect angle is a tail-on shot
whereas 180 degrees is a head-on shot.

4. The initial off-boresight angle (angle between the
missile”’s velocity vector and the line-of-sight) is
either zero degrees or 40 degrees lagging. Zero
degrees off-boresight angle means the missile is
launched directly at the target. Forty degrees lagging
off-boresight angle means the missile is fired such
that the missile’s velocity vector is pointed 40
degrees behind the target.

The first two conditions (speed and altitude) were selected to be
representative of dogfight conditions. The aspect angle can in
reality vary from zero to 360 degrees, however, it was limited at
180 degrees because these angles represent a worst case due to
the nature of the target maneuver. The two off-boresight angles
were Selected to evaluate the missile under a favorable off-
boresight (zero degrees) and at an extremely difficult off-
boresight condition (40 degrees lagging). The initial engagement
geometry is depicted in Figure 8.

Table 2 gives the inner launch boundaries for the three algo-
rithms while Table 3 gives the outer launch boundaries. The
inner boundaries are accurate to within 125 feet whereas the
outer boundaries have a 250 foot accuracy. Note that for the
forty degree off-boresight launches the missile failed to hit the
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0°] TGOl 1000 1375 | 1675 3125 3125 1875
g TG02 1000 1000 1000 1125 2625 2625 1875
A TGO3 1000 11000 1000 1000 2625 2875 1875
40°| TGOl o * * 3625 4375 4125
g TG02 1000 1375 1875 2125 2325 3625 3875
A TGO3 1000 1000 1000 1375 2125 2875 3875
*Designates a No-Hit Condition. The Missile Failed to Intercept
From Any Launch Range.
TABLE 2. INNER LAUNCH BOUNDARIES IN FEET FOR
TG0l, TGO2, and TGO3

0° TG01 8750 9250 10250 | 12750 16750 24750 26750
g TGO2 7250 7750 9250 | 12250 17250 20750 23750
A TGO3 9250 10250 12250 | 15250 20250 25250 26750 I
40°| TGOl * * * * 11250 20250 19750
g TG02 5250 5750 6750 | 9750 13750 19750 20250
A TGO3 8250 8750 10250 | 13250 17250 23750 24750

*Designates a No-Hit Condition

TABLE 3.

OUTER LAUNCH BOUNDARIES IN FEET FOR

TGO1, TGO2, and TGO3
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0° 30° 60° | 90° 120° 150° 180°
0° TG02 1000 | 1000 | 1000 | 1125 | 2625 2625 1875
0 BODY
- TGO2 1000 | 1000 | 1000 | 1000 | 2625 2875 1875
B.
A 7603 1000 | 1000 | 1000 | 1000 | 2625 2875 1875
40°| TG602 1000 | 1375 | 1875 | 2125 | 2325 3625 3875
0 BODY
8 TG02 1000 | 1000 | 1000 | 1375 | 2125 2875 3875
TGO3 1000 | 1000 | 1000 | 1375 | 2125 2875 3875
TABLE 4. INNER LAUNCH BOUNDARIES IN FEET FOR TG02, TGO3, &
TGO2 COMPUTED IN BODY COORDINATES
0° 30° 60° 90° 120° 150° 180°
0° TG02 7250 | 7750 | 9250 | 12250 | 17250 20750 23750
0 BODY
B 1602 9750 | 10250 | 11750 | 15250 | 19750 24750 | 26750

A TGO3 9250 | 10250 | 12250 | 15250 | 20250 25250 26750

TGO2 COMPUTED IN BODY COORDINATES
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40° TGO2 5250 5750 6750 9750 | 13750 19750 20250

0 BODY

B TGO2 7250 7750 8750 | 12250 | 16250 22750 22750

A TGO3 8250 8750 | 10250 | 13250 | 17250 23750 24750
TABLE 5. OUTER LAUNCH BOUNDARIES IN FEET FOR TGO2, TGO3, &




target from any launch range when the guidance employed TGO1l.
This was due to TG0l”s overestimation of time-to-go which caused
the missile to wait too long before adequate steering, thus fly-
ing itself into a non-recoverable situation. TG02 performed much
better than TG0l, however, its performance fell far short of that
obtained by the closed form algorithm, TGO03, especially in the
large off-boresight scenarios. This is due to a violation in the
original assumptions used in deriving TG02, namely the assumption
that the missile”s axial acceleration is closely aligned to the
line-of-sight vector. Based on this, it 1is reasonable to
hypothesize that TG02”s performance would increase if it was
mechanized with missile body reference information as is done
with TG03. To see if this was true, TG02 was remechanized using
body reference information and re-evaluated. Tables 4 and 5 give
the results from this study. As can be séen, the performance of
the missile greatly increased. The body mechanized TG02 obtained
the same inner boundaries as TG03 but the outer boundaries,
although considerably better than TG02, fall short of the perfor-
mance obtained by TG03. This is probably due to the fact that
TGO02 assumes zero target acceleration whereas TG03 does not make
that assumption. Other studies have shown that target accelera-
tion information improves outer launch boundary performance. [5]

Complexity of Solution

One of the fundamental issues involved in the selgction of any
time-to-go algorithm is the issue of complexity. §1nce the algo-
rithm will be implemented in a small dedicated gu1dancq computer
it is mandatory that the algorithm be as simple as possible while
maintaining a high level of expected missile performance.

Table 6 summarizes the complexity requirements versus the com-
parative performance results based on the launch.boundary deter-
minations for TG0l, TG02, and TG03. The table gives the gumber
of Fortran lines of code used to mechanize the algorithms in the
simulation and the special functions needed to solve the a}go—
rithms. As can be seen TG03 performed the best and was relative-

ly simple to mechanize.

Special Relative .
Functions Performance

0

Square Root
Exponential

Square Root
Exponential

TABLE 6. SUMMARY OF COMPLEXITY REQUIREMENTS AND RELATIVE PERFORMANCE
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SUMMARY AND CONCLUSIONS

Four time-to-go algorithms were developed and evaluated to deter-
mine both the accuracy of the algorithms and the effect of the
algorithms on missile performance. The following results were

found.

1. The commonly used method for estimating time-to-go,
range over range-rate, severely limits the missile’s

performance capability.

2. If the guidance law is suboptimal as is the one
used in this study, use of perfect knowledge of time-
to-go can cause substandard missile performance in high
dynamic engagements. In these cases, underestimation
of time-to-go during the thrust phase will compensate
for the suboptimality of this guidance law by nulling
large initial steering errors early in the engagement.

3. Time-to-go calculations should be accomplished in
missile body reference coordinates.

4., Iterative techniques for estimating time-to-go are
very sensitive to modeling errors making it imperative
that the algorithms contain complex equations. These
methods, although solvable, tend to be very compli-

cated.

5. The best performing yet simplistic algorithm is the
closed-form algorithm that forces the commanded missile
axial acceleration to be equal to the actual missile
axial acceleration.
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o ABSTRACT

The design and implementation of microprocessor-based discrete-time optimal
controllers for the XM-97 helicopter gun-turret control system is considered.
Nonfiring and firing test results are presented. Further testings and the
design and implementaion of disturbance cancellating turret controllers are
currently underway. o

1. INTRODUCTION

The design of a high precision helicopter pointing control system using modern
control and observer theory has been investigated by Coleman, Loh, et al in
[1]. The pointing control system investigated was the XM-97 helicopter
guni~turret ‘control ‘sSystem. The continuous—time optimal controllers and
observers ‘developed in -[1] were implemented by wusing standard analog
electronic components. The resulting performance improvement of the optimal
turret control system, in terms of round dispersion, turret overshoot, turret
settling time, etc., ranged from a factor of 2 to 1 to a factor 10 to 1 when
compared with the performance of the original system.

Recently, the continuing design efforts on helicopter turret control systems
have been directed towards the development cf high precision turrets employing
microprocessor-based optimal controllers. Results presented in [2]
demonstrated that it 1is indeed feasible to implement such an optimal
controller in a2 real time enviromment by using state of the art
microprocessors. Furthermore, numerical processor chips such as the 8087 are
sufficiently fast -énough to permit implementing some forms of adaptive control
laws which may further enhance control system performance.

The purpose of this paper is to present some preliminary results on the

performance of the XM-97 helicopter turret investigated in [1] employing
microprocessor—based optimal controllers. The microprocessor sofeware was
developed by using a basic Intel 220 development system expanded to 64K bytes

" RAM and 1.25 megabytes disc.

The organization of the paper is as follows. Section Z gives a brief descrip-
tion of theée existing XM-97 helicopter gun—turret control system and its step
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responses. Section 3 presents a simplified mathematical model of the original
system. The formulation and design of discrete-time optimal controllers for
both the azimuth and elevation channels of the gun—turret based on the
simplied model developed in Section 3 is presented in Section 4. The
microprocessor-based implementation of discrete-time optimal turret
controllers is discussed 1in Section 5. Section 6 presents preliminary
nonfiring and firing test results. Further performance evaluations of the
microprocessor-based XM-97 helicopter gun-—turret control system and the design
of microprocessor-based disturbance cancellating controllers are currently
underway; the results will be reported elsewhere.

2. DESCRIPTION OF THE EXISTING XM-97 BELICOPTER
GUN-TURRET CONTROL SYSTEM

The XM-97 helicopter gun—turret system consists of a three-barrel 20mm
automatic cannon system and a turret drive system mounted under the nose
section of a Cobra helicopter. For test purposes, the gun-turret and
helicopter airframe are suspended from a six-degree-of-freedom simulator as
shown in Fig. 1. The gup-turret control system is essentially an inertial
load driven by a pulse width modulated split series DC motor through a
compliant gear box. The transfer functions of the system are as shown in Fig.
2. The system consists of two controllers: one controller positions the gun
turret in azimuth and the other elevates and depresses the gun cradle and the
oun. The two controllers are functionally similar and independent. As shown
in Fig. 2, the only difference between the two controllers is the gear ratio N
which is N = 620 for the azimuth channel and N = 810 for the elevation channel.

The existing gun—turret control system essentially employs angular position
feedback and argular velocity feedback. With the state variables chosen as

shown in Fig. 2, the turret dynamics is described by the following
8-dimensional vector differential equation (for both azimuth and elevation

channels),
#(t) = Ax(t) + Bu(t), x(0) = x,, (1)

where

x(t) = [x'1(t) x'2(t) x3(t) x4(t) x5(t) xe(t) x7(t) xg(e)]7T,
x'1(t) = gun turret angular position relative to the hull (radians),

x4(t) = gun—turret angular velocity relative to the hull (radians/second),
x'9(t) = motor angular velocity relative to the hull (radians/second),

x3(t) = motor torque (foot-pounds),

x5(t) = power amplifier output (volts),

xg(t) = low level electronics output (volts),

x7(t) = geared-down shaft angular position relative to the hull (radians),
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Fig. 1 XM-97 HELICOPTER GUN-TURRET SUSPENDED FROM SIMULATOR
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xg(t)
xp(t)

u(t)

= gunner command input (radians),

control imput (volts) = x,.(t) - x';(¢t)

output of tachometer feedback loop (volts),

and A and B are, respectively, 8x8 and 8x1l constant matrices given'by

0 0
2ma0l® o
0 -9.6p,
-3.185x10° 0

as| 0 0

-9.095x10* 0
0 N
i 2/mx101%, 0
[0 T
0
0
0
0 .
9.095x10*
0

0

1
ax10°
0
-3.185x10
0

0
0
0

0

0

5x10%,
5 o

-5x10°

0

0

0

o o O w O o O (=3

.750x10°

0
-2/Kx10°
0
3.185x10°
0
-1.70x10°
0

-z/Nxmwp2

w O o o o

.750x10°]

o o

-p3

Typical step responses of the existine turret control system described by (1)
for x,.(t) = 175 milliradians (10°) are as shown in Fig. 3.

were oscillatory.

The responses

For the azimuth channel, there was a 60% overshoot in the

gun angular position x,(t) and the settling time t_ for x!(t) was more than
1 8 1

tg =

1 second.
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Fig. 3 STEP RESPONSES OF ORIGINAL XM-97
HELICOPTER TURRET CONTROL SYSTEM
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3. GUN-TURRET MODEL SIMPLIFICATION

The first step involved in the design of suitable optimal controllers for the
XM-97 helicopter turret control system was to obtain suitable open-loop models
for the turret system. Hence the position and velocity feedback paths in the
existing system indicated by the dotted lines in Fig. 2 were first removed; a
7th order open-loop turret control system resulted for each of the azimuth and
elevation channels. The next step was to simplify the 7th order mathematical
model. It was decided to ignore stable poles of magnitudes larger than 150
corresponding to a time constant of T = 1/150 = 6.67 milliseconds. Hence
G3(s), G5(s) and Gg(s) in Fig. 2 become, respectively,

G3(S) *P1ls
G5(S) = 7.5,
Gg(s) = 535.

Furthermore, it is found that the effect of the shaft compliance K. on the
response of the helicopter gun—turret drive could be ignored. The parameter
Ko was therefore eliminated by setting it to an arbitrary large value in
Fig. 2. The elimination of K. in Fig. 2 has also resulted in the
elimination of the geared-down shaft angular position x7(t) which 1is not
sccessible for on-line measurement.l! With all the simplifications as
discussed above, it can be shown that the helicopter gun-turret system shown
in Fig. 2 reduces to the open—-loop system shown in Fig. 4 when the position
and velocity feedback paths are removed. '

The dynmaics of the simplified gun-—turret of Fig. 4 can be shown to be
described by

Z|—

x'(t) 1 x'(t) 0
1 1

u(t), (2)

80.25

N

3
- 3.84x10 '
(t) 0 - xz(t)

where x'1(t) and x'9(t) are the same as in (1), J 3x10™% for the

azimuth channel and J = 2.7x10"%4 for the elevation channel.

1Had x7(t) not been eliminated, a suitable filter or observer would be
required to generate an estimate of x7(t) in the implementation of an
optimal controller.

207



—®1535—*17.5 0.02 —

0.0192 |je——

s
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Fig. 5 SIMPLIFIED OPEN-LOOP XM-97 HELICOPTER TURRET CONTROL SYSTEMS
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The design of continuous-time optimal controllers
gun—turret control system has been investigated in [1] and [3].

4. DESIGN OF DISCRETE-TIME OPTIMAL TURRET CONTROLLER

for the XM-97 helicopter
In [1] and

[3], the design problem was formulated as shown in Fig. 5, with the dynamics

of the open—-loop

system described by, for both the azimuth and elevation

channels,
x(t) = Ax(t) + Bu(t) + Fvy, x(0) = x,, (3)
where
xT(t) = [x1(e) =xp(t)],
x1(t) = x.(£) - x"1(¢t)

error between the position common input x, (radians) and the
actual gun—turret angular position x](t) (radians),

x2(t) = Nv,. = x'9(t)
= error between the velocity command v, (radisns/second) and the
actual motor angular velocity x5(t) (radians/second),
xp(t) = xp + vyt
= step-plus-ramp position command input (radians),
u(t) = control input (volts),
and A, B and F are constant matrices given by
1
0 = 0
N A 812
A = 3 = s
0 3:84x10 6 - a
J 22
. - . —
- - —
0 A |0 0 Ao
B = 8 , F= = .
~80.25 . 3.84x107N ;
"12 - L 12
e J o — d

To design suitable microprocessor-tased optimal controllers for the helicopter
gun-turret control system, equation (3) 1is first discretized by using a
sampling interval T seconds as follows:
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x(k+1) = Agx(k) + Bgu(k) + Favp, x(0) = %o, (4a)

where x(k) ¢ x(kT), u(k) = u(kT),
A AT 1 a
L A5 az|
d 0 a
d22
A T At b
B fe Bdt- bd” , (4e)
0 dl2
. -
A T At f
Fd= fe Fdt = fdll ’ (4d)
o d12_ .

and the components in the Ag, Bg and Fq matrices can be computed easily
for each of the azimuth and elevation channels.

The design objective is to drive x(k) to the zero state and in the same time
minimizing a quadratic performance measure. To achieve the objective, the
control u(k) is first split into two parts as

u(k) = ugp(k) + uge(k), (5)

where ugp(k) is the feedback component responsible for driving the state
x(k) to the zero state, and ugf(k) is the feedforward component responsible

for accommodating the velocity command vy, i.e.,
Bdef(k) + Fgvy = 0. (6)
Using (3), (4) and (6), it is not difficult to show that
f1 A
ugg(l) = == v = 4.785Nx1079vy = kyvy. (7
12 T
Substituting (5) and (7) into (4) yields
x(k+1) = Agx(k) + Bgugp(k), x(0) = x4. (8)

Equation (8) may be written as, by adding and substracting the same term
-1.T . . .
-Bde Sdg(k) on the right-hand side of the equatlon2 [4],

2The reason for using (9) is to provide an alternate method for solving the
optimal control problem. See (12)-(13) and (23)-(26).
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x(k+1) = (A - B R 5"

FTSDx00) + B lug, (1) + Ry IS1x(K)]

= Aeq x(k) + Bdueq(k), x(0) =x_, (9)

where Ry and 83 are constant matrices, and
Aeq A BdeSd s (10)

A =1 T
ueq(k) ug, (k) + R 8 x (k). (11)
Consider the performance measure
o]
_ T, T T

3y = EE%[X (K)Qux (k) + 25 (K)Suuc () + ug (WRu, (O] (12)

which may be written as [4], by completing the square for the terms inside the
brackets,

o]

Jeq = EE%[E ()Q 2 (k) + v. (R ()], (13)

where Jq ¥ Jeq, and

A T

Qeq = Qy = SRS, (14)

while ueq(k) is as defined ir (11). 1In (12) and (13), Q¢ is an nxn (n=2
for the present problem) symmetric positive-semidefinite weighting matrix,
'Rqg 1s an rxr (r=1 for the present problem) symmetric positive-definite
weighting matrix, and Sy is an pxr (p=2, r=1) weighting watrix. In the
design of an optimal control system, the numerical values of the elements of
the weighting matrices Qg, Rg and Sg are often choser in a trial and
error basis, guided by, perhaps, the physics of the problem and design
experience. However, it is important that these weighting matrices be chosen
such that [4] - [5],

. T -1 T . .
(i) [Aeq’ Dd], where D D, = Q = 84 Ry 8,, is completely observable, i.e.,
Ty ,T T ,2T.T (n-1)T T, _
rank (D | AP [Aqudl...l Acq Dyl =m, (15)
(ii) [Aeq, B4l is completely contrcllable, i.e.,
2 n-1 =
rank[Bd[ Aqud | Aqudl e | Aeq Bd] n. (16)

The resultant optimsl closed-loop control system will then be asymptically
stable if (condition (i)) and only if (condition (ii)) conditions (i) and (ii)
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are satisfied.

Given (8) and (12), or equivalently (9) and (13), we wish to find the optimal
control which minimizes the performance measure Jg, or equivalently Jgq.
It is well known that the optimal control problem posed ty (8) amd (12), or
equivalently (9) and (13), is a discrete-time version of the following
continuocus—-time optimal control problem:

Given the continuous-time system,

x(t) = Ax(t) + Bu(t), x(0) = x, (17)
find the optimal control which minimizes the performance measure
(o]
3= f xT(e)au(e) + uT(e)Rule)at, (18)
(0]
where Q and R are, respectively, symmetric positive-semidefinite and symmetric
positive-definite weighting matrices. The continuous—time system described by
(17) may be discretized as shown in (4). The corresponding discrete-time

version of (18) is then given by (12) with the following substitutions [€]:

T

T
_e. At At ,
Q, J;e Qe "dt, (19)
~ T T

R, =J;[R + Bd(t)QBd(t)]dt, (20)
T T

s, =j;eA Lo (t)de, (21)

Fag

B(t) = fe Bdo . (22)

(o]

We observe that although there 1is no cross—product term of the form
xT(t)Su(t) used in (18), the cross-product term due to S4q in (12) is
generally non-zeroc, unless Q = 0 as may be seen from (21). We remark also
that the cross—product term in (12) may be dropped if ome is not interested in
establishing the corresponding relationships between the continuous-time and
the associated discrete—-time optimal control problems.

Now, the optimal control which minimizes the performaﬁce measure Jg given by
(12) subject to (8) is given by [5]

T -1, T, T
ug (k) = =(Ry + B4R B, (ByK Ay + §4)x(k) (23a)
= kox, (k) + dox, (k) (23b)
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=1y [x_(k) - x;(k)] + v - x;(k)], (23¢)

where kj and ky are constants, and Kg is the symmetric positive-definite
solution of the algebraic matrix Riccati equation

K, = ATK.A, + Q

d ddd
T T\T T -1,_T T
(BdeAdv+ sd) (Rd + BdeBd) (BdeAd + sd) (24a)
T
= +
AqudAd Qeq

T T -1.T ‘
AqudBd(Rd + BdeBd) BdeAeq. (24b)

Equation (24b) follows from (24a) by simple algebraic manipulations.

Similarly, the optimal control which minimizes Jeq given by (13) subject to
(9) is given by

T

(o]
= +
ueq(k) (Rd Bd

-1.T
K4B,) BdeAeqz(k), (25)

where Kq is the symmetric positive-definite solution of (24). As expected,
substitution of (25) into (11) yields (23).

Combing (7) and (23), the total control is given by

T -1,.T T
~(R; + ByK;B.) "(B KA, + 8 )x(k) + kv (26a)

u(k)

kix1(k) + koxo(k) + kyvy. (26b)

Substituting (26) into (4a) yields the optimal helicopter gun—turret control
system

T
d

RyB) T (BIR AL+ S Ix(), x(0) = x . (27)

x(k+l) = (A, - B (R, +B L

A block diagram for a microprocessor-based implementation of the optimal
controller given by (26) is as shown in Fig. 6.
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5. IMPLEMENTATION OF DISCRETE-TIME OPTIMAL CONTROLLER

The hardware used to execute the discrete-time optimal controllers for both
the azimuth and elevation channels developed for the XM-97 helicopter tur,ot
control system developed in Section 3 is as shown in Fig. 7. 1It consists of
two SBEC 310 high speed mathematics boards, an SBC 86/12 (16 bits, 8086 based)
single board computer and a SBC 732 combination A/D and D/A board (12 bits).
A TI Silent 700 provides the capability for quick parameter adjustment of the
controller algorithms during nonfiring and firing tests. We remark that only
one SBC 310 high speed mathematics board is needed to execute the control
algorithms. The second SBC 310 mathematics board is used as a back-up and
also to provide additional computation capability for follow-on development.
To implement the controllers without disturbance cancellation, -only the 'SBC
86/12 single board computer is needed. One complete iteration of the algorithm
requires 0.8 milliseconds when implemented using fixed point assembly language
code. This rapid execution time makes it possible to test and compare
discrete-time optimal controllers for sample intervals of T=1 millisecond and
T=10 milliseconds. The nonfiring and firing test results will be presented in
the next section.

The electronic hardware is housed in a 9" x 15" x 16" aluminium case and
weighs approximately 30 pounds. One of the design requirements for the system
is that it be fully transportable. This has been made necessary by the fact
that the software development facility is located at the Dover, New Jersey
site and the nonfiring and firing testing facility is located in Rock Island,
I1linois. '

On power up of the XM-97 digital turret control system, an initialization
routine INIT ipitializes all programmable devices and transfers all programs
from PROM to RAM memory. The desired program is then called by executing an
appropriate interrupt.

A flow diagram of the digital optimal controller software is as shown in Fig.
8. The subroutine INPAZ brings in and scales the azimuth position error,
turret rate and sight rate signals and compute rate error xy(k). The
subroutine INPEL performs s similar function for the elevation channel. The
subroutitie DAOT ' outputs the calculated control signals u(k) for both the
azimuth and elevation channels to the D/A converters. Before the signal u(k)
is sent to the D/A converter, however, it is converted to fixed point and
clipped at 12 bits (+10 volts) to prevent saturation of the D/A. In order to
provide maximum flexibility in software development and implementation,
extensive use is made of three macro routines COMP, GET and FIN. The MACRO
COMP(WT, DATA1l, DATA2, OPCODE, TMP) functions as follows. If WT is other than
null, the program checks to determine if the high speed mathematics board has
- completed its computation before continuing. DATA]l and DATA2 are the address
routine for the 4-byte operator and operand, respectively; if either is a
null, the old values is used. OPCODE is a hexidecimal pumber from @ to F
indicating the type of operation to be performed. If this value is a null,
then no operation takes place. If TMP is a null, the MACRO is terminated
after the high speed mathematics bosrd is started. Otherwise the program
waits until the operation is completed. The 4~byte result is then stored in
the address pointed to by TMP. The MAGCROS GET(WT, TMP) and FIN(WT) are
actually subsets of the MACRO COMP(WT, DATAI, DATA2, OPCODE, TWP). A complete
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INIT
Initialize All Variables to Zero
L

[ puaz = ClAZ*ERAZ + C2AZ*RTAZ |

(WAZ = zAZ + C3AZ*ERAZ + C4AZ*RTAZ |
@ DUAZ = DUAZ + C5AZ#WAZ

{ZAZ = C6AZ#*ZAZ + CTAZ*ERAZ + CBAZ*RTAZ + C9AZ*DUAZ |

| DUEL = C1EL4EREL + C2ELARTEL |
1
ZEL + C3ELAEREL + CAELXRTEL

WEL =

DUEL = DUEL + C5EL#WEL |

{ZEL = C6ELZEL + C7EL*EREL + CS8EL*RTEL + CYEL#DUEL |
‘. .

YES

TIMER INTERRUP

Fig. 8 XM-97 OPTIMAL CONTROLLER FLOW CHART
(INCLUDING DISTURBANCE CANCELLATING CONTROL)
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listing of the software program is available upon request.

The microprocessor development system used to debug the optimal controller
algorithms 1is as shown in Fig. 9. The facility is located at the Army
Armament Research and Development Command laboratory in Dover, New Jersey.
The entire system consists of a basic INTEL 220 development system expanded to
64K bytes RAM and 1.25 megabytes disc. 1In addition, there is a high speed
line printer, an 8-chamnnel 12-bit A/D, a 4-channel 12-bit D/A and a PROM
programmer for the 2708, 2716 and 2732 PROMS (8, 16 and 32 bits per unit,
respectively). Since the 8080 requires 1.2 ms to perform a 32K bit floating
point multiplication, a means of speeding up computation is required for real
time execution of algorithms. Therefore, a SBC 310 high-speed mathematics
board 1is added which does the same multiplication in 85 micreseconds.
However, this board must communicate with the CPU via the system bus in order
to store and then load the required four byte data words. This process
requires approximately 90 microseconds. To minimize this excess overhead
time, another SBC 310 high-speed mathematics board was added which permits one
board to compute while the other is storing data.

PRINTER
(2) DUAL . : * PROM
DENSITY DISK INTEL 2708,2716,2732
DRIVES MDS 220 PROGRAMMER
DEVELOPMENT
SYSTEM
(64K MEMORY)
SCH (DIF) HIGH SPEED
A/D MATH BOARD 1
acH HIGH SPEED
D/A MATH BOARD 2

Fig. 9 MICROPROCESSOR DEVELOPMENT SYSTEM
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6. TEST RESULTS

Firing and nonfiring tests of the microprocessor controlled XM-97 helicopter .
turret control system were conducted using the following values of Q and R in

(18), \
q 0
Q= 11 ’ ’R=1-
0 0

The corresponding Q,, R, and S, were computed according to (19), (20) and (21),

. . - ]
respectively. The above choice of Q implied that omnly x,(t) = xr(t) - xl(t)
was weighted so that large amplitudes of x14(t) were discouraged.

The optimal control used was given by
u(k) = kyx(k) + koxo(k) + kpvy.

The following cases were investigated:

99 = >
q11 = 10,
ql1 =15,

using a sampling intervals of T=1 millisecond and T=10 milliseconds. It was
found that the case of 9 =5 and a sampling interval of T=1 millisecond gave
the best results for both the firing and nonfiring tests.

(a) Nonfiring Tests

For nonfiring tests, the step responses of the azimuth channel of the original
turret and the optimal digital turret are as shown in Fig. 10(a) - (b) and
Fig. 11(a) - (b). The step inputs used were:

(i) Original Turret

xp(t) = 20

xp(t) = 590,

(ii) Optimal Digital Turret

x.(t) = 20,

The statistics of the step responses shown in Figs. 10 - 11 are summarized in
Table 1. The step responses of the original turret exhibited an average
overshoot of 50% while there was no overshoot for the optimal digital turret.
The settling time of the original turret was about 4.4 times longer than that
of the optimal turret.
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TARLE 1: STEP RESPONSES OF ORIGINAL AND OPTIMAL
TURRETS-AZIMUTH CHANNEL
TURRET SETTLING % OVERSHOOT COMMENTS
TIME (SEC)
Original Average of
20 Step 0.50 49% left & right
50 Step 0.74 51% excursions
Optimal Smooth
911%5> 0.14 None response
T=1 ns
Optimal Slight
9115, 0.14 None chattering
T=10 ms response
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(b) Firing Tests

The firing tests were conducted using 20 rounds burst fire. The firing rate
was 600 rounds per minute. In order to ignore the transient response of the
turret, the statistics of the first 6 rounds, corresponding to approximately
0.6 second of firing time’, were neglected. The performance of the
original turret and the optimal digital turret in terms of the standard
deviations of their rounds dispersion are summarized in Table 2. A
performance improvement of approcimately 2 to 1 was obtained. Further tests
using different values for qj; and using disturbance cancellating optimal
digital controllers are currently underway. The results will be reported

elsewhere.
TABLE 2: STANDARD DEVIATIONS FOR RANGE OF 85 FEET
TEST NO. OVERALL BARREL 1 BARREL 2 BARREL 3
AZIMUTH (INCH) | AZIMUTH (INCH) | AZIMUTH (INCH) { AZIMUTR (INCH)

D 30 1.25 0.70 1.15 1.76
D 31 1.78 1.17 0.80 2.42
0 33 2.11 1.35 2.23 0.99
D 36 1.57 1.47 1.46 1.53
D 37 1.87 1.70 1.14 1.38
0 38 2.26 2.28 1.93 1.80
D = Optimal Digital Turret

o
]

Original Turret

3The average settling time of the original turret for nonfiring tests was
about 0.62 seconds; see Table 1. :
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DISCRETE-TIME DISTURBANCE-ACCOMMODATING CONTROL THEORY;
THE DISTURBANCE-UTILIZATION MODE
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INTRODUCTION

In a recent paper [1], the theory of Disturbance-Accommodating Control (DAC)

was extended to include the case of discrete-time, sampled-data control prob-

lems. The results presented in [1] covered the disturbance absorption (can-
cellation, rejection, counteraction) and disturbance-minimization modes of

control, but did not consider the disturbance-utilization mode of control.

In the present paper, we complete the development begun in [1] by deriving

a rather general theory for the disturbance-utilization mode of digital DAC

for the case of linear plants with a quadratic performance index.

The motivations for a theory of digital DAC, and the detailed derivation of
the basic discrete-time models for the plant and disturbances are well-
documented in [1] and therefore will not be repeated here.

SUMMARY OF DISCRETE-TIME MODELS FOR LINEAR PLANTS,
DISTURBANCES AND COMMANDS

The class of plants and disturbances considered here are assumed to be such
that their discrete-jime response can be modeled by the following linear
difference equations  (see [1] for the derivation of these difference
equations from their continuous-time counterparts)

ExT) =A@ (T + Bl uel) + m(nT)z(nT) + ?(nT) (1a)
y(T) =Cll)x () (1b)
’W(HT)= external disturbance vector =H(nT)z(nT) (Tc)

E 20)=DeT) =3T) + 5°T) (14)

*Some possible generalizations of Eqs. (1b) and (1c,d) are described in [1].
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where E(-) denotes the forward shift operator: Ex(nT) = x((n+1)T) etc.,

x = (xy, ..., xpn) is the plant state-vector, y = (Y15 --vs Yyu) is the

plant output vector, u = (uys «ovs up) is the plant .control input,

w = (W, ..., wp) is the plant disturbance input, and z = (z7, ..., z,) de-
notes the "state-vector" for the disturbance process (1c), (1d). In the
case of plants and/or disturbance processes which are governed by under-
lying linear continuous-time differential equations of the form

i =Ag)x + B+ F)w) (2a)
v =Clx (20
w=H)z (2¢)
% =Dz + ot (24)

where o = (01, ..., 0,) denotes an unknown, sparse sequence of randomly
arriving (once-in-a-w ile), random intensity impulses having a specified
minimal adjacent spacing p > 0, the matrices A, B, etc. in Eq. (1) are
related to their counterparts in Eq. (2) as follows™ (see [1])

z\hT)zé(fo"'(nﬂ)T;fjnT) ; @ = state-transition matrix for (3a)
~ &)l AD)

B(nT)ff/ Tf(zy(ﬂwZ’r)B(r)c/r (3b)
~ o 1;""('71"/)7'

FHGT) Z BT ROHOB (5Ll (3¢)

?(HT) = _/ tﬁ%w[ DF)H) %;z; §)o(E)dt]de (3d)
01" ZinT

’Iv)(nT) = %{é +(/7+/)7; émﬁ (3e)
~ LHnH)T
iy iﬁrﬂ(w% So¥)df (3f)

where &p denotes® the state transition matrix for D(t). Note that the dis-
turbance-like terms ¥, § in Eq. (1) [called "residuals” in [11] account

for the action of the o(t) impulses which arrive between adjacent sampling
times ty + nT, t5 + (n+1)T. Since the arrival times and intensities of the
sparse o(t) impulses are completely unknown, (no probabilistic stucture) the
terms ¥, G are also completely unknown.

The primary objective of control is assumed to be expressible as the set-
point regulation of, or servo-tracking by, certain specified plant variables
(Sﬁ, Y25 ...s ¥m)» where in general the y; can be related to the plant state-
variables (x], cens xn) by the linear expression

*

Note that the argument symbol nT appearing on the left side of Eq. (3)
actually denotes the time t = ty + nT. This shorthand notation will be
used consistently in this paper.
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y =Clx ; 7=(%." Vm) W
In many cases, the objective is_to control the plant output y(t) in Eq. (1b),
in which case one would choose C = C in Eq. (4). On the other hand, the

‘desire to control the entire plant state x(t) would be indicated by chcecs g
C=11in Eq. (4). -

In accordance with standard procedures in DAC design [2], the desired
(commanded) behavior of y(t) is expressed in continuous-time by the "set-
point/servo-command" dynamical model

W =7b=Gee) (52

desired

¢ =EfM)c+ /40(16) (5b)

where {G(t), E(t)} are determined a priori by appropriate "command modeling"
procedures; see [2; p. 642]; and where ¢ = (cy, ..., cv) represents the
"state" of the command model* Eq. (5). The vector 1, = (ij» .-.» Wy) repre-
sents a sequence of totally unknown impulses which are sparse; similar in
nature to the o(t) impulses in Eq. (2d). It is assumed that the set-point/
servo-command vector Y. = (¥eq» +-e» ybm) might not be known a priori, but
can be directly and accurately measured on-line, in real-time.

In the case of set-point regulation problems the command yc(t) is essentially
constant, or piecewise constant, in which case E(t) = 0 in Eq. (5b) and one
can then set G(t) = I in Eq. (5a), assuming the y; in Eq. (4) are independent.
In the case of servo-tracking problems, the command yc(t) is allowed to con-
tinuously vary with time and E(t) is chosen accordingly; see [2; p. 642].

For purposes of designing discrete-time controllers, it is necessary to have
a discrete-time version of the set-point/servo-command model Eq. (5).
Following the same procedure used for Eq. (1), the discrete-time model of
Eq. (5) is obtained as

)“/C(nT) =G(nl)cel) ; C((nH)TFE(hT)c(n )+/'}'c(nT) (6)

where

-—

EqM=3_
~ 2l
/JCW) %7; g/@f(nﬁ)ﬂ%(f)a@ (7b)

" The information embodied in the real-time command-state c(nT) enables the
DAC controller to "accommodate" uncertain servo-command behavior 7£(nT)
similar to the way disturbances are accommodated.

G;‘;l'(nﬂ)'[;t-mrr)-‘— transition matrix for E(t) (7a)

*The symbols ¢, E in Eq. (5b) correspond to the symbols Xeo R used in
[1; Eq. (43)].
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DESIGN FOR THE DISTURBANCE-UTILIZATION MODE

The two modes of disturbance accommodation considered in [1] were designed

to cope with disturbances by counteracting (absorbing) or minimizing their
effects. This design attitude reflects the traditional view of disturbances
as causing only unwanted, disruptive effects on the plant behavior. However,
there are realistic situations in which disturbances are capable of pro-
ducing desirable effects on the plant behavior. In particular, it is possible
that at least some of the action of disturbances can be constructively used
to assist the controller in accomplishing the primary control task. The
trick, of course, is to know just how to manipulate the control u(nT), in
real-time, so as to harness and exploit any useful effects inherent in the
(uncertain) disturbance actions.

The systemmatic design of continuous-time controllers to optimally utilize
the action of uncertain disturbances was first introduced in [3], and has
since been refined and applied in [2], [4], [5], [6], [7]. In this paper,
we will derive discrete-time versions of "disturbance-utilizing" controller
design procedures which parallel the results in [2], [4], and [6].

THE CHOICE OF A PERFORMANCE INDEX J IN DISTURBANCE-UTILIZING CONTROL PROBLEMS

The objective of disturbance-utilizing control is to make maximum (optimal)
use of the disturbance w(t) as an aid in accomplishing the primary control
task. For instance, if the primary control task is to achieve set-point
regulation or servo-tracking with minimal expediture of control resources
(fuel, energy, etc.), it is conceivable that the action of disturbances w(t)
might be able to reduce the drain on control energy and/or achieve "better"
set-point regulation or servo-tracking --- if u(nT) is manipulated properly.
On the other hand, if the disturbance actions are such that they are totally
counter-productive to the primary control task, the use of an optimal dis-
turbance-utilizing controller will serve to minimize the inevitable loss of
performance contributed by the disturbance.

The optimal utilization of disturbances is achieved by application of optimal
control theory, where the performance-index functional J is structured such
that the minimization of J by u(nT) achieves the primary control task while
simultaneously making maximum "use" of w(t). In the continuous-time version
of disturbance-utilizing control theory [4] the most common choice of per-
formance index J for set-point and servo-tracking problems is the classical
error/control quadratic functignal

f .
T T, T <
- $dm)Sep) +,-,1-je QM-+ Rut] ot ()
where e(t) denotes the instaﬁtaneous "control error'; i.e. the error between
desired response y. and actual response y(t); and S, Q, R are positive
definite symmetric matrices chosen by the designer. The design of u{t) to
minimize Eq. (8) automatically achieves the primary control task of
Iés(Tf)Il = vsmall" [and ||e(t)]] = "smal1"], while simultaneously letting
w(t) '"assist" in that task and/or in (possibly) reducing control resource
consumption as measured by the time-integral of ulT(t)R(t)u(t). If the dis-
turbance w(t) is such that it cannot "assist" in reducing J in Eq. (8), the
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control u(t) which minimizes Eq. (8) will then automatically minimize any per-
formance deterioration (increase in J) which w(t) contribues.

In discrete-time optimal control theory, the most common discrete-time
version of Eq. (8) is expressed 35

n=(N-

T -10Selme£). |mmemdRium] o

-
-

where the interval of control [t,, T%] is divided into N equal segments

ty = tytnT; n =0, 1, 2, ... N. "Actually, if one evaluates the continuous-
time performance index Eq. (8) over each segment to+nT < t < t, + (n+l)T,
using the known solution expression for Eqs. (2), (5), it can be shown [8]
that Eq. (8) may finally be expressed in the form” of Eq. (9) with the ex-
ception that there is an additional term 2 uT(nT)M(nT)e(nT) in the summation
on the right side of Eq. (9). In that case, the matrices Q, M, R are re-
lated to Q, R, B, A in Eqs. (8), (2) through some rather involved integrals.
In practical applications of discrete-time optimal control it is generally
preferable to adopt the format Eq. (9) as the starting point for structuring
the performance index J and then design the weighting matrices S, Q, R in
Eq. (9) to attach proper emphasis on the minimization of (nT), u(nT);
n=0,1,2, ..., N. For this reason we hereafter adopt Eq. (9) as the
basic performance index J for the design of discrete-time disturbance-
utilizing controllers for set-point and servo-tracking problems.

FORMULATION OF A GENERAL CLASS OF DISCRETE-TIME DISTURBANCE-UTILIZING
CONTROL PROBLEMS

The systemmatic design of disturbance-utilizing controllers can be achieved
by formulating the problem as a conventional (undisturbed) linear-quadratic
discrete-time control problem for which solution algorithms are known. For
this purpose, the discrete-time models Egs. (1), (6), (7) are consolidated
into one composite "plant" model and written as

Exel)) [A|O1FH] )| [B Juel) [
Ecen)| =|OLE O]l O] HA

Ezel) OIOID \gi) (O] \& (102)

yil = GO0 (100
z(nT)

*
Note that the arguments NT, nT in Eq. (9) actually represent the times
t = ty#NT, t = to#nT. This shorthand notation is consistent with that used
in Egs. (1), (6), (7) etc.; see footnote associated with Eq. (3).
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For simplicity, the model Eq. (10a) is written in the more compact form

——

Ex =A(nT)5i(nT) +B(nT)u(nT)+cS(nT} 5 7"Z=(xlclz)T (11)

where the meanings of A, B, §, are clear from examination of Eq. (10a).

The instantaneous control error e(t) in Eq. (8) is the difference between
the desired response and the actual response. Since Ve(t) and y(t) represent
those two responses, we write e(t) as

elt) =yt -yt (12)

or, in terms of discrete-time t = to + nT

)= )74 (13

Using Egs. (4), (6), expression (13) may be expressed in terms of X as

—_ A A -—
e-Lclglol=Cz ;  C=EClelol (18)
Now, the quadratic forms in the discrete-time performance-index J in Eq. (9)
may be expressed as
T T ATA A

78 -3 C3C5-%5% ; §-CSC  (15a)
n T/\TN/\ TAN A ATuA
eQe =i CQCY =3Q% ; @=CQC (15b)

Using Eq. (15), J in Eq. (9) may finally be expressed in terms of the com-
posite state X as follows p=(N-j)

J=2 X\ SHNT) +z[: [x(nT)Q(nT)x(nT)m(nl)R(nI)uhT)] | (16)
n=

The optimal disturbance-utilizing control problem for discrete-time set-point
regulation and servo-tracking may now be expressed precisely as follows.
Find the control sequence u{nT) = u°(nT), n =0,1, 2, ..., (N-1), which
minimizes the performance index Eq. (16) subject to the difference equation
constraint Egs. (10), (11) and for arbitrary initial conditions {x(0), c(0),
z(0)} = %(0). Since the o(t), uc(t) impulses which create the terms ¥, T, O
in Eq. (10a) are completely unknown and sparse, we will follow standard
procedure in DAC theory and disregard the presence of those terms in Eq.
(10a); see remarks in [2; p. 639].

SOLUTION OF THE DISCRETE-TIME DISTURBANCE-UTILIZING CONTROL PROBLEM

The minimization of (16) subject to Egs. (10), (11) has the form of the
conventional (undisturbed) discrete-time 1inear quadratic regulator problem
which has already been solved; see for instance ?8]. That known solution,
when applied to the specific plant Egs. (10), (11) and performance index
Eq. (16) leads to the following expressions for the optimal discrete-time
disturbance-utilizing control u®(nT), n =0, 1, ..., (N-1). Assuming X(nT)
can be directly measured, the optimal control u®(nT) is given by
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where the matrix P(-) is symmetric, positive definite, and governed by the
Riccati difference equation

PHI}= {A(nl )Pl A(nT)*“Q("T)]’U[R@'T)*B(nT () __]r ; (182)
with the boundary condition }>0“§[»Ahﬂ)

POT)=S (18b)

Note that the Riccati difference equation Eq. (18) is automatically set-up

for backward-time solution, "starting" at t = Tf = tj + NT and progressing
backward: t = tg + (N-1)T, t = t5 + (N-2)T, ..., t =t5 + T, t = t;. In

" other words, one successively sets n = (N-1), (N-2), (N-3)..., 1, 0in

Eq. (18a). The resulting sequence of values P(nT) is then stored for future
playback in the forward-time control law expression Eq. (17). In particular,
at each time t = t, + nT the "current" values of R(nT), B(nT), A(nT) are sub-
stituted into Eq. ?17) together with the "one-step- ahead" a1ue of
P((n+1)T), to compute the overall state-feedback gain matr1x.ﬁ( nT,(n+1)T
defined by

> SE'

K= ‘”[R(nT +B(nT P+ 1)BT) ][ nT)P((mt )A(nl )] (19%)

and u9(nT) is then computed as

wT) = KT o) 76T) (19b)

In practical applications, the composite state term X = (x|c|z) ip Eq. (
cannot be d1rect1y measured and therefore must be 1mp1emented as X =

where X, €, Z are estimates of x, ¢, z generated on-line, in real time by a
discrete-time state observer such as described in [1; Eqs. (18)-(25) and end
of Section ¥-D]. Note that the computat1on of ﬂ((nT) can be done off-line
(it doesn't depend on knowledge of X(nT)) and therefore the time required
for accurate calculation of does not impact on the real-time performance
of the controller.

The form of Eqs. (17), (18), (19) does not yield much insight into the fine
structure of the optimal disturbance-utilizing control u°(nT). To see that
fine structure, it is necessary to decompose P(-) into smaller blocks cor-
responding to the block sturcture of K in Eqs. (10), (11). For that purpose,
we set _ -

Kx Kxc Kx;

.]5 KT K K.l 3 Kx =hxn; Kxc= nxy; Kx;nxe (20)
'xC (4 CZ
K™K |K K=9x9 5 K795 Kzex e

| "xz ez !z
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and substitute Eq. (20), together with the expressions for %, B, R, Qand S,
into Egs. (17), (18), (19) to obtain the optimal control u®(nT) expressed
equivalently as

T - A, ; "
L= -LRT) BEK (g TVBGET] B K AT ) +4 e T )+
+(K, (o) FHGT)+ K (oM BTz (nT)] (21)

where the six block matrices comprising Eq. (20) obey the following set of
coupled matric difference equations

~ ~ ~ ~T . ’1~T ~ N ~ =T &
Kx(nT}=[A(nT)—B(«T)[R(nT)+B(r|T)K,$01+DT)BG1T)] B(nT)K‘((mu)'I‘)A(nT)]Kx(Wv)T)AWC(nT)Q@TJ Cl);
KIND=COMSCOD,  (222)

4 v

V) ~ ~ ~T ~ ~ T ~ =T w
K. gnTFLD\(nT)-B(nT)[R(nT)*B(nT)K((n»\pDBQ{I‘)] (nT)K((W)T)A(nT)] K‘(cwﬂ)%'f)-(:(nﬂ%ﬂﬁ(n']‘);
K= -COM3GND . (22
T ~ "iNT e T ~ ~
TR BAURAH B B BT Ao DR o) T
K (NT)<0 (22¢)
~T T .. ~ AT ~ 4,7 T o~
Kl =E®T)[Kc(01+l}f K (o TIBET RGBT o BT BT (e M HGHIGIGH;
KINT)=GIMSGND) . (220

K @T)J‘E'(nn[{gmp’rﬁﬁwKc(z(m.)T)m)-K;'gm.ﬂ‘)"é@')[ﬁ(ﬂ)éh) KB ﬁ(nT)[lg«n%

(. I?T-l(nT) +K gn+DT)]’§("T)]] 3
l&NT):O ; (22e)
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Kz(nT) = ﬁ'l(n'i' [K((nﬂ T)ﬁ(nT)’rK((nﬂ T) FT{(nT)] +’]\j(nT)[KT((n+ o) m@ﬂﬂg((m l)T)ﬁ(hEb

”n

Cﬁ?(«mfr)mw +K(¢,+)T)D(n1‘)]B@T R o)) ]’“ T[K«nﬂ)b
CrrnemmBer] kom=0 . _

[ ]
Thus, to implement the disturbance ut111z1ng control u°(nT) in Eq. (21) one
must first solve for Ky(nT), (nT), (nT) by solving Egs. (22a,b,c) in
backward time n = (N-1), (N- 2)Xc 2, *z 0, using the indicated "initial
conditions" at t = t; + NT. As a]ready ment1oned this step can be carried-
out off-Tine (ahead of time) and the computed va]ues stored for future use.
Note that at each time t = t, + nT, the real-time disturbance-utilizing con=
trol Eq. (21) depends on the values of R,B, A, E, /i, D, and x, c, z
evaluated at t = to + nT and the values of Kx, KXC, sz eva]uated at the "one-

step-ahead"” time t = t, + (n+1)T.

THE NOTIONS OF FIXED COST, ASSISTANCE, BURDEN, AND UTILITY IN DISTURBANCE-
UTILIZING CONTROL PROBLEMS

The optimal d1sturbance utilizing control u°(nT) in Eq. (21) achieves the

minimum possible value of J in Eq. (9). That minimum value of J will be de-

noted by the scalar function V= ( (nT), ¢(nT), z(nT), (n+1)T) where x(nT),
c(nT), z(nT) denote arbitrary "initial conditions" in (x, ¢, z)-space.

It can be shown [8] that the function V(x,c,z,(n+1)T) for the disturbance-
utilization problem Eqs. (9)-(11) has the explicit form

Kx Kxc sz _72_
V=23 P = 3 elcle) [ | K [Kee| o -
G I K, | \2

which can be expanded to yield, (Note: all K-expressions in Eqs. (23), (24)
are evaluated at t = (n+1)T, whereas x,c,z are evaluated at t = nT).

& =Fixed Cost ~( = -Assistance  B=PBurden

TR TR T
z\x A xtchcHx K C (x e C ez /ZTZEKRZ

The role of the disturbance w(t) in reducing the minimum possible value of J
can now, be clearly seen in Eq. (24). Name]y, the impact of w(t) on V =
min. J is reflected in the z-related terms in Eq. (24). If the collection
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of terms Tlabeled d ("assistangwe") is greater than the "burden" term ﬁ ,
then, and only then, will min. J be further reduced by the action of w(t).
Thus, following the ideas in [6] we define the "utility" U of the dis-

turbance w(t) as
=Assi — K +& 1
?l~ 5515+ance —Bunden- (X.K(;C igi)z ZZ Kzz (25)

The condition U>0 indicateg that the current behavior of w(t) is such that
it can help in reducing min. J. On the other hand, the condition

indicates that the current behavior, of w(t) is such that w(t) can only aggra-
vate (increase) the value of min. J. The collection of terms in Eq. (24)
which do not involve z is referred to as the "fixed-cost" because that
contribution to V = min. J. is invariant with respect to the behavior of

disturbances w(t).

The disturbance utility function U defined by Eq. (25) can be studied in

the (x,c,z,t)-space to identify the domains of positive and negative utility;
the details are outlined in [6] and some specific examples, from continuous-
time disturbance-utilizing DAC theory, are presented in [7] and [9]. Note
that as time progresses, n = 0,1,2,..., the sign of U can change back and
forth.

THE EFFECTIVENESS & OF OPTIMAL DISTURBANCE-UTILIZING CONTROL

The linear-quadratic regulator theory is widely used to design feedback con-
trol laws of the form u(-) = K (-) x(-)- Traditionally, such applications
have ignored the presence of persistent disturbances w(t) and therefore,

when confronted with actual real-life disturbances in the field, such con-
trol laws do not yield "optimal" performance. Thus, it is interesting to
study howmuch better the disturbance-utilizing control law performs, com-
pared to the conventional linear-quadratic control law, when the two closed-
Toop systems are subjected to the same typical realistic disturbances w(t).
To quantify such a comparison, Kelly [7] has proposed the concept of "effect

jveness" defined for the discrete-time case as
j -
E= LQNJ;’“C x 100%, (26)
I

~

where Jj o is the value of Eq. (9) obtained by using the conventional (undis-
turbed) giscrete-time linear-quadratic control law, and Jpyc =V is the

value Eq. (24) of Eq. (9) obtained by using the optimal disturbance-utilizing
control law Eq. (21) --- in both cases the plant Eq. (1a,b) is subjected to
the same disturbance w(t) [as generated by the assumed disturbance model

Eq. {Tc,d]. Thus, if the disturbance-utilizing controller Eq. (21) isa
better performer (as it should be) one should find that Jpy. is less than Jjq
and therefore & is positive. The maximum possible value of & Fs 100%
which would correspond to the (unlikely) case that Jpyc = 0. Thus, the
closer £ is to 100% the greater is the effectiveness of Eq. (21) compared to
the conventional linear-quadratic control law.
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It is interesting to note that the conventional linear-quadratic control

law used in such comparisons can be obtained directly from Eq. (21) by

simply setting z(nT) = 0, %*n, (and also c(nT) = 0,%n, if Y (t) = 0 is the
desired response). This observation shows that the disturbance-utilizing con-
trol law Eq. (21) automatically reduces to the conventional Tinear-quadratic
control law whenever the disturbance w(t) vanishes. In other words, the
matrix K,(+) in Eq. (21) and Eq. (22a) is precisely the same matrix used in
the conventional (undisturbed) linear-quadratic regulator control law.

EXAMPLE DESIGN OF A DISCRETE-TIME DISTURBANCE-UTILIZING CONTROLLER

To demonstrate application of the controller design algorithm for discrete-
time disturbance-utilization, we will consider a rather general version of
a first-order plant with first-order disturbance. The plant discrete-time
model Egs. (la, b) and disturbance discrete-time model Eqs. (1c,d) are
expressed as

E x@l)=d(T)xl) +E>(nT) udl)+ ﬁl(nT)z(nT) + ?(nT) (27a)
y(n )=c () x() | (27b)
EZ(nT)=J(nT)z(nT)+5' () (27¢)

where x = scalar, u = scalar, z = scalar. We will assume that the desired
behavior is set-point regulation to x(nT) =0 Xn; therefore y = x in Eq.
(4) and ¥ = Q_in Eq. (5). Thus, we may set G(t) = 0 in Eq. (5). The para-
meters 3, b, fh, d may be time-varying.

The discrete-time performance index J in Eq. (9) is expressed as

F-1 T fN.ﬂ T v T § :<)
=52\ SxNT)+ gg[x(nT)g/tMT)‘*u(nT)R u(nT)] 5 % >g (28)

where, in this example, S, g, R are arbitrary positive scalars and € = -x.

The optimal disturbance-utilizing control Eq. (21) for this example has the

specific form o

)=~ [m)?w] [&’ kot [Fh oo z]

where we have set k,. = 0 because G(t) = O (set-point y. is zero). The
time-varying gains ky(-), kyz(-) associated with the control Eq. (29) are
computed from the di?ference equations Eqs. (22a,c) which for this example
- reduce to

(29)

~ o2 = 1
k(nT): Rg x((m")T) +3 ) C . (30a)
O R+b kx((””)T) T |<X(NT)~ $>0
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R+B* k((n+l)T)

K(;”T)=< Ra )kx(;rﬂt)'f)g-rk‘((nu)'r)ﬁ\ ; K@):Q ~ (30b)

One can now compute the successive values of ky, kg for n = (N-1), (N-2),
(N-3), ..., 2, 1, 0 using Eq. (30) and the 1nd1cated "starting" conditions
at t =t_+ nT.Those computed values are then stored and used later in the
real-time computation of Eq. (29).

CONSIDERATION OF THE TIME-INVARIANT CASE OF THE EXAMPLE
If one assumes that the plant and disturbance models Eq. (27) came from a
time-invariant continuous-time plant and disturbance model, the preceeding

results Eqs. (29), (30) can be expressed in more explicit form. In parti-
cular, if Eqs.(27) are assumed to derive from the continuous-time models

1=ax +bu+rfw | (31a)
s=dz+oft) ; w=hz (31b)

where a, b f, h, d are constant sca]ars, then

28 al b/"(wbdr a(e—i) (bT /)[a—o)
e e, (e )

Using Eq. (32) in Eqs. (29), (30) leads to the following explicit express1ons
(shown for the case a a& 0, d %= a). The control law Eq. (29) becomes

( ) al d1'dr + 33
eyt {%—)ék(wﬂkﬁﬁ‘) "

and Eqs. (30) for the gain matrices become

k- Re Uoll) o (34a)
X(n) ~+(a "‘i’)zk(((nﬂ)'r) ; D (N)

A 04+1T))[e W LJETE Yyl g0 1500

RESULTS OF A SIMULATION STUDY OF THE EXAMPLE

Cl_

The time-invariant case, Egs. (31) - (34), of the example was studied by digital
simulation techniques using the specific parameter values
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(35)

Note that the open-loop plant is unstable, with open-loop pole at +1, and
the disturbance w is constant with o(t) = 0. For th1s study, the following
three sets of values of the weighting parameters S, §, R in the performance
index Eq. (28) were investigated

Case 1: 35 =10 g=1 R=1
Case 2: s =1 qg=10 R =1

~ o o (36)
Case 3: s =1 q=1 R=10

The resulting behavior of the optimal disturbance-utilizing control ul(t)
and the plant state x(t) are shown in Figure 1. The optimal trade-offs in
the performance of x(T¢), x(t), and u(nT) (correspond1ng to the relative
magnitudes of the we1gﬁt1ng parameters &, §, R in Cases 1, 2, 3) are clearly
evident in Figure 1.
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DISCRETE CONTROLLER DESIGN FOR GAUSSIAN AND
WAVEFORM TYPE DISTURBANCES

Jerry Bosley
Computer Sciences Corporation

Dr. William C. Kelly
US Army Missile Laboratory
US Army Missile Command

ABSTRACT

This paper describes an application of newly-developed control
theory relating to the design of discrete controllers which ac-
commodate gaussian disturbances in addition to disturbances that
possess "waveform structure". Previous work in this area applied
linear-quadratic-gaussian theory to terminal homing missile prob-
lems with gaussian noise and, more recently, disturbance-utilizing
control theory to terminal homing missile problems with "waveform-
type" disturbances. This paper describes a new application which
combines features of both approaches in terminal homing problems
where both classes of disturbances may be present. The under-
lying theory of this combined approach is discussed and the op-
eration of the discrete controller in a planar missile inter-
ceptor engagement model is illustrated with a numerical example.

INTRODUCTION

Algorithms for synthesizing disturbance-utilizing controllers were
developed and applied by Johnson [1, 2, 3] several years ago to
analog-type control problems where the uncertain external influ-
ences on the plant were "waveform type" disturbances. Just a

year ago Johnson [4] reported the development and application of

a design algorithm for synthesizing discrete-time disturbance-
utilizing controllers. And now Johnson [5] has extended the
discrete-time Disturbance-Utilizing Control (DUC) theory to in-
clude plant and sensor disturbances of the gaussian noise type
with known mean and covariance.

The DUC theory is based on the fact that disturbances may some-
times produce effects which are beneficial to the primary control
objectives. For instance, certain forms of wind gusts may actu-
‘ally help to steer a missile toward a specific target. Maximum
utilization of a disturbance having waveform structure can be
achieved by employing optimal control theory to design the con-
troller. The key to obtaining maximum utilization of distur-
bances is to choose a performance index J so that, when J is
minimized with respect to the control u(t), the primary control
objective is accomplished and maximum use of the disturbance is
achieved.
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Uncontrolled inputs to control systems may be classified as
either noise-type disturbances or disturbances with "waveform
structure". Thermal noise in a radar receiver is an example of

a noise-type disturbance, while gravity, wind gusts and elec-
tronic instrument drift are examples of waveform-type distur-
bances. While noise-type disturbances are characterized by their
statistical properties (e.g., variance and mean), waveform-type
disturbances can be modeled by determining a differential equa-
tion that the disturbances are known to satisfy.

If the uncertain external influences on the controlled process
are waveform-type rather than noise-type disturbances, the well
known stochastic control techniques [6,7] do not result in the
most effective controller. On the other hand, if the uncertain
external influences are noise-type rather than waveform-type
disturbances, then Johnson's DUC theory is inadequate; the DUC
controller does regulate the set point, however it uses large
amounts of control energy trying to utilize the random noise.

In some practical applications, the disturbances acting on the
plant consist of a combination of waveform-type disturbances
and noise-type disturbances. Moreover, the sensor measurements
are usually corrupted by additive noise which tends to obscure
the output behavior information. Thus, Johnson extended the
discrete- time DUC theory to include those cases where the plant
may be subject to noise-type disturbances and where the plant
output sampled measurements may be corrupted by additive noise.
This extended theory is referred to as discrete-time Noisy DUC

theory.

The discrete-time Noisy DUC theory is applied in this paper to
the problem of utilizing disturbances in a homing missile gui-
dance problem. While the conventional approach to handling dis-
turbance effects is to attempt to eliminate them, the approach
taken here is to formulate the optimal controller that accounts
for the waveform properties of the disturbance. Numerical re-
sults are given to show the comparison between the performance
of the noisy disturbance-utilizing controller and a conventional
linear-quadratic-gaussian controller in the presence of both
noise-type and waveform-type disturbances.

BACKGROUND

The Noisy DUC theory in [5] is developed for plants which can be
modeled as linear dynamical systems, with respect to an appro-
priate operating point or regime. Specifically the plant is
modeled by: _

A(t)x + B(t)u + Fd(t)wd + Fnl(t)wnl (1l-a)

b
1}

c(t)x + Vi (1-b)

N
1}
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where x = (xl, ceey xn)‘is the plant state vector; y = (yl, ceey
ym),is,the measurement vector; u is the control input; w3 is the
vector of waveform-type disturbances; W1 is the vector of noise-
type disturbances and Vi is the vector of measurement noise which
corrupts the data C(t)x in the output measurement y(t).

The vector noise terms Vo1r Vi in (1) are assumed to be white

noise random processes with known means and covariances. Mathe-
matical models for the gaussian random processes {wnl}, {vn} are

€lw ;] = 0; €[v ] =0
cov{wnl(t), wnl(T)] = in~(t)6(t - 1)
cov[vn(t), vn(r)] = Rn(t)é(t - 1)

cov[wnl(t), Vn(T)] =0

where g€[*] denotes the expectation (mean value) operator, covi[e,°]
denotes the covariance operator, and in(t), Rn(t) are, respec-

tively, non-negative definite and positive definite symmetric '
matrices.

The vector of waveform-type disturbances wd(t) in (1) is modeled
by

H(t)z ' (2-a)

Y4

Z

D(t)z + o(t) + F ,(t) w_, ’ S (2-b)

where z = (zl, ooy zp) is the disturbance state vector and L)
denotes a vector white noise process with known mean and covari-
ance. The mathematical model for {wnZ} is

€lw = 0

n2]
COV[an(t)r an(T)] = an(t)é(t - 1) an >0

cov[wnl(t), an(T)] = 0; cov[wnz(t), Vn(T)] =0

The term ¢g(t) denotes a sparse sequence of totally unknown im-
pulses (unknown arrival times and unknown intensities).

The mathematical models (1), (2) are continuous-time models de-
fined for all time t. However, to design a discrete-time digital
controller it is convenient to have discrete-time versions of the
models of (1), (2) which describe the behavior of x(t) and wd(t)
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at discrete points in time t = to' to + T, to + nT, where T is the

sampling period associated with the digital controller. The pro-
cedures for developing discrete-time versions of the mathematical
models (1), (2) are described in detail in [8]. Application of
those procedures to (1) and (2) leads to the following discrete-

time models

~ ~ ~
A(nT)x (nT) + B(nT)u(nT) + FdH(nT)z(nT)

Ex(nT) =
+ F_j (NT)@ ) (nT) + Y(nT) '~ (3-a)
Ez(nT) = D(nT)z(nT) + o(nT) + ﬁnz(nT)ﬁnz(nT) (3-b)
y(nT) = C(nT)x (nT) + Gn(nT) (3-c)
P

where the matrices K, ﬁ, FdH, etc. are related to A, B, Fd’ H,
Fnl’ D in (1), (2) by expressions given in [8] and E is the delay

operator, Ex(nT) = x((n+l)T). The terms wnl(nT), Gn(nT), ﬁnz(nT)
in (3) represent discrete-time noise processes which are modeled
as sequences of zero-mean, independent gaussian random variables
with known covariances

cov[ﬁnl(nT), ﬁnl(jT)] = ind(n - 3)

cov[V (nT), ¥, (3T)] = R 6(n - j)

cov[%nz(nT), ﬁnz(jT)] = ans(n - j) for all n, j

where Q ; > 0, R, > 0, Qo 2 0 may vary with time.

The discrete-time models are consolidated into one composite model
written as

Ex = (§§> = A(nT)x (nT) + B(nT)u(nT)
+ F(nT)Gn(nT) + §(nT) (4-a)
y(nT) = CX(nT) + ¥, (nT) (4-b)
where
A | P F o1 0
_ _ ~ _ F
A= _d ; B = [%] ; Foe=|-2bl (4-c)
0 lp 0 | F
n2
e x
C = [c|0]; g,n =l:_£ ;s = [1_] (4-d)
;‘I (0]
n2
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Since the plant motions x(t) governed by (1) are random in nature
(due to the presence of wd) the expected value of the performance

index J is to be minimized. Thus, when 8[3] is minimized with
respect to the control u(nT), the primary control objective is
accomplished and maximum use of the disturbance w3 is achieved.

8[3] is given in [5] in terms of x as

~ 5 A n=(N-1) _ A
e[J] =¢ {-:ZLXT(NT) Sx (NT) + %‘ 5 [X7T (nT)QOx (nT)
. n=0
+ uT(nT)ﬁu(nT)]} (5)
where
s = ¢Tsc, 9 = ¢Toc

and the time interval of problem definition (to, Tf) has been
divided into N equal segments of length T. The weighting matrices
§, 6, R are symmetric with S > 0, 6 > 0,'§ >0, and S + 6 > 0.
The discrete-time Noisy DUC problem may be precisely described as
follows. Given the composite plant model (4) find the control

u°(nT) which minimizes (5) for all independent random initial
conditions {x(to), z(to)} satisfying

mean x (t ) f(to); cov[x(t,)]

Ryo

RZO

mean z(t ) E(to); coviz(t,)]

where x, z, R, and R,, are given. As is customary in the DUC

theory, the sparse terms in § in (4) are neglected in deriving

the control since they are completely unknown. This problem is

of the form known as the "discrete-time linear-quadratic-gaussian
optimal control problem" which has been extensively studied in
the literature and its solution is described in [9]. When that
known solution is applied, the optimal, discrete-time disturbance-
utilizing control u~ (nT) is given by

u® (nT)

—[ﬁ(nT) + ﬁ?(nT)ﬁ((n

<+

1 1)B(nT)] "H[BT (nT) B ((n
+ 1)T)K(nT)] % (nT) (6-a)

where B = BT obeys
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B(nT) = A" (nT)P ((n+1)T)A(nT) + O
- [ET(nT)ﬁ(kn+1)T)X(nTﬂ'T[ﬁ

+ ﬁT(nT)§ ((n+l) T)ﬁ(nT)] -l['ﬁT(nT)f; ((n

>

+1)T)A(nm)| ; B(NT) = (6-b)

A

where §(nT) denotes the estimate of ﬁ(nT) obtained from a discrete-
time Kalman filter. The essential difference between the ngisy and

non-noisy solutions forAthe optimal control is in the term §(nT).
In the non-noisy case, X is generated by an observer with rather

arbitrary observer gains. 1In the noisy case, X (nT) is generated by
a precisely described Kalman filter with specific time-varying
gains. The Kalman filter is given by

EX = A(nT)%(nT) + B(nT)u(nT) + Kf(nT)[y(nT)
- E(nT)E(nTﬂ

R(0) = X(t) = (Rtg)|Z(ty) = Z(ty) (7)

The Kalman gain matrix Ke is specified by
z = F (T D =T =TS =T
K (nT) = A(nT) P (nT)T (nT)[C(nT)Pf(nT)C (nT)

+ Rn(nT)] -1 _ (8-a)

where the symmetric matrix §f is governed by the discrete-time
Riccati matrix equation

P, ((n+1)T) = E(nT) B4 (nT) A" (nT)

X(nT)ﬁf(nT)ET(nT)[E(nT)ﬁf(nT)ET(nT)

-+

Rn(nT{]'1E(nT)§f(nT)XT(nT)
+ F(nT)Qn(nT)FT(nT) (8-b)

with initial condition

. R
§f(o) = cov[x(to)] = [Oxo g ] (8-c)
ZO

and where
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0 [in 0 ]
n 10 Qn2 , (8-d)

It is useful to examine the detailed structure of the individual
equations associated with expressions (6) (7) (8). Set

K ‘K :
-I'; = X X2 (9)
Earel

XZ Z

Substitution of (9), (4-c) and (4-d) into (6-a) leads to the fol-
lowing

uo(nT) = -[ﬁ(nT) + ﬁT(nT)Kx(hm

+1)7)B(nm)] ~18T (o) [K ((n

+1)T)A(nT)X (nT) + (k (n

+1)T)FgH(nT) + K, ((n+i)T)5(nT)) z (nT)] (10)

A set of three coupled matric difference equations which govern
the mat:ices Kx(nT), sz(nT), Kz(nT) is obtained by substituting

(4-c), (4-d) and (9) into (6-b). That set of equations, which is
lengthy, is documented in [4] and therefore will not be repeated

here. Note that if E(nT) in (10) were set to zero the optimal
disturbance-utilizing-control would become the conventional LQG
control.

Detailed expressions for the Kalman filter are obtained by sub-
stituting (4-c) and (4-d) into (7) to obtain
—

EX = AR + FdHE + Bu + R, (v - cx); §(to) = x(to) (ll-a)
Ez = Dz + Kfz(y - Cx); z(to) = z(to) (11-b)
where _
K
Ke =| £ | (12)
K
fz

Detailed expressions for the Kalman gain matrices in (11) are
obtained by substituting (4-c), (4-d), (12) and the expression
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into (8-a) to obtain
- .

= 5 2 wTrs 1
(APXX + FdHsz)C [CPxxC

(13-a)

fo + Rn]

= cs Tas AT -1 L
Kg, = DP,,C [CP,,C" + R ] (13-b)

In a like manner, the_set of matric difference equations governing

the blocks Pxx’ sz, Pzz are obtained from (8-b) as

EP._ = (AP.. + F.HP _)AT + (aPT FHD Fou) T
XX (A XX FdHsz)A (Apzx + ngpzz)(FdH)
- tal1cB,cT + R 17 a1 T
- ~ T -—
+ Fr1Qn1Fn1 7 Pyx(0) = Ryg (14-a)
5 -5 3T .35 (o T
EP, = D[P, A" + Pzz(FdH) ]
~ = T -1~ =
- [B1ICP,,C" + R.] “[al;: P, .(0) =0 (14-b)
s _ =5 =T _ %= T -1, T
EP,, = DP, D B} [CP, ,C” + R.] "IB]
+ E‘n'2Qn2}?‘n2T; §zz(°) = Rzo (14-c)
where
~ ~ ~_
[a] = &P, ,cT + F o, cT
(8] = DB, C"

The matric equations (14) can be integrated in forward time since
the initial values Pxx(o), sz(o), Pzz(o) are explicitly known. On

the other hand, the matrices Kx(nT), sz(nT), Kz(nT) must be

obtained by backward-time integration of (6-b) since only the
terminal values (t = NT) are known.

APPLICATION TO HOMING MISSILE GUIDANCE

MATHEMATICAL MODEL

As an illustration of the Noisy DUC theory the controller design
algorithms developed by Johnson [5] are applied to a homing inter-
cept problem. The missile is to be controlled during the final
phase of its flight so that its position coincides with that of a
target at a specified terminal time, even in the face of distur-
bances which may, or may not, be detrimental to the control
objective.
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The planar geometry for this problem is shown in Figure 1, where
the origin is located at the moving target position and the posi-
tion of the missile is defined by the coordinates (xM, yM),

where XM is horizontal and YM is vertical.

mw(t) AYM

b |

mu
[ MISSILE

Figure 1. Relative intercept geometry.

It is convenient to consider a reference line-of-sight (REF LOS)
passing through the target and oriented at a known angle op rela-

tive to the horizontal line X, . The REF LOS is established a

priori, and may correspond to a desired orientation of the line-of-
sight. A coordinate Xy is established normal to the REF LOS (Fig-

ure 1) and it is assumed that the missile begins the homing phase
of the problem with a certain displacement xl(o) and velocity

xz(o) (where X, = xl) normal to the REF LOS. It is assumed that a

previous "midcourse" guidance phase has delivered the missile to
the beginning of the homing phase at t = t_; thus, non-zero values
of xl(o) and x2(o) characterize the extent to which the midcourse

phase has failed to enable the missile to start the homing phase
under ideal conditions. The initial range to the target and the
closing velocity are assumed given. The problem at hand uses the
."small LOS" assumptions as in [10] and considers that the distur-
bance forces of primary interest are those acting normal to REF
LOS. Errors in estimating time-to-go to intercept are not con-
sidered here.

The equations describing the motion of the missile normal to the
REF LOS are

X, =X, + wnl(t)
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u + wd(t) + wnl(t)

k<
i

Xy + vn(t)

These equations may be written in the form

X = AX + Bu + Fdwd + Fnlwnl (15-a)
y = Cx + v, (15-b)
where
0o 1 0 0 1
A—[o o};3=(1>’Fd=<1>; F“1=<1);
c = [1 0] (15-c)

It is assumed in the example to follow that the waveform-type
disturbance consists of a linear combination of constant sequences

and linear ramps:
wylt) = C; + Cyt

where Cl and C2 are unknown constants. The disturbance process is

written in state-variable form as

21 =Yg
z, =z, + ol(t) + wn2(t)
z, = 0 + cz(t) + wnz(t)

or in the form

z = Dz +0(t) + Fnzwn2 (l1l6-2a)
wy = Hz (1l6-b)
where |
|0 1 1
D = [0 0} ; H= [1 0]; F o =:<l> (16-c)
and o(t) = [ol, 02] a sparse vector-impulse sequence occurring

at unknown instants.
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The corresponding discrete-time models are
Ex (nT) = Ax (nT) + Bu(nT) + F Hz(nT) + F ni¥ l(nT)
+ 3 (nT)
y(nT) = Cx(nT) + Gn(nT)

Ez(nT) = Dz (nT) + ;(nT) + ﬁnzﬁnz(nT)

wd(nT) = H(nT)z (nT)

where
. [r o1 . (T2 — [1%2 T3
A = ;s B = ; FdH = 2
0 1 T T T™/2
2 2 '
. T + T°/2 N T + T°/2 . 1 T
Foi = i n2 - i D=
T T 0 1

The waveform-type disturbances considered in this problem are
gravity, wind and target maneuver [10]. The gravity component
acting normal to the REF LOS is -32.2 cos Op e The acceleration

disturbance due to wind is modeled by the acceleration waveform
of Figure 2, acting in a direction normal to the REF LOS. The
target maneuver acting normal to the REF LOS has the waveform

described in Figure 3 with a peak acceleration value of 128 ft/secz.

WINDM f

32.2 1

(ft/sec2)

T i ! y
0 0 1.0 17 20 25

{sec)

Figure 2. Actual wind disturbance (WINDM) input.
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i" - an an e aB an ab G a» an

)
N

gl
N

(sec)

Figure 3. Actual maneuver disturbance (TMAN) input.

The gaussian noise disturbances considered in this problem are
Wn1r Wnor Vp in (15) (16). They are assumed to have zero means

and known covariances in, an, Rn’ respectively.

CONTROL OBJECTIVE

The primary control objective is to drive the displacement of the
missile (normal to the REF LOS) to zero at a specified terminal
time Tf; that is, to regulate the state X, to zero at t = Tf.

The value of Xy at t = Tf is defined as miss distance. The sec-

ondary objective is to achieve the primary objective while effec-
tively utilizing the "free" energy of the disturbances. The
control objectives are to be achieved by minimizing the expected

value of the performance index

3 1T, o3 n=N-l g %
e[Jl = E{Ex (nT)Sx (nT) + T/2 % [x"(nT)Qx (nT)
n=0
+ uT(nT)ﬁu(nT)]

subject to the plant equations (15) and the waveform disturbance
process equations (16). The resulting optimal control u (nT) is
given by (10). The control energy consumption (CEC) is computed

for analyses as follows:

n=N-1 5
CEC = T/2 20 fuf (nT) Ru (nT) ]
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DISCUSSION OF RESULTS

The homing intercept problem is solved by applying the Noisy

~

DUC theory. First the composite state vector x, the composite
system (4), and the expected value of the performance index (5)
are established. Then the optimal control is computed by (10)
after the gains Kx(nT), sz(nT) are computed. The problem is

solved on a CDC-6600 computer, using backward-time integration
to find the initial conditions for Kx' sz, and Kz’ although

closed-form algorithms would typically be used to compute the
gains Ky and Ky o in applications. Estimates of the states, x

and z are obtained from the discrete-time Kalman filter (11).

A Monte Carlo approach was developed to generate the expected
value of the performance index. This approach consists of
executing a specified number of runs where normally-distributed
random variables are generated each run for the initial conditions
of the plant state and the REF LOS orientation angle. The re-
sulting miss distance, performance index and control energy con-
sumption from each run are used in the computation of means and
standard deviations.

A sensitivity study was conducted using both deterministic and

stochastic simulations to determine "best" values for S and Q
The following parameters were fixed for the study:

fl(o) = 300 ft; 52(0) = 0.0 ft/sec
El(o) = =32.2 ft/secz; “ Ez(o) = 0.0 ft/sec3
225 0 1000 0
Ryo i Rpo =
0 4 ] 0 100

) ) [0 0 Sll 0
R =1; Q= ; S =

| 0 0 0 0

in = 1; R =1
T = 0.05 sec; op = 30 deg
Integration stepsize = 0.01; Tf = 4.5 sec. The missile'closing

velocity is 2000 ft/sec and at t , the missile distance from the
target is 9000 ft.
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For the first phase of the study, only deterministic runs were
made to determine sensitivities. 1In this analysis of performance

variation with S, all the waveform-type disturbances were simulated
and the disturbance states were corrupted by the noise {an} which
had the characteristics

E[wnz] = 0; cov[wnZ] = an =1

The variances of the simulated noise terms {wnl}, {wnz} and

{vn}, computed each run, were always nearly 1.

The results of varying S are plotted in Figure 4 for both the
conventional linear-quadratic-gaussian (LQG) controller and the noisy
disturbance-utilizing controller (NDUC). Since CiSC = 511' éll

will be referred to as S.

1,600,000 —

§
:

PERFORMANCE INDEX

140,000 ~
NOISE COVARIANCES
R,=1
100,000 Q=1
Q"1

SIMULATED WAVEFORM —
TYPE DISTURBANCES
- WIND GUST

GRAVITY

TARGET MANEUVER

CONTROL ENERGY CONSUMPTION

MISS DISTANCE (f)
{ ]
3 R
1 [l

|
3
1

T 1
100 1000 10,000 100,000
H

Figure 4. Performance &s a function of terminal weighting S.
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As S increases the miss distance approaches a bias value rather
than zero (later shown to be due to target maneuver). Figure 5
shows the mlss1le altitude versus ground range for the LQG with

S set to 100. The missile hits in front of the target for all
values of S less than 100,000 for the LQG and for all values of
S less than 5000 for the NDUC.

x(t,) INITIAL POSITION

4000 AN

MISSILE
*o| . \JRAJECTORY

REF LOS ”'\

000

111

1t ¢

3000

2000

ALTITUDE (ft)
1811
/

111 ¢

1000

TERMINAL POSITION x(T')]

1111

-1009 T T T T
8000 6000 4000 2000 ]
GROUND RANGE (ft)

Figure 5. Missile trajectory with terminal weighting S=100.

An S value which results in an acceptable miss distance can be
picked for the LQG controller, however, the control energy con-

sumption for the NDUC with the same S is much lower.

The waveform-type disturbance states (continuous) and estimates

(sampled) are plotted on Figure 6. Estimates of the wind and the
target maneuver lag the actual disturbances because the weighting
Q,, on the new values input to the Kalman filter is low. However

an can be increased to improve the estimate of the waveform-type
disturbance. A value of 100 was chosen for S and Q ny Was varied.

The results, plotted on Figure 7, show that the minimum performance
index is obtained for a value of Q n2 equal to 10,000. The lag in

the target maneuver estimate is reduced as an is increased (see
Figure 8). However, the increased Q n2 weighting causes the wave-

form estimate to fluctuate more which increases the control energy
consumption. The performance improvement due to "better" estimates
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is eventually offset by the control energy consumption so that a
minimum performance index is obtained. It should be noted that
the actual noise term {wnz} is simulated as random white noise

with a measured variance of approximately 1l.0.

[
Qp=1
§ =100

11 1t

~50 - "
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[14]
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Figure 6. Disturbance estimate with S=100 and an =1 (Qn2 chosen too low).

with the value of an set at 10,000, variation of S is reexamined

and the results are presented in Figure 9. Minimum performance

~

index occurs for an S value of 100. Further investigation of S
variation was conducted using a Monte Carlo simulation.

The Monte Carlo error sources were taken to be the initial con-
ditions for the plant states and the REF LOS orientation angle.
Normally distributed error source values are picked from the com-
puter system library random number generator based on the specifi-
cations given in Table 1.

TABLE 1. MONTE CARLO PARAMETERS AND VALUES

VARIABLE MEAN STANDARD DEVIATION
X, (0) 300.0 15.0
X, (0) 0.0 2.0
ay 30.0 5.0
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Figure 8. Effect of choice of @ , on lag in disturbance estimate (S=100).

The controller performance as a function of S for Monte Carlo
25-run sets is shown in Figure 10. Although the "best" mean

values for miss distance and performance index occur for S equal

to 100, the miss distance approaches an offset value when S is
equal to 200 or 250.

Selecting S as 250 and 6n2 as 10,000 the disturbances were adjusted

as shown in Table 2 to determine if the miss distance offset is
caused by the noise or one or more of the waveform-type distur-
bances. As magnitude of the target maneuver increases from 0 to

128 ftz/sec, the miss distance increases indicating that the tar-
get maneuver causes the offset. Note that the no gravity case has
the highest values which clearly indicates the utilization of
gravity to reduce control energy regquirements.

Further Monte Carlo analysis of the miss distance offset as a

function of S was performed for the no-target-maneuver case. The
results (see Figure 11) indicate that 250 is an appropriate value

for S. The data (shown on Figure 10) generated for the noise and
waveform-type disturbances also indicates that 250 is a "best"

value for §.

258



50,000
X
o 40,000
2z
w
Q NOISE COVARIANCES
g Ry=1
g in =1
& 30,000 - Q,, = 10,000
& SIMULATED WAVEFORM —
TYPE DISTURBANCES
GRAVITY
WIND GUST
TARGET MANEUVER
20,000 -
Z 30,000
=
(-
s
= ]
(7]
2
[@]
Q
>
(4]
[+
w
2
w
W
[e)
[+
-
2
8  20,000-
25 —
£
w
Q
2
= 0
(7
[a]
(7]
2]
s
-~25 T 1
()} 500 1000

s

Figure 9. Noisy DUC performance versus terminal weighting Swith an = 10,000,

259




50,000
x
O 40,000 -
2
w
(8]
3 rr
= NOISE COVARIANCES
o R =1
c 30,000 - Q=1
g_‘ n1
Q,, = 10,000
SIMULATED WAVEFORM —
TYPE DISTURBANCES
GRAVITY
20,000 - WIND GUST
TARGET MANEUVER
> uto e
3 30,000 -
=
(-9
s
: s
(7]
4
o k-0
(&)
>
> 25,000
o
w
2
w
-
o
[+ o
'—
2
S 20,000-
u MEAN
o STANDARD DEVIATION
25 -
E
w uHto
O
<
[a]
o
@
s
2514 T 1
0 500 1000

Figure 10. Monte Carlo bounds on noisy DUC performance versus terminal weighting.

260



A final comparison is made between the LQG and NDUC controllers
for various cases. The 25-run set Monte Carlo results are listed
in Table 3. This table shows the effects of deleting individual
disturbance inputs. In general, the NDUC achieves lower misses
when waveform-type disturbances (or waveform-type disturbances
plus gaussian noise) are present.

TABLE 2. NOISY DUC MISS DISTANCE OFFSET FOR VARIOUS DISTURBANCE

CONDITIONS
PERFORMANCE MISS CONTROL ENERGY
CONDITION INDEX DISTANCE CONSUMPTION
MEAN/STANDARD MEAN/STANDARD MEAN/STANDARD
DEVIATION DEVIATION DEVIATION
NO GRAVITY 31854 /1884 6.7/1.1 26092/1471
NO WIND 28950/121 6.4/0.1 23825/200
NO TARGET
MANEUVER 2323/512 -0.3/1.1 2178/528
QUARTER OF NORMAL
TARGET MANEUVER 4287/655 1.3/1.1 3942/686
HALF OF NORMAL
TARGET MANEUVER 9843/963 2.9/1.1 8685/929
ALL NOISE AND
WAVEFORM DISTUR- )
BANCES 3173271710 6.0/1.1 27106/1500
NO NOISE 31025/103 6.0/0.1 264777178
NO WAVEFORM-
TYPE DISTUR-
BANCE 3119/160 0.9/0.1 3028/151
TABLE 3. PERFORMANCE OF NOISY NDUC VERSUS LQG FOR VARIOUS
DISTURBANCE CONDITIONS
PERFORMANCE MISS CONTROL
. INDEX DISTANCE ENERGY
CONDITION MEAN/STANDARD MEAN/STANDARD MEAN/STANDARD
DEVIATION DEVIATION DEVIATION
LQG NDUC LQG NDUC LQG NDUC
NO NOISE 430841,10258 | 31025,103 | -55.8/0.7 | 6.0/0.1 | 41307/1090 26477/178
NO GRAVITY 2614127413 31854,1884 | -43.5/,0.1 | 6.7/1.1 24396/26 26092/1471
NO WIND 440596,10397 | 28950,121 | -56.4,0.7 | 6.4/0.1 | 42797/1132 23825/200
NO TARGET
MANEUVER 15729/1881 2323/512 -10.5/0.7 { -0.3/1.1 1997/203 2178/528
NO WAVEFORM-
TYPE DISTURBANCE* 1691/161 1691/161 0.9/0.1 0.9/0.1 1583/154 1581,151

* ~
THE INITIAL CONDITION ON Z) . WHICH IS USED IN THE DUC CONTROL LAW, IS SET TO ZERO FOR ThIS

CASE ONLY.
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CONCLUSIONS

The results of this investigation show that the Noisy DUC controller
provides improved performance, when compared with an LQG controller,
in those cases in which both "waveform-type" disturbances and
gaussian noise are present. Although the problem considered here

is relatively simple, it demonstrates the potential of the Noisy
DUC approach. In a following investigation this technique will be
used to design a control law which will be implemented in a six
degree-of-freedom air defense simulation.
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STABILITY CONTROL OF LARGE INERTIA, DYNAMICAL,
NONLINEAR SYSTEMS IN THE PRESENCE OF UNSTABILIZING
DISTURBANCES

John E. Bennett and Haren Almaula
Electrical and Computer Engineering Department
Clemson University
Clemson, South Carolina 29631

ABSTRACT

This paper presents a generic study showing stability control of
a large inertia, dynamical, nonlinear system such as a power
system. The techniques of this study could be applied to a
number of applications including both Slewing and Position of
Fire Control Systems, and the stability of electrical generators
in the presence of disturbances.

The stabilizing control is obtained by a generating, a priori, a
sequence of stabilizing trajectories, which converges to a de-
sired or "best" stabilizing trajectory. The initial control is
chosen as an optimal one for the approximate linear case, and
then an iterative procedure yields a sequence of trajectories and
control schemes for the nonlinear system. The final controller
is shown to be robust, and it stabilizes certain disturbances
that in the uncontrolled case lead to unstable system behavior.

An example of stabilizing a faulted, 1000 MW, generator is shown.
Unlike prior studies, a nonlinear model of the generator includ-
ing magnetic saturation was used, and the results showed enhanced
transient stability over previous techniques.
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INTRODUCTION

Presently, large megawatt synchronous generators are disconnected
from a power system when a major fault is detected at its termi-
nals, and it could take several hours to reconnect the generator
to the system. However, if the generator was disconnected from
the system and the fault was allowed to clear, then the generator
would accelerate for the time-period it has no load. When, after
clearing the fault, the generator is reconnected to the system,
the question now is whether the generator remains in synchronism
or not. Posed in terms of control theory language, the question
is whether or not a stable equilibrium state can be reached after
the occurrence of a fault?

This paper presents the results of a generic study [1] using
‘statefeedback in a suboptimal scheme for the stability control of
a synchronous generator. The control action proposed from this
study can be determined prior to a fault and is shown to
stabilize disturbances that in the uncontrolled case lead to
instability. Since the synchronous generator is a large inertia
dynamical, nonlinear system it is felt that results of this study
can be applied to similar problems in slewing and position of
fire control systems.

PROBLEM DESCRIPTION

It is well recognized that the optimal control of nonlinear
systems will often have to be obtained from an iterative scheme
[2,3]. The closed-form analytical solution, while most
desirable, is not known for nonlinear systems except for a few
special cases. The transient stability problem of a power system
is a nonlinear problem which is concerned with the development of
a stabilizing control law for a large inertia, dynamical system
where the system is subjected to a major disturbance and must be
returned to an equilibrium state, the exact nature of which is
not known a priori. Thus the structure of the problem is of the
form: Given the dynamical system

I><

= f(x,u,t) (1)

determine a control u¥, that transfers the éystem from the
present state to an equilibrium state in a finite time interval,
while minimizing a suitable performance index.

To solve this stabilization problem some researchers have devised
'optimal-aiming' strategies that attempt to aim the system at
each point of its trajectory to a stable solution [4,5,6]. The
trouble with such 'pointwise' control strategies is that stabili-
zation of the nonlinear system is not guaranteed and in fact
there exist controllable linear systems which will be destabil-
ized by such strategies [7]! Clearly such a strategy is a poor
choice for the problem at hand. Other researchers [8,9,10] have
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suggested open-loop schemes for the transient stability control
of the synchronous generator. But open-loop schemes do not take
into account any changes in the system that could occur in the
post-disturbance period. Rather the attempt is to return the
system to exactly its pre-fault status, irrespective of whether
this is an equilibrium state or not for the post-fault period.
Such strategies can, in some circumstances, push the system into
unstable regions and not aid transient stability at all. A feed-
back control strategy that continually obtains information on the
states avoids this pitfall. In this study the control is applied
as a state-dependent feedback control that attempts to force the
system to a closer target trajectory leading to an equilibrium
state. The problem is essentially the tracking problem described
by Athans and Falb [11] except that the system is nonlinear and
that a desired target set is not known exactly but must be speci-
fied by exercising engineering judgement.

In the study, the model of the synchronous generator used is not
the conventional d-q-o axis model, but a direct-phase reference
model. The details of the direct-phase model are given in [12].
Tt will suffice to state here that compared to the conventional
model, this model gives system states that are conceptually more
meaningful and physically measurable. After rearranging
Kirchhoff's mesh equation and Newton's equation of motion for
rotating bodies the nonlinear state vector equation is obtained as

X(t) = A(X,£)X(t) + B(X,£)U(t) + V(t) (2)
where
X is the state vector composed of the rotor-angle and
currents of the generator,
U is the control vector consisting of the excitation
voltage, and prime-mover torque,
and V is the vector that accounts for bus-voltage
effects.

It is important to note that the matrices A and B have elements
that are not only time-varying but also non-linear in the state
X. Further, it should be noted that since the system trajectory
covers a wide range of states, linearization about a nominal
steady-state will not yield meaningful results. For example, it
makes little sense to linearize the synchronous generator
parameters at a nominal excitation when excitation voltage is
chosen as one of the control variables and is to be varied over

its full range.

SUBOPTIMAL SYNTHESIS OF THE CONTROLLER

Stability of the synchronous generator is most easily depicted as
the rotor angle behavior following a system fault. Figure 1 is
an example of both stable and unstable behavior. In the unstable
case, the rotor angle grows large without bound, while in the
stable case, the response following a disturbance decays. The
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The aim of a controller would be to make a system that has the
unaugmented response of the unstable case to follow the response
of that in the stable case, namely damped oscillations. Thus a
damped oscillation of the rotor angle in the post disturbance
interval is to be chosen as part of the target trajectory.
Following the outline for the tracking problem [11], a suitable
quadratic performance index in terms of the error from the target
set is formulated as

J = <elte), F elte)d

t
+ 5 rEce(t),Q(t)e(t)>+<u(t),R(t)U(t)>dt (3)
t
where £
<, = an inner product,
[ty tp] = the time interval for control action,
F = a symmetric weighting matrix,
Q(t) = a semipositive definite weighting matrix,
R(t) = a positive definite weighting matrix,
e(t) = [Z(t) - ¥(t)]

[Z(t) - C(t)X(t)] is the error,
with Z(t) a target vector and Y(t) = C(t)X(t) the
observation vector.

The optimal control for the linear control problem is known to
be

U*(t) = R=1(t) BT(t) [G(t) - K(t) X(t)] and (4)
where K(t) is the solution of the matrix differential equaton

- K(£)A(t) - AT()K(E)

K(t)
K(£)B(E)R™T(£)BT(£)K(t)

+

cTeyact)e(te) | (5)

with boundary condition
K(te) = CT(te) F Cltg) (6)

. the vector G(t) is the solution of the linear vector differential
equation

G(t) = K(t)B(t)R=T(t) - aT(t) G(t)
KOV - cT(e)at)z(t) | (7)
with boundary condition
G(tp) = cT(te) F Z(tp)
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Since the backward-time solutions of Equations (5) and (7)
require knowledge of the system trajectory a 'seed' case must
first be obtained. The procedure for starting the iterative
scheme is then to obtain a system trajectory with no applied
control. This is shown in Figure 2 where the system was faulted
for six cycles before the fault was cleared. With this 6 cycle
fault, the system is stable in the sense that rotor swings do not
increase in amplitude. That the swings do not decay either is
due to the fact that sufficient damping was not included in the
synchronous generator model, making the results of the study
somewhat conservative. Whereas in the practical system, there is
viscous damping of the rotor that would enhance decay and
therefore the system would stabilize faster. The 'seed’
trajectory, X°(t), is used to obtain solutions of Equations (5)
and (7) namely K'(t) and G'(t). These matrices can now be

used to construct the control of Equation (4), g1(t). Since the
system is nonlinear Q1(t) may, in general, not be the optimal
control, and another trajectory X'(t) is obtained. Equations
(g) and (7) are solved once again to obtain solutions K°(t) and
G4(t), and a control gZ(t) can now be constructed. The
iterative scheme is obvious and a sequence of controllers,
UR(t), is constructed until a satisfactory system trajectory
X%(t) is obtained.

Figure 3 shows that a satisfactory trajectory is obtained in Jjust
two iterations, while Figure 4 shows the associated control.

Note that a disturbance of 15 cycle duration has been stabilized
in Figure 3. This disturbance destabilizes the trajectory shown
in Figure 2. The magnitude of either control variable in Figure
4, is not unacceptably large. The 60Hz component in the excita-
tion voltage is really a reflection of the imbalance in the
stator currents, not a control effort, and this component is seen

to be decaying.

To check for the robustness of the controller, it was used to
stabilize the system starting from a different initial condition
than that was used in constructing the original controller. The
results are shown in Figure 5, and it can be seen that successful
control action is obtained. '

The important difference between this control scheme and other
ones reported by researchers earlier [6,8,9,10] is that this
control action is applied after the clearing of the fault and not
immediately upon the detection of the fault. The advantage being
that control action can be applied only to disturbances for which
it is known that stabilizing action will be successful. This
selective application is crucial, for in a power system, often
there are disturbances where it is better to sacrifice system
integrity and maintain system security (load shedding), than to
attempt to maintain system integrity and lose system security
(black-out). It is the state-dependent nature of the control
action that permits this selectivity and the feedback application
results in enhanced transient stability margins. Compared to
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open-loop strategies, the advantage of the feedback scheme is
that action can be applied only to those disturbances for which
the system does not have inherent stability. Open-loop schemes
apply control effort indiscriminately to every disturbance
whether the system possesses inherent stability or not. For a
power system where the effect of frequent stresses must be
considered on the life cycle of very expensive equipment this is
an important consideration in selecting a control strategy.

CONCLUSION

The applicability of the methods of linear optimal control to a
nonlinear system has been demonstrated. The control scheme is
obtained by an iterative procedure and is shown to both improve
stability margin and stabilize major disturbances. A synthesis
of the power systems and control systems approaches to the tran-
~sient stability problem was achieved by allowing the generator

and the external power system to have a common set of state vari-
ables. As mentioned previously, it might be possible to apply
these same techniques to enhance the control of both slewing and
position control of five control systems.
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