The synthesis of the new high density energetic compound 4,8-dinitro-12H-
[1,2,5]oxadiazolo[3,4-e][1,2,5]oxadiazolo[3',4',5]benzotriazol-13-
iuim inner salt 1,11-dioxide (7) was achieved in three steps (37% yield) from 2,4,8,10-
tetranitrobenzotriazol[1,2-a]benzotriazol-6-iium inner salt (4). The compound 7 was
found to be thermally stable up to 274 °C and was insensitive to impact (hammer/anvil
test).
OFFICE OF NAVAL RESEARCH

CONTRACT N00014–90–J–1661

R&T Code 33E1800---01
Dr. Richard S. Miller

Technical Report No. 3

by

Ganesan Subramanian, Genevieve Eck, Joseph H. Boyer, Edwin D. Stevens and Mark L. Trudell*

Prepared for Publication

in the

Journal of Organic Chemistry

University of New Orleans
Department of Chemistry
New Orleans, LA

July 25, 1996

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

Ganesan Subramanian, Genevieve Eck, Joseph H. Boyer, Edwin D. Stevens and Mark L. Trudell

Department of Chemistry, University of New Orleans, New Orleans, LA 70148

Address correspondence to:
Dr. Mark L. Trudell, Department of Chemistry,
University of New Orleans, New Orleans, LA 70148
Tel: 504–286–7337, FAX: 504–286–6860, Email: MLTCM@UNO.EDU
Abstract

The synthesis of the new high density energetic compound 4,8-dinitro-12H-[1,2,5]-oxadiazolo[3,4-e][1,2,5]oxadiazolo[3',4':4,5]benzotriazolo[1,2-a]benzotriazol-13-ium inner salt 1,11-dioxide (7) was achieved in three steps (37% yield) from 2,4,8,10-tetranitrobenzotriazolo-[1,2-a]benzotriazolo-6-ium inner salt (4). The compound 7 was found to be thermally stable up to 274 °C and was insensitive to impact (hammer/anvil test).
Introduction

The compounds triaminotrinitrobenzene (1, TATB),1 2,6-dipicrylbenzo[1,2-\textit{d}][4,5-\textit{d}']bis-triazole-4,8-dione (2),2 2,4,8,10-tetranitrobenzotriazolo[2,1-\textit{a}]benzotriazol-6-iium inner salt (3, \textit{z}-Tacot),3,4 2,4,8,10-tetranitrobenzotriazolo[1,2-\textit{a}]benzotriazol-6-iium inner salt (4, \textit{y}-Tacot),5,6 and more recently 5-nitro-4,6-bis(5-amino-3-nitro-1\textit{H}-1,2,4-triazol-1-yl)pyrimidine (5, DANTNP)7

![Chemical structures]

1. mp = 350 °C (dec)
 \(d = 1.94 \text{ g/cm}^3 \)
 \(D = 7.80 \mu\text{m/}	ext{msec} \)
 \(P_{\text{CJ}} = 290 \text{ kbar} \)

2. mp = 430 °C (dec)
 \(*d = 1.80 \text{ g/cm}^3 \)
 \(*D = 7.80 \mu\text{m/}	ext{msec} \)
 \(*P_{\text{CJ}} = 290 \text{ kbar} \)

3. mp = 378 °C (dec)
 \(d = 1.85 \text{ g/cm}^3 \)
 \(D = 7.20 \mu\text{m/}	ext{msec} \)
 \(P_{\text{CJ}} = 245 \text{ kbar} \)

4. mp = 400 °C (dec)
 \(*d = 1.84 \text{ g/cm}^3 \)
 \(*D = 7.06 \mu\text{m/}	ext{msec} \)
 \(*P_{\text{CJ}} = 202 \text{ kbar} \)

5. mp = 350 °C (dec)
 \(d = 1.87 \text{ g/cm}^3 \)
 \(D = 8.20 \mu\text{m/}	ext{msec} \)
 \(P_{\text{CJ}} = 327 \text{ kbar} \)

Figure 1. Physical and energetic properties of several insensitive energetic compounds. For those compounds in which the energetic properties have not been experimentally determined computed values (\(*) are indicated (see ref. 10).
have been developed as insensitive energetic materials for a variety of industrial and military applications (Figure 1). However, despite favorable insensitivity to heat, impact and electric shock, the density and energetic properties (detonation velocity, \(D\); detonation pressure, \(P_{\text{CJ}}\)) of these compounds are inferior to those observed for the explosives RDX and HMX.8,9

The design and synthesis of new insensitive energetic compounds with high density and improved energetic properties has been the focus of recent studies in our laboratories.11-13 Because of the inherent thermal stability of the dibenzotetrazapentalene ring system, 3 and 4 were identified as attractive precursors for the development of new classes of high density insensitive energetic materials. Based on computed densities and energetic properties, the nitro and furoxano substituted derivatives 6 and 7 were envisaged as attractive synthetic targets for development as new high density insensitive energetic compounds. The synthesis of 4,11-dinitro[1,2,5]-oxadiazolo[3,4-\(\epsilon\)][1,2,5]oxadiazolo[3',4':4,5]benzotriazolo[2,1-\(\alpha\)]benzotriazol-6-ium inner salt 1,8-dioxide (6, \(\text{z-DBBD}\)) from 3 has recently been achieved in three steps in 21% overall yield.11 The \(\text{z}\)-isomer 6 was found to be thermally stable up to 310 °C and exhibited moderate impact sensitivity (dropweight test (2.5 kg): 6, 19 cm; \(\text{RDX}_{\text{std.}}\), 18 cm).13 The synthesis of the corresponding \(\text{y}\)-isomer, 4,8-dinitro-12\(H\)-[1,2,5]oxadiazolo[3,4-\(\epsilon\)][1,2,5]oxadiazolo[3',4':4,5]-benzotriazolo[1,2-\(\alpha\)]benzotriazol-13-ium inner salt 1,11-dioxide (7, \(\text{y-DBBD}\)) has recently been completed. Herein we wish to describe the synthetic sequence and preliminary insensitivity data for 7.

\[
\text{C}_{12}\text{H}_2\text{N}_{10}\text{O}_8
\]
\[
^{*}d = 1.96 \text{ g/cm}^3
\]
\[
^{*}D = 7.52 \mu\text{m/msec}
\]
\[
^{*}P_{\text{CJ}} = 245 \text{ kbar}
\]
\((^{*}\text{computed values}^{10})\)
Results and Discussion

Based on previous studies in the z-isomer system,11 the synthesis of the target compound 7 was envisaged to proceed from y-Tacot (4). The benzotriazolo[1,2-\textit{a}]benzotriazol-6-iium inner salt (8) was prepared from \textit{o}-phenylenediamine and 2-chloronitrobenzene according to the procedure developed by Kauer and Carboni.4 Nitration of 8 was found to proceed cleanly with 90\% \textit{HNO}_3/\textit{H}_2\textit{SO}_4 at 0–5 °C, followed by a brief heating period (10 min) at 60–75 °C. This gave the 2,4,8,10-tetranitro derivative 4 as the sole product in 86\% yield (Scheme 1). This modified procedure provided 4 in higher yield and in a higher state of purity than the literature nitration conditions.4 The tetranitro derivative 4 was found to be a strongly fluorescent material \[\lambda_{\text{r}}\text{ (acetone) } 475 \text{ nm, } \Phi \text{ (0.50)}.\] Although aromatic nitro compounds do not usually possess good luminescent properties, the photophysical properties of 4 are characteristic of nitrated benzotetraaza-pentalene derivatives.14 The orientation of the nitro groups in 4 was unequivocally confirmed by X-ray crystallography (Figure 2).15

Scheme 1

![Scheme 1](image-url)
From the X-ray structure, it is readily apparent that one molecule of acetone co-crystallized per molecule of 4. It is interesting to note that earlier computational studies on simple tetraazapentalenes predicted that a positive electrostatic potential existed above the nitrogen-nitrogen bond of the trivalent nitrogen atoms.16 In the X-ray structure of 4-acetone, the electronegative oxygen atoms of the carbonyl of acetone are uniformly oriented throughout the crystal lattice.

Figure 2. Molecular packing in the crystal of 4-acetone.
toward this electropositive region of the tetraazapentalene unit of 4. This is consistent with the computational results and clearly demonstrates for the first time the electronic nature of intermolecular dipolar interactions in a tetraazapentalene system. The stoichiometric co-crystallization of solvent molecules (acetone, DMF) has also been observed (NMR, C,H,N) to take place with other tetraazapentalene derivatives.11,12

With multigram quantities of 4 in hand, attention turned toward further functionalization of the benzo rings of 4 for the construction of the furoxan ring systems of the initial target compound 7. Treatment of 4 with sodium azide in dimethyl sulfoxide furnished a single symmetrical diazidodinitro derivative in 83\% yield resulting from nucleophilic substitution of an equivalent pair of nitro groups by the azide anion. The structure of the compound is believed to be that of the symmetrical isomer, 4,8-diazido-2,10-dinitro derivative 9 (Scheme 1). From previous studies with z-Tacot (3), nucleophilic substitution of the 4,10-nitro groups (adjacent to the divalent nitrogen atoms of tetraazapentalene moiety) was found to take place regiospecifically.11 By analogy, the 4,8-nitro groups of 4 are believed to be the site of azide substitution resulting in the formation of 9.

Nitration of the diazidodinitro derivative 9 proceeded easily to give the 4,8-diazido-2,3,9,10-tetranitro derivative 10 in 76\% yield (Scheme 1). The ease of the nitration of 9 stems from activation of the C(3)- and C(9)-positions toward electrophilic attack by the ortho-directing effect of the azido groups.17 Despite favorable computed density and improved computed energetic properties for 10 (\(d = 1.84\) g/cm\(^3\), \(D = 8.12\) mm/\(\mu\)sec, \(P_{\text{CJ}} = 301\) kbar),10 the material was considerably more sensitive than 4. The diazidotetranitro derivative 10 was found to have good thermal stability (decomposed at 280 °C) but was impact sensitive (violent explosion with flame when struck by a hammer) while 4 was completely stable under these conditions.

Thermolysis of 10 furnished the new heterocyclic system 4,8-dinitro-12\(H\)-[1,2,5]-oxadiazolo[3,4-\(e\)][1,2,5]oxadiazolo[3′,4′:4,5]benzotriazolo[1,2-\(a\)]benzotri-azo-13-ium inner salt 1,11-dioxide (7) in 58\% yield (Scheme 1). This served to confirm the presence of two sets of contiguous azido and nitro groups and supported the structural assignment of 9. The structural
asignment of 7 was made based on the X-ray structure of z-isomer 6 in which the orientation of the exocyclic oxygen atoms of the furoxan moieties occupied the least sterically hindered site. In addition, the structure of 7 is consistent with the structure of thermodynamically favored 4-nitrobenzofuroxans. However, it should also be noted that without unequivocal confirmation of this structure by X-ray crystallography, the isomer 7' resulting from the thermal isomerization of 7 must also be considered as a possible structure.

![Chemical Structure](image)

The red microcrystalline material 7 was found to be stable up to temperatures of 274 °C at which point the material decomposed non-explosively into a tar-like material. In addition, 7 was found to be insensitive to impact (hammer/anvil test). Although no detonation was observed when the material was struck by a hammer, this is a crude test and may not accurately reflect the sensitivity of the compound. We have found a number of moderately sensitive materials to be non-responsive in this test (ie. 6, RDX). More accurate experimental measurements have been required to define the sensitivity of these compounds.

Attempts to introduce additional nitro groups at the C(1)- and C(13)-positions of 7 were unsuccessful. Similar to the results obtained in the z-isomer system, attempted nitration of 7 using highly reactive nitration media (100% HNO₃, FSO₃H) resulted in the formation of an intractable mixture of carbonyl-containing compounds. As observed in the z-isomer system, the tetranitro derivatives were very sensitive to moisture and air such that the ortho-dinitro functionality readily decomposed to quinone-like species via an unusual hydrolysis/oxidation reaction. In light of the chemical sensitivity of these compounds further attempts to nitrate 7 have been abandoned. The development of new heterocyclic systems which exploit the insensitivity and thermal stability of the tetraazapentalene ring system is currently under investigation.
Experimental Section

All chemicals were purchased from Aldrich Chemical Co., Milwaukee, WI. Reported UV absorptions are restricted to the longest wavelength. Fluorescence quantum yields were determined for solutions in EtOH or DMF with excitation at 460, 540 and 570 nm with sulfarhodamine ($\Phi = 0.68$) and acridine orange ($\Phi = 0.46$) as references. Melting points and decomposition points are uncorrected. Elemental analyses were obtained from Galbraith Laboratories, Inc., Knoxville, TN, and Midwest Micro Lab, Indianapolis, IN. All reported compounds gave satisfactory carbon and hydrogen analyses. Due to the high nitrogen content and explosive nature of these compounds, some reported microanalytical data for nitrogen were outside the standard acceptable limit of ±0.4%. However, duplicate and triplicate analyses for nitrogen were usually within ±3% of calculated values and corresponded to the empirical formula of the compound. **Caution!** Compounds 4, 7, 9, and 10 should be handled as potentially explosive materials!

y-Tacot (4). The dibenzo[1,4]azapentalene 8 (15.6 g, 0.075 mol) was dissolved in sulfuric acid (195 mL) and the mixture was cooled to 10 °C in an ice-bath. Nitric acid (90%, 300 mL) was then added dropwise, keeping the flask temperature below 25 °C. After the addition was complete, the reaction mixture was stirred for 15 min at room temperature and then heated at 60–75 °C for 10 min. The mixture was cooled to 20 °C and poured into ice-water (25 L). The yellow precipitate was filtered, washed with water (3 × 100 mL) and dried. The crude compound (25.8 g) was recrystallized from DMF (550 mL) to give 4 (25.1 g, 86%). An analytical sample was prepared by recrystallization from acetone. mp 398 °C (dec) [Lit5 mp 400 °C (dec)]. IR (KBr) ν 3097, 1629, 1586, 1536, 1413, 1377, 726 cm$^{-1}$. 1H NMR (DMSO – d_6) δ 10.6 (d, J = 1.9 Hz, 2H), 9.3 (d, J = 1.8 Hz, 2H). 13C NMR (DMSO – d_6) δ 142.8, 141.2, 135.0, 125.6, 120.7, 116.2. UV (acetone) λ_{max} 452 nm, log ε 5.47; λ_t (acetone) 475 nm, Φ 0.50. Anal. calcd for $C_{12}H_4N_8O_8$: C, 37.12; H, 1.04; N, 28.86. Found: C, 37.02; H, 1.02; N, 27.82.
4,8-Diazido-2,10-dinitrobenzotriazolo[1,2-a]benzotriazol-6-ium Inner Salt (9). y-Tacot (4) (17.5 g, 45 mmol) and sodium azide (23.4 g, 360 mmol) in dry DMSO (600 mL) were heated at 70 – 75 °C for 24 hours. The mixture was then cooled at 15 °C for 1.5 h and the yellow-orange solid which separated was collected by filtration and washed with ethyl alcohol (100 mL) and diethyl ether (100 mL) to give 9 (14.3 g, 83%). The crude compound was used directly in the next step without any further purification. A pure sample was prepared for analysis by recrystallization from DMF. mp 175–176 °C (dec). IR (KBr) v 3072, 2123, 1542, 1522, 1337, 1115, 741 cm⁻¹. ¹H NMR (DMSO – d₆) δ 9.8 (d, J = 1.8 Hz, 2H), 8.2 (d, J = 1.7 Hz, 2H), 2.80 (s, 3H, DMF), 2.72 (s, 3H, DMF). Anal. calcd for C₁₂H₄N₁₂O₄·C₃H₇NO: C, 39.76; H, 2.43; N, 40.16. Found: C, 39.71; H, 2.52; N, 39.27.

4,8-Diazido-2,3,9,10-tetranitrobenzotriazolo[1,2-a]benzotriazol-6-ium Inner Salt (10). Nitric acid (90%, 47.5 mL) was cooled in an ice-bath and 9 (12.6 g, 0.033 mol) was added keeping the temperature below 10 °C. Stirring was continued for 2 h at 0 – 5 °C. The mixture was poured into ice-water (1 L) and the orange-brown precipitate was filtered, washed with water (100 mL) and dried to give 10 (11.9 g, 76%). The crude compound was dissolved in acetone (12.5 mL) at 40 °C. The insoluble material was removed and triturated with hexane (20 mL). The mixture was kept in a freezer overnight and the precipitate was filtered. The material was then recrystallized from acetone to give 10 (0.9 g, 41%). mp 280 °C (dec). IR (KBr) v 2144, 1558, 1507, 1339, 1320, 1292, 907, 820 cm⁻¹. ¹H NMR (acetone – d₆) δ 10.1 (s, 2H). ¹³C NMR (acetone – d₆) δ 140.9, 136.8, 133.2, 124.2, 122.1, 108.7. Anal. calcd for C₁₂H₂N₁₄O₈·C₃H₆O: C, 34.10; H, 1.53; N, 37.12. Found: C, 33.78; H, 1.58; N, 34.43.

y-BDD (7). The tetranitrotriazide 10 (10.0 g, 21 mmol) in 1,2-dichlorobenzene (650 mL) was heated for 1 h at 150 °C. The mixture was cooled in an ice-bath for 2 h and the precipitate was filtered and washed with diethyl ether. The filtrate was triturated with acetonitrile to give 7 (6.0 g, 58%) in pure form. mp 274–275 °C (dec). IR (KBr) v 1654, 1575, 1534, 1414, 1330, 1296,
999, 704 cm\(^{-1}\). \(^1\)H NMR (DMSO – d\(_6\)) \(\delta\) 10.4 (s, 2H). \(^{13}\)C NMR (DMSO – d\(_6\)) \(\delta\) 146.6, 134.6, 132.5, 123.7, 117.2, 107.5. Anal. calcd for C\(_{12}\)H\(_2\)N\(_{10}\)O\(_8\): C, 34.80; H, 0.49; N, 33.82. Found: C, 34.78; H, 0.58; N, 31.23.

Acknowledgement. We gratefully acknowledge the financial support of this work by the Office of Naval Research (N00014–90–J–1661) and Program Officer Dr. Richard S. Miller.

References

(2) Berlin, J. K.; Coburn, M. D. J. Heterocycl. Chem. 1975, 12, 235.
(9) Meyer, R. in Explosives, 3rd ed.; VCH: Weinheim, 1987, p. 150 and 201. [RDX (hexogen); mp 204 °C; d = 1.81 g/cm\(^3\); D = 8.85 mm/sec]
[RHX (octogen); mp 282 °C; d = 1.9 g/cm\(^3\); D = 9.1 mm/sec]
(10) The density \(d\) (g/cm\(^3\)), detonation velocity \(D\) (mm/sec) and detonation pressure \(P_{CJ}\) (kbar) were computed with a program obtained from the Naval Weapons Center, China Lake, CA.

(15) The authors have deposited atomic coordinates for 4-acetone with the Cambridge Crystallographic Data Center. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U.K.

TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research
Chemistry Division, Code 313
800 North Quincy Street
Arlington, Virginia 22217-5000

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

Dr. James S. Murday
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Robert Green, Director
Chemistry Division, Code 385
Naval Air Weapons Center
Weapons Division
China Lake, CA 93555-6001

Dr. Harold H. Singerman (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Eugene C. Fischer (1)
Code 2840
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Bernard E. Douda (1)
Crane Division
Naval Surface Warfare Center
Crane, Indiana 47522-5000

* Number of copies to forward