Thermoacoustic Pin Stacks

by

Robert M. Keolian

June 1996
This report was prepared for and funded by the Office of Naval Research, ONR 331, 800 North Quincy Street, Arlington, VA 22217-5660.

This report was prepared by:

ROBERT M. KEOLIAN
Assistant Professor of Physics

Reviewed by:

WILLIAM B. COLSON
Chairman, Department of Physics

Released by:

DAVID W. NETZER
Associate Provost and Dean of Research
Thermoacoustic Pin Stacks

Robert M. Keolian

PHYSICS DEPARTMENT
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5117

OFFICE OF NAVAL RESEARCH
ONR331
800 NORTH QUINCY STREET
ARLINGTON VA 22217-5660

Approved for public release; distribution is unlimited

This technical report describes progress building and testing a "pin stack" during the period 01 June 1995 through 31 May 1996. The pin stack produced 18% higher acoustic pressures, reached onset at a 40% lower mean pressure, and was about 25% more efficient than a conventional rolled stack in a thermoacoustic prime mover. A publications, presentations, and honors report is also included.
THERMOACOUSTIC PIN STACKS

01 June 1995 - 31 May 1996

by

Robert M. Keolian
Physics Department
Naval Postgraduate School
Monterey, CA 93943

ABSTRACT

This annual summary report describes progress building and testing a "pin stack" during the period 01 June 1995 through 31 May 1996. The pin stack produced 18% higher acoustic pressures, reached onset at a 40% lower mean pressure, and was about 25% more efficient than a conventional rolled stack in a thermoacoustic prime mover. A publications, patents, presentations, and honors report is also included.
Description of Project:

The primary objective of this research is to construct and test a "pin stack." This stack geometry is predicted to substantially improve the efficiency of thermoacoustically based refrigerators, heat pumps and prime movers (Swift and Keolian, J. Acoust. Soc. Am. 94 (2), Pt. 1, 941-943, 1993).

Approaches Taken:

A comparison of the pin stack geometry with the conventional rolled geometry has been made in a modular prime mover test rig which uses low pressure neon gas held between room and liquid nitrogen temperatures. The pin stack was constructed by hand sewing a 75 micron constantan wire back and forth about 2300 times between the hot and cold heat exchangers. The wire forms a hexagonal lattice with wires along the acoustic axis spaced 750 microns apart with a 3.2% error rate. A small acoustic driver was added to the rig to allow us to measure the quality factor Q below onset as a function of gas pressure.

Accomplishments Completed:

The pin stack worked pretty much as predicted by theory. In air at room temperature, the Q of the prime mover increased by 18% for the pin stack over the comparison rolled stack, indicating that the pin stack significantly decreases acoustic losses. With neon and the temperature gradient applied, the onset occurs at a mean pressure which is 40% lower for the pin stack compared to the rolled stack. The sound produced is generally 18% louder for the pin stack, and the efficiency of the pin stack is about 25% better than the rolled stack, although this last result has the most uncertainty due to the difficulties of reliably measuring heat flows.

Tom Hoffer and his student have similar results for their mesh stacks, and we have all been careful to use similar techniques so that an accurate comparison of these new stack geometries can be made.
Students Associated with Grant:

LT Rodney Gibson, USN, has conducted his M.S. thesis work on this project.

Additional information:

One of the primary purposes of this work is to validate the Los Alamos DeltaE code. A comparison of pin stack and rolled stack data is shown along with DeltaE calculations in the first figure. Except for a slight difference in the spacing of the plates of the heat exchangers, the geometries for the two stack experiments are nearly identical. Plotted is the rms acoustic pressure divided by the mean pressure vs. the mean pressure. The glitch in the pin stack data was caused by letting the liquid nitrogen level in the dewar get too low, as the mean neon pressure was going up. We caught this, added nitrogen, and the sound level jumped up. Due to a problem, we were not able to bring the pressure back down through this region.

The simulations were made with parameters appropriate for 27 kPa, where the design of the pin stack was optimized. Because of the heat load, the cold exchanger was seen to warm up to 106 K in previous experiments with the rolled stack from the ideal liquid nitrogen temperature, and for simplicity this warmer temperature, and 310 K for the hot exchanger, was used in the DeltaE simulations for all mean pressures. However, in the experiment the heat load on the exchangers largely goes away at onset and the temperature gradient is higher than in the simulations. Thus, the experimental results have a lower onset pressure than our DeltaE predictions. More careful use of DeltaE should fix this. However, the code does not appear to be grossly wrong, and this should come as a comfort to Bill Ward and Greg Swift.

A rough measure of the efficiency improvement for the pin stack vs. the conventional stack can be made in terms of measured quantities by comparing the square of the acoustic amplitude divided by the heater power needed to keep the warm end of the prime mover near room temperature. In the second figure, this ratio can be seen to be about 25% better for the pin stack than for the conventional stack.

One surprise was how sinusoidal the acoustic waveforms are at these very high sound pressure levels, about 178 dB re 20 micro Pa. In figure 3, a typical waveform is shown at 89 kPa mean pressure and 46 kPa peak to peak pressure.
Efficiency Comparison
8.13 cm Plunger Position

\[\frac{P_o^2}{Q} \text{ (kPa}^2\text{/W)} \]

\[P_m\text{(kPa)} \]

- \[\text{Rolled Stack} \]
- \[\text{Pin Stack} \]

Figure 2
OFFICE OF NAVAL RESEARCH
PUBLICATION/PATENTS/PRESENTATIONS/HONORS REPORT
for
01 June 95 through 31 May 96

Contract/Grant Number: N0001496WR2007
Contract/Grant Title: Thermoacoustic Pin Stacks
Principal Investigator: Robert M. Keolian
Mailing Address: Physics Department
Code PH/Kn
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93943-5117
Phone Number: 408-656-2232
Facsimile Number: 408-656-2834
E-mail Address: bonzo@physics.nps.navy.mil

a. Number of papers submitted to refereed journals but not yet published: ___0___
b. Number of papers published in refereed journals (ATTACH LIST): ___0___
c. Number of books or chapters submitted but not yet published: ___0___
d. Number of books or chapters published (ATTACH LIST): ___0___
e. Number of printed technical reports & non-refereed papers (ATTACH LIST): ___0___
f. Number of patents filed: ___0___
g. Number of patents granted: ___0___
h. Number of invited presentations at workshops or professional society meetings: ___0___
i. Number of contributed presentations at workshops or professional society meetings: ___0___
j. Honors/awards/prizes for contract/grant employees, such as scientific society and faculty awards/offices (ATTACH LIST): ___2___
k. Number of graduate students supported at least 25% this year on this contract/grant: ___0___
l. Number of post docs supported at least 25% this year on this contract/grant: ___0___

How many of each are females or minorities? These six numbers are for ONR's EEO/Minority Reports. Minorities include Blacks, Aleuts, Amindians, etc., and those of Hispanic or Asian extraction/nationality. The Asians are singled out to facilitate meeting reporting semantics re "underrepresented".

Graduate student FEMALE: ___0___ Post doc FEMALE: ___0___
Graduate student MINORITY: ___0___ Post doc MINORITY: ___0___
Graduate student ASIAN E/N: ___0___ Post doc ASIAN E/N: ___0___
Honors/Awards/Prizes, etc.

Awarded Tenure, Naval Postgraduate School

Promoted to Associate Professor of Physics, Naval Postgraduate School
DISTRIBUTION LIST
FOR REPORT NUMBER NPS-PH-96-
UNDER WORK REQUEST N00014-96-WR-20007
ANNUAL SUMMARY REPORT

Copies

DR LOGAN E HARGROVE ONR 331 2
OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON VA 22217-5660

DEFENSE TECHNICAL INFORMATION CENTER 2
8725 JOHN J KINGMAN ROAD
STE 0944
FT BELVOIR VA 22060-6218

DIRECTOR NAVAL RESEARCH LABORATORY 1
ATTN CODE 2667
4555 OVERLOOK AVENUE SW
WASHINGTON DC 20375-5326

DUDLEY KNOX LIBRARY 2
CODE 52
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943

RESEARCH ADMINISTRATION 1
CODE 08
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943

PROFESSOR ROBERT M KEOLIAN 5
DEPARTMENT OF PHYSICS
CODE PH/KN
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 94943-5117

PROFESSOR ANTHONY A ATCHLEY 1
DEPARTMENT OF PHYSICS
CODE PH/AY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 94943-5117

PROFESSOR W PATRICK ARNOTT 1
ATMOSPHERIC SCIENCES CENTER
DESERT RESEARCH INSTITUTE
P O BOX 60220
RENO NV 89506