Magnetron Enhanced Reactive Ion Etching of Group-III Nitride Semiconductor Materials

George F. McLane
Steve J. Pearton
Cammy R. Abernathy

ARL-TR-932 May 1996
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.
Magnetron enhanced reactive ion etch rates of GaN, AlN, and InN wide bandgap semiconductors were investigated as a function of cathode power, pressure, and flow rate in BCl3 plasmas. Etch rates were obtained which were significantly higher than previously reported for dry etching of these materials. Surface analysis of etched samples revealed the presence of boron and chlorine residues. Etching produced a gallium surface deficiency in GaN extending 10 nm below the surface, and a preferential loss of nitrogen in InN. Etch rates were determined for the ternary alloys In0.25Ga0.75N and In0.75Al0.25N as a function of the addition of H2, SF6, and Ar to BCl3. In0.25Ga0.75N etch rates increased for additions up to 60% H2, 20% SF6, and 60% Ar concentrations in the gas mixtures, with higher additions producing a decrease in etch rates. For In0.75Al0.25N, etch rate increased slightly for Ar concentrations up to 40%, while H2 and SF6 additions reduced etch rates.
CONTENTS

Introduction .. 1
Description of Experiment 2
Etch Rate Measurements in BCl₃ Plasmas 3
Auger Electron Microscopy Measurements 6
Scanning Electron Microscopy Measurements 7
Etch Rate Measurements in BCl₃ Gas Mixtures 8
Summary ... 11
References .. 11
FIGURES

1. GaN, AlN, and InN etch rates and cathode bias voltage as a function of power density.
 Page 4
2. GaN, AlN, and InN etch rates as a function of BCl₃ flow rate.
 Page 4
 Page 5
4. AES surface spectra of GaN control sample and etched sample.
 Page 6
5. Scanning electron micrograph of GaN etched sample.
 Page 7
 Page 8
7. Scanning electron micrograph of cross-sectional profile of InN etched sample.
 Page 8
 Page 9
 Page 10
10. In₀.₂₅Ga₀.₇₅N and In₀.₇₅Al₀.₂₅N etch rates as a function of Ar/BCl₃ composition.
 Page 10
INTRODUCTION

The III-V nitride semiconductor materials GaN, AlN, and InN, along with their associated ternary alloys In$_x$Ga$_{1-x}$N and In$_x$Al$_{1-x}$N, are wide bandgap semiconductors which have applications in areas such as short wavelength light emitters and optoelectronic devices, high voltage switches, piezoelectrics, and high speed/high temperature electronics. Device applications which have been reported include InGaN/AlGaN double heterostructure blue light emitting diodes (LED's) [1], high efficiency III-V nitride double heterostructure LED's [2], GaN p-n junction LED's [3,4], GaN photodetectors [5,6], GaN metal-semiconductor field effect transistors [7], and AlGaN/GaN high electron mobility transistors (HEMT's) [8]. For device fabrication these materials must be patternable into small structures, preferably by dry etching. Until now, the few reports on dry etching of these materials have indicated etch rates which are relatively low.

Reactive ion etching (RIE) of GaN in BCl$_3$ [9] and SiCl$_4$ [10] plasmas has resulted in fairly low etch rates, the highest rates reported being approximately 100 nm/min in BCl$_3$ at low pressures. Similarly, RIE of GaN in HBr, HBr/Ar, and HBr/H$_2$ gas mixtures has produced etch rates which were <70 nm/min [11]. Ar$^+$ ion milling has been performed on III-V nitride materials, with etch rates of only <60 nm/min reported for Ar$^+$ ion energies of 500 eV [12]. Etch rates as high as 180 nm/min have been reported for chemically assisted ion beam etching (CAIBE) of GaN at room temperature with a 500 eV Ar$^+$ ion beam directed onto the sample in a Cl$_2$ ambient, and by raising the temperature to 200$^\circ$C an etch rate of 210 nm/min was attained [13].

Electron cyclotron resonance (ECR) discharges are known to produce high density plasmas at low pressures. ECR etching of III-V nitride materials has been reported in Cl$_2$/H$_2$ [14-16], CH$_4$/H$_2$/Ar [14-17], CCl$_2$F$_2$/Ar [17], and BCl$_3$/Ar [17] gas mixtures, with the highest rate reported for ECR being 75 and 110 nm/min for GaN and AlN, respectively, in a 10Cl$_2$/15H$_2$ plasma with 1000W microwave power [14]. ECR etching in HI/H$_2$/Ar and HBr/H$_2$/Ar plasmas has resulted in somewhat higher etch rates, reaching 110, 125, and 105 nm/min for GaN, AlN, and InN, respectively, in 10HI/10H$_2$/5Ar plasmas [18]. The dependence of etch rate on composition of the III-V ternary alloys In$_x$Ga$_{1-x}$N and In$_x$Al$_{1-x}$N in both Cl$_2$/H$_2$ and CH$_4$/H$_2$ ECR plasmas has been reported [16] and showed the expected trend of higher etch rates in CH$_4$/H$_2$ and reduced rates in Cl$_2$/H$_2$ for increasing In mole fraction.

Magnetron reactive ion etching (MIE) is an attractive high density dry etching technique which is similar to RIE, but with the addition of a magnetic field to confine the plasma electrons in closed orbits close to the wafer. This minimizes electron loss to the chamber walls and increases ionization efficiency and reactive species generation, resulting in high etch rates. Compared to RIE, the magnetic field of MIE allows a higher density plasma discharge to be created which is able to sustain itself at relatively low
cathode bias voltages and low pressures, resulting in low ion bombardment energies and therefore minimal etch-induced wafer damage. We have previously reported on MIE of GaAs and AlGaAs in BCl$_3$ [19,20], SiCl$_4$ [21,22], CCl$_2$F$_2$ [22-24], and CH$_4$/H$_2$/Ar [25,26] plasmas. This technical report presents an investigation of MIE of GaN, AlN, and InN in BCl$_3$ plasmas, and MIE of the ternary alloys In$_x$Ga$_{1-x}$N and In$_x$Al$_{1-x}$N in BCl$_3$/Ar, BCl$_3$/H$_2$, and BCl$_3$/SF$_6$ gas mixtures.

DESCRIPTION OF EXPERIMENT

The GaN (1 μm), AlN (1 μm), InN (0.4 μm), In$_{0.25}$Ga$_{0.75}$N (0.4 μm), and In$_{0.75}$Al$_{0.25}$N (0.3 μm) layers, with thicknesses shown in parentheses, were grown on semi-insulating (100) GaAs substrates using metal organic molecular beam epitaxy (MOMBE) [27,28]. The group III sources were triethylgallium, trimethylamine alane, and trimethylindium, with nitrogen as the group V source. Reaction of these sources took place in an ECR plasma source (Wavemat MPDR) operating at 200W power and 2.45 GHz. GaN and AlN layers were resistive, the InN strongly n-type (1020/cm3), and the ternary compounds n-type with carrier concentrations in the range 1018-1019/cm3.

The grown layers were basically defective single crystals with a high density (108/cm2) of stacking faults and threading dislocations. Extensive characterization of the films by x-ray diffraction transmission electron microscopy, photoluminescence, and secondary ion mass spectrometry showed them to be typical of the material currently used in commercially available light-emitting diodes [29]. For example, x-ray diffraction full-width-at-half-maximum was typically 400-900 arc-seconds as measured with a double crystal system. No measurable difference in dry etch rates was observed between samples grown under optimum conditions on either GaAs or Al$_2$O$_3$ substrates. This is expected under high density plasma conditions where generally the etching is limited by sputter desorption of the etch products. In contrast, material quality has a much larger effect on wet chemical etch rates where a strong correlation with x-ray peak widths was observed.

Etching experiments were performed in an MRC 710 magnetron ion etch system having a 50 cm diameter vacuum chamber evacuated by a turbomolecular pump to pressures in the 10$^{-6}$-10$^{-7}$ Torr range. The water-cooled, 1000 cm2 area cathode was driven by a 13.56 MHz power source. Bar magnets contained within the cathode body and situated on the chamber lid at the top of the reactor provide a uniform magnetic field (100 G) at the wafer location. Samples to be etched were fastened to the cathode surface with vacuum grease to provide good thermal contact. When etching with a mixture of gases, gas composition was adjusted by varying the flow rate through the individual flow meters. To prevent etching into the substrate, etch durations were chosen to produce etch depths which were less than film thicknesses. Etch depths were determined from Dektak profilometer measurements on etched samples patterned with AZ5214 photoresist, which was subsequently removed with an acetone rinse.
Etch rate was measured as a function of gas mixture composition, cathode power density, pressure, and flow rate. Etch rate studies as a function of these parameters can provide valuable information for understanding the mechanisms of the etching process. Surface analysis of control and etched samples was carried out using Auger electron spectroscopy (AES) measurements performed on a Perkin Elmer PHI 660 Auger microprobe with a 3kV electron beam to stimulate Auger transitions and a 4kV Ar⁺ ion beam to sputter etch the sample. Secondary ion mass spectrometry (SIMS) measurements were performed on a Cameca 3F system. Etched sample surface morphology was examined by scanning electron microscopy (SEM) on patterned samples.

ETCH RATE MEASUREMENTS IN BCl₃ PLASMAS

Etch products for the group III elements in a BCl₃ plasma are most likely the chlorides of Ga, Al, and In, whereas nitrogen is probably removed in the form of pure N atoms or some complex with chlorine atoms such as NCl₃. In the results reported here for BCl₃ etching, etch rate magnitudes generally followed the order of volatility of the group III-chloride compounds [30,31], namely GaN>AlN>InN.

Magnetron reactive ion etch rates of GaN, AlN, and InN in BCl₃ plasmas are shown in Figure 1 as a function of cathode power density, along with the associated cathode bias voltages. The etch rates of these materials increase with power due to an increased generation of reactive chlorine species. In addition, the increased bias voltage at higher power densities leads to greater ion bombardment energies and enhanced sputtering of volatile species from wafer surfaces. The GaN etch rate of 300 nm/min for 0.5 W/cm² power density is significantly greater than the highest previously reported room temperature etch rate of 180 nm/min attained with chemically assisted ion beam etching (CAIBE) of GaN [13]. The AlN and InN etch rates shown in Figure 1 are appreciably higher than those reported in a 10BCl₃/5Ar ECR plasma at 250 V cathode bias [17]. The relatively low etch rates of InN are to be expected because of the low volatility of InClₓ species. The highest cathode bias voltage of 100 V achieved at 0.5 W/cm² in Figure 1 is considerably lower than reported for RIE under similar conditions. For example, Lin, et al. [9] report a bias voltage of 231 V in a BCl₃ plasma which produced a GaN etch rate of 100 nm/min. The low MIE bias voltages should result in minimal etch-induced wafer damage. The data of Figure 1 indicate that further increases in etch rates can be attained with power densities greater than 0.5 W/cm².

Figure 2 shows etch rates as a function of BCl₃ flow rate. Gas residence time, which is the mean time a gas molecule remains in the process chamber before being pumped away, is inversely proportional to flow rate. For GaN the decrease in etch rate with increasing flow rate indicates that etching is taking place in the flow rate regime where gas residence times are relatively short and thus reactant gas is pumped away before reaction with the GaN wafer surface can take place. For AlN and InN, etch rate increase with increasing flow rate indicates that etch rate for these materials is limited by the
Figure 1. GaN (●), AlN (■), and InN (▲) etch rates as a function of cathode power density, with 0.5 sccm BCl\textsubscript{3} flow rate, 2 mTorr pressure. Also shown is cathode bias voltage (○) as a function of power density.

Figure 2. GaN (●), AlN (■), and InN (▲) etch rates as a function of BCl\textsubscript{3} flow rate, with 0.4 W/cm2 cathode power density, 2 mTorr pressure.
supply of etch gas over the given range of flow rates [32].

Figure 3 exhibits etch rates as a function of chamber pressure. Etch rate for GaN initially increased with pressure, reaching a maximum of 350 nm/min at about 7 mTorr, and then decreased with further pressure increase. The initial etch rate increase is indicative of a reactive-limited etch regime where a pressure increase allows more etch gas species to become available. AES measurements performed on a sample etched at the highest pressure (9 mTorr) showed the presence of a surface carbon deposit which is believed to be limiting the etch rate. Since this deposit was not observed on an unpatterned GaN sample etched under similar conditions, it appears that it is produced by the photoresist mask. A more appropriate etch mask should eliminate this etch rate-limiting effect.

Etch rate for AlN is essentially constant over the pressure range investigated, while that for InN increases slightly with pressure up to 7 mTorr and is saturated thereafter. These results suggest that BCl$_3$ etching is not limited by reactive gas supply for AlN under these conditions, but that at least up to 7 mTorr an increase in reactive chlorine species does produce faster etching of InN. Note that at pressures of 10-12 mTorr the etch rates of AlN and InN were essentially equal, suggesting that non-selective etching of InAlN/InN and InAlN/AlN heterostructures is possible under these conditions.

![Graph showing etch rates as a function of pressure](image)

Figure 3. GaN (●), AlN (■), and InN (▲) etch rates as a function of pressure, with 0.5 sccm BCl$_3$ flow rate, 0.4 W/cm2 cathode power density.
AUGER ELECTRON SPECTROSCOPY MEASUREMENTS

Figures 4(a) and 4(b) show AES surface spectra measured on a GaN control sample and an etched sample, respectively. The oxygen (O) and carbon (C) signals are due to air exposure. In addition to the constituent Ga and N signals, the etched sample exhibits a chlorine (Cl) residue with an estimated surface composition of <1 at.%. The Ga/N surface ratio decreased by about 25% upon etching, indicating a surface region Ga deficiency. AES depth profile measurements on the etched surface indicate that the Ga deficiency extends about 10 nm below the surface. Other workers have reported no change in surface stoichiometry of GaN ECR etched in Cl$_2$/H$_2$ plasmas [14] or ion milled with 500 eV Ar$^+$ ions [12].

Figure 4. AES surface spectra of (a) GaN control sample and (b) GaN sample etched with 2 mTorr pressure, 0.4 W/cm2 cathode power density, 0.5 sccm BCl$_3$ flow rate.
SCANNING ELECTRON MICROSCOPY MEASUREMENTS

Figure 5 shows a scanning electron micrograph of a GaN sample patterned with a Ni mask and etched to a depth of 0.6 μm. The etched surface retains the same features as the unetched, masked region. Figure 6 shows a scanning electron micrograph of a feature etched into AlN. The etching is smooth and anisotropic. Figure 7 is an SEM micrograph of a cross-sectional profile etched into InN. The sidewall defined by the mask edge exhibits a negative undercut characteristic which perhaps is indicative of a sputtering component required to remove the low volatility InClₓ species. The as-etched AlN and InN surfaces had <1 at.% borine and chlorine residues as indicated by SIMS measurements, in addition to the usual oxygen and carbon signals due to air exposure. AES measurements on InN showed a preferential loss of N upon etching, similar to results reported for ECR etching in Cl₂/H₂ [14].

Figure 5. Scanning electron micrograph of GaN sample patterned with Ni mask and etched to a depth of 0.6 μm. Etching parameters were 0.5 sccm BCl₃ flow rate, 0.4 W/cm² cathode power density, 2 mTorr pressure, 2.5 min etch time.
Figure 6. Scanning electron micrograph of AlN sample etched with 0.5 sccm BCl₃ flow rate, 0.4 W/cm² power density, 2 mTorr pressure.

Figure 7. Scanning electron micrograph cross-sectional profile of InN sample etched with 0.5 sccm BCl₃ flow rate, 0.4 W/cm² power density, 2 mTorr pressure.

ETCH RATE MEASUREMENTS IN BCl₃ GAS MIXTURES

Pearston, et al. [16] have reported on the addition of H₂ and SF₆ to Cl₂ discharges for ECR etching of In₀.₅Ga₀.₅N and In₀.₅Al₀.₅N to enhance the removal of N in the form of
volatile NH₃ and NF₃ etch products. The etch rates of both materials increased with the addition of up to 60% H₂ and 80% SF₆ in these discharges. However, Adesida, et al. [10] found that the addition of SF₆ to SiCl₄ produced essentially no change in the reactive ion etch rate of GaN.

Figure 8 shows In₀.₂₅Ga₀.₇₅N and In₀.₇₅Al₀.₂₅N MIE etch rates as a function of percent H₂ in H₂/BCl₃ mixtures. In₀.₂₅Ga₀.₇₅N etch rate increased for H₂ additions up to 60% and then decreased for higher H₂ concentrations, similar to the H₂/Cl₂ etching results mentioned above. However, In₀.₇₅Al₀.₂₅N etch rate was unchanged for H₂ additions up to 40%, above which the rate decreased. The eventual decrease in etch rates for low BCl₃ concentrations was due to less effective removal of the group III elements.

Figure 8. Etch rates of In₀.₂₅Ga₀.₇₅N (●) and In₀.₇₅Al₀.₂₅N (■) as a function of percent H₂ in H₂/BCl₃ mixtures, with 3 sccm total flow rate, 0.2 W/cm² power density, 2 mTorr pressure.

Figure 9 shows the effect of adding SF₆ to BCl₃ on the etch rates of these III-V nitride ternary compounds. The addition of 20% SF₆ produced a slight increase in In₀.₂₅Ga₀.₇₅N etch rate, with further additions resulting in significantly lower rates. Adding any amount of SF₆ caused a reduction in In₀.₇₅Al₀.₂₅N etch rate, probably due to formation of involatile AlF₃.
Figure 9. Etch rates of In$_{0.25}$Ga$_{0.75}$N (●) and In$_{0.75}$Al$_{0.25}$N (■) as a function of percent SF$_6$ in SF$_6$/BCl$_3$ mixtures, with 3 sccm total flow rate, 0.2 W/cm2 power density, 2 mTorr pressure.

Figure 10. Etch rates of In$_{0.25}$Ga$_{0.75}$N (●) and In$_{0.75}$Al$_{0.25}$N (■) as a function of percent Ar in Ar/BCl$_3$ mixtures, with 3 sccm total flow rate, 0.2 W/cm2 power density, 2 mTorr pressure.

The dependence of ternary alloy etch rates on Ar concentration in Ar/BCl$_3$ mixtures is exhibited in Figure 10. In$_{0.75}$Al$_{0.25}$N shows a slight increase in etch rate for Ar concentrations up to 40%. However, In$_{0.25}$Ga$_{0.75}$N etch rate increased significantly when Ar concentration reached 60%, producing an etch rate which was almost twice that for pure BCl$_3$. Since the etching process is due to a combination of chemical reaction and physical sputtering, etch rate increase at lower Ar concentrations was probably caused by increased sputter removal of etch products with the introduction of this heavy, chemically inert species. As Ar concentration was further increased, etch rates eventually decreased because physical sputtering began to dominate the etching.
process, finally dropping to <10 nm/min for 100% Ar concentration.

SUMMARY

High etch rates of GaN, AlN, and InN were attained using the MIE technique with BCl₃ plasmas. Anisotropic etch characteristics were obtained along with smooth surfaces. Etch rates of In₀.₂₅Ga₀.₇₅N and In₀.₇₅Al₀.₂₅N were investigated as a function of H₂, SF₆, and Ar additions to BCl₃. MIE with BCl₃ chemistries is shown to be a suitable dry etching technique for low damage patterning of these wide bandgap materials.

REFERENCES

[29] S. Nakamura (private communication).
Defense Technical Information Center*
ATTN: DTIC-OCC
8725 John J. Kingman Rd, STE 0944
Fort Belvoir, VA 22060-6218
(*Note: Two DTIC copies will be sent from STINFO office, Ft Monmouth, NJ)

Director
US Army Material Systems Analysis Actv
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander, AMC
ATTN: AMCDE-SC
5001 Eisenhower Ave.
Alexandria, VA 22333-0001

Director
Army Research Laboratory
ATTN: AMSRL-D (John W. Lyons)
2800 Powder Mill Road
Adelphi, MD 20783-1197

Director
Army Research Laboratory
ATTN: AMSRL-DD (COL Thomas A. Dunn)
2800 Powder Mill Road
Adelphi, MD 20783-1197

Director
Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1197
(1) AMSRL-OP-SM-TA (ARL Records Mgt)
(1) AMSRL-OP-SM-TL (ARL Tech Library)
(1) AMSRL-OP-SM-TP (ARL Tech Publ Br)

Directorate Executive
Army Research Laboratory
Physical Sciences Directorate
Fort Monmouth, NJ 07703-5601
(1) AMSRL-PS
(1) AMSRL-PS-T (M. Hayes)
(1) AMSRL-OP-FM-RM
(22) Originating Office
Deputy for Science & Technology
Office, Asst Sec Army (R&D)
(1)
Washington, DC 20310

Cdr, Marine Corps Liaison Office
ATTN: AMSEL-LN-MC
(1)
Fort Monmouth, NJ 07703-5033

HQDA (DAMA-ARZ-D/
Dr. F.D. Verderame)
(1)
Washington, DC 20310

Director
Naval Research Laboratory
ATTN: Code 2627
(1)
Washington, DC 20375-5000

USAF Rome Laboratory
Technical Library, FL2810
ATTN: Documents Library
Corridor W, STE 262, RL/SUL
26 Electronics Parkway, Bldg 106
Griffiss Air Force Base
(1)
NY 13441-4514

Dir, ARL Battlefield
Environment Directorate
ATTN: AMSRL-BE
White Sands Missile Range
(1)
NM 88002-5501

Dir, ARL Sensors, Signatures,
Signal & Information Processing
Directorate (S3I)
ATTN: AMSRL-SS
2800 Powder Mill Road
(1)
Adelphi, MD 20783-1197

Dir, CECOM Night Vision/
Electronic Sensors Directorate
ATTN: AMSEL-RD-NV-D
(1)
Fort Belvoir, VA 22060-5806

Dir, CECOM Intelligence and
Electronic Warfare Directorate
ATTN: AMSEL-RD-IEW-D
Vint Hill Farms Station
(1)
Warrenton, VA 22186-5100