DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Stimulated emission without cavity in powders and single crystals of Nd doped materials

T. Thompson, M. Mahdi.

*Center for Nonlinear Optics and Materials, **Center for Applied Optical Science, Department of Physics,
Alabama A&M University, P. O. Box. 1268,
Normal, AL 35762.

V. Ostroumov.

Institute of Laser Physics, Hamburg University, Jungiusstrasse 9-11, D 20355, Hamburg, Germany.

Abstract

Short (>300 ps) pulses of stimulated emission were found from powders of NdAl5(BO3)4, NdSc5(BO3)4, and
Nd:Sr5(PO4)3F laser crystals under 532 nm and 805 nm excitation. Study of stimulated emission in the mixture
of two powders has shown that different components influenced each other. The main features of
experimentally observed stimulated emission are described with a simple model accounting for 4F3/2
excited state concentration and emission energy density.

Key Words

Rare earth and transition metal solid-state lasers (432); Laser theory (86); Scattering by particles (2157);
Microstructure devices (454).

Introduction

In 1986 Markushev et al. 1 showed that a powder of Na2La30.33Nd0.67(OH)4 at liquid nitrogen temperature
pumped at λ=575-590 nm exhibited a laser-like behavior without an external cavity. After some
threshold pump energy, the Nd emission spectrum narrowed to a single intense line and short emission
pulses appeared in response to a 30 ns Q-switched laser pulse. In succeeding papers by the same group 2-4 the
spectral and temporal behaviors of the emission pulses were studied in more detail in various Nd doped
crystals. Laser-like behavior of Nd emission in polycrystals of Nd3La13P2O44 and powders of
(NdCl3·6H2O) was first demonstrated in Ref. 5 at room temperature. In the same work emission pulses above
the threshold were found to be of low coherence.

The short-spike formation and narrowing of the emission spectrum is thought to be due to collective
behavior of many particles, where emission is amplified in the gain medium. The diffusion of photons in gain
scattering medium was studied by Letokhov in Ref. 6. However, a detailed explanation of the phenomenon is
not currently available in the literature.

From the practical point of view, the study of laser-like emission in powders is very interesting because of
potential applications of compact, low-cost, and very simply designed lasers based on powders of laser
crystals, which do not need any mirrors and adjustment.

Experimental measurements

In the experiment, we studied powders of the NdAl5(BO3)4, NdSc5(BO3)4, and Nd(2%)Sc5(PO4)3F
(Nd:S-FAP) laser crystals. An average size of the powder particles was approximately equal to 5 μm. The
samples were pumped with Q-switched frequency doubled Nd:YAG laser or 805 nm Cr:LiCAF laser.

Experimentally we analyzed spectra and kinetics of Nd emission at low and high pumping densities. All
experiments were carried out at room temperature. We found that, after the pump energy exceeds some
threshold value, both the kinetics and the spectra of Nd luminescence change very dramatically. Above the
threshold, the luminescence spectrum narrows down to a single line, the measured value of the full width at half
height (FWHH) equal to 2 Å was limited by the monochromator. Figure 1 shows the transformation of the
spectrum in the NdAl5(BO3)4 powder with increase of pumping intensity. The spectrally narrow light was
emitted in one or several short pulses. In NdAl5(BO3)4 the duration of the pulses varied from ~300 ps to ~1.3
ns (Fig. 2). The other materials studied demonstrated similar behavior. As is typical for most lasers, the
dependence of the stimulated emission intensity from the powder on the pump energy is as presented in Fig.
3.
Figure 1. Emission spectrum of NdAl₂(BO₃)₄ powder a) below the threshold (=30 mJ/cm²) and b) above the threshold (=240 mJ/cm²), $\lambda=1063.1$ nm.

The threshold energy density, the threshold Nd excited state concentration, and the threshold gain at the $F_{45/2} \rightarrow I_{11/2}$ transition in the three powder samples studied are summarized in Table 1. The energy levels diagram of Nd³⁺ ions is presented in Fig. 4.

An apparently similar emission behavior we observed under pulsed Ti:sapphire pumping (808 nm, 20 ns) in polished plane-parallel samples of Nd:GVO₄.

Figure 2. Pulses of stimulated emission from NdAl₂(BO₃)₄ powder 1) near the threshold (200 mJ/cm²), 2) at $x=1.6$ times threshold energy, 3) $x=1.9$, 4) $x=3.9$.

Figure 3. Experimental dependence of the intensity of stimulated emission in NdAl₂(BO₃)₄ on the pump energy, $\lambda=1063.1$ nm.

(Nd=0.9%, 2.8%) and Nd₃La₁₋ₓScₓ(BO₃)₄ ($x=0.1, 0.25$). Short and very intense emission spikes were observed in both materials when Ti:sapphire laser was tuned to the maximum of Nd absorption. In both crystals the ratio of the spike intensity to the intensity of the succeeding "regular" luminescence was approximately equal to 10^4. Above the threshold, the dependence of spike intensity on pump energy was practically linear.
<table>
<thead>
<tr>
<th></th>
<th>NdAl₃(BO₃)₄</th>
<th>NdSc₃(BO₃)₁/₄/ Nd₃La₃Sc₃(BO₃)₄</th>
<th>Nd: S-FAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd concentration in 100% doped sample</td>
<td>5.3x10⁻¹⁰ cm³, Ref. 7</td>
<td>5.1x10⁻¹⁰ cm³ in NdSc₃(BO₃)₄, Refs. 8, 9</td>
<td>1.68x10⁻¹⁰ cm³, Ref. 10</td>
</tr>
<tr>
<td>4F₉/₂ life-time</td>
<td>20 μs, Ref. 7</td>
<td>Nd(1-10%): LaSc₃(BO₃)₄ 118 μs NdSc₃(BO₃)₄ 24 μs, Refs. 8, 9</td>
<td>298 μs, Ref. 10</td>
</tr>
<tr>
<td>Wavelength of the maximum emission cross section</td>
<td>=1.063 μm Ref. 11</td>
<td>1.0615 μm, (our measurements)</td>
<td>1.059 μm, Refs. 10, 12</td>
</tr>
<tr>
<td>4F₉/₂-11/₂ emission cross section</td>
<td>10x10⁻¹⁰ cm⁺², Ref. 7</td>
<td>Nd₃La₃Sc₃(BO₃)₄ Elax, 13x10⁻¹⁰ cm⁺² Elly, 9x10⁻¹⁰ cm⁺² Elzz, 5x10⁻¹⁰ cm⁺², Ref. 8, averaged over different polarizations: 9x10⁻¹⁰ cm⁺²</td>
<td>Elle, 5.4x10⁻¹⁰ cm⁺² Elle, 2.4x10⁻¹⁰ cm⁺² Refs. 10, 12, averaged over different polarizations: 3.9x10⁻¹⁰ cm⁺²</td>
</tr>
<tr>
<td>Absorption cross section at the pump wavelength</td>
<td>Elle, 3.3x10⁻¹⁰ cm⁻¹ Elle, 2.6x10⁻¹⁰ cm⁻¹ (λ=532 nm), Ref. 13</td>
<td>Elax, 5.1x10⁻¹⁰ cm⁻¹ Elly, 4.2x10⁻¹⁰ cm⁻¹ Elzz, 2.4x10⁻¹⁰ cm⁻¹ (λ=532 nm); Ref. 14</td>
<td>Elle, 2.26x10⁻¹⁰ cm⁻¹ Elle, 0.7x10⁻¹⁰ cm⁻¹ (λ=805 nm); Ref. 10</td>
</tr>
<tr>
<td>Absorption coefficient of the powder (averaged over different polarizations)</td>
<td>=15 cm⁻¹ (λ=532 nm, 100%Nd)</td>
<td>=20 cm⁻¹ (λ=532 nm, 100%Nd)</td>
<td>=55 cm⁻¹ (λ=805 nm, 2% Nd)</td>
</tr>
<tr>
<td>Threshold pump density (in the powder)</td>
<td>200 mJ/cm² (λ=532 nm)</td>
<td>560 mJ/cm² (λ=532 nm)</td>
<td>170 mJ/cm² (λ=805 nm)</td>
</tr>
<tr>
<td>Threshold Nd excited state concentration</td>
<td>7.5x10⁻¹⁸ cm⁻³</td>
<td>2.8x10⁻¹⁹ cm⁻³</td>
<td>3.64x10⁻¹⁹ cm⁻³</td>
</tr>
<tr>
<td>Threshold gain</td>
<td>=7.5 cm⁻¹</td>
<td>=2.5 cm⁻¹</td>
<td>=15.7 cm⁻¹</td>
</tr>
</tbody>
</table>

Table 1. Spectroscopic data on NdAl₃(BO₃)₄, Nd₃La₃Sc₃(BO₃)₄, and Nd: S-FAP laser crystals. (In Nd₃La₃Sc₃(BO₃)₄ the most of data are available on low Nd doped crystals. The change of the crystal symmetry at >50% Nd concentration may influence some of spectroscopic parameters.)

Similar laser-like effects in the emission from small single crystals of NdAl₃(BO₃)₄ were reported in Ref. 7.

To compare the behavior of spiked emission from powders to that from single crystals, we studied polished and unpolished plates of the Nd(2%):S-FAP single crystals, and small (~1mm²) single crystals of NdAl₃(BO₃)₄ and NdSc₃(BO₃)₄ (Table 2); we also studied a thin layer of NdAl₃(BO₃)₄ powder. As follows from Table 2, three factors help stimulated emission to occur: 1) appreciably large pumped volume, 2) preparation of the material in the powder form (scattering), and 3) polished plane-parallel surfaces in the bulk crystals (feedback). (Note, that the last result is different from that of Ref. 15, where the reflections of the cell walls did not decrease but increased the threshold in the dye+powder gain scattering medium).

To determine the portion of the energy stored at the level 4F₉/₂ went to the stimulated emission channel, we studied a) the kinetics of luminescence at the 4F₉/₂→1I₅/₂ transition during the stimulated emission pulses, b)
Table 2. Thresholds of the stimulated emission in the powders and single crystals of NdAl₃(BO₃)₄, NdₓLa₁₋ₓScₓ(BO₃)₄, and Nd:S-FAP laser crystals.

<table>
<thead>
<tr>
<th></th>
<th>NdAl₃(BO₃)₄</th>
<th>NdScₓ(BO₃)₄</th>
<th>Nd:S-FAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{pump}=532 nm</td>
<td>200 mJ/cm²</td>
<td>560 mJ/cm²</td>
<td>170 mJ/cm²</td>
</tr>
<tr>
<td>Powders</td>
<td>V ≥ 1 mm³</td>
<td>V ≥ 1 mm³</td>
<td>V ≥ 1 mm³</td>
</tr>
<tr>
<td>thin monolayer</td>
<td>at ≤ 1 J/cm²</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>of powder</td>
<td>threshold was not achieved</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
| Single crystals | V = 1 mm³ | 600 mJ/cm² | 8 mm polished plate
| | | | 625 mJ/cm² |
| | | | 1.5 mm polished plate
| | | | 920 mJ/cm² |
| | | | 0.8 mm unpolished plate
| | | | 1080 mJ/cm² |

Figure 4. Nd³⁺ energy levels diagram, excitation and relaxation processes in Nd³⁺: 1) - pumping, 2) - multiphonon relaxation populating the metastable level [F9/2, G9/2, G7/2, G5/2] radiation and multiphonon relaxation of the level [F7/2, 4F5/2] stimulated emission at the transition [F5/2] → [I9/2, 13/2, 11/2] cross relaxation.

analyzed the dependence of the peak [F9/2] → [I9/2] emission vs pump energy, and c) compared the area under the stimulated emission pulses and residual spontaneous emission kinetics from the level [4F7/2]. Combining the results of the three measurements above, we estimated the quantum yield of stimulated emission to be rather small, ~0.2%, at the pump energy two times greater than the threshold energy. However, accounting for the small pulse duration of the stimulated emission, the peak power of the stimulated emission was comparable to that of the pump pulses.

We then turned to the study of mixtures of the two powders. We tried ~1/6 NdAl₃(BO₃)₄ and ~5/6 NdScₓ(BO₃)₄, by volume. In the mixtures, the maximum strong luminescence line of NdAl₃(BO₃)₄

(λ=1063.1 nm) was practically not seen under the relatively wide line of NdScₓ(BO₃)₄. Above the threshold, however, two narrow emission lines (1063.1 nm and 1061.5 nm) appeared. Their thresholds and relative strengths were strongly dependent on very small variations of concentrations of the components.

Combining the streak camera with the monochromator, we obtained a three-dimensional picture (wavelength-time-intensity) of the stimulated emission in the mixture of two powders, Fig. 5. When the pump energy was above the threshold required for both lines, several short pulses of emission appeared at 1063.1 nm, after that emission jumped to 1061.5 nm which gave one or several short pulses, depending on the pump energy.

In a one-component medium the first pulse in the series was always the strongest one, Fig. 2. In contrast, in the mixture of two powders (see Fig. 5), where the first pulse in 1061.5 nm series coincided in time with the last pulse in 1063.1 nm series, the first 1061.5 nm pulse was strongly damped and weaker than succeeding,
Comparison of experiment and theory. Discussion

The threshold behavior of stimulated emission and the short emission pulses we describe by a simple model accounting for the Nd excited state concentration, \(n \), and emission energy density, \(E \), in the pumped volume:

\[
\frac{dn}{dt} = \frac{K(t)N\sigma_{abs}}{\hbar v_{pump}} - \frac{n}{\tau_1} - \beta n \frac{E}{\hbar v_{em}} \sigma_{em} n
\]
\[
\frac{dE}{dt} = -\frac{E}{\tau_2} + \frac{n}{\tau_1} \hbar v_{em} + E\sigma_{em} n
\]

Here \(K(t) \) is the pump power density, \(N \) is the ground state concentration of Nd, \(\sigma_{abs} \) is the absorption cross section at the pump wavelength, \(\sigma_{em} \) is the emission cross section at the wavelength of stimulated emission, \(\hbar v_{pump} \) is the photon energy at the pump wavelength, \(\hbar v_{em} \) is the photon energy at the emission wavelength, \(\tau_1 \) is the life-time of the level \(F_{9/2} \), \(\beta N \) is the rate of cross relaxation, \(\tau_2 \) is the effective life-time of the photon in the pumped volume, and \(c \) is the speed of light.

The idea behind Eq. (1) (to watch for dynamics of emission energy in the pumped volume) is close to that of Letokhov 6 who calculated threshold for stimulated emission in the gain scattering medium. Equation (1) is also similar to that for laser relaxation oscillations, where \(\tau_1 \) has a meaning of the photon life-time in the laser cavity.

In the numerical solution of Eq. (1) we used the spectroscopic parameters close to that in the NdAlB\(_3\)(BO\(_3\))\(_4\) experiment. The only unknown parameter in Eq. (1) was \(\tau_2 \), the effective photon life-time in the pumped volume. We used it as an adjustable parameter.
to fit the experimental energy threshold and found $\tau = 10$ ps. At $n = 1.5$, this value of τ corresponds to the average 2 mm photon path in the pumped medium. This seems to be a reasonable value for a 1 mm pump beam cross section and ≈ 0.7 mm absorption length (in NdAl$_3$(BO$_3$)$_4$) in our experiment.

The calculated dynamics of emission energy density and $^{4}F_{3/2}$ excited state concentration are shown in Fig. 6. The appearance of calculated emission pulses is very close to that observed experimentally. The analysis of excited state concentration dynamics, $n(t)$, shows that pulses of stimulated emission occur when n exceeds some critical threshold value, practically independent of pump density.

We have shown that the calculated threshold of stimulated emission is inversely proportional to the absorption coefficient at the pump wavelength, k_{abs}, emission cross section, σ_{em}, and escape-time of photon from the pumped volume, τ (photon walk length in the pumped volume). Thus, the threshold is inversely proportional to the small signal amplification along the effective photon path in the pumped volume. This result is in agreement with our experimental observations. For lasers the described threshold behavior is obvious and have been demonstrated elsewhere.

According to our simple model, preparation of the sample in powder form and polishing of surfaces do not produce any special condition necessary for stimulated emission to occur, but only reduce the threshold of stimulated emission. Short pulses of stimulated emission are predicted (and obtained experimentally) at higher but still reasonable pumping energy in excited crystal without any scattering and reflection feedback.

Summary

Room temperature stimulated emission was found in the powders of NdAl$_3$(BO$_3$)$_4$, NdSc$_3$(BO$_3$)$_4$, and Nd:SFAP laser crystals under Q-switched laser pumping: when the pump energy exceeded the threshold value, Nd emission spectrum narrowed to a single line, one or several short (>300 ps) emission pulses appeared in response to the pump pulse.

Similar behavior, but at higher thresholds, was found in single crystals of the same materials. However, no stimulated emission was obtained in a monolayer of powder. Thus, appreciably large pumped volume and long paths of emission photons help to reduce the threshold of stimulated emission. It was shown that only small portion of excitation stored at the $^{4}F_{3/2}$ Nd level goes to the stimulated emission channel.

Study of stimulated emission in the mixture of two powders has shown that different components influence each other, that implies a collective behavior of many emitting particles.

The main features of the experimentally observed short pulsed emission were described with a simple model accounting for the $^{4}F_{3/2}$ excited state concentration and emission energy density in the pumped volume.

Acknowledgments

The work was done under the support of the MRCE-NSF grant #HRD-9353548, ARO Grant #DAAL 03-91-G-0316, and (for H. J. C.) the Air Force Office of Scientific Research. Authors acknowledge the help of Ms. C. Cochrane for the microphotographs of the powders. The NdAl$_3$(BO$_3$)$_4$ and NdSc$_3$(BO$_3$)$_4$ crystals used in the experiments were kindly provided by Prof. G. Huber of Hamburg University, Germany. We thank Prof. G. Huber for his collaboration. We also acknowledge the assistance of Prof. M. Bass and Dr. X. X. Zhang of CREOL at the University of Central Florida in conducting the Nd:SFAP related experiments.

References